
A storage model with random release rate for
modeling exposure to food contaminants

Patrice Bertail
CREST (INSEE) - Laboratoire de Statistiques

Stéphan Clémençon
MODALX - Université Paris X Nanterre

&
Unité Métarisk - Institut National de la Recherche Agronomique

Jessica Tressou
Department of Information and Systems Management

Hong Kong University of Science and Technology

September 5, 2006

Abstract

This paper is devoted to present and study a specific continuous-time
piecewise-deterministic Markov process for describing the temporal evo-
lution of exposure to a given food contaminant. The quantity X of food
contaminant present in the body evolves through its accumulation af-
ter repeated dietary intakes on the one hand and the pharmacokinetics
behavior of the chemical on the other hand. In the dynamic modeling
considered here, the accumulation phenomenon is modeled by a simple
marked point process with positive i.i.d. marks and elimination in be-
tween intakes occurs at a random linear rate θX, randomness of the co-
efficient θ accounting for the variability of the elimination process due
to metabolic factors. Via embedded chain analysis, ergodic properties
of this extension of the standard compound Poisson dam with (deter-
ministic) linear release rate are investigated, the latter being of crucial
importance for describing the long-term behavior of the exposure process
(Xt)t�0 and assessing values of quantities such as the proportion of time
the body burden in contaminant is over a certain threshold. The ex-
posure process being not directly observable, simulation-based statistical
methods for estimating steady-state or time-dependent quantities are also
investigated by coupling analysis. Finally, applications to methylmercury
contamination data are considered.
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1 Introduction

Certain foods may contain varying amounts of chemicals such as methylmer-
cury (present in sea food), dioxins (in poultry, meat) or mycotoxins (in ce-
reals, dried fruits, etc.), which may cause major health problems when ac-
cumulating inside the body in excessive doses. Food safety is now a cru-
cial stake as regards public health in many countries (as an example, it is a
thematic top priority of the 7th European Research Framework program, see
http://ec.europa.eu/research/fp7/). This topic naturally interfaces with vari-
ous disciplines, such as biology, nutritional medicine, toxicology and of course
applied mathematics with the aim to develop rigorous methods for quantitative
risk assessment. A scientific literature devoted to probabilistic and statistical
methods for the study of dietary exposure to food contaminants is progressively
carving out a place in applied probability and statistics journals (see [42], [18],
[23] or [7] for instance).
Static viewpoints for the probabilistic modeling of the quantity X of a given food
contaminant ingested on a short period have been considered in recent works,
mainly focussing on the tail behavior of X and allowing for computation of the
probability that X exceeds a maximum tolerable dose (see [6], [41]). However,
such approaches for food risk analysis do not take into account the accumulat-
ing and eliminating processes occurring in the body, which naturally requires
to introduce time as a crucial description parameter of a comprehensive model.

This paper aims at proposing a dynamic modeling of exposure to a certain
food contaminant, incorporating important features of the phenomenon, in par-
ticular in a way that the model may account for the contaminant pharmacoki-
netics in man following intakes. The case of methylmercury food contamination
shall serve as a running illustration of the concepts and methods studied in this
article: mathematical modeling of the pharmacokinetics behavior in man of
methylmercury (essentially present in sea food products) has received increas-
ing attention in the toxicology literature (see [31], [39] [40], [1] or [20]) and
dose-response relationships have been extensively investigated for this contami-
nant, establishing clearly its negative impact on human health (refer to [13]). In
our modeling the amount of contaminant present in the body evolves through
its accumulation after repeated intakes (food consumption) and according to the
pharmacokinetics governing its elimination/excretion, so that its temporal evo-
lution is described by a piecewise-deterministic Markov process (PDM process
in abbreviated form): the accumulation process is modeled by a marked point
process in a standard fashion, while the elimination phenomenon is described by
a differential equation with random coefficients, randomness accounting for the
variability of the rate at which the total contaminant body burden decreases in
between intakes due to metabolic factors. Such a process slightly extends stor-
age models with general release rules widely used in operations research and
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engineering for dealing with problems such as water storage in dams, in that
one allows here the (content dependent) release rate to be random, as strongly
advocated by biological modeling, and inter-intake times are not required to be
exponentially distributed.

The outline of the paper is as follows. In section 2 a class of stochastic mod-
els with a reasonably simple (markovian) structure for describing the evolution
through time of food contaminant exposure is introduced. In the important
case when the (random) elimination rate is linear (such a feature being strongly
motivated by previous works on kinetics modeling), ergodic properties of the ex-
posure process are thoroughly investigated in section 3. As the exposure process
cannot be observed in general, practical statistical inference techniques based
on simulation methods for estimating steady-state or time-dependent quantities
in this model are presented and studied in section 4. Finally, empirical studies
related to methylmercury food contamination are carried out in section 5, with
the aim to illustrate the relevance of the modeling and the statistical methods
studied in this paper.

2 Modeling the exposure to a food contaminant

Suppose that an exhaustive list of P types of food, indexed by p = 1, . . . , P,
involved in the alimentation of a given population and possibly contaminated
by a certain chemical, is drawn up. Each type of food p 2 {1, . . . , P} is con-
taminated in random ratio K(p), with probability distribution FK(p) , regarding
to the chemical of interest. Concerning this specific contaminant exposure, a
meal may be viewed as a realization of a r.v. Q = (Q(1), . . . ,Q(P)) indicating
the quantity of food of each type consumed, renormalized by the body weight.
For a meal Q drawn from a distribution FQ on (RP+,BRP

+
), cooked from foods of

which toxicity is described by a contamination ratio vector K = (K(1), . . . , K(P))

drawn from FK = 
Pp=1FK(p) , the global contaminant intake is

U = hK,Qi , (1)

denoting by h., .i the standard inner product on RP. Its probability distribution
FU is the image of FK 
 FQ by the inner product h., .i, assuming that the quan-
tities of food consumed are independent from the contamination levels. Here
and throughout, we suppose that the contaminant intake distribution FU has a
density fU with respect to λ, the Lebesgue measure on R+.

By convention, T0 = 0 is chosen as time origin. The food contamina-
tion phenomenon through time for an individual of the population of interest
may be classically modeled by a marked point process {(Tn,Qn, Kn)}n�1 on
R+�RP+�RP+, the Tn’s being the successive times at which the individual con-
sumes foods among the list {1, . . . , P} and the marks (Qn, Kn) being respectively
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the vector of food quantities and the vector of contamination ratios related to
the meal had at time Tn, n � 1. The process {(Tn,Qn)}n�1 describing dietary
behavior is assumed independent from the sequence (Kn)n�1 of chemical con-
tamination ratios. Although the modeling of dietary behaviors could certainly
give rise to a huge variety of models, depending on the dependence structure
between (Tn,Qn) and past values {(Tm,Qm)}m<n that one stipulates, we make
here the simplifying assumption that the marks Qn, n � 1, form an i.i.d.
sequence with common distribution FQ, independent from the location times
(Tn)n�1. This assumption is acceptable for chemicals present in a few types of
food, such as methylmercury, our running example, but certainly not for all con-
taminants. For chemicals present in many foods of everyday consumption such
as Ochratoxin A (present in cereals, coffee, etc.), it would be necessary to intro-
duce additional autoregressive structure in the model for capturing important
features of any realistic diet (the consumption of certain food being typically
alternated for reasons related to taste or nutritional aspects). Such a modeling
task is beyond the scope of the present paper and is left for further investigation.
Finally, we suppose that the inter-intake times ∆Tn+1 = Tn+1−Tn, n � 1, form
a sequence of i.i.d. r.v.’s with common probability distribution G(dt) = g(t)dt

and finite expectation mG =
∫∞
t=0

tG(dt) < ∞, the sequence (Tn)n�1 of intake
times being thus a pure renewal process.

Contamination sources other than dietary are neglected in the present study
and we denote by X(t) the total body burden in contaminant at time t � 0. In
between intakes, we assume that the contamination exposure process X(t) is
governed by the differential equation

ẋ(t) = −r(x(t), θ), (2)

θ being a random parameter, taking its values in a set Θ � R
d with d � 1

say, and accounting in the modeling for fluctuations of the (content dependent)
elimination rate due to metabolic factors at the intake times (the successive
values θn, n 2 N, of θ are thus fixed at times T0, T1, . . .). And the function
r(x, θ) is assumed to be strictly positive and continuous on R

�
+ � Θ, such that

for all θ 2 Θ, r(0, θ) = 0 (so that when X(t) eventually reaches the level 0, the
process stays at this level until the next intake) and for all (ε, θ) 2 (0, 1)�Θ:

infε<x<ε−1r(x, θ) > 0 and sup0<x<ε−1r(x, θ) < ∞. (3)

Under these conditions, for any initial value x(0) � 0 and metabolic parameter
value θ 2 Θ, Eq. (2) has clearly a unique solution.

Remark 1 In toxicology, Eq. (2) is widely used with r(x, θ) = θx for modeling
the kinetics in man of certain contaminants following intakes. As shown by
many pharmacokinetics studies, there is considerable empirical evidence that
it properly describes the way the elimination rate depends on the total body
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burden of the chemical in numerous cases (see [39] and the references therein).
In this context, the release parameter log2/θ is known as the half-life of the
contaminant in the body (the time required for X to decrease by half in absence
of new contaminant intake).

Remark 2 Other approaches may be naturally adopted for describing the elim-
ination phenomenon occurring in between intakes. For instance, toxicokinetic
models based on stochastic differential equations or decreasing jump processes
(as in inventory modeling) could be pertinently considered for this purpose.

We assume that (θn)n2N is an i.i.d. sequence with common distribution
H(dθ). For a given value of the metabolic parameter θ 2 Θ, the time necessary
for the body burden (without further intake) to decrease from x0 > 0 to x 2
(0, x0) is given by

τθ(x0, x) =

∫x0

x

1

r(y, θ)
dy.

Under the assumptions stated above, we clearly have that H({τθ(x0, x) < ∞}) =

1 for all 0 < x � x0. The contaminant may be thus entirely eliminated from
the body (the amount x reaching then the level 0) with probability one in the
sole case when the following condition holds.

Condition (C1): H({τθ(x0, 0) < ∞}) = 1 for some x0 > 0.

In such a case we would also have H({τθ(x, 0) < ∞}) = 1 for all x � 0. In
this respect, it is noteworthy that, in the linear case mentioned in Remark 2,
τθ(x, 0) = ∞ for all θ > 0 and x > 0.

Hence, in between intake times and given the current value of the metabolic
parameter θ, the process moves in a deterministic fashion according to (2), and
has the same (upward) jumps as the process of cumulative intakes

B(t) =

N(t)∑
n=1

Un, (4)

with Un = hKn,Qni, n 2 N, and denoting by N(t) =
∑
n2N I{Tn � t} the

number of intakes until time t. The process X is piecewise-deterministic with
càd-làg trajectories (see a typical sample path in Fig.1) and satisfies the equation

X(t) = X(0) + B(t) −

N(t)+1∑
n=1

∫Tn∧t

Tn−1

r(X(s), θn)ds, (5)

X(0) denoting the total body burden in contaminant at initial time T0 = 0. For
an account of such piecewise deterministic processes, one may refer to [17] (see
also [16] and ergodic results may be found in [12]).
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Figure 1: Sample path of the exposure process X.

For the continuous-time process thus defined to be markovian, one has to
record the current value θ(t) =

∑
n2N θnI{t2[Tn,Tn+1[} of the metabolic para-

meter as well as the backward recurrence time A(t) = t− TN(t) (the time since
the last intake). By construction, the process (X(t), θ(t), A(t))t�0 is strongly
Markovian with generator

Gφ(x, θ, t) = ζ(t)

∫∞
u=0

∫
θ02Θ

{φ(x+ u, θ0, 0) − φ(x, θ, t)}FU(du)H(dθ0)

− r(x, θ)∂xφ(x, θ, t) + ∂tφ(x, θ, t), (6)

denoting by ζ(t) = g(t)/
∫∞
s=t

g(s)ds the hazard rate of the inter-intake times
and provided that φ(., θ, .) : (x, t) 7→ φ(x, θ, t) is a bounded function with
bounded continuous first derivatives in x and t for all θ 2 Θ.

In the above setting, the time origin T0 = 0 does not necessarily correspond
to an intake time. Given the time A(0) = a since the last intake at time t = 0,
we let ∆T1 have the density ga(t) = g(a+ t)/

∫∞
s=a

g(s)ds, making the renewal
process (∆Tn)n2N possibly delayed, except naturally in the case when the inter-
intake distribution G is exponential. However, the choice of such a memoryless
distribution in the dietary context is clearly not pertinent, distributions with
increasing hazard rate being more adequate. Here and throughout we denote by
Px,a the probability measure on the underlying space such that (X(0), A(0)) =

(x, a) and θ(0) ∼ H, and by Ex,a(.) the Px,a-expectation for all x � 0 and
a 2 supp(G).

In the case when one neglects variability in the elimination process (i.e.
when H is a Dirac measure), this modeling boils down to a standard storage
model with a general release rate (see [11] and [10] for instance). We refer to
Chapter XIV in [3] for an account of such processes, widely used in operations
research for modeling queuing/storage systems. Basic communication and sto-
chastic stability properties of the stochastic process X = (X(t))t�0 may be estab-
lished in a fashion very similar to the ones of the latter processes, although the
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additional assumption that the renewal times are exponentially distributed is
usually required in these studies, making the process X itself Markovian (which
facilitates much the study but is not relevant to our application as emphasized
above). They are summarized in the next result (of which proof is omitted since
it is a slight modification of the proof of Proposition 1.2 in chap. XIV of [3]).

Theorem 1 Suppose that G(dx) = g(x)dx has infinite tail. Assume further
that either g(x) > 0 on ]0, ε] for some ε > 0 or else that FU has infinite
tail. Then X reaches any state x > 0 in finite time with positive probability
whatever the starting point, i.e. for all x0 � 0, a 2 supp(G), it holds

Px0,a(τx < ∞) > 0, (7)

with τx = inf{t � 0 : Xt = x}. Furthermore, if condition (C1) is fulfilled,
then (7) still holds for x = 0.
Besides, either X ”heads to infinity” with probability one, i.e. is such that
Px0,a({X(t) → ∞ , as t → ∞}) = 1 for all x0 � 0, or else X reaches any
state x > 0 in finite time with probability one whatever the starting point,
i.e. for all x0 � 0, a 2 supp(G),

Px0,a(τx < ∞}) = 1. (8)

If (C1) is satisfied, then (8) also holds for x = 0.

An important task is to find conditions ensuring that the limiting behavior
of the exposure process X is represented by a stationary probability measure
µ describing the equilibrium state to which the process settles as time goes to
infinity. In particular, time averages over long periods, such as the mean time
spent by the exposure process X over a threshold u > 0, T−1

∫T
0
I{Xt�u}dt, for

instance, are then asymptotically described by the distribution µ. Beyond sto-
chastic stability properties, evaluating the rate at which the process converges
to the stationary state is also of critical importance in practice. These questions
are thoroughly investigated for linear rate models in the next section.

3 Probabilistic study in the linear rate case

We now focus on ergodicity properties of the exposure process X(t) in the spe-
cific case when for a given metabolic state described by a real parameter θ, the
elimination rate is proportional to the total body burden in contaminant, i.e.

r(x, θ) = θx. (9)

Here we suppose that Θ is a subset of R�+, ensuring that (3) is satisfied. As
mentioned before, the linear case is of crucial importance in toxicology, inso-
far as it suitably models the pharmacokinetics behavior in man of numerous
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chemicals. We shall show that studying the long-term behavior of X boils down
to investigating the properties of the embedded Markov chain X̃ = (Xn)n�1 of
which values correspond to the ones taken by the exposure process just after
intake times : Xn = X(Tn) for all n � 1. By construction, the chain X̃ satisfies
the following autoregressive equation with random coefficients

Xn+1 = e−θn∆Tn+1Xn +Un+1, for all n � 1, (10)

and has transition probability Π(x, dy) = π(x, y)dy with transition density

π(x, y) =

∫
θ2Θ

∫∞
t= 1

θ log(1∨ x
y )

fU(y− xe−θt)G(dt)H(dθ), (11)

for all (x, y) 2 R
�2
+ , where a ∨ b = max(a, b). Ergodicity of such real-valued

Markov chains Y, defined through stochastic recurrence equations of the form
Yn+1 = αnYn+βn, where {(αn, βn)}n2N is a sequence of i.i.d. pairs of positive
r.v.’s, has been extensively studied in the literature, such models being widely
used in financial or insurance mathematics (see section 8.4 in [19] for instance).
Specialized to our setting, well known results related to such processes enable
to show that the embedded chains X̃ is positive recurrent under the assumption
that log(1 ∨ U1}) has finite expectation, as stated in the next theorem. Fur-
thermore, the simple autoregressive form of Eq. (10) makes Foster-Lyapunov
conditions easily verifiable for such Markov chains, in order to refine their sta-
bility analysis.

Theorem 2 Under the assumptions of Theorem 1, the chain X̃ is λ- irre-
ducible. Moreover, suppose that the following condition holds.

• (H1) E[log(1∨U1)] < ∞.

Then X̃ is recurrent positive with stationary probability distribution µ̃.
If one assume further that:

• (H2) there exists some γ � 1 such that E(U
γ
1 ) < ∞,

then X̃ is geometrically ergodic, µ̃ has finite expectation and there exist
constants R < ∞ and r > 1 such that, for all n � 1, x > 0,

sup{ψ,|ψ(z)|�1+zγ}

���� ∫∞
y=0

ψ(y)Πn(x, dy) − µ̃(ψ)

���� � R(1+ xγ)r−n, (12)

denoting by Πn the n-th iterate of Π and with µ̃(ψ) =
∫∞
y=0

ψ(y)µ̃(dy) for
any µ̃-integrable function ψ. Suppose finally that the next condition holds,

• (H3) The r.v. U1 is regularly varying with index κ > 0.
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Then the stationary law µ̃ has regularly varying tail with index κ.

Remark 3 • The relevance of the regular variation assumption for mod-
eling the tail behavior of dietary contaminant intakes related to certain
chemicals is strongly supported in [41] and [6]. In these works, various
estimation strategies for tail distribution features are also proposed and
implemented on several food contamination and consumption data sets.

• It is noteworthy that estimates of the constants r, R involved in the rate
bound (12) may be explicitly computed from the parameters of the Foster-
Lyapunov drift condition fulfilled by the chain (see Theorem 5.1 in [37]).

proof. From conditions required by Theorem 1, aperiodicity and irreducibility
properties are immediately established for the discrete-time chain X̃. Besides,
under mild irreducibility conditions, the stability of the random coefficients
autoregressive model on R

d

Yn+1 = αnYn + βn,

where (αn, βn), n = 1, . . . are i.i.d. r.v.’s on R
�
+ �R

d, has been investigated in
detail since the seminal contribution of [27] (see [34] and the references therein).
Under the assumption that E[log(1∨kβ1k)] < ∞ and E[log(1∨α1)] < ∞, it is
well known that a sufficient and necessary condition for the chain X to have a
(unique) probability measure is that E[log(α1)] < 0 (see Corollary 2.7 in [9] for
instance). Based on this result, it is then straightforward that, under (H1) and
(H2), the chain X̃ is positive recurrent with absolutely continuous stationary
probability distribution µ̃(dx) = f̃(x)dx.
In the discrete-time context, analysis of the stability of Markov models (Yn)n2N
may be carried out by establishing suitable conditions for the ’drift’ ∆V(y) =

E[V(Y1) | Y0 = y]−V(y) for appropriate non-negative test functions V(y). Such
’Foster-Lyapunov’ criteria stipulate the existence of a ’small set’ S (i.e. an ac-
cessible set S to which the chain returns in a given number of steps with positive
probability, uniformly bounded by below, see section 5.2 in [30]) towards which
the chain drifts in the sense that:

∆V(x) � −f(x) + bI{x2S}, (13)

for some ’norm-like’ function f(x) � 1 and b < ∞. Now for the chain X̃,
any compact interval [0, x0], with x0 > 0 large enough, is small (one may find
δ(x0) > 0 such that: 8x 2 [0, x0], Π(x, [0, x0]) � δ(x0)). When γ = 1 for
instance, take V(x) = 1+ x. The affine drift related to X̃ is given by

∆V(x) = −cx+ E(U1),

with c = 1 − E(e−θ1∆T2) > 0. Choosing S = [0, s] with s � 2/cE(U1) + c, (13)
is fulfilled with f(x) = cV(x)/2 and b = E(U1)+ c/2. Applying Theorem 15.0.1
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in [30], we thus get that X̃ is geometrically ergodic with invariant probability
measure µ̃ such that µ̃(V) =

∫∞
x=0

V(x)µ̃(dx) < ∞. In particular, µ̃ has finite
expectation and there exist constants r > 1, R < ∞ such that for all x > 0:

∞∑
n=0

rn kΠn(x, .) − µ̃kV � RV(x), (14)

with kνkV = supψ:|ψ|�V

��∫ψ(x)ν(dx)
�� for all bounded measure ν on the real

line. When V � 1, k.kV coincides with the total variation norm k.kTV . For
γ > 1, the results is proved in a similar fashion by taking V(x) = 1+ xγ.
Finally, the last assertion of Theorem 2 immediately derives from Theorem 1 in
[25].

As pointed out in [29], stochastic stability analysis based on drift criteria
in the continuous-time setting is not as straightforward as in the discrete-time
case, generally due to the complex form of the generator and of candidate test
functions. However, given the explicit relationship between X and the embedded
discrete-time chain X̃ in our specific case, the properties of the continuous-time
model may be investigated based on the results established above for X̃ and on
further moment conditions for the inter-intake distribution, as the one below.

• (H4) There exists δ > 0 such that E[exp(δ∆T2)] < ∞.

Theorem 3 Under the assumptions of Theorem 1 and supposing that (H1)

is fulfilled, X(t) has an absolutely continuous limiting probability distribu-
tion µ given by

µ([u,∞[) = m−1
G

∫∞
x=u

∫∞
t=0

∫
θ2Θ

t∧
log(x/u)

θ
µ̃(dx)G(dt)H(dθ), (15)

in the sense that T−1
∫T
0
I{Xt�u}dt → µ(]0, u]), Px0,a-a.s., as t → ∞ for all

x0 � 0 and a 2 supp(G).
Furthermore,

• if (H3) holds and the set Θ is bounded, then µ is regularly varying
with the same index as FU,

• and if (H2) and (H4) hold and G has finite variance σ2G, then µ has
finite moment of order γ and for all (x, a) 2 R�+� supp(G) there exist
constants k 2]0, 1[, Ka < ∞ such that

supψ(z)�1+zγ |Ex,a[ψ(Xt)] − µ(ψ)| � Ka(1+ xγ)kt. (16)

Remark 4 When the Un’s are heavy-tailed, and under the assumption that
the ∆Tn’s are exponentially distributed (making B(t) a time-homogeneous Lévy
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process), the fact that the stationary distribution µ inherits its tail behavior
from FU has been established in [2] for general deterministic release rates. Be-
sides, when assuming G exponential and θ fixed, one may identify the limit
distribution µ in some specific cases (see section 8 in [10] or section 2 in Chap.
XIV of [3]) using basic level crossing arguments (X being itself markovian in this
case). If FU is also exponential for instance, µ is a Gamma distribution. And
furthermore, due to the simple form of the generator in the latter case, one may
establish an exponential rate of convergence to µ by standard drift criterion or
coupling arguments (see section 5 in [38]).

proof. Set X0 = X(0). Observe that for all t > 0,

X(t) = XN(t)e
−θN(t)A(t), (17)

so that X(t) � XN(t). Hence we naturally have {X(t) → ∞} � {Xn → ∞}.
Therefore, under (H1), we know that X̃ is positive recurrent with stationary
distribution µ̃, so that in particular P(Xn → ∞) = 0. Furthermore, observe
that for all t > 0, u � 0:∫t

s=0

I{X(s)�u}ds =

N(t)∑
k=1

∫Tk

s=Tk−1

I{X(s)�u}ds+

∫t
s=TN(t)

I{X(s)�u}ds. (18)

Therefore, for all k 2 N∫Tk+1

s=Tk

I{X(s)�u}ds = I{Xk�u} � ∆Tk+1 ∧
log(Xk/u)

θk
. (19)

Now, applying the SLLN to the positive recurrent chain ((Xn, θn, ∆Tn+1))n2N
with invariant probability distribution µ̃(dx)
H(dθ)
G(dt), we get that

n−1
n∑
k=1

∫Tk+1

s=Tk

I{X(s)�u}ds → ∫∞
x=u

∫
θ2Θ

∫∞
t=0

t∧
log(x/u)

θ
µ̃(dx)H(dθ)G(dt).

As we assumedmG = E(∆Tk) < ∞ for k � 2, we have the following convergence
for the delayed renewal process: N(t)/t → m−1

G as t → ∞. Combined with (3),
this yields t−1

∫t
s=0

I{X(s)�u}ds → µ([u,∞[) as t → ∞, with µ given by (15).
We thus proved that X(t) has a limiting probability distribution µ, which has
density f(y) given by

f(y) = m−1
G

∫
θ2Θ

∫∞
t=0

f̃(yeθt)eθtḠ(t)dtH(dθ),

denoting by Ḡ = 1−G the inter-intake survival function.
Besides, if supΘ < ∞, from (15) we immediately have that, for all u > 0, t > 0,

t∧ log2

mGsupΘ
Ḡ(t)µ̃([2u,∞[) � µ([u,∞[) � µ̃([u,∞[).
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The distributions µ and µ̃ have thus exactly the same right tail behavior.
We now turn to establish a rate bound for the convergence of the X(t)’s distri-
bution to µ. For simplicity’s sake, suppose that the renewal process (∆Tn)n2N
is zero-delayed, i.e. T0 is an intake time. Extension of the argument below to
the delayed case when ∆T1 ∼ ga(t)dt for some a > 0 is straightforward. The
backward recurrence time A(t) has then the distribution Qt(ds) supported by
(0, t) with density

qt(s) =
∑
k2N

g�k(t− s)Ḡ(s),

denoting by g�k the k-fold convolution power of the density g. As G has finite
mean mG by assumption, A(t)’s distribution converges to the equilibrium dis-
tribution Q∞(ds) with density q∞(s) = m−1

G Ḡ(s) (refer to Chap. XI in [22]
for basics in renewal theory). Furthermore, under (H4) we have by virtue of
Theorem 4.4 in [28] that there exist constants D < ∞, ρ 2]0, 1[ s.t.

kQt −Q∞kTV =

∫∞
s=0

|qt(s) − q∞(s)|ds � Dρt, (20)

for all t � 0. Besides, observe that, for all y > 0, we have

Px,0(X(t) < y) =
∑
k2N

Px(Xke
−θk(t−Tk) � y, Tk � t, Tk+1 > t)

=
∑
k2N

∫
θ2Θ

∫t
s=0

∫
{ze−θs<y}

Πk(x, dz)Ḡ(s)g�k(t− s)dsH(dθ).

The distribution Pt(x, dy) of Xt when (X(0), θ(0), A(0)) ∼ δx
H
 δ0 has thus
the density pt(x, y) =

∑
k2N

∫
θ2Θ

∫t
s=0

πk(x, eθsy)eθsḠ(s)g�k(t − s)dsH(dθ).
For all t > 0, define f̄t(y) =

∫
θ2Θ

∫t
s=0

f̃(yeθs)eθsqt(s)dsH(dθ) and observe
that, for all K 2 N, one may write

pt(x, y) − f(y) =
∑
k�K

∫
θ2Θ

∫t
s=0

{πk(x, eθsy) − f̃(eθsy)}eθsḠ(s)g�k(t− s)dsH(dθ)

+
∑
k>K

∫
θ2Θ

∫t
s=0

{πk(x, eθsy) − f̃(eθsy)}eθsḠ(s)g�k(t− s)dsH(dθ)

+ f̄t(y) − f(y).

Let ψ : R�+ → R be a Borelian function s.t. ψ(y) � V(y) = 1+yγ for all y > 0.
From (14) and the decomposition above combined with straightforward changes
of variables, we deduce that����∫∞

s=0

ψ(y){pt(x, y) − f(y)}dy

���� � I1(t) + I2(t) + I3(t), (21)

with

I1(t) = RV(x)P(TK+1 > t),
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I2(t) = RV(x)r−K,

I3(t) =

∫∞
y=0

V(y)µ̃(dy) kQt −Q∞kTV .
Therefore P(TK+1 > t) = P(δ

∑K
j=1 ∆Tj > δt) � e−δt+K log(Cδ) where Cδ =

E exp(δ∆Tj) < ∞. Choosing K ∼ δt
2 log(Cδ) yields P(TK+1 > t) ∨ r−K � Ckt for

some well chosen constants C < ∞ and k 2]0, 1[. Now combined with (21) and
(20), this establishes (16).

In order to exhibit connections between the exposure process X = (X(t))t�0
and possible negative effects of the chemical on human health, it is appropriate
to consider simple characteristics of the process X, easily interpretable from
an epidemiology viewpoint. In this respect, the mean exposition over a long
time period T−1

∫T
t=0

X(t)dt is one of the most relevant features. Its asymptotic
behavior is refined in the next result.

Proposition 4 Under the assumptions of Theorem 1 and supposing that
(H2) is fulfilled for γ = 1, we have for all (x0, a) 2 R+ � supp(G)

X̄T =
1

T

∫T
t=0

X(t)dt → mµ,Px0,a-a.s. , (22)

as T → ∞ with mµ =
∫∞
x=0

xµ(dx). Moreover, if (H2) is fulfilled with γ � 2,
then there exists a constant 0 < σ2 < ∞ s.t. for all (x0, a) 2 R+ � supp(G)

we have the following convergence in Px0,a-distribution
p
T(X̄T −mµ) ⇒ N (0, σ2) as T → ∞. (23)

Remark 5 � As will be shown in the proof below, the asymptotic variance σ2

in (23) may be related to the limiting behavior of a certain additive functional
of the Markov chain ((Xn, θn, ∆Tn+1))n�1. In [4] (see also [5]), an estimator of
the asymptotic variance of such functionals based on pseudo-renewal properties
of the underlying chain (namely, on renewal properties of a Nummelin exten-
sion of the chain) has been proposed and a detailed study of its asymptotic
properties has been carried out.
� Beyond the asymptotic exposure mean or the asymptotic mean time spent
by X above a certain threshold, other summary characteristics of the expo-
sure process could be pertinently considered from an epidemiology viewpoint,
among which the asymptotic tail conditional expectation Eµ(X | X > u), de-
noting by Eµ(.) the expectation w.r.t. µ, after the fashion of risk evaluation in
mathematical finance or insurance.

proof. Given (X(0), A(0)) = (x0, a), we have for all T > 0

X̄T = T−1

∫T1

t=0

X(t)dt+ T−1

N(T)−1∑
k=1

∫Tk+1

t=Tk

X(t)dt+ T−1

∫T
TN(T)

X(t)dt. (24)

13



The first term in the right-hand side of (24) being bounded by x0T1/T , it almost
surely converges to 0 as T → ∞. Besides we have for all k � 1,∫Tk+1

t=Tk

X(t)dt =
Xk

θk
(1− e−θk∆Tk+1)

Furthermore, by virtue of Theorem 2, assumption (H2) with γ = 1 ensures that
mµ̃ =

∫∞
x=0

xµ̃(dx) < ∞ and consequently that

m̃ =

∫∞
x=0

∫∞
t=0

∫
θ2Θ

x(1− e−θt)

θ
µ̃(dx)H(dθ)G(dt) < ∞,

making the SLLN for the positive recurrent chain ((Xn, θn, ∆Tn+1))n�1 ap-
plicable to

∑
n�1(1−exp(θn∆Tn+1))Xn/θn (refer to Theorem 17.3.2 in [30] for

instance). We thus have that

N−1
N∑
k=1

Xk

θk
(1− e−θk∆Tk+1) → mµ̃

∫∞
t=0

∫
θ2Θ

1− e−θt

θ
H(dθ)G(dt) a.s., (25)

as N → ∞. Combining (25) with N(T)/T → m−1
G a.s. as T → ∞, this

entails that the third term in (24) tends to 0 as T → ∞ and establishes (4).
Notice that mµ =

∫∞
t=0

∫
θ2Θ

(1− exp(−θt))/θH(dθ)G(dt)mµ̃/mG.
We now turn to the CLT’s proof. Using again Theorem 2, we have that∫
x2µ̃(dx) < ∞ when (H2) holds for some γ � 2, so that∫∞

x=0

∫∞
t=0

∫
θ2Θ

x2(1− e−θt)2

θ2
µ̃(dx)H(dθ)G(dt) < ∞

By virtue of the CLT for positive recurrent chains (see Theorem 17.0.1 in [30]),
we have that N−1/2

∑N
k=1{(1−e

−θk∆Tk+1)Xk/θk−m̃} converges in distribution
to N (0, σ̃2) as N → ∞, with

σ̃2 = Eµ

"�
X1(1− e−θ1∆T2)

θ1
− m̃

�2#

+ 2

∞∑
k=2

Eµ

��
X1(1− e−θ1∆T2)

θ1
− m̃

��
Xk(1− e−θk∆Tk+1)

θk
− m̃

��
.

One may then easily deduce (23) from (24) with σ2 = σ̃2/mG.

4 Simulation-based statistical inference

We now consider the statistical issues one faces when attempting to estimate cer-
tain features of linear rate exposure models. The main difficulty lies in the fact

14



that the exposure process X is generally unobservable. Food consumption data
(quantities of consumed food and consumption times) related to a single indi-
vidual over long time periods are scarcely available in practice. And performing
measurements at all consumption times so as to record the food contamination
levels appears as not easily realizable. Instead, practitioners have at their dis-
posal some massive databases, in which information related to the dietary habits
of large population samples over short periods of time is gathered. Besides, some
contamination data concerning certain chemicals and types of food are stored
in data warehouses and available for statistical purposes. Finally, experiments
for assessing models accounting for the pharmacokinetics behavior in man of
various chemicals have been carried out. And data permitting to fit values or
probability distributions on the parameters of these models are consequently
available. Estimation of steady-state or time-dependent features of the law LX
of the process X given the starting point (X(0), A(0)) = (x0, a) 2 R+�supp(G)

could thus be based on preliminary computation of consistent estimates Ĝ, F̂U
and Ĥ of the unknown df’s G, FU and H. Hence, when the quantity of inter-
est Q(X) is not analytically available from (G, FU, H), ruling out the possibility
of computing plug-in estimates, a feasible method could consist in simulating
sample paths starting from (x0, a) of the approximate process X̂ with law LX̂
corresponding to the estimated df’s (Ĝ, F̂U, Ĥ) and construct estimators based
on the trajectories thus obtained. This leads up to investigate the stability of
the stochastic model described in section 2 w.r.t. G, FU and H, and consider
the continuity problem consisting in evaluating a measure of closeness between
LX and LX̂ making the mapping LX 7→ Q(X) continuous for the functional of
interest Q (refer to [32] for an account on this topic). Hence, convergence
preservation results may be obtained via the continuous-mapping approach
as described in [45], where it is applied to establish stochastic-process limits for
queuing systems. For simplicity’s sake, we take a = 0 in the following study and
do not consider the stability issue related to the approximation of the starting
point (X(0), A(0)), straightforward modifications of the argument below per-
mitting to deal with the latter problem. For notational convenience, we omit
to index by (x0, 0) the probabilities and expectations considered in the sequel.

Let 0 < T < ∞. Since the exposure process X has càd-làg sample paths,
we use the M2 topology on the Skorohod’s space D([0, T ],R) induced by the
Hausdorff distance on the space of completed graphs (the completed graph of
x 2 D([0, T ],R) being obtained by connecting (t, x(t)) to (t, x(t−))) with a line
segment for all discontinuity points), allowing trajectories to be eventually close
even if their jumps do not exactly match (the J2 topology would be actually
sufficient for our purpose, refer to [26] or [45] for an account on topological
concepts for sets of stochastic processes). In order to evaluate how close the
approximating and true laws are, we shall establish an upper bound for the L1-
Wasserstein Kantorovich distance between the distributions LX(T) and LX̂(T)
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of X(T) = (X(t))t2[0,T ] and X̂(T) = (X̂(t))t2[0,T ], which metric on the space of
probability laws on D([0, T ],R) is defined as follows (refer to [33], [8]):

W
(T)
1 (L,L0) = inf

Z0 ∼ L0
Z ∼ L

E[m
(T)
M2

(Z0, Z)], (26)

where the infimum is taken over all pairs (Z0, Z) with marginals L0 and L and
m

(T)
M2

(Z0, Z) = m
(T)
H (ΓZ0 , ΓZ), denoting by ΓZ0 and ΓZ the completed graphs of

Z0 and Z and by m(T)
H the Hausdorff metric on the set of all compact subsets

of [0, T ] � R related to the distance m((t1, x1), (t2, x2)) = |t1 − t2| + |x1 − x2|

on [0, T ] � R. It is well-known that this metric implies weak convergence (see
[8]). As claimed in the next theorem, the law LX̂(T) gets closer and closer to
LX(T) as the df’s Ĝ, F̂U and Ĥ respectively tend to G, FU and H in the Mallows
sense. For p 2 [1,∞), we denote by Mp(F1, F2) = (

∫1
0

��F−1
1 (t) − F−1

2 (t)
��p dt)1/p

the Lp-Mallows distance between two df’s F1 and F2 on the real line.

Theorem 5 Let (G, FU, H) (resp., (Ĝ(n), F̂
(n)
U , Ĥ(n)) for n 2 N) be a triplet

of df’s on R+ defining a linear exposure process X (resp., X̂(n)) starting
from x0 � 0 and fulfilling Theorem 1’s assumptions and (H2) with γ = 1.
Suppose that M1(Ĝ

(n), G) ∨ M1(F̂
(n)
U , FU) ∨ M1(Ĥ

(n), H) → 0 as n → ∞.
Assume further that G (resp., Ĝ(n)) has finite variance σ2G (resp., σ2

Ĝ(n))
and H (resp., Ĥ(n)) has finite mean. If σ2

Ĝ(n) remains bounded, then:

supT>0T
−2W

(T)
1 (LX(T) ,LX̂(T)) → 0, as n → ∞. (27)

And for all T > 0 we have the weak convergence:

X̂
(T)
(n) ⇒ X(T) in D([0, T ],R), as n → ∞. (28)

Remark 6 � We point out that similar results hold for the Lp-Wasserstein
distance with p 2 [1,∞) under suitable moment conditions.
� It may also be convenient to consider the function space D([0,∞),R) in which
X has its sample paths and on which the metric

m
(∞)
M2

(x, x0) =

∫
t�0

2−tm
(t)
M2

((xs)s2[0,t], (x
0
s)s2[0,t])dt

for (x, x0) 2 D([0,∞),R)2 may be considered. It is noteworthy that (27) also im-
mediately provides a control of the L1-Wasserstein distanceW(∞)

1 corresponding
to that metric between LX and LX̂.
� In statistical applications, one is led to consider random estimates Ĝ(n), F̂

(n)
U , Ĥ(n).

Hence, if both the convergence M1(Ĝ
(n), G)∨M1(F̂

(n)
U , FU)∨M1(Ĥ

(n), H) → 0

(L1-consistency) and the boundedness of σ2
Ĝ(n) hold a.s. (respectively, in prob-

ability), then the results of the preceding theorem also hold a.s. (resp., in
probability).

16



proof. Observe first that (28) immediately follows from (27) by virtue of
standard properties of Wasserstein metrics. In order to prove (27), we construct
a specific coupling of the laws LX̂(T) and LX(T) . Let (Vk)n2N, (V 0k)k2N and
(V 00k)k2N be three independent sequences of i.i.d. r.v.’s, uniformly distributed
on [0, 1]. For all (n, k) 2 N2, set

∆Tk = G−1(Vk), Uk = F−1
U (V 0k), θk = H−1(V 00k),

∆T̂
(n)
k = Ĝ(n)−1

(Vk), Û
(n)
k = F̂

(n)−1

U (V 0k), θ̂
(n)
k = Ĥ(n)−1

(V 00k),

and define recursively for k 2 N, Xk+1 = Xke
−θk∆Tk+1 + Uk+1 and X̂(n)

k+1 =

X̂
(n)
k e−θ̂

(n)

k
∆T̂

(n)

k+1 + Û
(n)
k+1 with X0 = X̂

(n)
0 = x0, as well as Tk+1 = ∆Tk+1 + Tk

and T̂ (n)
k+1 = ∆T̂

(n)
k+1 + T̂

(n)
k with T0 = T̂

(n)
0 = 0. For notational convenience,

the superscript (n) is omitted in the sequel. Using in particular the fact that
x � 0 7→ e−x is 1-Lipschitz, straightforward computations yield

��X̂k − Xk
�� � x0{ k∑

i=1

θi
��∆Ti+1 − ∆T̂i+1

�� +

k∑
i=1

∆T̂i+1
��θi − θ̂i

��}
+

k∑
i=1

Ui(

k−1∑
j=i

θj
��∆Tj+1 − ∆T̂j+1

�� +

k−1∑
j=i

∆T̂j+1
��θj − θ̂j

��)
+

k∑
i=1

��Ûi −Ui
�� . (29)

Turning now to the coupling construction in continuous time, define N(t) =∑
k�1 I{Tk�t} and N̂(t) =

∑
k�1 I{bTk�t}

, as well as X(t) = XN(t)exp(−θN(t)(t−

TN(t))) and X̂(t) = X̂N̂(t)exp(−θ̂N̂(t)(t− T̂N̂(t))) for t � 0. Set also T+
k = Tk∨ T̂k

and T−
k = Tk ∧ T̂k for all k 2 N and observe that

mH(ΓX̂(T) , ΓX(T)) � max
0�k�N(T)∨N̂(T)

Mk, (30)

where

Mk = sup
T+

k
�t<T−

k+1

��X(t− (T̂k − Tk)+) − X̂(t− (Tk − T̂k)+)
�� +

��Tk − T̂k
��

+ sup
T−

k+1�t<T
+
k+1

��X(t− (t− Tk+1)+) − X̂(t− (t− T̂k+1)+)
�� +

��Tk+1 − T̂k+1

�� ,
denoting by x+ = 0∨x the positive part of any x 2 R. And it follows from easy
calculations that

Mk �
��Xk − X̂k

�� + Xk(∆Tk+1 ∧ ∆T̂k+1)
��θk − θ̂k

�� +

k∑
i=1

��∆Ti − ∆T̂i
��
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+
��Xk+1 − X̂k+1

�� +
��Uk+1 − Ûk+1

�� +

k+1∑
i=1

��∆Ti − ∆T̂i
�� .

By taking the expectation in (30) and then using the bounds Xk � x0 +∑
1�i�kUi and (29) combined with Wald’s lemma, straightforward computa-

tions yield

E[m
(T)
M2

(X̂(T), X(T))] � (1+ E[N(T) ∨ N̂(T)]){2x0(mHM1(G, Ĝ) +mĜM1(H, Ĥ)

+ 3M1(FU, F̂U) + 2M1(G, Ĝ) + (x0 +mFU)(T +mG +mĜ)

�M1(H, Ĥ)} + E[(1+N(T) ∨ N̂(T))2]mFU(mHM1(G, Ĝ)

+mĜM1(H, Ĥ)),

denoting by mF (resp. mF̂) the mean of the df F (resp. of the estimate F̂), F
being any of the df’s G, FU or H (notice thatmF̂ � vF+mF). Besides, there exist
constants C, C0 < ∞ s.t. E(N(T))∨E(N̂(T)) � CT and E(N(T)2)∨E(N̂(T)2) �
C0T2 (refer to Propositions 6.1 and 6.3 of chap. V in [3] for instance). Observe
that the constants C and C0 may be chosen independent from the integer n
indexing the sequence Ĝ, since by assumption the sequences mĜ and σ2

Ĝ
are

bounded. This establishes the desired result (27).
The next result now establishes the asymptotic validity of simulation esti-

mators under general conditions.

Corollary 6 Let (G, FU, H) (resp. (Ĝ(n), F̂
(n)
U , Ĥ(n)) for n 2 N) be a triplet

of df’s on R+ defining a linear exposure process X (resp. X̂(n)) starting
from x0 � 0 and fulfilling the assumptions of Theorem 5. Let 0 < T � ∞.

� Let Q be a measurable function mapping D((0, T),R) into some met-
ric space (S, D) with Disc(Q) as set of discontinuity points and such that
P(X(T) 2 Disc(Q)) = 0. If (Ĝ(n), F̂

(n)
U , Ĥ(n)) → (G, FU, H) in the L1-Mallows

distance, then we have the convergence in distribution

Q(X̂
(T)
(n)) ⇒ Q(X(T)) in (S, D). (31)

� Suppose that G (respectively, Ĝ(n)) has finite variance σ2G (resp. σ2
Ĝ(n))

and H (respectively, Ĥ(n)) has finite mean. If σ2
Ĝ(n) remains bounded and

(Ĝ(n), F̂
(n)
U , Ĥ(n)) → (G, FU, H) in the L1-Mallows distance, then for any

Lipschitz function φ : (D((0, T),R),m
(T)
M2

) → R, we have

E

h
φ(X̂

(T)
(n))

i → E

h
φ(X(T))

i
. (32)
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proof. The first assertion derives from Theorem 5 and the convergence (in
distribution) preservation result stated in Theorem 3.4.3 of [45], while the sec-
ond one is an immediate consequence of the first assertion of Theorem 5 (see
also [8]).

We conclude by giving several examples, illustrating how the results above
apply to certain functionals of the exposure process in practice. Among the
time-dependent and steady-state features of the exposure process, the follow-
ing quantities are of considerable importance to practitioners in the field of risk
assessment of chemicals in food and diet (see [36] and the references therein).

Mean exposure value. The mapping that assigns to any trajectory X(T) 2
D((0, T),R) its mean value T−1

∫T
t=0

X(t)dt is Lipschitz w.r.t. the distance
m

(T)
M2

. Hence, given consistent estimates Ĝ(n), F̂(n)
U and Ĥ(n) of G, FU and H,

one may construct a consistent estimate of E[
∫T
t=0

X(t)dt] by implementing a
standard Monte-Carlo procedure for approximating the expectation E[

∫T
t=0

X̂(n)(t)dt].

Maximum exposure value. In a similar fashion, the function X(T) 2
D((0, T),R) 7→ sup0�t�TX(t) is Lipschitz w.r.t. the distance m(T)

M2
(see Theo-

rem 13.4.1 in [45] for instance) and under the assumptions of Theorem 5, the
expected supremum E[sup0�t�TX(t)] is finite and may be consistently esti-
mated by Monte-Carlo simulations.

First passage times. Given the starting point x0 of the exposure process
X, the distribution of the first passage time beyond a certain (possibly critical)
level x � 0, i.e. the hitting time τ+

x = inf{t � 0, X(t) � x}, is also a character-
istic of crucial interest for toxicologists. The mapping X 2 D((0,∞),R) 7→ τ+

x

being continuous w.r.t. the M2-topology (refer to Theorem 13.6.4 in [45]), we
have τ̂+

x = inf{t � 0, X̂(t) � x} ⇒ τ+
x as soon as X̂ ⇒ X.

Steady state mean exposure. In practice, one is also concerned with
steady-state characteristics, describing the long term behavior of the exposure
process. The steady-state mean exposure mµ can be pertinently used as a
quantitative indicator for chronic risk characterization. By virtue of Theorem
3 and Corollary 6, in an asymptotic framework stipulating that both T → ∞
and n → ∞, it can be consistently estimated by E[T−1

∫T
t=0

X̂(n)(t)dt] since
one may naturally write

E

"
T−1

∫T
t=0

X̂(n)(t)dt

#
−mµ = E

"
T−1

∫T
t=0

X̂(n)(t)dt

#
− E

"
T−1

∫T
t=0

X(t)dt

#

+ E

"
T−1

∫T
t=0

X(t)dt

#
−mµ.
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Besides, with regard to statistical applications, Theorem 5 paves the way
for studying the asymptotic validity of bootstrap procedures in order to con-
struct accurate confidence intervals (based on sample paths simulated from
bootstrapped versions of the estimates Ĝ(n), F̂

(n)
U and Ĥ(n)). This is beyond

the scope of the present paper but will be the subject of further investigation.

5 Application to methylmercury data

As an illustration of the toxicologic modeling presented above, some numerical
results related to dietary methylmercury (MeHg) contamination are now exhib-
ited. As previously mentioned, this chemical is present in sea food quasi-solely
and a clear indication of its adverse effects on human heath has been given
by observational epidemiological studies (see [44], [15] and [24] and references
therein), leading recently regulatory authorities to develop sea food standards
for protecting the safety of the consumer. Furthermore, the toxicokinetic vari-
ability in man of this substance has been thoroughly investigated in several
studies (see [35], [40] and [39] for instance), almost all coming to the conclusion
that the half-life of methylmercury in man (see remark 1) fluctuates around
six weeks. In the present quantitative study, estimates of some of the level
exposure indicators listed above are displayed for population subgroups: men,
women and children aged under 15 (see Table 1 below).

The half-life log(2)/θ of methylmercury is assumed to be distributed as a
Gamma distribution with mean 6 weeks and standard deviation 3 days. For
each group, an estimator of the intake distribution FU has been computed from
data collected through the national individual consumption survey INCA (see
[14]) and contamination data released by French regulatory authorities, already
used and described in [15] or [43]. For each consumption occurrence recorded
in the INCA database, the MeHg intake is obtained as the cross product be-
tween sea food quantities consumed on a body weight scale (i.e., divided by the
body weight bw) and associated mean contamination levels. The histogram of
these intakes (expressed in µg/kgbw) is used as an estimate of FU. For each
subgroup, a right censored Weibull model is fitted to estimate the distribution
G of the inter-intake times from the INCA data.
The indicator estimates have been obtained by averaging over M = 1000 tra-
jectory replications on [0, T ], with T equal to one year and x0 = 0. Lower and
upper bounds on indicators are given at a 95% confidence level. We observe in
Table 1 that children are the most sensitive subgroup because they tend to eat
more proportionally to their body weight even though their sea food consump-
tion frequency is the lowest among the three groups.
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Table 1: Comparison of the exposure process of men, women and children
Men Women Children

Size of the data set for FU 1605 1961 1612
Mean (in µg/kgbw) 0.206 0.230 0.487
Standard Deviation 0.274 0.352 0.768

Size of the data set for G 1769 2144 1816
Mean (in hours) 119 114 161

Standard Deviation 122 112 160
Mean (in µg/kgbw) 2.11 2.42 3.65

Lower bound 1.35 1.63 2.20
Upper bound 3.02 3.56 6.14

Maximum (in µg/kgbw) 4.14 4.81 7.74
Lower bound 2.54 2.88 4.18
Upper bound 6.56 8.40 16.55

First time passage in 5 when reached (in days) 226 196 150
Probability to reach 5 before 1 year 18% 32% 90%

First time passage in 10 when reached (in days) >365 230 196
Probability to reach 10 before 1 year 0.0% 0.3% 16.6%

First time passage in 15 when reached (in days) >365 >365 186
Probability to reach 15 before 1 year 0.0% 0.0% 3.6%

Figure 2 gives a time-plot of the mean exposure value for different values
of T and x0 in the men subgroup. The steady state mean exposure in the
men subgroup can be seen to be approximatively equal to 2.5µg/kgbw and is
nearly reached with a 1 year horizon. From a toxicological point of view, no
"safe" steady state mean exposure upper value has been defined yet (proposing a
dynamic stochastic model for the dietary contamination phenomenon is besides
the main innovation of the present paper): the only quantity of reference is the
so called Provisional Tolerable Weekly Intake (PTWI), which is considered
to represent the contaminant dose an individual can ingest per week over all
his life without appreciable risk. For methylmercury, the PTWI has been set
to 1.6 µg/kgbw by an international expert committee of FAO/WHO (see [21]).
Hence, a deterministic exposure process of reference could be built by taking
FU as the Dirac mass on 1.6, G as the Dirac mass on 1 week and H as the Dirac
mass on 6 weeks. This yields a steady state mean exposure of 14.6 µg/kgbw.
From this angle, all studied subgroups remain far below this reference value.
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Figure 2: Mean Exposure Value as a function of time for the men subgroup
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