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200, Avenue de la République
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Abstract

In this paper, we present new Poisson-type deviation inequalities for continu-
ous time Markov chains whose Wasserstein curvature or Γ-curvature is bounded
below. Although these two curvatures are equivalent for Brownian motion on
Riemannian manifolds, they are not comparable in discrete settings and yield
different deviation bounds. In the case of birth-death processes, we provide
some conditions on the transition rates of the associated generator for such dis-
crete curvatures to be bounded below, and we extend the deviation inequalities
established in [1] for continuous time random walks, seen as models in null cur-
vature. Some applications of these tail estimates are given to Brownian driven
Ornstein-Uhlenbeck processes and M/M/1 queues.
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1 Introduction

Let µ be a probability measure on a metric space (E, d) and let h : R+ → R+

be a function tending to 0 at infinity. The measure µ is said to satisfy a deviation
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inequality of speed h if for any real Lipschitz function f on (E, d) with Lipschitz

constant smaller than 1, the following inequality holds:

µ (f − µ(f) ≥ y) ≤ h(y), y > 0.

Applying also the above inequality to −f entails a concentration inequality stating

that any Lipschitz map is concentrated around its mean under µ with high probability.

In particular, the concentration is said to be Gaussian if h is of order exp (−y2) for

large y, whereas it is of Poisson type if h is of order exp (−y log(y)).

Actually, the concentration of measure phenomenon is useful to determine the

rate of convergence of functionals involving a large number of random variables. In

recent years, this area has been deeply investigated in the context of dependent ran-

dom variables such as Markov chains. For instance, Gaussian concentration was put

forward through transportation cost inequalities in the papers [11] then [6], whereas

the authors in [1], [12] and [9] established some appropriate functional inequalities to

derive Gaussian and Poisson-type deviation inequalities.

The purpose of the present paper is to give new deviation inequalities of Poisson

type for continuous time Markov chains, which extend the tail estimates of [1]. Our

approach is based on semigroup analysis and uses the notion of curvature for Markov

processes on general metric measure spaces recently investigated in [14]. Although

the various Brownian curvatures on a smooth Riemannian manifold are essentially

equivalent and characterize the uniform lower bounds on the Ricci curvature of the

manifold, such an equivalence does not hold for continuous time Markov chains since

discrete gradients do not satisfy in general the chain rule formula. Thus, it is natural

to study the role played by each type of discrete curvature in the concentration of

measure phenomenon.

The paper is organized as follows. In Section 2, two different notions of curvatures

of continuous time Markov chains are introduced: the Wasserstein curvature and

the Γ-curvature. The next two sections are concerned with the main results of the

paper. Namely, in Section 3, Theorem 3.1, a Poisson-type deviation inequality is

established for continuous time Markov chains with Wasserstein curvature bounded
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below and bounded angle bracket, whereas a general estimate is derived in Section 4,

Theorem 4.2, under the hypothesis of a lower bound on the Γ-curvature. With further

assumptions on the chain, the latter upper bound is computed to yield Poisson tail

probabilities involving the mixed Lipschitz seminorms ‖ · ‖Lipd
and f 7→ ‖Γf‖1/2

∞ , with

Γ the “carré du champ” operator, which allow us to relax the boundedness hypothesis

on the angle bracket. The case of birth-death processes on N or on {0, 1, . . . , n} is

investigated in Section 5. More precisely, we give some conditions on the transition

rates of the associated generator for such discrete curvatures to be bounded below.

Together with the tail estimates emphasized above, we extend to birth-death processes

the deviation inequalities of [1] established for continuous time random walks on

graphs, seen as models in null curvature since the transition rates of the generator do

not depend on the space variable. Finally, some applications of these tail estimates

are given to Brownian driven Ornstein-Uhlenbeck processes and M/M/1 queues.

2 Notation and preliminaries on curvatures

Throughout the paper, E is a countable set endowed with a metric d (different of the

trivial one %(x, y) = 1x 6=y, x, y ∈ E), F (E) is the collection of all real-valued functions

on E, B(E) ⊂ F (E) is the subspace of bounded functions on E equipped with the

supremum norm ‖f‖∞ = supx∈E |f(x)|, and the space Lipd(E) consists of Lipschitz

functions on E, i.e.

‖f‖Lipd
:= sup

x 6=y

|f(x)− f(y)|
d(x, y)

< +∞.

Consider on a filtered probability space (Ω,F , (F t)t≥0,P) an E-valued regular non-

explosive continuous time Markov chain (Xt)t≥0, where regularity is understood in

the sense of [5]. The generator L of the chain is given by

Lf(x) =
∑
y∈E

(f(y)− f(x))Q(x, y), x ∈ E,

where the transition rates (Q(x, y))x 6=y are non-negative and the function f lies in an

algebra, say A, containing the constant functions and which is stable by the action of
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L and by the associated semigroup (Pt)t≥0, which acts on elements of A as follows:

Ptf(x) := Ex[f(Xt)] =
∑
y∈E

f(y)Pt(x, y), x ∈ E.

See for instance [2] for a discussion on the existence of this algebra.

If there exists V > 0 such that
∥∥∥∑y∈E d(·, y)2Q(·, y)

∥∥∥
∞
≤ V 2, then 〈X,X〉t ≤ V 2t

and we say that (Xt)t≥0 has angle bracket bounded by V 2. Moreover, we say that it

has jumps bounded by some positive constant b if supt>0 d(Xt−, Xt) ≤ b.

2.1 The Wasserstein curvature

Let us introduce the notion of curved Markov chains in the Wasserstein sense.

Definition 2.1 The d-Wasserstein curvature at time t > 0 of the continuous time

Markov chain (Xt)t≥0 is defined by

Kt := −1

t
sup

{
log

(
‖Ptf‖Lipd

‖f‖Lipd

)
: f ∈ A ∩ Lipd(E), f 6= const

}
∈ [−∞,+∞).

It is said to be bounded below by K ∈ R if inft>0Kt ≥ K.

Remark 2.2 Denote P1(E) the space of probability measure µ on E such that∑
y∈E d(x, y)µ(y) < +∞, x ∈ E. Given µ, ν ∈ P1(E), define the d-Wasserstein

distance between µ and ν by

Wd(µ, ν) := inf
π

∑
x,y∈E

d(x, y)π(x, y),

where the infimum runs over all π ∈ P1(E × E) with marginals µ and ν, cf. [5,

Chapter 5]. The Kantorovich-Rubinstein duality theorem states that

Wd(µ, ν) = sup

{∣∣∣∣∣∑
x∈E

f(x)(µ(x)− ν(x))

∣∣∣∣∣ : ‖f‖Lipd
≤ 1

}
.

If Pt(x, ·) ∈ P1(E), x ∈ E, t > 0, then the following assertions are equivalent:

(i) inft>0Kt ≥ K;

(ii) ‖Ptf‖Lipd
≤ e−Kt‖f‖Lipd

, for any f ∈ A ∩ Lipd(E) and any t > 0;
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(iii) Wd(Pt(x, ·), Pt(y, ·)) ≤ e−Ktd(x, y), for any x, y ∈ E and any t > 0.

Hence, these assertions characterize the lower bounds on the d-Wasserstein curvature

in terms of contraction properties of the semigroup in the metric Wd, which induces

a coupling approach. Note that a version of the item (iii) above was introduced

with the trivial metric % in [11] and also through the condition (C1) in [6], in order to

establish transportation and Gaussian concentration inequalities for weakly dependent

sequences.

2.2 The Γ-curvature

The “carré du champ” operator Γ is defined on A×A by

Γ(f, g)(x) :=
1

2
(L(fg)(x)− f(x)Lg(x)− g(x)Lf(x))

=
1

2

∑
y∈E

(f(y)− f(x)) (g(y)− g(x))Q(x, y).

We set Γf = Γ(f, f) and introduce the notion of curved Markov chains in the Γ-sense:

Definition 2.3 The Γ-curvature at time t > 0 of the continuous time Markov chain

(Xt)t≥0 is defined by

ρt := −1

t
sup

{
log

(
(ΓPtf)1/2 (x)

Pt (Γf)1/2 (x)

)
: f ∈ A, f 6= const, x ∈ E

}
∈ [−∞,+∞).

It is said to be bounded below by ρ ∈ R if inft>0 ρt ≥ ρ.

Remark 2.4 By definition, the Γ-curvature is bounded below by ρ ∈ R if and only

if for any f ∈ A,

(ΓPtf)1/2 (x) ≤ e−ρtPt (Γf)1/2 (x), x ∈ E, t > 0, (2.1)

which is the discrete analogue of the commutation relation between local gradient and

heat kernel on Riemannian manifolds with Ricci curvature bounded below, see [3].

As already mentioned in the introduction, both curvatures are equivalent in the con-

tinuous setting of Brownian motions on Riemannian manifolds, cf. [14]. This is no
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longer the case in discrete spaces since the discrete gradients do not satisfy in general

the chain rule formula, and the curvatures defined above are not comparable.

To finish with the preliminaries, let us make some comments on the deviation inequal-

ities we will establish in the remainder of this paper:

1) Our estimates are given for the distribution of Xt given X0 = x, uniformly in

x ∈ E and for any t > 0. Hence, without risk of confusion, the range of validity of

the parameters x and t will not be mentioned in our results.

2) In order to relieve the notation, our results are given with the function u 7→
u log(1 + u)/2 in the upper bounds. However, sharper estimates are also available

when replacing this function by u 7→ (1 + u) log(1 + u)− u, u ≥ 0.

3 A deviation bound for curved Markov chains in

the Wasserstein sense

In this part, we present a Poisson-type deviation estimate under the assumption of a

lower bound on the d-Wasserstein curvature.

Theorem 3.1 Assume that (Xt)t≥0 has jumps and angle bracket bounded respectively

by b > 0 and V 2 > 0. Suppose moreover that its d-Wasserstein curvature is bounded

below by K ∈ R. Let f ∈ Lipd(E) and define Ct,K := sup0≤s≤t e
−K(t−s) and Mt,K :=

(1− e−2Kt)/(2K) (Mt,K = t if K = 0). Then for any y > 0,

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp

(
− y

2bCt,K‖f‖Lipd

log

(
1 +

bCt,Ky

Mt,KV 2‖f‖Lipd

))
.

(3.1)

Proof. Assume first that f is bounded. The process
(
Zf
s

)
0≤s≤t given by Zf

s :=

Pt−sf(Xs) − Ptf(X0) is a real Px-martingale with respect to the truncated filtration

(F s)0≤s≤t and we have by Itô’s formula:

Zf
s =

∑
y,z∈E

∫ s

0

(Pt−τf(y)− Pt−τf(z)) 1{Xτ−=z}(Nz,y − σz,y)(dτ),

where (Nz,y)z,y∈E is a family of independent Poisson processes on R+ with respective

intensity σz,y(dt) = Q(z, y)dt. Since the d-Wasserstein curvature is bounded below,
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the jumps of
(
Zf
s

)
0≤s≤t are bounded for any s ∈ [0, t]:∣∣∣Zf

s − Zf
s−

∣∣∣ = |Pt−sf(Xs)− Pt−sf(Xs−)|

≤ d(Xs, Xs−)‖f‖Lipd
Ct,K

≤ b‖f‖Lipd
Ct,K ,

as its angle bracket:

〈Zf , Zf〉s =
∑
y,z∈E

∫ s

0

(Pt−τf(y)− Pt−τf(z))2 1{Xτ−=z} σz,y(dτ)

≤ ‖f‖2
Lipd

∑
y,z∈E

∫ s

0

e−2K(t−τ)d(z, y)21{Xτ−=z}Q(z, y)dτ

≤ ‖f‖2
Lipd

Mt,KV
2.

By [10, Lemma 23.19], for any positive λ, the process (Y
(λ)
s )0≤s≤t given by

Y (λ)
s := exp

{
λZf

s − λ2ψ(λb‖f‖Lipd
Ct,K)〈Zf , Zf〉s

}
is a Px-supermartingale with respect to (F s)0≤s≤t, where ψ(z) = z−2 (ez − z − 1),

z > 0. Thus, we get for any λ > 0:

Ex

[
eλ(f(Xt)−Ex[f(Xt)])

]
= Ex

[
eλZ

f
t

]
≤ exp

{
λ2‖f‖2

Lipd
Mt,KV

2 ψ(λb‖f‖Lipd
Ct,K)

}
Ex

[
Y

(λ )
t

]
≤ exp

{
λ2‖f‖2

Lipd
Mt,KV

2 ψ(λb‖f‖Lipd
Ct,K)

}
= exp

{
Mt,KV

2

b2C2
t,K

(
eλb‖f‖Lipd

Ct,K − λb‖f‖Lipd
Ct,K − 1

)}
.

Using then Chebychev’s inequality and optimizing in λ > 0 in the exponential estimate

above, the deviation inequality (3.1) is established in the bounded case. Finally, the

boundedness assumption on f is removed by a classical argument.

Remark 3.2 If K = 0, then the estimate in Theorem 3.1 is similar to the deviation

inequalities of [8, 13] established for infinitely divisible distributions with compactly

supported Lévy measure. If K < 0, the decay in (3.1) is slower, due to some expo-

nential factors, whereas if K > 0, the chain is ergodic, cf. [5, Theorem 5.23], and such
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an estimate can be extended as t→ +∞ to the stationary distribution, as illustrated

in Section 5.2.2. On the other hand, the sign of K has no influence in small time in

(3.1).

To conclude this section, note that Theorem 3.1 allows us to consider neither continu-

ous time Markov chains with unbounded angle bracket nor another Lipschitz seminorm

than ‖ · ‖Lipd
. To overcome this difficulty, one has to require some assumptions on a

different curvature of the chain, namely the Γ-curvature.

4 Estimates for curved Markov chains in the Γ-

sense

In this section, we adapt to the Markovian case the covariance method of [8] to

derive deviation inequalities for curved continuous time Markov chains in the Γ-sense.

Although the Wasserstein and Γ-curvatures are not comparable in discrete spaces, the

results we give in this part are more general than Theorem 3.1.

4.1 A general bound

Before turning to Theorem 4.2 below, let us establish the following

Lemma 4.1 Assume that (Xt)t≥0 has Γ-curvature bounded below by ρ ∈ R. Let

g1, g2 ∈ B(E) with ‖Γg1‖∞ < +∞ and define Lt,ρ = (1 − e−2ρt)/(2ρ) if ρ 6= 0, and

Lt,ρ = t otherwise. Then we have the covariance inequality

Covx [g1(Xt), g2(Xt)] := Ex [(f(Xt)− Ex [f(Xt)]) (g(Xt)− Ex [g(Xt)])]

≤ 2Lt,ρ‖Γg1‖1/2
∞ Ex

[
(Γg2)

1/2(Xt)
]
.

Proof. As in the proof of Theorem 3.1, we have for i = 1, 2:

gi(Xt)− Ex [gi(Xt)] =
∑
y,z∈E

∫ t

0

(Pt−sgi(y)− Pt−sgi(z)) 1{Xs−=z}(Nz,y − σz,y)(ds).

By the Cauchy-Schwarz inequality,

Covx [g1(Xt), g2(Xt)] = 2

∫ t

0

Ps (Γ(Pt−sg1, Pt−sg2)) (x) ds

8



≤ 2

∫ t

0

Ps
(
(ΓPt−sg1)

1/2 (ΓPt−sg2)
1/2
)
(x) ds

≤ 2

∫ t

0

e−2ρ(t−s)Ps
(
Pt−s(Γg1)

1/2 Pt−s(Γg2)
1/2
)
(x) ds,

where in the latter inequality we used the assumption of a lower bound ρ on the

Γ-curvature. Since (Pt)t≥0 is a contraction operator on B(E), we have

Covx [g1(Xt), g2(Xt)] ≤ 2 ‖Γg1‖1/2
∞

∫ t

0

e−2ρ(t−s)Ps
(
Pt−s(Γg2)

1/2
)
(x) ds

= 2Lt,ρ‖Γg1‖1/2
∞ Ex

[
(Γg2)

1/2(Xt)
]
.

Now, we are able to state Theorem 4.2 which presents a general deviation bound for

curved continuous time Markov chains in the Γ-sense:

Theorem 4.2 Assume that (Xt)t≥0 has Γ-curvature bounded below by ρ ∈ R. Let

f ∈ Lipd(E) with ‖Γf‖∞ < +∞, and define the function ψf,t : R+ → R+ ∪ {∞} by

ψf,t(λ) :=
√

2Lt,ρ‖Γf‖1/2
∞

∥∥∥∥∥∑
y∈E

(f(y)− f(·))2

(
eλ ‖f‖Lipd

d(·,y) − 1

‖f‖Lipd
d(·, y)

)2

Q(·, y)

∥∥∥∥∥
1/2

∞

,

where Lt,ρ is defined in Lemma 4.1. If Mf,t := sup{λ > 0 : ψf,t(λ) < +∞}, then

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp inf
λ∈(0,Mf,t)

∫ λ

0

(ψf,t(τ)− y) dτ, y > 0. (4.1)

Remark 4.3 Note that ψf,t is bijective from (0,Mf,t) to (0,+∞), so that the term

in the exponential is negative and the inequality (4.1) makes sense.

Proof. Using a standard argument, we are reduced to establish the result for

f bounded Lipschitz. Applying the covariance inequality of Lemma 4.1 with the

functions g1(z) = f(z) − Ex[f(Xt)] and g2(z) = exp {λ(f(z)− Ex[f(Xt)])} , z ∈ E,

λ ∈ (0,Mf,t), we have

Ex

[
(f(Xt)− Ex[f(Xt)]) e

λ (f(Xt)−Ex[f(Xt)])
]

≤ 2Lt,ρ‖Γf‖1/2
∞ e−λEx[f(Xt)]Ex

[(
Γeλf

)1/2
(Xt)

]
9



≤
√

2Lt,ρ‖Γf‖1/2
∞ Ex

eλ (f(Xt)−Ex[f(Xt)])

(∑
y,z∈E

(
eλ |f(y)−f(z)| − 1

)2
1{Xt=z}Q(z, y)

)1/2


≤ ψf,t(λ)Ex

[
eλ (f(Xt)−Ex[f(Xt)])

]
.

Letting Hf,t,x(λ) := Ex

[
eλ (f(Xt)−Ex[f(Xt)])

]
, then the latter inequality rewrites as

H ′
f,t,x(λ) ≤ ψf,t(λ)Hf,t,x(λ), from which follows the bound

Ex

[
eλ (f(Xt)−Ex[f(Xt)])

]
= Hf,t,x(λ) ≤ e

∫ λ
0 ψf,t(τ)dτ , λ ∈ (0,Mf,t).

Finally, using Chebychev’s inequality, Theorem 4.2 is established.

4.2 Some explicit tail estimates

Since the estimate (4.1) is very general, let us make further assumptions on (Xt)t≥0 to

get Poisson-type deviation inequalities. Denote in the sequel Lt,ρ = (1 − e−2ρt)/(2ρ)

if ρ 6= 0, and Lt,ρ = t otherwise. Using the notation of Theorem 4.2, we have the

Corollary 4.4 Under the hypothesis of Theorem 4.2, suppose moreover that (Xt)t≥0

has jumps bounded by b > 0. Then for any y > 0,

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp

(
− y

2b‖f‖Lipd

log

(
1 +

yb‖f‖Lipd

2Lt,ρ‖Γf‖∞

))
.

Proof. Under the notation of Theorem 4.2, the boundedness of the jumps implies

Mf,t = +∞, and ψf,t is bounded by

ψf,t(λ) ≤ 2Lt,ρ‖Γf‖∞
eλb‖f‖Lipd − 1

b‖f‖Lipd

, λ > 0.

Using then Theorem 4.2 and optimizing in λ > 0, the proof is achieved.

Note that the latter deviation inequality is more general than (3.1), since the finiteness

assumption on ‖Γf‖∞ allows us to relax the boundedness assumption on the angle

bracket. Thus, when the angle bracket of (Xt)t≥0 is bounded, the next corollary

exhibits an estimate comparable to that of Theorem 3.1:
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Corollary 4.5 Assume that (Xt)t≥0 has jumps and angle bracket bounded respectively

by b > 0 and V 2 > 0. Suppose moreover that its Γ-curvature is bounded below by

ρ ∈ R, and let f ∈ Lipd(E). Then for any y > 0,

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp

(
− y

2b‖f‖Lipd

log

(
1 +

by

Lt,ρV 2‖f‖Lipd

))
.

Proof. By the boundedness of the jumps and of the angle bracket, the function ψf,t

in Theorem 4.2 is bounded by

ψf,t(λ) ≤ Lt,ρV
2‖f‖Lipd

eλb‖f‖Lipd − 1

b
, λ > 0.

Finally, applying Theorem 4.2 yields the result.

5 The case of birth-death processes

In the paper [1], some deviation inequalities are established for continuous time ran-

dom walks on graphs. Such processes may be seen as models in null curvature since

the transition rates of the associated generator do not depend on the space variable.

Using the results of Sections 3 and 4, the purpose of this part is to extend these tail

estimates to birth-death processes whose discrete curvatures are bounded below.

Let (Xt)t≥0 be a birth-death process on the state space E = N or E = {0, 1, . . . , n},
with stationary distribution π. It is a regular continuous time Markov chain with

generator defined on F (E) by

Lf(x) = λx (f(x+ 1)− f(x)) + νx (f(x− 1)− f(x)) , x ∈ E, (5.1)

where the transition rates λ and ν are positive with 0 as reflecting state, i.e. ν0 = 0

(if E = {0, 1, . . . , n}, the state n is also reflecting: λn = 0), ensuring irreducibility.

Denote (Pt)t≥0 the homogeneous semigroup whose transition probabilities are given

for any x ∈ E by

Pt(x, y) =


λxt+ o(t) if y = x+ 1,
νxt+ o(t) if y = x− 1,
1− (λx + νx)t+ o(t) if y = x,
0 if y ∈ E\{x− 1, x, x+ 1},
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where the function o is such that o(t)/t converges to 0 as t tends to 0. Since Pt

is a contraction on L1(π) for any t ≥ 0, this operator is well-defined on the space

Lipd(E) of Lipschitz functions on E with respect to the classical distance d(x, y) :=

|x−y|, x, y ∈ E, provided the stationary distribution π satisfies the moment condition∑
y∈E yπ(y) < +∞, that we suppose in the sequel.

5.1 Criteria for lower bounded curvatures

Let us give some criteria on the generator of the process (Xt)t≥0 which ensure that

the different discrete curvatures are bounded below.

Proposition 5.1 Assume that there exists a real number K such that

inf
x∈E\{0}

λx−1 − λx + νx − νx−1 ≥ K. (5.2)

Then the d-Wasserstein curvature of the process (Xt)t≥0 is bounded below by K.

Remark 5.2 If E = N and the transition rates of the generator are bounded and

satisfy the assumptions of Proposition 5.1, then necessarily K ≤ 0.

Proof. Let us establish the result via coupling methods. Consider (Xx
t )t≥0 and

(Xy
t )t≥0 two independent copies of (Xt)t≥0, starting respectively from x and y. Then

the generator L̃ of the process (Xx
t , X

y
t )t≥0 is given for any f ∈ F (E × E) by

L̃f(z, w) = (Lf(·, w))(z) + (Lf(z, ·))(w), z, w ∈ E.

Since the transition rates of the generator satisfy (5.2), we have immediately the bound

L̃d(z, z+1) ≤ −K, z ∈ E, which is equivalent to the inequality L̃d(z, w) ≤ −Kd(z, w)

for any z, w ∈ E. Therefore, we obtain the estimate E [d(Xx
t , X

y
t )] ≤ e−Ktd(x, y) which

in turn implies

Wd(Pt(x, ·), Pt(y, ·)) ≤ e−Ktd(x, y).

Finally, by the equivalent statements of Remark 2.2, the d-Wasserstein curvature of

(Xt)t≥0 is bounded below by K.
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In order to establish modified logarithmic Sobolev inequalities for continuous time

random walks on Z, the authors in [1] used a suitable Γ2-calculus to give a criterion

under which the Γ-curvature is bounded below by 0. Actually, this criterion can be

generalized to any real lower bound on the Γ-curvature via Lemma 5.3 below.

Define the Γ2-operator on F (E) by

Γ2f(x) :=
1

2
(LΓf(x)− 2Γ(f,Lf)(x)) , x ∈ E.

By adapting the proof in [1] mentioned above, we get the

Lemma 5.3 Assume that there exists ρ ∈ R such that the inequality

Γ2f(x)− Γ (Γf)1/2 (x) ≥ ρΓf(x), x ∈ E, (5.3)

is satisfied for any f ∈ F (E). Then (Xt)t≥0 has Γ-curvature bounded below by ρ.

Remark 5.4 Differentiating in a neighborhood of 0+ the function t 7→ e−ρtPt(Γf)1/2−
(ΓPtf)1/2 shows that the equivalence holds in Lemma 5.3.

Proposition 5.5 Assume that the transition rates λ and ν are respectively non-

increasing and non-decreasing and that there exists some ρ ≥ 0 such that

inf
x∈E\{0,supE}

min{λx−1 − λx, νx+1 − νx} ≥ ρ. (5.4)

Then the Γ-curvature of (Xt)t≥0 is bounded below by ρ.

Remark 5.6 If E = N and the transition rates of the generator satisfy the assump-

tions of Proposition 5.5, then necessarily ρ = 0.

Proof. By Lemma 5.3, the result holds true if the Γ2-inequality (5.3) above is satisfied,

that we prove now. Fix x ∈ E and let a = f(x) − f(x + 1), b = f(x) − f(x − 1),

c = f(x+ 2)− f(x+ 1) and d = f(x− 2)− f(x− 1). We have

2Γ2f(x)− 2Γ (Γf)1/2 (x) = λx(νx+1 − νx)a
2 + νx(λx−1 − λx)b

2 + I(x) + J(x),

where

I(x) := λxλx+1ac+ λxνxab+ λx
(
λx+1c

2 + νx+1a
2
)1/2 (

λxa
2 + νxb

2
)1/2

,
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J(x) := νxνx−1bd+ λxνxab+ νx
(
λx−1b

2 + νx−1d
2
)1/2 (

λxa
2 + νxb

2
)1/2

.

Since the transition rates λ and ν are respectively non-increasing and non-decreasing

and satisfy furthermore (5.4), we get

2Γ2f(x)− 2Γ (Γf)1/2 (x) ≥ 2ρΓf(x) + I(x) + J(x).

By symmetry with the function J , it is sufficient to establish I ≥ 0. We have

I(x) ≥ λx
(
λx+1c

2 + νx+1a
2
)1/2 (

λxa
2 + νxb

2
)1/2 − λxλx+1|ac| − λxνx|ab|

= λx (I1(x)− I2(x)) ,

where

I1(x) :=
(
λx+1c

2 + νx+1a
2
)1/2 (

λxa
2 + νxb

2
)1/2

and I2(x) := λx+1|ac|+ νx|ab|.

Using again the monotonic assumptions on the transition rates of the generator,

(I1(x))
2 − (I2(x))

2

= λx+1(λx − λx+1)a
2c2 + νx(νx+1 − νx)a

2b2 + λxνx+1a
4 + λx+1νxb

2c2 − 2νxλx+1a
2bc

≥ νxλx+1(a
2 − bc)2 ≥ 0.

5.2 Applications

The proofs of the following results are omitted since they are immediate applications of

Theorems 3.1 and 4.2, once the assumptions of Propositions 5.1 and 5.5 are satisfied,

respectively.

5.2.1 The case E = N

Corollary 5.7 Assume that λ, ν ∈ B(N) and that there exists K ≤ 0 such that

infx∈N \{0} λx−1 − λx + νx − νx−1 ≥ K. Let f ∈ Lipd(N). Then for any y > 0,

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp

(
− yetK

2‖f‖Lipd

log

(
1 +

yK

sinh(tK)‖λ + ν‖∞‖f‖Lipd

))
.

If K = 0, then replace the latter inequality by its limit as K → 0.
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In Corollary 5.8 below, no particular boundedness assumption is made on the transi-

tion rates of the generator of the birth-death process (Xt)t≥0.

Corollary 5.8 Assume that λ and ν are respectively non-increasing and non-decreasing.

Let f ∈ Lipd(N) with furthermore ‖Γf‖∞ < +∞. Then for any y > 0,

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp

(
− y

2‖f‖Lipd

log

(
1 +

y‖f‖Lipd

2t‖Γf‖∞

))
.

Remark 5.9 In order to obtain deviation bounds for stationary distributions, the

positivity of lower bounds of discrete curvatures is crucial and thus does not allow us

to extend such estimates to birth-death processes on the infinite state space E = N,

see the Remarks 5.2 and 5.6. In particular, it excludes the M/M/∞ queueing process

recently investigated in [4] and whose stationary distribution is the Poisson measure

on N. Therefore, we expect to recover the classical deviation inequality satisfied by

the Poisson distribution by taking the limit as t → +∞ in an appropriate deviation

estimate, and such an interesting problem will be addressed in a subsequent paper.

Note also that Corollary 5.8 applies for such a process, but it does not reflect its

positive curvature emphasized in [4].

5.2.2 The case E = {0, 1, . . . , n}

The purpose of this part is to refine Corollaries 5.7 and 5.8 when the state space is

finite, in order to establish by a limiting argument Poisson-type deviation estimates

for the stationary distribution π. To do so, the crucial point is to obtain positive

lower bounds on the discrete curvatures.

Our estimates below may be compared to that of [9, Proposition 4] established under

reversibility assumptions and without notion of discrete curvatures.

Corollary 5.10 Assume that there exists K > 0 such that minx∈{1,...,n} λx−1 − λx +

νx − νx−1 ≥ K, and let f ∈ Lipd({0, 1, . . . , n}). Then for any y > 0,

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp

(
− y

2‖f‖Lipd

log

(
1 +

2Ky

(1− e−2Kt)‖λ + ν‖∞‖f‖Lipd

))
.

In particular, letting t→ +∞ above yields under the stationary distribution π:

π (f − Eπ[f ] ≥ y) ≤ exp

(
− y

2‖f‖Lipd

log

(
1 +

2Ky

‖λ + ν‖∞‖f‖Lipd

))
.

15



Under different assumptions on the generator, we get a somewhat similar estimate:

Corollary 5.11 Assume that the transition rates λ and ν satisfy minx∈{1,...,n−1} min{λx−1−
λx, νx+1 − νx} ≥ ρ > 0, and let f ∈ Lipd({0, 1, . . . , n}). Then for any y > 0,

Px (f(Xt)− Ex [f(Xt)] ≥ y) ≤ exp

(
− y

2‖f‖Lipd

log

(
1 +

2ρy

(1− e−2ρt)(λ0 + νn)‖f‖Lipd

))
.

As t→ +∞, we obtain the deviation inequality

π (f − Eπ[f ] ≥ y) ≤ exp

(
− y

2‖f‖Lipd

log

(
1 +

2ρy

(λ0 + νn)‖f‖Lipd

))
.

As an application of Corollary 5.10, let us recover the classical Gaussian deviation

inequality for a Brownian driven Ornstein-Uhlenbeck process constructed as a fluid

limit of rescaled continuous time Ehrenfest chains.

Corollary 5.12 Let (Ut)t≥0 be the Brownian driven Ornstein-Uhlenbeck process given

by

Ut = z0e
−t +

√
2λν

∫ t

0

e−(t−s)dBs, t > 0,

where z0 ∈ R and the positive parameters λ and ν are such that λ + ν = 1. Then for

any Lipschitz function f on R with Lipschitz constant ‖f‖Lip, we recover the classical

Gaussian deviation inequality

Pz0 (f(Ut)− Ez0 [f(Ut)] ≥ y) ≤ exp

(
− y2

(1− e−2t)ν‖f‖2
Lip

)
, y > 0.

Proof. Let (Xn
t )t≥0 be the continuous time Ehrenfest chain on {0, 1, . . . , n} starting

from some xn ∈ {0, 1, . . . , n} and with generator given by

Lnf(x) = λ(n− x) (f(x+ 1)− f(x)) + νx (f(x− 1)− f(x)) , x ∈ {0, 1, . . . , n}.

Suppose that limn→+∞ xn/n = λ and define the process (Zn
t )t≥0 by Zn

t = (Xn
t −

λn)/
√
n, t > 0. Assume furthermore that the sequence of initial states (Zn

0 )n∈N

converges to z0. By the central limit theorem in [7, Chapter 11], the sequence (Zn
t )t≥0

converges as n goes to infinity to the process (Ut)t≥0.

Now, fix n ∈ N\{0}, t > 0, and consider the function hn = f ◦φn, where φn is defined

on {0, 1, . . . , n} by φn(x) = (x−nλ)/
√
n. Then hn ∈ Lipd({0, 1, . . . , n}) with constant
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at most n−1/2‖f‖Lip. Therefore we can apply Corollary 5.10 to (Xn
t )t≥0 and hn, with

K = λ+ ν = 1, to get for any y > 0:

Pxn (hn(X
n
t )− Exn [hn(X

n
t )] ≥ y) ≤ exp

(
− y

√
n

2‖f‖Lip

log

(
1 +

2y

(1− e−2t)
√
nν‖f‖Lip

))
.

Finally, letting n going to infinity in the above inequality yields the result.

5.2.3 A multidimensional deviation inequality for the M/M/1 queue

In this final part, we give a Poisson-type deviation estimate for sample vectors of

the M/M/1 queueing process. It is an irreducible birth-death process (Xt)t≥0 whose

generator is given by

Lf(x) = λ (f(x+ 1)− f(x)) + ν1{x 6=0} (f(x− 1)− f(x)) , x ∈ N,

where λ and ν are positive. The existence of an integration by parts formula for

the associated semigroup, together with a tensorization procedure of the Laplace

transform of a Lipschitz function of the process, allow us to provide with Corollary 5.13

below a multidimensional deviation inequality for the M/M/1 queue.

We say in the sequel that a function f : Nn → R is `1-Lipschitz if

‖f‖Lip(n) := sup
x 6=y

|f(x)− f(y)|
‖x− y‖1

< +∞,

where ‖ · ‖1 denotes the `1-norm ‖z‖1 =
∑n

i=1 |zi|, z ∈ Nn.

Corollary 5.13 Consider the sample vector Xn = (Xt1 , . . . , Xtn), 0 = t0 < t1 <

· · · < tn = T , and let f be `1-Lipschitz on Nn. Then for any y > 0,

Px (f(Xn)− Ex[f(Xn)] ≥ y) ≤ exp

(
− y

2n‖f‖Lip(n)

log

(
1 +

y

Tn(λ + ν)‖f‖Lip(n)

))
.

(5.5)

Proof. Let u be a Lipschitz function on N with Lipschitz constant ‖u‖Lip(1) and let

t > 0. Rewriting the proof of Theorem 4.2 for the M/M/1 queue yields for any τ > 0:

Ex

[
eτu(Xt)

]
≤ exp

{
τEx[u(Xt)] + h(τ, t, ‖u‖Lip(1))

}
, (5.6)
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where h is the function defined on (R+)3 by h(τ, t, z) = t(λ+ ν) (eτz − τz − 1).

To obtain a multidimensional version of (5.6), the idea is to tensorize with respect to

the `1-metric the Laplace transform via an integration by parts formula satisfied by

the semigroup (Pt)t≥0 of the M/M/1 queueing process. We sketch now the argument

for the dimension n = 2. Let 0 < s < t and denote fy the function fy(z) = f(y, z)

and f1(y) =
∑

z∈N f(y, z)Pt−s(y, z). By the Markov property together with (5.6), we

have

Ex [exp (τf(Xs, Xt))] =
∑
y,z∈N

exp (τfy(z))Pt−s(y, z)Ps(x, y)

≤
∑
y∈N

exp

(
τ
∑
z∈N

fy(z)Pt−s(y, z) + h(τ, t− s, ‖fy‖Lip(1))

)
Ps(x, y)

≤ exp
{
h(τ, t− s, ‖f‖Lip(2))

}∑
y∈N

exp (τf1(y))Ps(x, y)

≤ exp
{
h(τ, t− s, 2‖f‖Lip(2)) + h(τ, s, ‖f1‖Lip(1)) + τEx[f(Xs, Xt)]

}
,

(5.7)

since the function z 7→ h(·, ·, z) is non-decreasing on R+. Now, let us bound ‖f1‖Lip(1)

by 2‖f‖Lip(2). To do so, observe that the commutation relation Ld+ = d+L holds,

where d+ is the forward gradient d+f(x) = f(x + 1) − f(x), x ∈ N. It implies

Ptd
+ = d+Pt, t > 0, which in turn entails the integration by parts formula∑

y∈N

u(y)Pt(x+ 1, y) =
∑
y∈N

u(y + 1)Pt(x, y), x ∈ N.

Thus, we have

‖f1‖Lip(1) = sup
y∈N

|f1(y + 1)− f1(y)|

= sup
y∈N

∣∣∣∣∣∑
z∈N

f(y + 1, z)Pt−s(y + 1, z)−
∑
z∈N

f(y, z)Pt−s(y, z)

∣∣∣∣∣
= sup

y∈N

∣∣∣∣∣∑
z∈N

(f(y + 1, z + 1)− f(y, z))Pt−s(y, z)

∣∣∣∣∣
≤ 2‖f‖Lip(2).

Therefore, plugging this into (5.7) entails

Ex [exp (τf(Xs, Xt))] ≤ exp
{
t(λ+ ν)

(
e2τ‖f‖Lip(2) − 2τ‖f‖Lip(2) − 1

)
+ τEx[f(Xs, Xt)]

}
.
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In the general case, we show similarly that the function fi defined on Ni by

fi(x1, . . . , xi) :=
∑

xi+1,...,xn∈N

f(x1, . . . , xi, . . . , xn)Pti+1−ti(xi, xi+1) · · ·Ptn−tn−1(xn−1, xn),

has Lipschitz seminorm (with respect to the ith variable) smaller than (n − i +

1)‖f‖Lip(n), and thus than n‖f‖Lip(n). Therefore, since h is non-decreasing in its

third variable, we obtain by using recursively (5.7):

Ex

[
eτf(Xn)

]
≤ exp

(
τEx[f(Xn)] +

n∑
i=1

h(τ, ti − ti−1, n‖f‖Lip(n))

)
= exp

{
τEx[f(Xn)] + T (λ+ ν)

(
eτn‖f‖Lip(n) − τn‖f‖Lip(n) − 1

)}
.

Dividing by eτEx[f(Xn)] and using Chebychev’s inequality achieves the proof.

Remark 5.14 To conclude this work, note that Corollary 5.13 does not allow us to

extend the deviation inequality (5.5) to functionals on path spaces. Thus, it would be

an interesting project to refine suitably such an estimate in terms of the increments

∆i = ti − ti−1, as ∆i → 0.
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