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Abstract. We want to reconstruct a signal based on inhomogeneous data (the amount of

data can vary strongly), using the model of regression with a random design. Our aim is

to understand the consequences of inhomogeneity on the accuracy of estimation within the

minimax framework. Using the uniform metric weighted by a spatially-dependent rate as a

benchmark for an estimator accuracy, we are able to capture the deformation of the usual

minimax rate in situations with local lacks of data (modelled by a design density with

vanishing points). In particular, we construct an estimator both design and smoothness

adaptive, and a new criterion is developed to prove the optimality of these deformed rates.

1. Introduction

Motivations. A problem particularly prominent in statistical literature is the adaptive

reconstruction of a function based on irregularly sampled noisy data. In several practical

situations, the statistician cannot obtain “nice” regularly sampled observations, because of

various constraints linked with the source of the data, or the way the data is obtained. For

instance, in signal or image processing, the irregular sampling can be due to the process of

motion or disparity compensation (used in advanced video processing), while in topography,

measurement constraints are linked with the properties of the ground. See Feichtinger

and Gröchenig (1994) for a survey on irregular sampling, Almansa et al. (2003), Vàzquez

et al. (2000) for applications concerning respectively satellite image and stereo imaging, and

Jansen et al. (2004) for examples of geographical constraints.

Such constraints can result in potentially strong local lacks of data. Consequently, the

accuracy of a procedure based on such data can become locally very poor. The aim of the

paper is to study from a theoretical point of view the consequences of data inhomogeneity
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on the reconstruction of a univariate signal. Natural questions arise: how does the inho-

mogeneity impact on the accuracy of estimation? What does the optimal convergence rate

become in such situations? Can the rate vary strongly from place to place, and how?

The model. The widest spread way to model such observations is as follows. We model

the available data [(Xi, Yi); 1 6 i 6 n] by

Yi = f(Xi) + σξi, (1.1)

where ξi are i.i.d. Gaussian standard and independent of the Xi’s and σ > 0 is the noise level.

The design variables Xi are i.i.d. with unknown density µ on [0, 1]. The more the density

µ is “far” from the uniform law, the more the data drawn from (1.1) is inhomogeneous. A

simple way to include situations with local lacks of data within the model (1.1) is to allow

the density µ to be arbitrarily small at some points, and to vanish. This kind of behaviour

is not commonly used in literature, since most papers assume µ to be uniformly bounded

away from zero. We give references handling this kind of design below.

In practice, we don’t know µ, since it requires to know in a precise way the constraints

making the observation irregularly sampled, neither do we know the smoothness of f . There-

fore, a convenient procedure shall adapt both to the design and to the smoothness of f .

Such a procedure (that is proved to be optimal) is constructed here.

Methodology. We want to reconstruct f globally, with sup norm loss. The reason for

choosing this metric is that it is exacting: roughly, it forces an estimator to behave well at

every point simultaneously. This property is convenient here, since it allows to capture in

a very simple way the consequences of inhomogeneity directly on the convergence rate.

In what follows, an . bn means an 6 Cbn for any n, where C > 0. We say that a

sequence of curves vn(·) > 0 is an upper bound over some class F if there is an estimator

f̂n such that

sup
f∈F

Efµ

[
w

(
sup

x∈[0,1]
vn(x)−1|f̂n(x)− f(x)|

)]
. 1 (1.2)

as n → +∞, where Efµ denotes the expectation with respect to the joint law Pfµ of

the [(Xi, Yi); 1 6 i 6 n], and where w(·) is a loss function, that is a non-negative and

non-decreasing function such that w(0) = 0 and w(x) 6 A(1 + |x|b) for some A, b > 0.

Literature. Pointwise estimation at a point where the design vanishes is studied in Hall

et al. (1997), with the use of a local linear procedure. This design behaviour is given as an

example in Guerre (1999), where a more general setting for the design is considered, with

a Lipschitz regression function. In Gäıffas (2005a), pointwise minimax rates over Hölder
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classes are computed for several design behaviours, and an adaptive estimator for pointwise

risk is constructed in Gäıffas (2005b). In these papers, it appears that, depending on the

design behaviour at the estimation point, the range of minimax rates is very wide: from

very slow (logarithmic) rates to very fast quasi-parametric rates.

Many adaptive techniques have been developed in literature for handling irregularly sam-

pled data. Among wavelet methods, see Hall et al. (1997) for interpolation; Antoniadis et al.

(1997), Antoniadis and Pham (1998), Brown and Cai (1998), Hall et al. (1998) and Wong

and Zheng (2002) for tranformation and binning; Antoniadis and Fan (2001) for a penal-

ization approach; Delouille et al. (2001) and Delouille et al. (2004) for the construction

of design-adapted wavelet via lifting; Pensky and Wiens (2001) for projection-based tech-

niques; Kerkyacharian and Picard (2004) for warped wavelets. For model selection, see

Baraud (2002). See also the PhD manuscripts from Maxim (2003) and Delouille (2002).

2. Results

To measure the smoothness of f , we consider the standard Hölder class H(s, L) where

s, L > 0, defined as the set of all the functions f : [0, 1] → R such that

|f (bsc)(x)− f (bsc)(y)| 6 L|x− y|s−bsc, ∀x, y ∈ [0, 1],

where bsc is the largest integer smaller than s. Minimax theory over such classes is standard:

we know from Stone (1982) that within the model (1.1), the minimax rate is equal to

(log n/n)s/(2s+1) over such classes, when µ is continuous and uniformly bounded away from

zero. If Q > 0, we define HQ(s, L) := H(s, L)∩ {f | ‖f‖∞ 6 Q} (the constant Q needs not

to be known).

We use the notation µ(I) :=
∫
I µ(t)dt. If F = H(s, L) is fixed, we consider the sequence

of positive curves hn(·) = hn(·;F, µ) satisfying

Lhn(x)s = σ
( log n

nµ([x− h, x + h])

)1/2
(2.1)

for any x ∈ [0, 1], and we define

rn(x;F, µ) := Lhn(x;F, µ)s.

Since h 7→ h2sµ([x − h, x + h]) is increasing for any x, these curves are well-defined (for n

large enough) and unique. In Theorem 1 below, we show that rn(·) is an upper bound over

Hölder classes, and the optimality of this rate is proved in Theorem 2.
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Example. When s = 1, σ = L = 1 and µ(x) = 4|x− 1/2|1[0,1](x), solving (2.1) leads to

rn(x) = (log n/n)αn(x),

where the exponent αn(·) is given by

αn(x) =



1
3

(
1− log(1−2x)

log(log n/n)

)
when x ∈

[
0, 1

2 − ( log n
2n )1/4

]
,

log
(
((x−1/2)4+4 log n/n)1/2−(x−1/2)2

)
−log 2

2 log(log n/n)

when x ∈
[

1
2 − ( log n

2n )1/4, 1
2 + ( log n

2n )1/4
]
,

1
3

(
1− log(2x−1)

log(log n/n)

)
when x ∈

[
1
2 + ( log n

2n )1/4, 1
]
.

Within this example, rn(·) switches from one “regime” to another. Indeed, in this example

there is a lack of data in the middle of the unit interval. The consequence is that rn(1/2) =

(log n/n)1/4 is slower than the rate at the boundaries rn(0) = rn(1) = (log n/n)1/3, which

comes from the standard minimax rate (log n/n)s/(2s+1) with s = 1. We show the shape of

this deformed rate for several sample sizes in Figure 1.
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Figure 1. rn(·) and αn(·) for several sample sizes

Upper bound. In this section, we show that the spatially-dependent rate rn(·) defined

by (2.1) is an upper bound in the sense of (1.2) over Hölder classes. The estimator used in

this upper bound is both smoothness and design adaptive (it does not depend on the design

density within its construction). This estimator is constructed in Section 3 below. Let R

be a fixed natural integer.

Assumption D. We assume that µ is continuous, and that whether µ(x) > 0 for any x, or

µ(x) = 0 for a finite number of x. Moreover, for any x such that µ(x) = 0 we assume that

µ(y) = |y − x|β(x) for any y in a neighbourhood of x (where β(x) > 0).
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Theorem 1. Let s ∈ (0, R +1] and assumption D holds. The estimator f̂n defined by (3.2)

satisfies

sup
f∈F

Efµ

[
w( sup

x∈[0,1]
rn(x)−1|f̂n(x)− f(x)|)

]
. 1 (2.2)

as n → +∞ for any F = HQ(s, L), where rn(·) = rn(·;F, µ) is given by (2.1).

This theorem assesses the adaptive estimator constructed in Section 3 below. The esti-

mator f̂n is based on a precise estimation of the scaling coefficients (within a multiresolution

analysis) of f . This method relies on a Lepski-type method (see for instance Lepski et al.

(1997)) that we adapt for random designs.

Remark. Within Theorem 1, there are mainly two situations.

• µ(x) > 0 for any x: we have rn(x) � (log n/n)s/(2s+1) for any x, where an � bn

means an . bn and bn . an. Hence, we find back the standard minimax rate in this

situation. Note that this result is new since adaptive estimators over Hölder balls

in regression with random design were not previously constructed.

• µ(x) = 0 for one or several x: the rate rn(·) can vary strongly from place to place,

depending on the behaviour of µ. Indeed, the rate changes in order from one point

to another, see the example above.

Remark. Implicitly, we assumed in Theorem 1 that s ∈ (0, R + 1], where R is a tuning

parameter of the procedure. Indeed, in the minimax framework considered here, the fact

of knowing an upper bound for s is usual in the study of adaptive methods, and somehow,

unavoidable. For instance, when considering adaptive wavelet methods, the “maximum

smoothness” corresponds to the number of moments of the mother wavelet.

Optimality of rn(·). We have seen that the rate rn(·) defined by (2.1) is an upper bound

over Hölder classes, see Theorem 1. In Theorem 2 below, we prove that this rate is indeed

optimal. In order to show that rn(·) is optimal in the minimax sense over some class F , the

classical criterion consists in showing that

infbfn

sup
f∈F

Efµ

[
w( sup

x∈[0,1]
rn(x)−1|f̂n(x)− f(x)|)

]
& 1, (2.3)

where the infimum is taken among all estimators based on the observations (1.1). However,

this criterion does not exclude the existence of another normalisation ρn(·) that can improve

rn(·) in some regions of [0, 1]. Indeed, (2.3) roughly consists in a minoration of the uniform

risk over the whole unit interval and then, only over some particular points. Therefore,

we need a new criterion that strengthens the usual minimax one to prove the optimality
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of rn(·). The idea is simple: we localize (2.3) by replacing the supremum over [0, 1] by a

supremum over any (small) inverval In ⊂ [0, 1], that is

infbfn

sup
f∈F

Efµ

[
w( sup

x∈In

rn(x)−1|f̂n(x)− f(x)|)
]

& 1, ∀In. (2.4)

It is noteworthy that in (2.4), the length of the intervals cannot be arbitrarily small. Actu-

ally, if an interval In has a length smaller than a given limit, (2.4) does not hold anymore.

Indeed, beyond this limit, we can improve rn(·) for the risk localized over In: we can

construct an estimator f̂n such that

sup
f∈F

Efµ

[
w( sup

x∈In

rn(x)−1|f̂n(x)− f(x)|)
]

= o(1), (2.5)

see Proposition 1 below. The phenomenon described in this section, which concerns the

uniform risk, is linked with the results from Cai and Low (2005) for shrunk L2 risks. In

what follows, |I| stands for the length of an interval I.

Theorem 2. Suppose that

µ(I) & |I|β+1 (2.6)

uniformly for any interval I ⊂ [0, 1], where β > 0 and let F = H(s, L). Then, for any

interval In ⊂ [0, 1] such that

|In| ∼ n−α (2.7)

with α ∈ (0, (1 + 2s + β)−1), we have

infbfn

sup
f∈F

Efµ

[
w

(
sup
x∈In

rn(x)−1|f̂n(x)− f(x)|
)]

& 1 (2.8)

as n → +∞, where rn(·) = rn(· ;F, µ) is given by (2.1).

Corollary 1. If vn(·) is an upper bound over F = H(s, L) in the sense of (1.2), we have

sup
x∈In

vn(x)/rn(x) & 1

for any interval In as in Theorem 2. Hence, rn(·) cannot be improved uniformly over an

interval with length nε−1/(1+2s+β), for any arbitrarily small ε > 0.

Proposition 1. Let F = H(s, L) and `n be a positive sequence satisfying

log `n = o(log n).

a) Let µ be such that 0 < µ(x) < +∞ for any x ∈ [0, 1]. Note that in this case, rn(x) �
(log n/n)s/(2s+1) for any x ∈ [0, 1] and that (2.6) holds with β = 0. If In is an interval
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satisfying

|In| ∼ (`n/n)1/(1+2s),

we can contruct an estimator f̂n such that

sup
f∈F

Efµ

[
w

(( n

log n

)s/(2s+1)
sup
x∈In

|f̂n(x)− f(x)|
)]

= o(1).

b) Let µ(x0) = 0 for some x0 ∈ [0, 1] and µ([x0 − h, x0 + h]) = hβ+1 where β > 0 for any h

in a neighbourhood of 0. If

In = [x0 − (`n/n)1/(1+2s+β), x0 + (`n/n)1/(1+2s+β)],

we can contruct an estimator f̂n such that

sup
f∈F

Efµ

[
w( sup

x∈In

rn(x)−1|f̂n(x)− f(x)|)
]

= o(1).

This proposition entails that rn(·) can be improved for localized risks (2.5) over intervals

In with size (`n/n)1/(1+2s+β) where `n can be a slow term such has (log n)γ for any γ > 0.

A consequence is that the lower bound in Theorem 2 cannot be improved, since (2.8) does

not hold anymore when In has a length smaller than (2.7). This phenomenon is linked both

to the choice of the uniform metric for measuring the error of estimation, and to the nature

of the noise within the model (1.1). It is also a consequence of the minimax paradigm: it

is well-known that the minimax risk actually concentrates on some critical functions of the

considered class (that we rescale and place within In here, hence the critical length for In),

which is a property allowing to prove lower bounds such as the one in Theorem 2.

3. Construction of an adaptive estimator

The adaptive method proposed here differs from the techniques mentioned in Introduc-

tion. Indeed, it is not appropriate here to apply a wavelet decomposition of the scaling

coefficients at the finest scale since it is a L2-transform, while the criterion (1.2) consid-

ered here uses the uniform metric. This is the reason why we focus the analysis on a

precise estimation of the scaling coefficients. The technique consists in a local polynomial

approximation of f within adaptively selected bandwidths for each scaling coefficient.

Let (Vj)j>0 be a multiresolution analysis of L2([0, 1]) with scaling function φ compactly

supported and R-regular (the parameter R comes from Theorem 1), which ensures that

‖f − Pjf‖∞ . 2−js (3.1)
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for any f ∈ H(s, L) with s ∈ (0, R + 1], where Pj denotes the projection onto Vj . We

use Pj as an interpolation transform. Interpolation transforms in the unit interval are

constructed in Donoho (1992) and Cohen et al. (1993). We have Pjf =
∑2j−1

k=0 αjkφjk,

where φjk(·) = 2j/2φ(2j · −k) and αjk =
∫

fφjk. We consider the largest integer J such

that N := 2J 6 n, and we estimate the scaling coefficients at the high resolution J . For

appropriate estimators α̂Jk of αJk, we simply consider

f̂n :=
2J−1∑
k=0

α̂JkφJk. (3.2)

Let us denote by PolR the set of all real polynomials with degree at most R. If f̄k ∈ PolR
is close to f over the support of φJk, then

αJk =
∫

fφJk ≈
∫

f̄kφJk.

When the scaling function φ has R moments, that is∫
φ(t)tpdt = 1p=0, p ∈ {0, . . . , R}, (3.3)

and when f is s-Hölder for s ∈ (0, R + 1], accurate estimators of α̂Jk are given by

α̂Jk := 2−J/2f̄k(k2−J). (3.4)

If φ does not satisfies (3.3),
∫

f̄φJk can be computed exactly using a quadrature formula, in

the same way as in Delyon and Juditsky (1995). Indeed, there is a matrix QJ (characterized

by φ) with entries (qJkm) for (k, m) ∈ {0, . . . , 2J − 1}2 such that∫
PφJk = 2−J/2

∑
m∈ΓJk

qJkmP (m/2J) (3.5)

for any P ∈ PolR. Within this equation, the entries of the quadrature matrix QJ satisfy

qJkm 6= 0 → |k −m| 6 Lφ and m ∈ ΓJk, (3.6)

where Lφ > 0 is the support length of φ. Therefore, the matrix QJ is band-limited. For

instance, if we consider the Coiflets basis, which satisfies the moment condition (3.3), we

have qJkm = 1k=m, and we can use directly (3.4). If the (φ(· − k))k are orthogonal, then

qJkm = φ(m− k), see Delyon and Juditsky (1995).

For the sake of simplicity, we assume in what follows that φ satisfies the moment condi-

tion (3.3), thus αJk is estimated by (3.4). Each polynomial f̄k in (3.4) is defined via a least
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square minimization which is localized within a data-driven bandwidth ∆̂k, hence

f̄k = f̄
(b∆k)
k .

Below, we describe the computation of these polynomials and then, we define the selection

rule for the ∆̂k.

Local polynomials. The polynomials used to estimate each scaling coefficients are defined

via a slightly modified version of the local polynomial estimator (LPE). This linear method

of estimation is standard, see for instance Fan and Gijbels (1995, 1996), among many others.

For any interval δ ⊂ [0, 1], we define the empirical sample measure

µ̄n(δ) :=
1
n

n∑
i=1

1δ(Xi),

where 1δ is the indicator of δ, and if µ̄n(δ) > 0, we introduce the pseudo-inner product

〈f , g〉δ :=
1

µ̄n(δ)

∫
δ
fg dµ̄n, (3.7)

and ‖g‖δ := 〈g , g〉1/2
δ the corresponding pseudo-norm. The LPE consists in looking for the

polynomial f̄ (δ) of degree R which is the closest to the data in the least square sense, with

respect to the localized design-adapted norm ‖ · ‖δ:

f̄ (δ) := argmin
g∈PolR

‖Y − g‖2
δ , (3.8)

where we recall that PolR is the set of all real polynomials with degree at most R. We

can rewrite (3.8) in a variational form, in which we look for f̄ (δ) ∈ PolR such that for any

ϕ ∈ PolR,

〈f̄ (δ) , ϕ〉δ = 〈Y , ϕ〉δ, (3.9)

where it suffices to consider only power functions ϕkp(·) = (· − k/2J)p, 0 6 p 6 R when

estimating in a neighbourhood of the regular sampling point k/2J . The coefficients vector

θ̄
(δ)
k ∈ RR+1 of the polynomial f̄

(δ)
k is therefore solution, when it makes sense, of the linear

system

X(δ)
k θ = Y(δ)

k ,

where for 0 6 p, q 6 R:

(X(δ)
k )p,q := 〈ϕkp , ϕkq〉δ and (Y(δ)

k )p := 〈Y , ϕkp〉δ. (3.10)

We modify this system as follows: when the smallest eigenvalue of X(δ)
k (which is non-

negative) is too small, we add a correcting term allowing to bound it from below. We
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introduce

X̄(δ)
k := X(δ)

k + (nµ̄n(δ))−1/2IdR+11Ωk(δ){ ,

where IdR+1 is the identity matrix in RR+1 and

Ωk(δ) :=
{
λ(X(δ)

k ) > (nµ̄n(δ))−1/2
}
, (3.11)

where λ(M) stands for the smallest eigenvalue of a matrix M . The quantity (nµ̄n(δ))−1/2

comes from the variance of f̄
(δ)
k , and this particular choice preserves the convergence rate

of the method. This modification of the classical LPE is convenient in situations with little

data.

Definition 1. When µ̄n(δ) > 0, we consider the solution θ̄
(δ)
k of the linear system

X̄(δ)
k θ = Y(δ)

k , (3.12)

and introduce f̄
(δ)
k (x) := (θ̄(δ)

k )0 + (θ̄(δ)
k )1(x − k/2J) + · · · + (θ̄(δ)

k )R(x − k/2J)R. When

µ̄n(δ) = 0, we take simply f̄
(δ)
k := 0.

Adaptive bandwidth selection. The adaptive procedure selecting the intervals ∆̂k is

based on a method introduced by Lepski (1990), see also Lepski et al. (1997), and Lepski

and Spokoiny (1997). If a family of linear estimators can be “well-sorted” by their respective

variances (e.g. kernel estimators in the white noise model, see Lepski and Spokoiny (1997)),

the Lepski procedure selects the largest bandwidth such that the corresponding estimator

does not differ “significantly” from estimators with a smaller bandwidth. Following this

principle, we construct a method which adapts to the unknown smoothness, and addition-

ally to the original Lepski method, to the distribution of the data (the design density is

unknown). Bandwidth selection procedures in local polynomial estimation can be found in

Fan and Gijbels (1995), Goldenshluger and Nemirovski (1997) or Spokoiny (1998).

The idea of the adaptive procedure is the following: when f̄ (δ) is close to f (that is, when

δ is well-chosen), we have in view of (3.9)

〈f̄ (δ′) − f̄ (δ) , ϕ〉δ′ = 〈Y − f̄ (δ) , ϕ〉δ′ ≈ 〈Y − f , ϕ〉δ′ = 〈ξ , ϕ〉δ′

for any δ′ ⊂ δ, ϕ ∈ PolR, where the right-hand side is a noise term. Then, in order to

“remove” this noise, we select the largest δ such that this noise term remains smaller than

an appropriate threshold, for any δ′ ⊂ δ and ϕ = ϕkp, p ∈ {0, . . . , R}. The bandwidth ∆̂k
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is selected in a fixed set of intervals Gk called grid (which is defined below) as follows:

∆̂k := argmax
δ∈Gk

{
µ̄n(δ) | ∀δ′ ∈Gk, δ

′ ⊂ δ, ∀p ∈ {0, . . . , R},

|〈f̄ (δ′)
k − f̄

(δ)
k , ϕkp〉δ′ | 6 ‖ϕkp‖δ′Tn(δ, δ′)

}
,

(3.13)

where

Tn(δ, δ′) := σ
[( log n

nµ̄n(δ)

)1/2
+ DCR

( log(nµ̄n(δ))
nµ̄n(δ′)

)1/2]
, (3.14)

with CR := 1 + (R + 1)1/2 and D > (2(b + 1))1/2, if we want to prove Theorem 1 with a

loss function satisfying w(x) . (1 + |x|b). The threshold choice (3.14) can be understood

in the following way: since the variance of f̄
(δ)
k is of order (nµ̄n(δ))−1/2, we see that the

two terms in Tn(δ, δ′) are ratios between a penalizing log term and the variance of the

estimators compared by the rule (3.13). The penalization term is linked with the number

of comparisons necessary to select the bandwidth. To prove Theorem 1, we use the grid

Gk :=
⋃

16i6n

{[
k2−J − |Xi − k2−J |, k2−J + |Xi − k2J |

]}
, (3.15)

and we recall that the scaling coefficients are estimated by

α̂Jk := 2−J/2f̄
(b∆k)
k (k2−J).

Remark. In this form, the adaptive estimator has a complexity O(n2). This can be de-

creased using a smaller grid. An example of such a grid is the following: first, we sort

the (Xi, Yi) into (X(i), Y(i)) such that X(i) < X(i+1). Then, we consider i(k) such that

k/2J ∈ [X(i(k)), X(i(k)+1)] (if necessary, we take X(0) = 0 and X(n+1) = 1) and for some

a > 1 (to be chosen by the statistician) we introduce

Gk :=
[loga(i(k)+1)]⋃

p=0

[loga(n−i(k))]⋃
q=0

{[
X(i(k)+1−[ap]), X(i(k)+[aq ])

]}
. (3.16)

With this grid, the selection of the bandwidth is fast, and the complexity of the procedure

is O(n(log n)2). We can use this grid in practice, but we need extra assumptions on the

design if we want to prove Theorem 1 with this grid choice.

4. Proofs

We recall that the weight function w(·) is non-negative, non-decreasing and such that

w(x) 6 A(1 + |x|)b for some A, b > 0. We denote by µn the joint law of X1, . . . , Xn and Xn

the sigma-field generated by X1, . . . , Xn. |A| denotes both the length of an interval A and

the cardinality of a finite set A. M> is the transpose of M , and ξ = (ξ1, . . . , ξn)>.
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Proof of Theorem 1. To prove the upper bound, we use the estimator defined by (3.2)

where φ is a scaling function satisfying (3.3) (for instance the Coiflets basis), and where

the scaling coefficients are estimated by (3.4). Using together (3.1) and the fact that

rn(x) & (log n/n)s/(1+2s) for any x, we have supx∈[0,1] rn(x)−1‖f − PJf‖∞ = o(1). Hence,

sup
x∈[0,1]

rn(x)−1|f̂n(x)− f(x)| . sup
x∈[0,1]

rn(x)−1
∣∣∣ 2J−1∑

k=0

(α̂Jk − αJk)φJk(x)
∣∣∣

. max
06k62J−1

sup
x∈Sk

rn(x)−12J/2|α̂Jk − αJk|,

where Sk denotes the support of φJk. Then, expanding f up to the degree bsc 6 R and

using (3.3), we obtain

sup
x∈[0,1]

rn(x)−1|f̂n(x)− f(x)| . max
06k62J−1

sup
x∈Sk

rn(x)−1|f̄ (b∆k)
k (xk)− f(xk)|. (4.1)

Since |Sk| = 2−J � n−1, we have

sup
x∈Sk

rn(x)−1 . rn(xk)−1. (4.2)

Indeed, since µ is continuous, rn(·) is continuously differentiable and we have supx∈Sk
|rn(x)−1−

rn(xk)−1| 6 2−J‖(r−1
n )′‖∞, where g′ stands for the derivative of g. Moreover, |(rn(x)−1)′| .

h′n(x)hn(x)−(s+1) . n−1, since h′n(x) . 1 and hn(x) & (log n/n)1/(2s+1), thus (4.2).

In what follows, ‖ · ‖∞ denotes the supremum norm in RR+1. The following lemma is

a version of the bias-variance decomposition of the local polynomial estimator, which is

classical: see for instance Fan and Gijbels (1995, 1996), Goldenshluger and Nemirovski

(1997), Spokoiny (1998), among others. We define the matrix

E(δ)
k := Λ(δ)

k X̄(δ)
k Λ(δ)

k ,

where X̄k is given by (3.10) and Λ(δ)
k := diag[‖ϕk0‖−1

δ , . . . , ‖ϕkR‖−1
δ ].

Lemma 1. Conditionally on Xn, for any f ∈ H(s, L) and δ ∈ Gk, we have

|f̄ (δ)
k (xk)− f(xk)| . λ(E(δ)

k )−1
(
L|δ|s + σ(nµ̄n(δ))−1/2‖U(δ)

k ξ‖∞
)

on Ωk(δ), where U(δ)
k is a Xn-measurable matrix of size (R + 1) × (nµ̄n(δ)) satisfying

U(δ)
k (U(δ)

k )> = IdR+1.

Note that within Lemma 1, the bandwidth δ can change from one point xk to another. We

denote shortly Uk := U(δk)
k . Let us define W := Uξ where U := (U>

0 , . . . ,U>
2J )>. In view of

Lemma 1, W is conditionally on Xn a centered Gaussian vector such that Efµ[W 2
k |Xn] = 1
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for any k ∈ {0, . . . , (R + 1)2J}. We introduce WN := max06k6(R+1)2J |Wk| and the event

WN :=
{
|WN − E[WN |Xn]| 6 LW (log n)1/2

}
, where LW > 0. We recall the following

classical results about the supremum of a Gaussian vector (see for instance in Ledoux and

Talagrand (1991)):

Efµ

[
WN |Xn

]
. (log N)1/2 . (log n)1/2,

and

Pfµ

[
W{

N |Xn

]
. exp(−L2

W (log n)/2) = n−L2
W /2. (4.3)

Let us define the event

Tk := {µ̄n(∆k) 6 µ̄n(∆̂k)}

and Rk := σ
( log n

nµ̄n(∆k)

)1/2 where the intervals ∆k are given by

∆k := argmax
δ∈Gk

{
µ̄n(δ) | L|δ|s 6 σ

( log n

nµ̄n(δ)

)1/2}
.

There is an event Sn ∈ Xn such that µn[S{
n] = o(1) faster than any power of n, and such

that Rk � rn(xk) and λ(E(∆k)
k ) & 1, uniformly for any k ∈ {0, . . . , 2J − 1}. This event is

constructed below. We decompose

|f̄ (b∆k)
k (xk)− f(xk)| 6 Ak + Bk + Ck + Dk,

where

Ak := |f̄ (b∆k)
k (xk)− f(xk)|1W{

N∪S{
n
,

Bk := |f̄ (b∆k)
k (xk)− f(xk)|1T{

k∩WN∩Sn
,

Ck := |f̄ (b∆k)
k (xk)− f̄

(∆k)
k (xk)|1Tk∩Sn ,

Dk := |f̄ (∆k)
k (xk)− f(xk)|1WN∩Sn .

Term Ak. For any δ ∈ Gk, we have

|f̄ (δ)
k (xk)| . (nµ̄n(δ))1/2‖f‖∞(1 + WN ). (4.4)

This inequality is proved below. Using (4.4), we can bound

Efµ

[
w

(
max

06k62J
rn(xk)−1|f̄ (b∆k)

k (xk)|
)
|Xn

]
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by some power of n. Using ‖f‖∞ 6 Q together with the fact that LW can be arbitrarily

large in (4.3) and since µn[S{
n] = o(1) faster than any power of n, we obtain

Efµ

[
w( max

06k62J
rn(xk)−1Ak)

]
= o(1).

Term Dk. Using together Lemma 1, the definition of ∆k and the fact that WN . (log n)1/2

on WN , we have

|f̄ (∆k)
k (xk)− f(xk)| 6 λ(E(∆k)

k )−1Rk(1 + (log n)−1/2WN ) . λ(E(∆k)
k )−1rn(xk)

on WN ∩ Sn, thus

Efµ

[
w( max

06k62J
rn(xk)−1Dk)

]
. 1.

Term Ck. We introduce Gk(δ) := {δ′ ∈ Gk|δ′ ⊂ δ} and the following events:

Tk(δ, δ′, p) :=
{
|〈f̄ (δ)

k − f̄
(δ′)
k , ϕkp〉δ′ | 6 σ‖ϕkp‖δ′Tn(δ, δ′)

}
,

Tk(δ, δ′) := ∩06p6RTk(δ, δ′),

Tk(δ) := ∩δ′∈Gk(δ)Tk(δ, δ′).

By the definition (3.13) of the selection rule, we have Tk ⊂ Tk(∆̂k,∆k). Let δ ∈ Gk, δ
′ ∈

Gk(δ). On Tk(δ, δ′) ∩ Ωk(δ′) we have (see below)

|f̄ (δ)
k (xk)− f̄

(δ′)
k (xk)| . λ(E(δ′)

k )−1
( log n

nµ̄n(δ′)

)1/2
. (4.5)

Thus, using (4.5), we obtain

Efµ

[
w( max

06k62J
rn(xk)−1Ck)

]
. 1.

Term Bk. By the definition (3.13) of the selection rule, we have T{
k ⊂ Tk(∆k){. We need

the following lemma.

Lemma 2. If δ ∈ Gk satisfies

L|δ|s 6 σ
( log n

nµ̄n(δ)

)1/2
(4.6)

and f ∈ H(s, L), we have

Pfµ

[
Tk(δ){|Xn

]
6 (R + 1)(nµ̄n(δ))1−D2/2

on Ωk(δ), where D is the constant from the threshlod (3.14).
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Using together Lemma 2, ‖f‖∞ 6 Q and (4.4), we obtain

Efµ

[
w

(
max

06k62J
R−1

k |f̄ (b∆k)
k (xk)− f(xk)|1T{

k∩WN

)
|Xn

]
. 1,

thus

Efµ

[
w( max

06k62J
rn(xk)−1Bk)

]
. 1,

and Theorem 1 follows. �

Proof of Lemma 1. On Ωk(δ), we have X̄(δ)
k = Xδ

k, and λ(X(δ)
k ) > (nµ̄n(δ))−1/2 > 0, thus

X(δ)
k and E(δ)

k are invertible. Let fk be the Taylor polynomial of f at xk up to the order bsc
and θk ∈ RR+1 be the coefficient vector of fk. Using f ∈ H(s, L), we obtain

|f̄ (δ)
k (xk)− f(xk)| . |〈(Λ(δ)

k )−1(θ̄(δ)
k − θk) , e1〉|+ |δ|s

= |〈(E(δ)
k )−1Λ(δ)

k X(δ)
k (θ̄(δ)

k − θk) , e1〉|+ |δ|s.

In view of (3.9), we have on Ωk(δ) for any p ∈ {0, . . . , R}:

(X(δ)
k (θ̄(δ)

k − θk))p = 〈f̄ (δ)
k − fk , ϕkp〉δ

= 〈Y − fk , ϕkp〉δ

thus, X(δ)
k (θ̄(δ)

k −θk) = B
(δ)
k +V

(δ)
k where (B(δ)

k )p := 〈f −fk , ϕkp〉δ and (V (δ)
k )p := 〈ξ , ϕkp〉δ,

which correspond respectively to bias and variance terms. Since f ∈ H(s, L) and λ(M)−1 =

‖M−1‖ for any symmetrical and positive matrix M , we have

|〈(E(δ)
k )−1Λ(δ)

k B
(δ)
k , e1〉| . λ(E(δ)

k )−1L|δ|s.

Since (V (δ)
k )p = (nµ̄n(δ))−1D(δ)

k ξ where D(δ)
k is the (R + 1) × (nµ̄n(δ)) matrix with entries

(D(δ)
k )i,p := (Xi − xk)p, Xi ∈ δ, we can write

|〈(E(δ)
k )−1Λ(δ)

k V
(δ)
k , e1〉δ| . σ(nµ̄n(δ))−1/2‖(E(δ)

k )−1/2‖‖U(δ)
k ξ‖∞,

where U(δ)
k := (nµ̄n(δ))−1/2(E(δ)

k )−1/2Λ(δ)
k D(δ)

k satisfies U(δ)
k (U(δ)

k )> = IdR+1 since E(δ)
k =

Λ(δ)
k X(δ)

k Λ(δ)
k and X(δ)

k = (nµ̄n(δ))−1D(δ)
k (D(δ)

k )>, thus the lemma. �

Proof of (4.4). If µ̄n(δ) = 0, we have f̄
(δ)
k = 0 by definition and the result is obvious,

thus we assume µ̄n(δ) > 0. Since λ(X̄(δ)
k ) > (nµ̄n(δ))−1/2 > 0, X̄(δ)

k and Λ(δ)
k are invertible

and E(δ)
k also is. The proof of (4.4) is then similar to that of Lemma 1, where the bias is

bounded by ‖f‖∞ and where we use the fact that λ(X̄(δ)
k ) > (nµ̄n(δ))−1/2 to control the

variance term. �
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Proof of (4.5). Let us define H(δ)
k := Λ(δ)

k X(δ)
k . On Ωk(δ), we have:

|f̄ (δ)
k (xk)− f̄

(δ′)
k (xk)| = |(θ̄(δ)

k − θ̄
(δ′)
k )0| . λ(E(δ′)

k )−1‖H(δ′)
k (θ̄(δ)

k − θ̄
(δ′)
k )‖∞.

Since on Ωk(δ′), (H(δ′)
k (θ̄(δ)

k − θ̄
(δ′)
k ))p = 〈f̄ (δ)

k − f̄
(δ′)
k , ϕkp〉δ′/‖ϕkp‖δ′ , and since δ′ ⊂ δ, we

obtain (4.5) on Tk(δ, δ′). �

Proof of Lemma 2. We denote by P(δ)
k the projection onto Span{ϕk0, . . . , ϕkR} with

respect to the inner product 〈· , ·〉δ. Note that on Ωk(δ), we have f̄
(δ)
k = P(δ)

k Y . Let δ ∈ Gk

and δ′ ∈ Gk(δ). In view of (3.9), we have on Ωk(δ) for any ϕ = ϕkp, p ∈ {0, . . . , R}:

〈f̄ (δ′)
k − f̄

(δ)
k , ϕ〉δ′ = 〈Y − f̄

(δ)
k , ϕ〉δ′

= 〈f −P(δ)
k Y , ϕ〉δ′ + 〈ξ , ϕ〉δ′

= Ak −Bk + Ck,

where Ak := 〈f −P(δ)
k f , ϕ〉δ′ , Bk := σ〈P(δ)

k ξ , ϕ〉δ′ and Ck := σ〈ξ , ϕ〉δ′ . If fk is the Taylor

polynomial of f at xk up to the order bsc, since δ′ ⊂ δ and f ∈ H(s, L) we have:

|Ak| 6 ‖ϕ‖δ′‖f − fk + P(δ)
k (fk − f)‖δ 6 ‖ϕ‖δ′‖f − fk‖δ . ‖ϕ‖δ′L|δ|s,

and using (4.6), we obtain |Ak| . ‖ϕ‖δ′σ
( log n

nµ̄n(δ)

)1/2. Since P(δ)
k is an orthogonal projection,

the variance of Bk is equal to

σ2Efµ

[
〈P(δ)

k ξ , ϕ〉2δ′ |Xn

]
6 σ2‖ϕ‖2

δ′Efµ

[
‖P(δ)

k ξ‖2
δ′ |Xn

]
= σ2‖ϕ‖2

δ′ Tr(P(δ)
k )/(nµ̄n(δ′)),

where Tr(M) stands for the trace of a matrix M . Since P(δ)
k is the projection onto PolR,

Tr(P(δ)
k ) 6 R + 1, and the variance of Bk is smaller than σ2‖ϕ‖2

δ′(R + 1)/(nµ̄n(δ′)). Then,

Efµ[(B + C)2|Xn] 6 σ2‖ϕ‖2
δ′C2

R/(nµ̄n(δ′)). (4.7)

In view of the threshold choice (3.14), we have{
|〈f̄ (δ)

k − f̄
(δ′)
k , ϕ〉δ′ | > ‖ϕ‖δ′Tn(δ, δ′)

}
⊂

{ ‖ϕ‖−1
δ′ |Bk + Ck|

σ(nµ̄n(δ′))−1/2CR
> D

(
log(nµ̄n(δ))

)1/2
}

,
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and using (4.7) together with P[|N(0, 1)| > x] 6 exp(−x2/2) and |Gk(δ)| 6 (nµ̄n(δ)), we

obtain

Pfµ[T (δ){|Xn] 6
∑

δ′∈Gk(δ)

R∑
p=0

exp
(
−D2 log(nµ̄n(δ))/2

)
6 (R + 1)(nµ̄n(δ))1−D2/2,

which concludes the proof. �

Construction of Sn. We construct an event Sn ∈ Xn such that µn
[
S{

n

]
= o(1) faster than

any power of n, and such that on this event, Rk � rn(xk) and λ(E(∆k)
k ) & 1 uniformly for any

k ∈ {0, . . . , 2J}. We need preliminary approximation results, linked with the approximation

of µ by µ̄n. The following deviation inequalities use Berstein inequality for the sum of

independent random variables, which is standard. We have

µn
[∣∣∣ µ̄n(δ)

µ(δ)
− 1

∣∣∣] . exp
(
− ε2nµ(δ)

)
(4.8)

for any interval δ ⊂ [0, 1] and ε ∈ (0, 1). Let us define the events

D(δ)
n,a(x, ε) :=

{∣∣∣ 1
µ(δ)

∫
δ

( · − x

|δ|

)a
dµ̄n − ea(x, µ)

∣∣∣ 6 ε
}

where ea(x, µ) := (1 + (−1)a)(β(x) + 1)/(a + β(x) + 1) (a is a natural integer) where we

recall that β(x) comes from assumption D (if x is such that µ(x) > 0 then β(x) = 0). Using

together Bernstein inequality and the fact that

1
µ(δ)

∫
δ

( t− x

|δ|

)a
µ(t)dt → ea(x, µ)

as |δ| → 0, we obtain

µn
[
(D(δ)

n,a(x, ε)){] . exp
(
− ε2nµ(δ)

)
. (4.9)

By definition (3.15) of Gk, we have ∆k = [xk −Hn(xk), xk + Hn(xk)] where

Hn(x) := argmin
h∈[0,1]

{
Lhs > σ

( log n

nµ̄n([x− h, x + h])

)1/2}
(4.10)

is an approximation of hn(x) (see (2.1)). Since µ̄n is “close” to µ, these quantities are

close to each other for any x. Indeed, if δn(x) := [x − hn(x), x + hn(x)] and ∆n(x) :=

[x−Hn(x), x + Hn(x)] we have using together (4.10) and (2.1):{
Hn(x) 6 (1 + ε)hn(x)

}
=

{ µ̄n[(1 + ε)δn(x)]
µ[δn(x)]

> (1− ε)−2
}

(4.11)

for any ε ∈ (0, 1), where (1 + ε)δn(x) := [x − (1 + ε)hn(x), x + (1 + ε)hn(x)]. Hence, for

each x = xk, the left hand side event of (4.11) has a probability that can be controlled
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under assumption D by (4.8), and the same argument holds for {Hn(x) > (1 − ε)hn(x)}.
Combining (4.8), (4.9) and (4.11), we obtain that the event

Bn,a(x, ε) :=
{∣∣∣ 1

µ̄n(∆n(x))

∫
∆n(x)

( · − x

|δn(x)|

)a
dµ̄n − ea(x, µ)

∣∣∣ 6 ε
}

satisfies also (4.9) for n large enough. This proves that (X(∆k)
k )p,q and (Λ(∆k)

k )p are close to

ep+q(xk, µ) and e2p(xk, µ)−1/2 respectively on the event

Sn :=
⋂

a∈{0,...,2R}

⋂
k∈{0,...,2J−1}

Bn,a(xk, ε).

Using the fact that λ(M) = inf‖x‖=1 x>Mx for a symmetrical matrix M , where λ(M)

denotes the smallest eigenvalue of M , we can conclude that for n large enough,

λ(Λ(∆k)
k X(∆k)

k Λ(∆k)
k ) & min

x∈[0,1]
λ(E(x, µ)),

where E(x, µ) has entries (E(x, µ))p,q = ep+q(x, µ)/(e2p(x, µ)e2q(x, µ))1/2. Since E(x, µ) is

definite positive for any x ∈ [0, 1], we obtain that on Sn, λ(X(∆k)
k ) & 1, thus Sn ⊂ Ωn(∆k)

and λ(E(∆k)
k ) & 1 uniformly for any k ∈ {0, . . . , 2J − 1}, since E(∆k)

k = Λ(∆k)
k X(∆k)

k Λ(∆k)
k

on Ωn(∆k). Moreover, since Rk = LHn(xk)s, using together (4.8) and (4.11), we obtain

Rk � rn(xk) uniformly for k ∈ {0, . . . , 2J − 1}. �

Proof of Theorem 2. The main features of the proof are first, a reduction to the Bayesian

risk over an hardest cubical subfamily of functions for the L∞ metrics, which is standard:

see Korostelev (1993), Donoho (1994), Korostelev and Nussbaum (1999) and Bertin (2004),

and the choice of rescaled hypothesis with design-adapted bandwidth hn(·), necessary to

achieve the rate rn(·).
Let us consider ϕ ∈ H(s, L; R) (the extension of H(s, L) to the whole real line) with

support [−1, 1] and such that ϕ(0) > 0. We define

a := min
[
1,

( 2
‖ϕ‖2

∞

( 1
1 + 2s + β

− α
))1/(2s)]

and

Ξn := 2a(1 + 21/(s−bsc)) sup
x∈[0,1]

hn(x),

where we recall that bsc is the largest integer smaller than s. Note that (2.6) entails

Ξn . (log n/n)1/(1+2s+β). (4.12)
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If In = [cn, dn], we introduce xk := cn + k Ξn for k ∈ Kn :=
{
1, . . . ,

[
|In|Ξ−1

n

]}
, and denote

for the sake of simplicity hk := hn(xk). We consider the family of functions

f(·; θ) :=
∑

k∈Kn

θkfk(·), fk(·) := Lashs
kϕ

( · − xk

hk

)
,

which belongs to H(s, L) for any θ ∈ [−1, 1]|Kn|. Using Bernstein inequality, we can see

that

Hn :=
⋂

k∈Kn

{ µ̄n([xk − hk, xk + hk])
µ([xk − hk, xk + hk])

> 1/2
}

satisfies

µn[Hn] = 1− o(1). (4.13)

Let us introduce b := csϕ(0). For any distribution B on Θn ⊂ [−1, 1]|Kn|, by a minoration

of the minimax risk by the Bayesian risk, and since w is non-decreasing, the left hand side

of (2.8) is smaller than

w(b) infbθ
∫

Θn

Pn
θ

[
max
k∈Kn

|θ̂k − θk| > 1
]
B(dθ)

> w(b)
∫

Hn

infbθ
∫

Θn

Pn
θ

[
max
k∈Kn

|θ̂k − θk| > 1|Xn

]
B(dθ)dµn.

Hence, together with (4.13), Theorem 2 follows if we show that on Hn

supbθ
∫

Θn

Pn
θ

[
max
k∈Kn

|θ̂k − θk| < 1|Xn

]
B(dθ) = o(1). (4.14)

We denote by L(θ;Y1, . . . , Yn) the conditional on Xn likelihood function of the observations

Yi from (1.1) when f(·) = f(·; θ). Conditionally on Xn, we have

L(θ;Y1, . . . , Yn) =
∏

16i6n

gσ(Yi)
∏

k∈Kn

gvk
(yk − θk)
gvk

(yk)
,

where gv is the density of N(0, v2), v2
k := E{y2

k|Xn} and

yk :=
∑n

i=1 Yifk(Xi)∑n
i=1 f2

k (Xi)
.

Thus, choosing

B :=
⊗

k∈Kn

b, b := (δ−1 + δ1)/2, Θn := {−1, 1}|Kn|,

the left hand side of (4.14) is smaller than∫ ∏
16i6n gσ(Yi)∏
k∈Kn

gvk
(yk)

( ∏
k∈Kn

supbθk

∫
{−1,1}

1|bθk−θk|<1
gvk

(yk − θk)b(dθk)
)
dY1 × · · · × dYn,
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and θ̂k = 1yk>0 − 1yk<0 are strategies reaching the supremum. Then, in (4.14), it suffices

to take the supremum over estimators θ̂ with coordinates θ̂k ∈ {−1, 1} measurable with

respect to yk only. Since conditionally on Xn, yk is in law N(θk, v
2
k), the left hand side

of (4.14) is smaller than∏
k∈Kn

(
1− infbθk∈{−1,1}

∫
{−1,1}

∫
1|bθk(u)−θk|>1

gvk
(u− θk)dub(dθk)

)
.

Moreover, if Φ(x) :=
∫ x
−∞ g1(t)dt

infbθk∈{−1,1}

∫
{−1,1}

∫
1|bθk(u)−θk|>1

gvk
(u− θk)dub(dθk)

>
1
2

∫
min

(
gvk

(u− 1), gvk
(u + 1)

)
du = Φ(−1/vk).

On Hn, we have in view of (2.1)

v2
k =

σ2∑n
i=1 f2

k (Xi)
>

2
(1− δ)‖ϕ‖2

∞c2s log n
,

and since Φ(−x) > exp(−x2/2)(x
√

2π) for any x > 0, we obtain

Φ(−1/vk) & (log n)−1/2n{α−1/(1+2s+β)}/2 =: Ln.

Thus, the left hand side of (4.14) is smaller than (1− Ln)|Kn|, and since

|In|Ξ−1
n Ln & n{1/(1+2s+β)−α}/2(log n)1/2−1/(1+2s+β) → +∞

as n → +∞, Theorem 2 follows. �

Proof of Corollary 1. Let us consider the loss function w(·) = | · |, and let f̂v
n be an

estimator converging with rate vn(·) over F in the sense of (2.2). Hence,

1 . sup
f∈F

Efµ

[
sup
x∈In

rn(x)−1|f̂v
n(x)− f(x)|

]
6 sup

x∈In

vn(x)
rn(x)

sup
f∈F

Efµ

[
sup
x∈In

vn(x)−1|f̂v
n(x)− f(x)|

]
. sup

x∈In

vn(x)
rn(x)

,

where we used Theorem 2. �

Proof of Proposition 1. Without loss of generality, we consider the loss w(·) = | · |. For

proving Proposition 1, we use the linear LPE. If we denote by ∂mf the m-th derivative of

f , a slight modification of the proof of Lemma 1 gives for f ∈ H(s, L) with s > m,

|∂mf̄
(δ)
k (xk)− ∂mf(xk)| . λ(E(δ)

k )−1|δ|−m
(
L|δ|s + σ(nµ̄n(δ))−1/2WN

)
,
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where in the same way as in the proof of Theorem 1, WN satisfies

Efµ[WN |Xn] . (log N)1/2, (4.15)

with N depending on the size of the supremum, to be specified below. First, we prove a).

Since |In| ∼ (`n/n)1/(2s+1), if In = [an, bn], the points

xk := an + (k/n)1/(2s+1), k ∈ {0, . . . , N},

where N := [`n] belongs to In. We consider the bandwidth

hn =
( log `n

n

)1/(2s+1)
, (4.16)

and we take δk := [xk − hn, xk + hn]. Note that since µ(x) > 0 for any x, µ̄n(δ) � |δ| as

|δ| → 0 with probability going to 1 faster than any power of n (using Berstein inequality,

for instance). We consider the estimator defined by

f̂n(x) :=
r∑

m=0

∂mf̄
(δk)
k (xk)(x− xk)m/m! for x ∈ [xk, xk+1), k ∈ {0, . . . , [`n]}, (4.17)

where r := bsc. Using a Taylor expansion of f up to the degree r together with (4.16) gives

(n/ log n)s/(1+2s) sup
x∈In

|f̂n(x)− f(x)| .
( log `n

log n

)s/(1+2s)
(1 + (log `n)−1/2WN ).

Then, integrating with respect to Pfµ(·|Xn) and using (4.15) where N = [`n] entails a),

since log `n = o(log n).

The proof of b) is similar to that of a). In this setting, the rate rn(·) (see (2.1)) can

be written as rn(x) = (log n/n)αn(x) for x in In (for n large enough) where αn(x0) =

s/(1 + 2s + β) and αn(x) > s/(1 + 2s + β) for x ∈ In − {x0}. We define

xk+1 =

xk + n−αn(xk)/s for k ∈ {−N, . . . ,−1}

xk + n−αn(xk+1)/s for k ∈ {0, . . . , N},

where N := [`n]. All the points fit in In, since |x−N−xN | 6
∑

−N6k6N n−min(αn(xk),αn(xk+1))/s 6

2(`n/n)1/(1+2s+β). We consider the bandwidths

hk := (log `n/n)αn(xk)/s,
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and the intervals δk = [xk − hk, xk + hk]. We keep the same definition (4.17) for f̂n. Since

x0 is a local extremum of rn(·), we have in the same way as in the proof of a) that

sup
x∈In

rn(x)−1|f̂n(x)− f(x)| .
[

max
−N6k6−1

( log `n

log n

)αn(xk)

+ max
06k6N−1

( log `n

log n

)αn(xk+1)]
(1 + (log `n)−1/2WN ),

hence

Efµ

[
sup
x∈In

rn(x)−1|f̂n(x)− f(x)|
]

.
( log `n

log n

)s/(1+2s+β)
= o(1),

which concludes the proof of Proposition 1. �
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