Séminaire MODAL'X : Jean Marc Freyermuth (I2M)

Publié le 6 février 2025 Mis à jour le 20 mai 2025

Advances in Harmonizable Processes with Applications to EEG Functional Connectivity

Date(s)

le 22 mai 2025

13h30-14h30
Lieu(x)

Bâtiment Maurice Allais (G)

Entresol, salle Modal'X (E-27)
Plan d'accès
Résumé : Harmonizable time series extend the concept of stationary time series by allowing a spectral decomposition in which the components are correlated. As a result, the covariance function of a harmonizable time series is bivariate and admits a two dimensional Fourier decomposition, known as the Lo`eve spectrum. In this talk, we introduce a parametric form for harmonizable processes, specifically Harmonizable Vector AutoRegressive and Moving Average models (HVARMA). We present a method for generating finite time sample realizations of HVARMA with known Loève spectrum. Finally, after discussing a nonparametric approach to estimate the spectral characteristics of spatiotemporal processes that exhibit local time harmonizability, we illustrate how harmonizable processes can aid in analyzing functional connectivity in EEG data.

Mis à jour le 20 mai 2025