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200, Avenue de la République
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Abstract
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1 Introduction

Let (Xt)t≥0 be an ergodic Markov process on a Polish state space E with sta-

tionary distribution π. The weak law of large numbers asserts that for any function

φ ∈ L1(π) and any y > 0, the probability

Λ(t, φ, x, y) := Px

(∣∣∣∣1t
∫ t

0

φ(Xs)ds−
∫
φdπ

∣∣∣∣ ≥ y

)
, (1.1)
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tends to 0 as t goes to infinity. Actually, large deviations theory gives asymptotic

bounds on the quantity t−1 log Λ(t, φ, x, y), but it is unsatisfactory when one wants

to control the probability (1.1) for fixed parameters. In recent years, such a problem

has been investigated by several authors. For instance, using the Lumer-Philips theo-

rem, Wu derived in [12] a non-asymptotic estimate on the probability (1.1), which is

sharp for symmetric semigroups, however not really tractable. More recently, various

authors obtained for diffusion processes explicit upper bounds on (1.1) under regular-

ity assumptions on the function φ together with some functional inequalities satisfied

by the stationary distribution π, see for instance [1, 5, 6]. On the other hand, in

the case of continuous time Markov chains having a spectral gap, Lezaud established

Poisson-type deviation bounds for bounded functions φ on finite or infinite countable

state spaces, whose proofs rely on Kato’s perturbation theory for linear operators, cf.

[9, 10].

The purpose of the present paper is to extend in two ways the estimates pro-

vided in the articles [9, 10] in the case of ergodic birth-death processes on N. The

first improvement is to relax the boundedness assumption on the transition rates of

the generator of the process, whereas the second one allows us to consider not only

bounded but Lipschitz functions φ with respect to a suitable distance. Our approach

relies on the notion of Wasserstein curvatures recently investigated by the author in

[7], which characterize exponential contraction properties of the associated semigroup

on the space of Lipschitz functions with respect to this metric. As a result, we es-

tablish a tail estimate which is convenient for large time, in contrast to the bounds

obtained in [7] involving the classical distance on N.

The paper is organized as follows. In Section 2, basic material on birth-death

processes is recalled, as the discrete curvatures defined in [7]. Namely, given an ergodic

birth-death process (Xt)t≥0 on N, we introduce its Wasserstein curvature associated

to a suitable metric δ on N and we provide in Proposition 2.6 some conditions on

its generator for this discrete curvature to be bounded below by a positive constant.

Under these criteria, we state in the second part of this section our main contribution

of the paper which is contained in Theorem 2.7, where a Poisson-type upper bound on
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a deviation probability similar to (1.1) is established for a (not necessarily bounded)

Lipschitz function φ with respect to the distance δ. In particular, no boundedness

assumption on the transition rates of the generator is required. The whole Section 3

is devoted to the proof of Theorem 2.7, which is rather technical and is divided into

several lemma. The main part is given in Lemma 3.3, where an upper bound on

the Laplace transform of a Lipschitz cylindrical function of the process (Xt)t≥0 with

respect to the `1-metric generated by δ, is provided through a tensorization procedure

of the one-dimensional case. Finally, the example of the M/M/∞ queueing process

is investigated in Section 4.

2 Preliminaries and main result

On a filtered probability space (Ω,F , (F t)t≥0,P), we consider throughout the paper

an irreducible ergodic birth-death process (Xt)t≥0 on the infinite state space N :=

{0, 1, . . .}, with stationary distribution π. The process (Xt)t≥0 is a stable conservative

continuous time Markov chain with generator defined on the set F (N) of all real-

valued functions on N by

Lf(x) = λx (f(x+ 1)− f(x)) + νx (f(x− 1)− f(x)) , x ∈ N, (2.1)

where the transition rates λ and ν are positive with 0 as the unique reflecting state, i.e.

ν0 = 0, conditions ensuring irreducibility. Denote (Pt)t≥0 the homogeneous semigroup

operator whose transition probabilities are given for any x ∈ N by

Pt(x, y) =


λxt+ o(t) if y = x+ 1,
νxt+ o(t) if y = x− 1,
1− (λx + νx)t+ o(t) if y = x,
0 if y ∈ N\{x− 1, x, x+ 1},

where the function o is such that the ratio o(t)/t converges to 0 as t tends to 0.

Denoting Px the distribution of the process starting from x ∈ N and Ex the expectation

with respect to Px, the family of operators

Ptf(x) := Ex[f(Xt)] =
∑
y∈N

f(y)Pt(x, y), x ∈ N,
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are positivity preserving contractions on L1(π) and also on L∞(π), hence by interpo-

lation on every space Lp(π), p ∈ [1,+∞]. In particular, if the stationary distribution

satisfies for some metric ρ the moment condition∑
x∈N

ρ(x, y)π(x) < +∞, y ∈ N, (2.2)

then the semigroup is well-defined on the space Lipρ of Lipschitz function f : N→ R
endowed with the Lipschitz seminorm

‖f‖Lipρ
:= sup

x,y∈N

|f(x)− f(y)|
ρ(x, y)

< +∞.

Let us recall the definition given in [7] of the Wasserstein curvature of the birth-death

process (Xt)t≥0 with respect to some distance ρ.

Definition 2.1. We assume that the stationary distribution π satisfies the moment

condition (2.2) with a metric ρ. The ρ-Wasserstein curvature at time t > 0 of the

process (Xt)t≥0 is defined by

αt := −1

t
sup

{
log

(
‖Ptf‖Lipρ

‖f‖Lipρ

)
: f ∈ Lipρ, f 6= const

}
∈ [−∞,+∞).

It is said to be bounded below by α ∈ R if inft>0 αt ≥ α. In other words, the semigroup

(Pt)t≥0 is exponentially contractive in the following sense:

‖Ptf‖Lipρ
≤ e−αt‖f‖Lipρ

, t > 0.

If the stationary distribution π satisfies the moment condition (2.2) with the dis-

tance ρ, then by the Kantorovich-Rubinstein duality theorem, see e.g. Theorem 5.10

in [4], the ρ-Wasserstein curvature of the process is bounded below by α if and only

if for any x ∈ N and any t > 0, the kernel Pt(x, ·) verifies the moment condition (2.2)

with the metric ρ and

Wρ(Pt(x, ·), Pt(y, ·)) ≤ e−αtρ(x, y), x, y ∈ N, t > 0.

Here, Wρ(µ, ν) stands for the Wasserstein distance between two probability measures

µ and ν on N, endowed with the cost function ρ:

Wρ(µ, ν) := inf
η

∑
x,y∈N

ρ(x, y)η(x, y),
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where the infimum runs over any probability measure η on N2 having marginals µ and

ν. Therefore, if α is positive, then the process has good ergodicity properties since the

semigroup (Pt)t≥0 converges exponentially fast to the stationary distribution π with

respect to the metric Wρ, cf. Theorem 5.23 in [4].

In the paper [7], some Poisson-type deviation inequalities are established for birth-

death processes through the discrete curvatures approach and with the classical dis-

tance on N given by

d(x, y) = |x− y|, x, y ∈ N.

However, this metric does not allow us to obtain positive lower bounds on the associ-

ated Wasserstein curvature, and such tail probabilities do not involve any information

on the chain in large time. In order to provide a better estimate as the time parameter

is large, the idea is to consider the Wasserstein curvature of the process with respect

to another metric than the classical one d on N.

We denote in the sequel a ∧ b := min{a, b} and a ∨ b := max{a, b}, a, b ∈ R.

Definition 2.2. Given a positive function u ∈ F (N), define the distance δ : N×N→
[0,+∞) as

δ(x, y) :=

∣∣∣∣∣
x−1∑
k=0

u(k)−
y−1∑
k=0

u(k)

∣∣∣∣∣ , u(−1) = 1.

Remark 2.3. Note that this distance has been used by Chen in [3] in order to obtain

variational formulae for spectral gaps of birth-death processes.

Let us introduce the following set of assumptions on the transition rates of the

generator:

(A) There exists two constants K > 0 and C > 0 such that(
inf
x≥0

λx

)
∧
(

inf
x≥1

νx

)
≥ K and u(x) ≤ C

(
1

√
νx+1

∧ 1√
λx

)
, x ∈ N.

(B) The stationary distribution π satisfies the moment condition (2.2) with the

metric δ, and there exists a positive constant α such that

inf
x∈N

{
νx+1 + λx − νx

u(x− 1)

u(x)
− λx+1

u(x+ 1)

u(x)

}
≥ α. (2.3)
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Under the assumption (A), we have a control on the distance δ as follows:

Lemma 2.4. Under the assumption (A), the two inequalities below hold:

(1) δ(x, y) ≤ C√
K
d(x, y), x, y ∈ N;

(2) supx∈N λxδ(x, x+ 1)2 + νxδ(x, x− 1)2 ≤ 2C2.

Proof. On the one hand, it is sufficient by symmetry to prove the inequality (1) for

x < y, x, y ∈ N. Under the assumption (A), we have

δ(x, y) =

∣∣∣∣∣
x−1∑
k=0

u(k)−
y−1∑
k=0

u(k)

∣∣∣∣∣ =

y−1∑
k=x

u(k) ≤
y−1∑
k=x

C√
K

=
C√
K

(y − x).

Hence (1) is established. On the other hand, using the second inequality of the

assumption (A), the proof of (2) is immediate.

Remark 2.5. If at least one of the transition rates of the generator is unbounded,

then the distances δ and d are not equivalent, and the proper inclusion Lipδ  Lipd

holds. In particular, the identity function f(x) = x is not Lipschitz on N with respect

to the metric δ.

The assumption (B) allows us to establish positive lower bounds on the δ-Wasserstein

curvature of the process.

Proposition 2.6. Assume that the assumption (B) is fulfilled. Then the δ-Wasserstein

curvature of the process is bounded below by α.

Proof. Consider (Xx
t )t≥0 and (Xy

t )t≥0 two independent copies of (Xt)t≥0, starting

respectively from x and y. Then the generator L̃ of the two-dimensional process

(Xx
t , X

y
t )t≥0 is given for any real function f on N2 by

L̃f(z, w) = (Lf(·, w))(z) + (Lf(z, ·))(w), z, w ∈ N.

We have

L̃δ(x, y) =

x∨y−1∑
k=x∧y

L̃δ(k, k + 1)
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=

x∨y−1∑
k=x∧y

(λk+1u(k + 1)− νk+1u(k) + νku(k − 1)− λku(k))

≤ −α
x∨y−1∑
k=x∧y

u(k) = −α
x∨y−1∑
k=x∧y

δ(k, k + 1) ≤ −αδ(x, y),

where in the first inequality we used the assumption (B). Since the stationary distribu-

tion π satisfies the moment condition (2.2) with the metric δ, the process (δ(Xx
t , X

y
t ))t≥0

has finite expectation and we obtain from the latter inequality

E[δ(Xx
t , X

y
t )] ≤ e−αtδ(x, y),

which yields immediately the bound

Wδ(Pt(x, ·), Pt(y, ·)) ≤ e−αtδ(x, y).

Finally, by the Kantorovich-Rubinstein duality theorem, the δ-Wasserstein curvature

of the process is bounded below by the positive constant α.

Now we are able to state the main result of this paper, whose proof is given in

the next section. Denote in the sequel the function g(u) := (1 + u) log(1 + u) − u,

u > 0.

Theorem 2.7. Under the assumptions (A) and (B), then for any Lipschitz function

φ ∈ Lipδ, any t > 0, any initial state x ∈ N and any deviation level y > 0, we have

the following Poisson-type deviation inequality:

Px

(∣∣∣∣1t
∫ t

0

(φ(Xs)− Ex[φ(Xs)]) ds

∣∣∣∣ ≥ y

)
≤ 2e

−2Ktg

(
yα

2
√

KC(1−e−αt)‖φ‖Lipδ

)
(2.4)

≤ 2e
− tyα

√
K

2C(1−e−αt)‖φ‖Lipδ

log

(
1+ yα

2
√

KC(1−e−αt)‖φ‖Lipδ

)
.

Remark 2.8. Under the assumption (B) and by invariance of the stationary distri-

bution π, we have∣∣∣∣1t
∫ t

0

Psφ(x)ds−
∫
φdπ

∣∣∣∣ =

∣∣∣∣∣1t
∫ t

0

∑
z∈N

(Psφ(x)− Psφ(z))π(z)ds

∣∣∣∣∣
≤ ‖φ‖Lipδ

∑
z∈N

δ(x, z)π(z)
1

t

∫ t

0

e−αsds
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= ‖φ‖Lipδ

∑
z∈N

δ(x, z)π(z)
1− e−αt

tα
,

so that for large t, we have the following order of magnitude∣∣∣∣1t
∫ t

0

Psφ(x)ds−
∫
φdπ

∣∣∣∣ = O

(
1

t

)
.

Hence, the deviation probability in the left-hand-side of (2.4) is comparable to the

probability (1.1), at the price of strengthening the range of the deviation level y, and

the the inequality (2.4) is understood as an estimate on the speed of convergence to

equilibrium.

Remark 2.9. Since the function g in Theorem 2.7 above is equivalent to u2/2 as

u is close to 0 and to u log(u) as u tends to infinity, the Bennett-type inequality

(2.4) exhibits a Gaussian tail for small values of the deviation level y, in accordance

with the central limit theorem, and a Poisson tail for its large values. Therefore, the

estimate (2.4) generalizes in two ways the inequalities given by Lezaud in [10], in the

case of birth-death processes: on the one hand, the boundedness assumption on the

transition rates of the generator is not required, and on the other hand this estimate is

available for (not necessarily bounded) Lipschitz functions with respect to the metric

δ. However, the price to pay here is to suppose that the assumption (B) is fulfilled,

which is stronger than the existence of a spectral gap assumed by Lezaud in [10], see

for instance Theorem 9.18 in [4].

3 Proof of Theorem 2.7

This section is devoted to the proof of Theorem 2.7, which is divided into several

lemma. First, we establish a convenient upper bound in large time on the Laplace

transform of a Lipschitz function of the process with respect to the distance δ, cf.

Lemma 3.1. The key point of the proof of Theorem 2.7 is contained in Lemma 3.3

with the extension of such Laplace transform estimate to the multi-dimensional case

by considering Lipschitz cylindrical functions with respect to the `1-metric. Finally,

the last part is devoted to the approximation of the empirical distribution of the

birth-death process by a suitable Lipschitz cylindrical function.
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3.1 A Laplace transform estimate

Let us start with an upper bound on the Laplace transform of a Lipschitz function of

the birth-death process (Xt)t≥0 with respect to the distance δ.

Lemma 3.1. Suppose that the assumptions (A) and (B) are satisfied. Then for any

Lipschitz function f ∈ Lipδ, any t > 0, any initial state x ∈ N and any τ > 0, we

have the following estimate on the Laplace transform:

Ex

[
eτ(f(Xt)−E x[f(Xt)])

]
≤ exp

{
K(1− e−2αt)

α

(
e

τC‖f‖Lipδ√
K −

τC‖f‖Lipδ√
K

− 1

)}
. (3.1)

Proof. We adapt to the case of birth-death processes and with the metric δ the proof

of Theorem 3.1 in [7].

Assume first that f is bounded. The process
(
Zf

s

)
0≤s≤t

given by Zf
s := Pt−sf(Xs)−

Ptf(X0) is a real Px-martingale with respect to the truncated filtration (F s)0≤s≤t and

we have by Itô’s formula:

Zf
s =

∫ s

0

(Pt−τf(z + 1)− Pt−τf(z)) 1{Xτ−=z}(N
↑
z − σ↑z)(dτ)

+

∫ s

0

(Pt−τf(z − 1)− Pt−τf(z)) 1{Xτ−=z}(N
↓
z − σ↓z)(dτ),

where (N↑
z )z∈N and (N↓

z )z∈N are two independent families of independent Poisson

processes on R+ with respective intensities σ↑z(dt) = λzdt and σ↓z(dt) = νzdt. Since

the δ-Wasserstein curvature is bounded below by α > 0, i.e. for any function f ∈ Lipδ,

‖Ptf‖Lipδ
≤ e−αt‖f‖Lipδ

, t > 0,

the jumps of
(
Zf

s

)
0≤s≤t

are bounded as follows:

sup
0<s≤t

∣∣∣Zf
s − Zf

s−

∣∣∣ = sup
0<s≤t

|Pt−sf(Xs)− Pt−sf(Xs−)|

≤ ‖f‖Lipδ
sup

0<s≤t
e−α(t−s)δ(Xs, Xs−)

≤ ‖f‖Lipδ
sup
z∈N

δ(z, z + 1)

≤
C‖f‖Lipδ√

K
,
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where in the last inequality we used the inequality (1) of Lemma 2.4. Moreover, the

angle bracket process satisfies the bound for any s ∈ [0, t]:

〈Zf , Zf〉s

=

∫ s

0

{
λXτ− (Pt−τf(Xτ− + 1)− Pt−τf(Xτ−))2 + νXτ− (Pt−τf(Xτ− − 1)− Pt−τf(Xτ−))2} dτ

≤ ‖f‖2
Lipδ

∫ s

0

e−2α(t−τ)
{
λXτ−δ(Xτ−, Xτ− + 1)2 + νXτ−δ(Xτ−, Xτ− − 1)2

}
dτ

≤
C2(1− e−2αt)‖f‖2

Lipδ

α
,

where in the last inequality we used the estimate (2) of Lemma 2.4.

Now, by Lemma 23.19 in [8], the process (Y
(τ)
s )0≤s≤t given for any τ > 0 by

Y (τ)
s := exp

{
τZf

s − τ 2ψ

(
τC‖f‖Lipδ√

K

)
〈Zf , Zf〉s

}
is a Px-supermartingale with respect to (F s)0≤s≤t, where ψ(z) = z−2 (ez − z − 1),

z > 0. Thus, we get for any τ > 0:

Ex

[
eτ(f(Xt)−Ex[f(Xt)])

]
= Ex

[
eτZf

t

]
≤ exp

{
τ 2C2(1− e−2αt)‖f‖2

Lipδ

α
ψ

(
τC‖f‖Lipδ√

K

)}
Ex

[
Y

(τ)
t

]
≤ exp

{
τ 2C2(1− e−2αt)‖f‖2

Lipδ

α
ψ

(
τC‖f‖Lipδ√

K

)}

= exp

{
K(1− e−2αt)

α

(
e

τC‖f‖Lipδ√
K −

τC‖f‖Lipδ√
K

− 1

)}
.

Finally, the boundedness assumption on f is removed by a classical argument.

Remark 3.2. The upper bound in (3.1) allows us to sharpen in large time the devia-

tion inequalities given in [7] for birth-death processes on N. Indeed, under the notation

of Lemma 3.1, we get easily from (3.1), the exponential Chebychev inequality and an

optimization in τ > 0, the following Poisson-type deviation inequality:

Px (|f(Xt)− Ex [f(Xt)]| ≥ y) ≤ 2e
−K(1−e−2αt)

α
g

(
αy

C
√

K(1−e−2αt)‖f‖Lipδ

)
, y > 0,
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where g(u) := (1 + u) log (1 + u)− u, u > 0. In particular, letting t tend to infinity in

the latter inequality entails the estimate under the stationary distribution π:

π (|f − Eπ [f ]| ≥ y) ≤ 2e
y
√

K
C‖f‖Lipδ

−
(

K
α

+ y
√

K
C‖f‖Lipδ

)
log

(
1+ αy

C
√

K‖f‖Lipδ

)
,

where Eπ [f ] =
∑

z∈N f(z)π(z). However, in contrast to the deviation inequalities

given in [7], the price to pay here is to require stronger regularity assumptions on the

function f , namely f ∈ Lipδ.

3.2 Tensorization procedure

The second step in the proof of Theorem 2.7 is devoted to the extension to the

multi-dimensional case of the inequality (3.1). Such a tensorization procedure is the

continuous time analogous of the method used by Rio in [11], then by Djellout, Guillin

and Wu in the article [5], in order to establish Gaussian concentration inequalities for

weakly dependent sequences.

Define Lipδ(n) the space of real Lipschitz functions on the product space Nn, n ∈
N \ {0, 1}, endowed with the Lipschitz seminorm

‖f‖Lipδ(n) := sup
x 6=y

|f(x)− f(y)|
δn(x, y)

< +∞,

where δn is the `1-distance on the product space Nn with respect to the metric δ, i.e.

δn(y, z) :=
∑n

i=1 δ(yi, zi), y, z ∈ Nn. We have the

Lemma 3.3. Suppose that the assumptions (A) and (B) are satisfied. Denote Xn

the sample Xn = (Xt1 , . . . , Xtn), 0 = t0 < t1 < · · · < tn, and let f ∈ Lipδ(n). Then

for any initial state x ∈ N and any τ > 0, we have the multi-dimensional Laplace

transform estimate:

Ex

[
eτ(f(Xn)−E x[f(Xn)])

]
≤ exp

{
n∑

k=1

h

(
τ, tk − tk−1,

MkC‖f‖Lipδ(n)√
K

)}
, (3.2)

where Mk :=
∑n

l=k e
−α(tl−tk) and h is the function defined on (R+)3 by

h(τ, t, z) :=
K (1− e−2αt)

α
(eτz − τz − 1) .
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Proof. Fix the initial state x ∈ N. If g is a one-dimensional Lipschitz function with

respect to the metric δ, then by Lemma 3.1, we have for any t > 0 and any τ > 0 the

inequality:

Ex

[
eτg(Xt)

]
≤ exp

{
τEx[g(Xt)] + h

(
τ, t,

C‖g‖Lipδ√
K

)}
. (3.3)

Let us now extend this estimate to the multi-dimensional case by tensorization of the

Laplace transform. We sketch the argument for n = 2. Let 0 < s < t and denote

the functions fy(z) := f(y, z) and f1(y) :=
∑

z∈N f(y, z)Pt−s(y, z). It is clear that

‖fy‖Lipδ
≤ ‖f‖Lipδ(2). Let us verify that the function f1 is also Lipschitz with respect

to δ, with furthermore the bound

‖f1‖Lipδ
≤
(
1 + e−α(t−s)

)
‖f‖Lipδ(2). (3.4)

We have for any y ∈ N:

|f1(y + 1)− f1(y)|

=

∣∣∣∣∣∑
z∈N

(f(y + 1, z)Pt−s(y + 1, z)− f(y, z)Pt−s(y, z))

∣∣∣∣∣
≤

∣∣∣∣∣∑
z∈N

f(y + 1, z) (Pt−s(y + 1, z)− Pt−s(y, z))

∣∣∣∣∣+
∣∣∣∣∣∑
z∈N

(f(y + 1, z)− f(y, z))Pt−s(y, z)

∣∣∣∣∣
≤ e−α(t−s)‖fy+1‖Lipδ

δ(y, y + 1) + ‖f‖Lipδ(2)δ(y, y + 1)

≤
(
1 + e−α(t−s)

)
‖f‖Lipδ(2) δ(y, y + 1),

where in the second inequality we used Proposition 2.6, i.e. the δ-Wasserstein cur-

vature is bounded below by α. Since the Lipschitz constant of a Lipschitz function

v ∈ Lipδ rewrites as

‖v‖Lipδ
= sup

x∈N

|v(x+ 1)− v(x)|
δ(x, x+ 1)

,

the function f1 is Lipschitz with respect to the metric δ and the inequality (3.4) is

satisfied.

Now, using the Markov property, the estimate (3.3) applied to the Lipschitz functions

fy then f1, entails

Ex

[
eτf(Xs,Xt)

]
12



=
∑

y,z∈N

eτfy(z)Pt−s(y, z)Ps(x, y)

≤
∑
y∈N

exp

{
τ
∑
z∈N

fy(z)Pt−s(y, z) + h

(
τ, t− s,

C‖fy‖Lipδ√
K

)}
Ps(x, y)

≤ exp

{
h

(
τ, t− s,

C‖f‖Lipδ(2)√
K

)}∑
y∈N

eτf1(y)Ps(x, y)

≤ exp

{
h

(
τ, t− s,

C‖f‖Lipδ(2)√
K

)
+ h

(
τ, s,

C‖f1‖Lipδ√
K

)}
eτEx[f(Xs,Xt)],

≤ exp

{
h

(
τ, t− s,

C‖f‖Lipδ(2)√
K

)
+ h

(
τ, s,

C(1 + e−α(t−s))‖f‖Lipδ(2)√
K

)}
eτEx[f(Xs,Xt)],

since the function h is non-decreasing in its last variable. Hence, the latter inequality

is exactly the estimate (3.2) for the dimension n = 2.

In the general case, we show similarly that for any k = 1, . . . , n, the function fk

defined on Nk by

fk(x1, . . . , xk) :=
∑

xk+1,...,xn∈N

f(x1, . . . , xk, . . . , xn)
n−1∏
l=k

Ptl+1−tl(xl, xl+1),

has Lipschitz seminorm with respect to the kth variable, in the metric δ, smaller than

Mk‖f‖Lipδ(n). Therefore, using again that h is non-decreasing in its last variable, we

obtain (3.2) in full generality with a simple recursive argument on the dimension n.

3.3 Proof of Theorem 2.7

Now we are able to prove Theorem 2.7.

Proof of Theorem 2.7. We use the notation of Lemma 3.3. Fix the initial state x ∈ N
of the birth-death process (Xt)t≥0 and a finite time horizon t > 0. Define tk = kt/n,

k = 0, . . . , n, a regular subdivision of the time interval [0, t] and let Xn be the sample

Xn = (Xt1 , . . . , Xtn). Letting the cylindrical function

f(z) :=
1

n

n∑
k=1

φ(zk), z = (z1, . . . , zn),

then f is Lipschitz on the product space Nn with respect to the `1-metric δn and we

have the bound

‖f‖Lipδ(n) ≤
1

n
‖φ‖Lipδ

.
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Hence, since

sup
k=1,...,n

Mk = sup
k=1,...,n

n∑
l=k

e−αt(l−k)/n =
1− e−αt

1− e−αt/n
,

and that the function h is non-decreasing in its last variable, Lemma 3.3 entails for

any τ > 0:

Ex

[
eτ(f(Xn)−Ex[f(Xn)])

]
≤ exp

{
nh

(
τ,
t

n
,
C(1− e−αt)‖φ‖Lipδ

n
√
K(1− e−αt/n)

)}
. (3.5)

As we have the following approximation of the empirical distribution

1

t

∫ t

0

φ(Xs)ds = lim
n→+∞

1

n

n∑
k=1

φ(Xkt/n), Px − a.s.,

we obtain by using Fatou’s lemma in (3.5):

Ex

[
e

τ
t

∫ t
0 (φ(Xs)−Ex[φ(Xs)])ds

]
≤ lim inf

n→+∞
Ex

[
eτ(f(Xn)−Ex[f(Xn)])

]
≤ exp

{
2Kt

(
e

τC(1−e−αt)‖φ‖Lipδ
α
√

Kt −
τC(1− e−αt)‖φ‖Lipδ

α
√
Kt

− 1

)}
.

The exponential Chebychev inequality together with an optimization in τ > 0 achieves

the proof of Theorem 2.7 in the one-sided case. Finally, applying the same reasoning

to the function −φ yields the general result.

Remark 3.4. Since the method emphasized in the proof of Theorem 2.7 is available

for birth-death processes with values in a finite set, we also recover the results given

by Lezaud in the paper [9]. Moreover, we point out that this approach works for

diffusion processes satisfying the Bakry-Emery curvature condition, and would imply

a Hoeffding-type deviation inequality. However, it is well-known that this curvature

criterion implies a logarithmic Sobolev inequality which in turn entails immediately

the result by the Corollary 4 of [12].

Remark 3.5. We mention that the problem to find a similar rate of convergence as

(2.4) for the identity function φ(x) = x on N is unsolved when the generator of the

birth-death process is unbounded. Indeed, our estimate is only available for Lipschitz

function φ lying in the space Lipδ, which excludes in that case the identity function.
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4 Application to the M/M/∞ queueing process

Consider a ticket booth system where each customer arriving in front of some stands

is immediately served. Denoting Xt the number of customers in the system at time

t > 0, we assume that the arrival process is a Poisson process of intensity λ > 0 and

that conditionally on the event {Xs = x}, the service time T := inf{t > s : Xt 6= Xs}
follows an exponential distribution with parameter λ+νx, ν > 0. Then the stochastic

process (Xt)t≥0 is a M/M/∞ queueing process. It is an ergodic birth-death process

whose generator is given by

Lf(x) = λ(f(x+ 1)− f(x)) + νx(f(x− 1)− f(x)), x ∈ N.

The stationary distribution is the Poisson measure P(σ) on N with parameter σ :=

λ/ν, i.e.

P(σ)(x) = e−σσ
x

x!
, x ∈ N.

For the sake of simplicity, we assume in the sequel that the process is normalized, i.e.

λ = ν. The knowledge of its distribution at time t > 0 allows us to make explicit

computations. Indeed, by the Mehler-type convolution formula given by Chafäı in [2],

L(Xt|X0 = x) = B
(
x, e−νt

)
∗P

(
1− e−νt

)
, t > 0, (4.1)

where B(n, p) denotes a binomial distribution with parameters n ∈ N and p ∈ (0, 1),

we get for any τ > 0,

Ex

[
eτ(Xt−Ex[Xt])

]
= exp

{
x log

(
1 + e−νt(eτ − 1)

)
− τxe−νt + (1− e−νt) (eτ − τ − 1)

}
≤ exp

{(
xe−νt + 1− e−νt

)
(eτ − τ − 1)

}
= exp {Ex[Xt] (eτ − τ − 1)} , (4.2)

where we used the inequality log(1+x) ≤ x, x > 0. Thus, by Chebychev’s inequality,

we obtain for any y > 0 the Poisson-type deviation inequality

Px (Xt − Ex[Xt] ≥ y) ≤ inf
τ>0

e−τy Ex

[
eτ(Xt−Ex[Xt])

]
≤ exp

{
y − (Ex[Xt] + y) log

(
1 +

y

Ex[Xt]

)}
, (4.3)
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which entails by ergodicity as t→ +∞ the estimate

P (X − E[X] ≥ y) ≤ exp {y − (1 + y) log (1 + y)} ,

where X is a Poisson random variable of intensity 1. Therefore, we expect that the

Poisson-type deviation inequality (4.3) might be extended to the empirical distribution

of the M/M/∞ queueing process.

Choosing the function u(x) := 1/
√
x+ 1, x ∈ N, in the definition of the metric

δ, the transition rates of the generator satisfy the assumption (A) with the constants

C =
√
K =

√
ν. Moreover, a short computation shows that the assumption (B) is

verified with α = ν/2 > 0, which is the half of the exact curvature of the M/M/∞
queueing process, see [2]. Hence, Theorem 2.7 entails for any Lipschitz function

f ∈ Lipδ, any t > 0, any initial state x ∈ N and any y > 0, the Poisson-type deviation

inequality

Px

(∣∣∣∣1t
∫ t

0

(φ(Xs)− Ex[φ(Xs)]) ds

∣∣∣∣ ≥ y

)
≤ 2e

−2νtg

(
y

4(1−e−νt/2)‖φ‖Lipδ

)

≤ 2e
− ty

4(1−e−νt/2)‖φ‖Lipδ

log

(
1+ y

4(1−e−νt/2)‖φ‖Lipδ

)
,

where g(u) = (1 + u) log(1 + u)− u, u > 0.

Remark 4.1. We mention that the Laplace transform estimate (4.2) cannot be ten-

sorized by using the general method of Section 3, since its upper bound depends

strongly on the initial condition x ∈ N.
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