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Abstract
The interplay between space and evolution is an important issue in population

dynamics, that is in particular crucial in the emergence of polymorphism and spa-
tial patterns. Recently, biological studies suggest that invasion and evolution are
closely related. Here we model the interplay between space and evolution starting
with an individual-based approach and show the important role of parameter scalings
on clustering and invasion. We consider a stochastic discrete model with birth, death,
competition, mutation and spatial di�usion, where all the parameters may depend
both on the position and on the trait of individuals. The spatial motion is driven
by a re�ected di�usion in a bounded domain. The interaction is modelled as a trait
competition between individuals within a given spatial interaction range. First, we
give an algorithmic construction of the process. Next, we obtain large population
approximations, as weak solutions of nonlinear reaction-di�usion equations with Neu-
mann's boundary conditions. As the spatial interaction range is �xed, the nonlinearity
is nonlocal. Then, we make the interaction range decrease to zero and prove the con-
vergence to spatially localized nonlinear reaction-di�usion equations, with Neumann's
boundary conditions. Finally, simulations based on the microscopic individual-based
model are given, illustrating the strong e�ects of the spatial interaction range on the
emergence of spatial and phenotypic diversity (clustering and polymorphism) and on
the interplay between invasion and evolution. The simulations focus on the qualitative
di�erences between local and nonlocal interactions.
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1 Introduction

The spatial aspect of population dynamics is an important ecological issue that has been ex-
tensively studied (Murray [31], Durrett and Levin [12], Tilman and Kareiva [44], McGlade
[26], Dieckmann et al. [9]). It is in particular crucial in environmental problems, such
as spatial invasions and epidemics (Mollison [30], Murray [31], Rand et al. [36], Tilman
and Kareiva [44], Lewis and Pacala [25]), and clustering or agglomeration of the popu-
lation, i.e. the organization as isolated patches (Hassel and May [19], Hassel and Pacala
[20], Niwa [32], Flierl et al. [14], Young et al. [45]). The combination of space and phe-
notype is also known for a long time to have important e�ects on population dynamics
(Mayr [27], Endler [13]). In particular, it can strongly favor the coexistence of several types
of individuals and the emergence and stability of polymorphism (Durrett and Levin [11],
Dieckmann and Doebeli [7]). More recently, several biological studies (Thomas et al. [43],
Phillips et al. [33]) observed that classical models could underestimate the invasion speed
and suggested that evolution and invasion are closely related. Namely, the evolution of
morphology can have strong impact on the expansion of invading species, such as insect
species ([43]) or cane toads ([33]). In this context, the study of space-related traits, such
as dispersal speed (Prévost [34], Desvillettes et al. [6]), or sensibility to heterogeneously
distributed resources (Bolker and Pacala [3], Grant and Grant [18]), is fundamental.

In this paper, we propose and construct stochastic and deterministic population models
describing the interplay between evolution and spatial structure. We show how helpful
these models can reveal to understand and predict several speci�c behaviors concerning
clustering and invasion.

We study the dynamics of a spatially structured asexual population with adaptive
evolution, in which individuals can move, reproduce with possible phenotypic mutation,
or die of natural death or from the competition between individuals. The individuals are
characterized both by their position and by one or several phenotypical adaptive traits (such
as body size, rate of food intake, age at maturity or dispersal speed). The interaction is
modelled as a trait competition between individuals in some spatial range. Our approach is
based on a stochastic microscopic description of these individuals' mechanisms, involving
both space and traits. This approach has already been developed in simpler ecological
contexts. For populations undergoing dispersal, Bolker and Pacala [2, 3] and Dieckmann
and Law [8], o�ered the �rst microscopic heuristics and simulations. Their individual-based
model has been rigourously constructed in Fournier and Méléard [15]. If one thinks of the
dispersion in the physical space as a mutation in a trait space, this model translates into
an evolutionary model. The generalization to adaptive population with general mutation
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and competition phenomena is achieved by Champagnat, Ferrière and Méléard [5, 4]. In
these papers, di�erent large population deterministic or stochastic approximations have
been obtained, depending on several scalings on the microscopic parameters.

The basic mechanisms of the population dynamics we consider combine spatial motion
and evolutionary dynamics (Section 2). The birth, mutation and death parameters of each
individual depend on its position and trait. An o�spring, appearing at the same position
as its progenitor, usually inherits the trait value of the latter, except when a mutation
causes the o�spring to take an instantaneous mutation step at birth to new trait values.
As soon as it is alive, an individual moves in the spatial domain according to a re�ected
di�usion process. Moreover, each individual dies because of natural death or is eliminated
in the competition (selecting the �ttest traits) between individuals living in a given spatial
range δ > 0.

Section 3 starts with the algorithmic construction of a stochastic Markov point process
whose generator captures the individual migration and ecological mechanisms in the pop-
ulation. Then the existence of this measure-valued process and its martingale properties
are proved under some moment condition on the initial data.

Next (Section 4), we study approximations of this model based on large-population
limits. We consider a large number N of individuals at initial time and assume that a
�xed amount of available resources has to be partitioned between individuals. When N

tends to in�nity, the conveniently normalized point process converges to a deterministic �-
nite measure, solution of a nonlinear nonlocal integro-di�erential equation with Neumann's
boundary conditions, parameterized by the spatial range. The proof is based on the mar-
tingale properties of the process and on limit theorems for measure-valued jump processes.
We moreover prove that for su�ciently smooth and non-degenerate di�usion coe�cients,
assuming that the initial condition has a density, the limiting measure has at each time a
density with respect to the Lebesgue measure. That is due to the regularizing e�ect of the
re�ected di�usion process. The proof mainly uses analytic tools, and is based on the mild
formulation of the limiting nonlinear equation.

In Section 5, we study the behavior of this density function as the interaction range
tends to 0. We show its convergence to the solution of a spatially local nonlinear integro-
di�erential equation with Neumann's boundary conditions. This equation has been intro-
duced and studied in Prévost [34] in an analytic point of view (see also Desvillettes et al.
[6]). In this spatially local case, numerical simulations by �nite element methods are given
and show the in�uence of di�usion and mutation parameters on the invasion of the domain
by the population.
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In Section 6, we give simulations of the microscopic process illustrating the time-
dependent interplay between space and adaptation. We address the e�ect of the population
size, and the crucial role of the interaction range with respect to spatial organization (clus-
tering) and polymorphism. We focus on the qualitative di�erences between nonlocal and
local interactions. In a �rst example, we show that, when migrations and mutations are
not too strong, a large interaction range induces a spatial organization of the population
as a �nite set of isolated clusters, as assumed in classical metapopulation models ([11]).
Such a spatial organization is related to the ecological notion of �niches� (di�erent types of
individuals settle di�erent regions of space, Roughgarden [39]). Conversely, for su�ciently
small interaction range, the clustering phenomenon is no more observed. Next, we propose
another example where a similar phase transition occurs for spatial clustering and in which
the critical interaction range can be identi�ed. In our last example, we investigate a model
describing the invasion of a species with evolving dispersal speed (as in [6]). The di�usion
coe�cient and the trait are assumed to be proportional and a triangular invasion pattern
is observed, indicating that the invasion front is composed of faster individuals ([33]).

Notation
The individuals live in the closure of a bounded domain X of Rd of class C3 and their trait
values belong to a compact set U of Rq.
- For x ∈ ∂X , we denote by n(x) the outward normal to the boundary ∂X at point x.
- For a su�ciently smooth function f and (x, u) ∈ ∂X × U , we denote by ∂nf(x, u) the
scalar product ∇xf(x, u) · n(x).
- We denote by C2,b

0 the space of measurable functions f(x, u) of class C2 in x and bounded
in u satisfying ∂nf(x, u) = 0 for all (x, u) ∈ ∂X ×U and by C2,0

0 the subspace of functions
f(x, u) which are moreover continuous in u.
- For each p ≥ 1, the Lp-norm on X̄ × U is denoted by ‖ · ‖p.
- We denote by MF (X̄ × U) the set of �nite measures on X̄ × U , endowed by the weak
topology, and by M the subset of MF (X̄ × U) composed of all �nite point measures, that
is

M =

{
n∑

i=1

δ(xi,ui), n ∈ N, x1, . . . , xn ∈ X̄ , u1, ..., un ∈ U
}

where δ(x,u) denotes the Dirac measure at (x, u). (If n = 0, one obtains by extension the
null measure). For any ν ∈ MF (X̄ × U) and for any measurable function f on X̄ × U , we
write indi�erently 〈ν, f〉 or ∫

X̄×U fdν. If ν =
∑n

i=1 δ(xi,ui), then 〈ν, f〉 =
∑n

i=1 f(xi, ui) .
- We denote by D([0,∞),MF (X̄ ×U)) the Skorohod space of left limited and right contin-
uous functions from R+ to MF (X̄ × U), endowed with the Skorohod topology.
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- The constant C will be a constant which can change from line to line.

Remark 1.1 Let us remark that the space of C2(X̄ )-functions with a vanishing normal
derivative is dense, for the uniform norm, in C(X̄ ). Indeed, let us consider the Cauchy
problem for the parabolic di�erential equation ∂u

∂t (t, x) = ∆u(t, x) ; t > 0 ; x ∈ X with the
boundary condition ∂u

∂n(t, x) = 0 ; t > 0 ; x ∈ ∂X . Since X is of class C3, we may apply
Sato-Ueno [40] Theorem 2.1. There exists a smooth fundamental solution q(t, x, y) to this
problem and each f ∈ C(X̄ ) is the uniform limit of the sequence

∫
X̄ q(t, x, y)f(y)dy of

C2(X̄ )-functions with vanishing normal derivative, as t tends to 0.

We easily extend this result and show that the space C2,0
0 is dense in the space of

continuous functions on X̄ × U .

2 The model

Let us now describe the evolutionary process we are interested in. The population will be
described at any time by a �nite point measure ν ∈M. Each individual, characterized by
its position and trait (x, u), may move, give birth or die, as described below.

1. Themigration is described as a di�usion process normally re�ected at the boundary
of the domain X . Biologists usually assume that the random behavior is isotropic,
so the di�usion matrix is chosen with the form m(x, u)Id (Id is the identity matrix
on Rd) and the nonnegative coe�cient m(x, u) (depending on the position x and
the trait value u), is the di�usion coe�cient. We moreover model the environment
heterogeneity (resources, topography, external e�ects,. . . ) by a drift term driven by
a Rd-vector b(x, u).

2. Births and mutations. We consider a population with asexual reproduction. An
individual with position x and trait u can give birth either to a clonal child at rate
λ(x, u), or to a mutant with trait v at rate M(x, u, v), both at position x.

3. The death rate µ of an individual depends on its position x and trait u and on the
spatial and phenotypic competition with the individuals located around x. Let us
call δ > 0 the range of this spatial interaction.

For a population ν =
∑n

i=1 δ(xi,ui) ∈M, the death rate is given by

µ(x, u, IδW ? ν(x, u)) = µ

(
x, u,

∫

X×U
Iδ(x− y)W (u− v)ν(dy, dv)

)

= µ

(
x, u,

n∑

i=1

Iδ(x− xi)W (u− ui)
)

.
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The function µ(x, u, r) is assumed to be measurable on X × U × R.

This interaction assumes that spatial and phenotypic interactions are independent,
which is realistic in many biological situations. One could of course consider a more com-
plicated interaction. Since our ultimate goal is to make the spatial interaction range go to
zero, we have chosen this particular form.

Hypotheses (H):
1) The coe�cients m(x, u) and b(x, u) depend Lipschitz continuously on the position and
measurably on the trait, and there exist constants m? > 0 and b∗ > 0 such that for all
(x, u) ∈ X̄ × U

0 ≤ m(x, u) ≤ m?

|b(x, u)| ≤ b∗.
(2.1)

2) It is natural from a biological point of view to assume that all birth rates are bounded.
There exists λ∗ such that

0 ≤ λ(x, u) ≤ λ∗, ∀(x, u) ∈ X̄ × U . (2.2)

The kernel M is nonnegative and symmetric in (u, v) for each x ∈ X̄ and

sup
x∈X̄ ,u∈U

M(x, u, v) = M∗(v) ∈ L1(U). (2.3)

3) There exists a positive constant µ∗ such that

∀(x, u, r) ∈ X × U × R, 0 ≤ µ(x, u, r) ≤ µ∗(1 + |r|) (2.4)

4) For each δ > 0, the spatial kernel Iδ is nonnegative and bounded and for each x ∈ X̄ ,
∫

X
Iδ(x− y)dy = 1.

5) The competition kernel W is nonnegative and bounded on Rq.

Let us remark that if Iδ is proportional to 1{|x|≤δ}, then (H-4) means that the interac-
tion is proportional to the surface in X around x. This is a natural biological assumption,
especially if x lies on the boundary of X . We will later assume that the measure Iδ(y)dy

weakly converges to the Dirac measure δ0 as δ tends to 0.
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Hypotheses (H) will be assumed in all the sequel. They imply in particular that for
each ν ∈ MF (X̄ × U) and each (x, u) ∈ X̄ × U ,

µ(x, u, IδW ? ν(x, u)) ≤ µ∗(1 + ‖IδW‖∞〈ν, 1〉) (2.5)

which yields

µ(x, u, IδW ? ν(x, u)) + λ(x, u) +
∫

U
M(x, u, v)dv

≤ µ∗(1 + ‖IδW‖∞〈ν, 1〉) + λ∗ + ‖M∗‖1 ≤ Cδ(〈ν, 1〉+ 1) (2.6)

and the total jump rate for a population ν is bounded by

Cδ〈ν, 1〉(〈ν, 1〉+ 1). (2.7)

We are interested in the evolution of the stochastic point process (νt), taking its values
in M and describing the evolution of the population at each time t. We de�ne

νt =
Nt∑

i=1

δ(Xi
t ,U

i
t )

,

Nt ∈ N standing for the number of living individuals at time t, X1
t , ..., XNt

t describing their
positions (in X̄ ) and U1

t , ..., UNt
t their trait values (in U).

The dynamics of the population can be roughly summarized as follows. The initial
population is characterized by a measure ν0 ∈ M at time t = 0, and any individual lo-
cated at x ∈ X̄ with trait u at time t has four independent exponential clocks: a �clonal
reproduction� clock with parameter λ(x, u), a �mutant reproduction� clock with parameter
M(x, u, v), and a �mortality� clock with parameter µ(x, u,

∑Nt
j=1 Iδ(x−Xj

t )W (u−U j
t )). If

the �mortality� clock of an individual rings, then this individual disappears; if the �clonal
reproduction� clock of an individual rings, then it produces at the same location an in-
dividual with the same trait as itself; if the �mutant reproduction� clock of an individual
rings, then it produces at the same location an individual with characteristics (x, v).

The living individuals evolve in the domain, according to di�usion processes with dif-
fusion coe�cient m(x, u) and drift b(x, u), normally re�ected at the boundary of X .

The measure-valued process (νt)t≥0 is a Markov process whose in�nitesimal generator
L captures this dynamics. This generator is the sum of a jump part L1 corresponding
to the phenotypic evolution and of a di�usion part L2. The generator L1 is de�ned for
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bounded and measurable functions φ from M into R and for ν =
∑n

i=1 δ(xi,ui) by

L1φ(ν) =
〈ν,1〉∑

i=1

λ(xi, ui)(φ(ν + δ(xi,ui))− φ(ν))

+
∫

U

〈ν,1〉∑

i=1

(φ(ν + δ(xi,v))− φ(ν))M(xi, ui, v)dv

+
〈ν,1〉∑

i=1

(φ(ν − δ(xi,ui))− φ(ν))µ(xi, ui, IδW ? ν(xi, ui)). (2.8)

A standard class of cylindrical functions generating the set of bounded and measurable
functions from MF (X̄ × U) into R is the class of functions

Ff (ν) = F (〈ν, f〉), (2.9)

for bounded and measurable functions F and f .

For such functions Ff , with F ∈ C2
b (R) and f ∈ C2,0

0 , the di�usive part L2 of the
generator can easily be deduced from Itô's formula. Its form is similar to the one obtained
in the whole space for branching di�using processes (cf. Roelly-Rouault [38]) and is given
by

L2Ff (ν) = 〈ν, m∆xf + b.∇xf〉F ′(〈ν, f〉) + 〈ν, m|∇xf |2〉F ′′(〈ν, f〉). (2.10)

Hence,

LFf (ν) = L1Ff (ν) + L2Ff (ν)

=
∫

X̄×U

{
λ(x, u)

(
F (〈ν, f〉+ f(x, u))− F (〈ν, f〉))

+
∫

U

(
F (〈ν, f〉+ f(x, v))− F (〈ν, f〉))M(x, u, v)dv

+ µ(x, u, IδW ? ν(x, u))
(
F (〈ν, f〉 − f(x, u))− F (〈ν, f〉))

+
(
m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

)
F ′(〈ν, f〉))

+ m(x, u)|∇xf(x, u)|2F ′′(〈ν, f〉)
}

ν(dx, du) (2.11)

3 Construction of the particle system and martingale prop-
erties

In this section, we construct a Markov process on the path space D([0,∞),MF (X̄ × U))

with in�nitesimal generator L. Then we prove some martingale properties satis�ed by this
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process, which are the key point to obtain large population approximations.

Let us �rstly present an iterative construction of the process, which gives an e�ective
simulation algorithm, if combined with a di�usion simulation step such as an Euler scheme
for re�ected di�usions (see Lépingle [24], Gobet [17] and Section 6).

The initial number of individuals is equal to some natural integer N ∈ N∗ and the vector
of random variables (X0, U0) = (Xi

0, U
i
0)1≤i≤N ∈ (X̄ × U)N denotes the position and trait

values of these individuals. More generally, we denote by Nt the number of individuals
at time t and by (Xt, Ut) the vector of their positions and traits. Let us introduce the
following sequences of independent random variables, independent of (X0, U0).

- (Bj,k)k,j∈N∗ are d-dimensional Brownian motions,

- (θk)k are uniform random variables on [0, 1],

- (Vk)k take values in U with law M∗(v)
‖M∗‖1 dv,

- (τk)k are exponential random variables with law Cδe
−Cδt1t≥0. (The constant Cδ is

de�ned in (2.6)).

The system is obtained inductively for k ≥ 1 as described below. We set T0 = 0 and
N0 = N . Assume that (Tk−1, Nk−1, XTk−1

, UTk−1
) are given. If Nk−1 = 0, then νt = 0 for

all t ≥ Tk−1. If not, let

• Tk = Tk−1 + τk
Nk−1(Nk−1+1) . Notice that τk

Nk−1(Nk−1+1) represents the time between
possible jumps for Nk−1 individuals and that CδNk−1(Nk−1+1) gives an upper-bound
on the total jump rate for a population with Nk−1 individuals, as seen in (2.7).

• On the time-interval [Tk−1, Tk), the number of particles remains equal to Nk−1, their
trait values are equal to U j

Tk−1
, 1 ≤ j ≤ Nk−1 and their positions (Xj

t , 1 ≤ j ≤
Nk−1) evolve according to the following stochastic di�erential equation with normal
re�ection : ∀t ∈ [Tk−1, Tk],

Xj
t ∈ X̄ ,

Xj
t = Xj

Tk−1
+

∫ t

Tk−1

√
2m(Xj

s , U j
Tk−1

)dBj,k
s +

∫ t

Tk−1

b(Xj
s , U j

Tk−1
)ds− kj

t ,

|kj |t =
∫ t

Tk−1

1{Xj
s∈∂X}d|kj |s ; kj

t =
∫ t

Tk−1

n(Xj
s )d|kj |s. (3.1)

• At time Tk, one chooses at random an individual Ik = i uniformly among the
Nk−1 individuals living during the time-interval [Tk−1, Tk). Its position and trait
are (Xi

Tk
, U i

Tk−1
).
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� If 0 ≤ θk ≤
µ(Xi

Tk
,U i

Tk−1
,
PNk−1

j=1 Iδ(Xi
Tk
−Xj

Tk
)W (U i

Tk−1
−Uj

Tk−1
))

Cδ(Nk−1+1) = θi
1(XTk

, UTk−1
),

then the individual i dies and Nk = Nk−1 − 1.

� If θi
1(XTk

, UTk−1
) < θk ≤ θi

1(XTk
, UTk−1

) +
λ(Xi

Tk
,U i

Tk−1
)

Cδ(Nk−1+1) = θi
2(XTk

, UTk−1
), then

the individual i gives birth to an o�spring with characteristics (Xi
Tk

, U i
Tk−1

)

and Nk = Nk−1 + 1.

� If θi
2(XTk

, UTk−1
) < θk ≤ θi

2(XTk
, UTk−1

)+
M(Xi

Tk
,U i

Tk−1
,Vk)‖M∗‖1

M∗(Vk)Cδ(Nk−1+1) = θi
3(XTk

, UTk−1
, Vk),

then the individual i gives birth to a mutant o�spring with trait Vk at the po-
sition Xi

Tk
, and Nk = Nk−1 + 1.

� If θk > θi
3(XTk

, UTk−1
, Vk), nothing happens and Nk = Nk−1.

The total number Nt of individuals at time t is equal to Nt =
∑

k≥0 1{Tk≤t<Tk+1}Nk,
and νt =

∑
k≥0 1{Tk≤t<Tk+1}

∑Nk
i=1 δ(Xi

t ,U
i
Tk

) =
∑Nt

i=1 δ(Xi
t ,U

i
t )
.

This stochastic individual-based process ν can be rigorously expressed as solution of
a stochastic di�erential equation driven by d-dimensional Brownian motions (Bi)i∈N∗ and
the R+ × N× [0, 1]× U-valued multivariate point process

Q(dt, di, dθ, dv) =
∑

k≥1

δ(Tk,Ik,θk,Vk)(dt, di, dθ, dv)

associated with the birth, mutation and death of individuals. We will prove its existence
on R+, deduced from moment properties, and develop some martingale properties that we
will use below.

Let us consider ν0 ∈ M. For each C2,0
0 -function f , we de�ne the process 〈νt, f〉 as

solution of the stochastic di�erential equation

〈νt, f〉 = 〈ν0, f〉+
∫ t

0
〈νr, m(x, u)∆xf + b(x, u).∇xf〉dr

+
∫ t

0

〈νr−,1〉∑

i=1

√
2m(Xi

r, U
i
r)∇xf(Xi

r, U
i
r)dBi

r

+
∫

[0,t]×N×[0,1]×U2

{
− f(Xi

r, U
i
r)1{θ≤θi

1(Xr,Ur)} + f(Xi
r, U

i
r)1{θi

1(Xr,Ur)<θ≤θi
2(Xr,Ur)}

+ f(Xi
r, v)1{θi

2(Xr,Ur)<θ≤θi
3(Xr,Ur,v)}

}
Q(dr, di, dθ, dv), (3.2)

where θi
1, θi

2 and θi
3 have been de�ned previously.

By Remark 1.1, the knowledge of 〈νt, f〉 for f ∈ C2,0
0 is enough to characterized the

�nite measure-valued process ν.
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We introduce the canonical �ltration

Ft = σ{ν0; Bj
r , j ∈ N∗; Q([0, r]×A), A ∈ P(N)⊗ B([0, 1]× U), r ≤ t},

where B([0, 1]× U) is the Borel σ-�eld on [0, 1]× U .

Lemma 3.1 The measure

q(dt, di, dθ, dv) = Cδ

∑

k≥0

1{Tk<t≤Tk+1}(Nk + 1)
Nk∑

j=1

δj(di)dtdθ
M∗(v)
‖M∗‖1

dv

= Cδ(Nt + 1)
Nt∑

j=1

δj(di)dtdθ
M∗(v)
‖M∗‖1

dv

is the (predictable) compensator of the multivariate point process Q.

Proof. For k ≥ 0, a regular version of the conditional law of (Tk+1, Ik+1, θk+1, Vk+1) with
respect to σ{ν0, (Bj

. ), j ∈ N∗, (Tp, Ip, θp, Vp), 1 ≤ p ≤ k} is given by the measure

Cδ(Nk + 1)1{Tk<t}e−CδNk(Nk+1)(t−Tk)
Nk∑

j=1

δj(di)dtdθ
M∗(v)
‖M∗‖1

dv.

The conclusion is thus a consequence of [21] Theorem 1.33 p.136. 2

Using Lemma 3.1 and Itô's formula, one can immediately show that any solution ν of
(3.2), such that E(supt≤T 〈νt, 1〉2) < +∞, is a Markov process with in�nitesimal genera-
tor L de�ned by (2.11). Moreover, we also deduce the following existence, moment and
martingale properties.

Proposition 3.2 1) Assume Hypotheses (H) and that E(〈ν0, 1〉) < +∞.

Then E(supt≤T 〈νt, 1〉) < +∞ for each T > 0 and the process ν de�ned by (3.2) is
well de�ned on R+.

2) If furthermore for some p ≥ 1, E(〈ν0, 1〉p) < +∞, then for each T > 0

E(sup
t≤T

〈νt, 1〉p) < +∞.

Proof. We �rstly prove 2). For each integer k, de�ne Sk = inf{t ≥ 0, 〈νt, 1〉 ≥ k}. A
simple computation using (3.2), and dropping the non-positive death terms, gives

E( sup
s∈[0,t∧Sk]

〈νs, 1〉p) ≤ E

(
〈ν0, 1〉p + C

∫ t∧Sk

0
(1 + 〈νs, 1〉p)ds

)

≤ C

(
1 + E

(∫ t

0
〈νs∧Sk

, 1〉pds

))
.
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Gronwall's lemma implies that for any T > 0, there exists a constant C independent of k,
such that E(supt∈[0,T∧Sk]〈νt, 1〉p) ≤ C. One easily deduces that Sk tends a.s. to in�nity
when k tends to in�nity and next, Fatou's lemma yields E(supt∈[0,T ]〈νt, 1〉p) < +∞.

Point 1) is a consequence of point 2). Indeed, one builds the solution (νt)t≥0 step by
step. One only has to check that the sequence of jump instants (Tk)k goes to in�nity a.s.
as k tends to in�nity. But this follows from E(supt≤T 〈νt, 1〉) < +∞ . 2

The following martingale properties are the key point to study large population ap-
proximations.

Theorem 3.3 Assume Hypotheses (H) and that for some p ≥ 2, E(〈ν0, 1〉p) < +∞.

1) Then, for F and f ∈ C2,0
0 such that for all ν ∈M, |Ff (ν)|+ |LFf (ν)| ≤ C(1 + 〈ν, 1〉p),

the process

Ff (νt)− Ff (ν0)−
∫ t

0
LFf (νs)ds

is a càdlàg martingale starting from 0. It is in particular true for F (y) = yp−1.

2) The process Zf de�ned for f ∈ C2,0
0 by

Zf
t = 〈νt, f〉 − 〈ν0, f〉 −

∫ t

0

∫

X̄×U

{
m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(
λ(x, u)− µ(x, u, IδW ? νs(x, u))

)
f(x, u) +

∫

U
f(x, v)M(x, u, v)dv

}
νs(dx, du)ds (3.3)

is a càdlàg L2-martingale starting from 0 with predictable quadratic variation

〈Zf 〉t =
∫ t

0

∫

X̄×U

{
2m(x, u)|∇xf |2 +

(
λ(x, u) + µ(x, u, IδW ? νs(x, u))

)
f2(x, u)

+
∫

U
f2(x, v)M(x, u, v)dv

}
νs(dx, du)ds (3.4)

Proof. Point 1) is immediate. For point 2), we �rst assume that E(〈ν0, 1〉3) < +∞.
Applying point 1) with F (y) = y (or (3.2) and Lemma 3.1) leads to Zf . Then one applies
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1) again with F (y) = y2, and thus

〈νt, f〉2 − 〈ν0, f〉2 −
∫ t

0

∫

X̄×U

{
2(m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u))〈νs, f〉

+ 2m(x, u)|∇xf |2 + λ(x, u)(2〈νs, f〉f(x, u) + f2(x, u))

+
∫

U
(2f(x, v)〈νs, f〉+ f2(x, v))M(x, u, v)dv

+ µ(x, u, IδW ? νs(x, u))(−2〈νs, f〉f(x, u) + f2(x, u))
}

νs(dx, du)ds (3.5)

is a càdlàg martingale. In another hand, Itô's formula allows us to compute 〈νt, f〉2 from
(3.3): the process

〈νt, f〉2 − 〈ν0, f〉2 −
∫ t

0

∫

X̄×U

{
2(m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u))〈νs, f〉

+ 2(λ(x, u)− µ(x, u, IδW ? νs(x, u)))〈νs, f〉f(x, u)

+
∫

U
2f(x, v)〈νs, f〉M(x, u, v)dv

}
νs(dx, du)ds− 〈Zf 〉t (3.6)

is a càdlàg martingale. Comparing (3.5) and (3.6) leads to (3.4). The extension to the
case where E(〈ν0, 1〉2) < +∞ is straightforward, noticing that E(〈Zf 〉t) < +∞. 2

4 Large population approximation for a �xed interaction range

We are now interested in deterministic approximations of the population point process
when the size of the population increases. We assume in this section that the interaction
range δ > 0 is �xed.

Let us consider a sequence of initial measures (νN
0 )N∈N∗ belonging to M. For each

N ∈ N∗, we keep all parameters (m, b, λ, M) unchanged, except the competition kernel.
We assume that for each N ,

µN (x, u, r) = µ(x, u,
r

N
). (4.1)

This assumption has a biological interpretation. In a case of �xed amount of available global
resources, a large system of individuals may only exist if the biomass of each interacting
individual scales as 1

N , which implies that the interaction e�ect between two individuals
scales as 1

N as well. The parameter N can also be interpreted as scaling the resources
available, so that the renormalization of µ re�ects the decrease of competition for resources.

We assume that the sequence νN
0
N converges, as N tends to in�nity. The size 〈νN

0 , 1〉
of the population is then of order N and will stay at this order (or at a smaller order)
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during �nite time-intervals, since birth rates are bounded. Hence, our aim is to study the
asymptotic behavior, as N tends to in�nity, of the càdlàg process

ΛN
t =

1
N

Nt∑

i=1

δ(Xi
t ,U

i
t )

=
1
N

νN
t , (4.2)

taking values in MN = { 1
N ν, ν ∈M}.

The process (ΛN
t )t≥0 is a Markov process with generator LN = LN,1 + LN,2. An easy

computation, for F ∈ C2(R) and f ∈ C2,0
0 , gives that

LN,2Ff (ν) = 〈ν,m(.)∆xf + b(.).∇xf〉F ′(〈ν, f〉) + 〈ν,
m(.)
N

|∇xf |2〉F ′′(〈ν, f〉) (4.3)

and (using (4.1))

LN,1Ff (ν) = N

∫

X̄×U

{
λ(x, u)

(
F (〈ν, f〉+

1
N

f(x, u))− F (〈ν, f〉))

+ µ(x, u, IδW ? ν(x, u))
(
F (〈ν, f〉 − 1

N
f(x, u))− F (〈ν, f〉))

+
∫

U

(
F (〈ν, f〉+

1
N

f(x, v))− F (〈ν, f〉))M(x, u, v)dv

}
ν(dx, du) (4.4)

We deduce from Theorem 3.3 the following martingale properties.

Lemma 4.1 Let N ≥ 1 be �xed and assume that for some p ≥ 2, E
(〈

ΛN
0 , 1

〉p)
< ∞. For

all C2,0
0 -function f , the process

ZN,f
t =

〈
ΛN

t , f
〉− 〈

ΛN
0 , f

〉−
∫ t

0

∫

X̄×U

{
m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(
λ(x, u)− µ(x, u, IδW ? ΛN

s (x, u))
)
f(x, u) +

∫

U
f(x, v)M(x, u, v)dv

}
ΛN

s (dx, du)ds

(4.5)

is a càdlàg L2 martingale starting from 0 with predictable quadratic variation

〈ZN,f 〉t =
1
N

∫ t

0

∫

X̄×U

{
2m(x, u)|∇xf |2 +

(
λ(x, u) + µ(x, u, IδW ? ΛN

s (x, u))
)
f2(x, u)

+
∫

U
f2(x, v)M(x, u, v)dv

}
ΛN

s (dx, du)ds (4.6)

We assume

Assumption (H1):
1) The initial measures ΛN

0 converge in law and for the weak topology on MF (X̄ × U) to
some deterministic �nite measure ξ0 ∈ MF (X̄ × U), and supN E(〈ΛN

0 , 1〉3) < +∞.
2) All the parameters of the model are assumed to be continuous, either on X̄ × U , or on

14



X̄ × U × R.
3) There exists a constant kµ such that

∀x ∈ X , u ∈ U , r1, r2 ∈ R, |µ(x, u, r1)− µ(x, u, r2)| ≤ kµ|r1 − r2|. (4.7)

By the law of large numbers, Assumption (H1-1) is for example satis�ed for ΛN
0 =

1
N

∑N
i=1 δ(Xi

0,U i
0), with independent random variables (Xi

0, U
i
0){1≤i≤N} distributed follow-

ing the law ξ0 with �nite 3rd-order moment.

Let us recall that the parameters of di�usion, birth and mutation associated with ΛN

stay unchanged, whereas the parameter of selection µN is de�ned by (4.1).

Theorem 4.2 Assume Hypotheses (H) and (H1), and consider the sequence of processes
ΛN de�ned by (4.2). Then for all T > 0, the sequence (ΛN ) converges in law, in D([0, T ],MF (X̄× U)),
to a deterministic continuous function ξδ belonging to C([0, T ],MF (X̄ × U)).

This measure-valued function ξδ is the unique weak solution satisfying supt∈[0,T ]〈ξδ
t , 1〉 <

+∞ of the following nonlinear integro-di�erential equation. For all function f ∈ C2,b
0 ,

〈ξδ
t , f〉 = 〈ξ0, f〉+

∫ t

0

∫

X̄×U

{
m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(
λ(x, u)− µ(x, u, IδW ? ξδ

s(x, u))
)
f(x, u) +

∫

U
f(x, v)M(x, u, v)dv

}
ξδ
s(dx, du)ds

(4.8)

Remark 4.3 Applying (4.8) to the constant function equal to 1, the positivity of µ and
Hypotheses (H) gives 〈ξδ

t , 1〉 ≤ 〈ξ0, 1〉+ C
∫ t
0 〈ξδ

s , 1〉ds. We conclude by Gronwall's lemma
that any solution ξδ of (4.8) is bounded on every �nite time interval [0, T ]:

sup
t∈[0,T ]

〈ξδ
t , 1〉 ≤ 〈ξ0, 1〉eCT .

As a �rst step in the proof of Theorem 4.2, we now give a mild formulation for solutions
of (4.8). To this aim, and for each �xed trait u ∈ U , we denote by P u the semigroup of the
di�usion process normally re�ected at the boundary of X , with di�usion matrix m(·, u)Id
and drift coe�cient b(·, u).

Lemma 4.4 Let us consider a solution ξδ of (4.8). Then, for each measurable and bounded
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function ϕ de�ned on X̄ × U ,

〈ξδ
t , ϕ〉 = 〈ξ0, P

u
t ϕ〉+

∫ t

0

∫

X̄×U

{(
λ(x, u)− µ(x, u, IδW ? ξδ

s(x, u))
)
P u

t−sϕ(x, u)

+
∫

U
P v

t−sϕ(x, v)M(x, u, v)dv

}
ξδ
s(dx, du)ds. (4.9)

Proof. We may classically derive from (4.8) a space-time weak equation for measurable
functions ψs(x, u) = ψ(s, x, u) which are of class C1,2 on [0, t]×X̄ , measurable and bounded
in u and such that ∂nψ = 0 on [0, t]× ∂X × U , given by

〈ξδ
t , ψt〉 = 〈ξ0, ψ0〉+

∫ t

0

∫

X̄×U

{
∂sψs(x, u) + m(x, u)∆xψs(x, u) + b(x, u).∇xψs(x, u)

+
(
λ(x, u)− µ(x, u, IδW ? ξδ

s(x, u))
)
ψs(x, u) +

∫

U
ψs(x, v)M(x, u, v)dv

}
ξδ
s(dx, du)ds

(4.10)

Let us now consider a continuous function ϕ on X̄ × U and �x a time t ∈ [0, T ]. Let us
de�ne for (s, x, u) ∈ [0, t]× X̄ × U ,

ψs(x, u) = P u
t−sϕ(x, u).

Then ψ is solution of the boundary value problem

∂sψs(x, u) + m(x, u)∆xψs(x, u) + b(x, u).∇xψs(x, u) = 0 on [0, T ]×X × U
∂nψs(x, u) = 0 on [0, T ]× ∂X × U
ψt(x, u) = ϕ(x, u) on X̄ × U .

Equation (4.10) applied to this function ψ yields the evolution equation

〈ξδ
t , ϕ〉 = 〈ξ0, P

u
t ϕ〉+

∫ t

0

∫

X̄×V

{(
λ(x, u)− µ(x, u, IδW ? ξδ

s(x, u))
)
P u

t−sϕ(x, u)

+
∫

U
P v

t−sϕ(x, v)M(x, u, v)dv

}
ξδ
s(dx, du)ds. (4.11)

Equation (4.11) is true for each continuous (and then bounded) function ϕ, and character-
izes the �nite measure ξδ. Lemma 4.4 is proved. 2

Proof. (of Theorem 4.2). Let us �x T > 0.
Let us �rstly prove the uniqueness of solutions ξ of (4.8). Using Remark 4.3 and Lemma
4.4, we prove the uniqueness of bounded solutions of (4.9). Let us consider two such
solutions (ξt)t≥0 and (ξ̄t)t≥0 and compute the quantity |〈ξt − ξ̄t, ϕ〉|, for each measurable
and bounded function ϕ such that ‖ϕ‖∞ ≤ 1.
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Using (4.9), we obtain for t ≤ T

| 〈ξt − ξ̄t, ϕ
〉 | ≤

∫ t

0

∣∣∣∣
∫

X̄×U

{(
λ(x, u)− µ(x, u, IδW ? ξs(x, u))

)
P u

t−sϕ(x, u)

+
∫

U
P v

t−sϕ(x, v)M(x, u, v)dv

} (
ξs(dx, du)− ξ̄s(dx, du)

) ∣∣∣∣ds

+
∫ t

0

∫

X̄×U

∣∣∣
(
µ(x, u, IδW ? ξ̄s(x, u))− µ(x, u, IδW ? ξs(x, u))

)
P u

t−sϕ(x, u)
∣∣∣ ξ̄s(dx, du)ds

Now, using Hypotheses (H), applying Remark 4.3 to ξ̄ and since ‖ϕ‖∞ ≤ 1, there exists a
positive constant C1 such that for all (x, u) ∈ X̄ × U and all 0 < s ≤ t ≤ T ,

|λ(x, u)P u
t−sϕ(x, u) +

∫

U
P v

t−sϕ(x, v)M(x, u, v)dv| ≤ C1,

|µ(x, u, IδW ? ξ̄s(x, u))P u
t−sϕ(x, u)| ≤ µ0(1 + ‖IδW‖∞〈ξ̄s, 1〉) ≤ C1

while thanks to (H1-2),

|µ(x, u, IδW ? ξ̄s(x, u))− µ(x, u, IδW ? ξs(x, u))| ≤ kµ‖IδW‖∞ sup
‖ϕ‖∞≤1

|〈ξs − ξ̄s, ϕ〉|,

and then
∣∣∣∣
∫

X̄×U

(
µ(x, u, IδW ? ξ̄s(x, u))− µ(x, u, IδW ? ξs(x, u))

)
P u

t−sϕ(x, u)ξ̄s(dx, du)
∣∣∣∣

≤ C2 sup
‖ϕ‖∞≤1

|〈ξs − ξ̄s, ϕ〉|

where C2 is a positive constant. We deduce that there exists C > 0 such that

| 〈ξt − ξ̄t, ϕ
〉 | ≤ C

∫ t

0
sup

‖ϕ‖∞≤1
|〈ξs − ξ̄s, ϕ〉|ds

and by Gronwall's lemma, we conclude that for all t ≤ T , sup‖ϕ‖∞≤1 |〈ξt − ξ̄t, ϕ〉| = 0.

Thus, for all t ≤ T , ξt = ξ̄t and uniqueness holds.

Let us next prove that for all T > 0,

sup
N∈N∗

E

(
sup
[0,T ]

〈
ΛN

t , 1
〉3

)
< +∞ (4.12)

Introducing SN
k = inf{t ≥ 0,

〈
ΛN

t , 1
〉 ≥ k} for k ∈ N∗, a simple computation using the

speci�c form of LN,1Ff and LN,2Ff with f = 1 and F (y) = y3 and dropping the negative
death term yields

E

(
sup

s≤t∧SN
k

〈
ΛN

s , 1
〉3

)
≤ E(

〈
ΛN

0 , 1
〉3

) + CE

(∫ t∧SN
k

0
(〈ΛN

s , 1〉+
〈
ΛN

s , 1
〉3

)ds

)

where C is a positive constant independent of k and N . Then Assumption (H1-1) and
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Gronwall's lemma imply that there exists a constant CT independent of k and N such that
E

(
sups≤T∧SN

k

〈
ΛN

s , 1
〉3

)
≤ CT . We deduce that the sequence (SN

k )k tends a.s. to in�nity
and �nally obtain (4.12) by Fatou's lemma.

Using Remark 1.1, and following Roelly [37], one observes that the sequence of laws QN

of ΛN is uniformly tight in P(D([0, T ],MF (X̄ ×U))), where MF is endowed with the vague
topology, as soon as for any function f ∈ C2,0

0 , the sequence of the laws of the processes〈
ΛN , f

〉
is tight in P(D([0, T ],R)). Using Aldous' [1] and Rebolledo's [22] criteria, this

tightness follows from

sup
N∈N∗

E(sup
[0,T ]

| 〈ΛN
s , f

〉 |) < ∞, (4.13)

and from the tightness of the laws of (〈ZN,f 〉) and of the drift part of the semimartingales〈
ΛN , f

〉
.

Clearly, since f is bounded, (4.13) is a consequence of (4.12). Let us now consider stopping
times (S, S′) satisfying a.s. 0 ≤ S ≤ S′ ≤ S + δ ≤ T . Thanks to Doob's inequality, Lemma
4.1, and (4.12), we get

E
(
〈ZN,f 〉S′ − 〈ZN,f 〉S

)
≤ E

(
C

∫ S+δ

S

(〈
ΛN

s , 1
〉

+
〈
ΛN

s , 1
〉2

)
ds

)
≤ Cδ.

Similar arguments prove that the expectation of the �nite variation part of
〈
ΛN

S′ , f
〉 −〈

ΛN
S , f

〉
is bounded by Cδ. Finally it turns out that the sequence (QN )N is uniformly

tight.

Let us now denote by Q the limiting law in P(D([0, T ],MF (X̄ × U))) of a subsequence
of QN , still denoted by QN for simplicity. By construction, almost surely,

sup
t∈[0,T ]

sup
||f ||∞≤1

|〈ΛN
s , f〉 − 〈ΛN

s−, f〉| ≤ 1/N.

We deduce immediately that each process Λ with law Q is a.s. strongly continuous. Let us
�nally prove that it is the unique solution of (4.8) .

For t ≤ T , f ∈ C2,0
0 and ν ∈ D([0, T ],MF (X̄ × U)), let us de�ne

Ψt,f (ν) = 〈νt, f〉 − 〈ν0, f〉 −
∫ t

0

∫

X̄×U

{
m(x, u)∆xf(x, u) + b(x, u).∇xf(x, u)

+
(
λ(x, u)− µ(x, u, IδW ? νs(x, u))

)
f(x, u) +

∫

U
f(x, v)M(x, u, v)dv

}
νs(dx)ds.

We want to show that for any t ≤ T ,

E (|Ψt,f (Λ)|) = 0, (4.14)
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knowing from Lemma 4.1 that

ZN,f
t = Ψt,f (ΛN ). (4.15)

A fair computation using Lemma 4.1, Hypotheses (H) and (H1), and (4.12) shows that

E
(
|ZN,f

t |2
)

= E
(
〈ZN,f 〉t

)
≤ Cf

N
E

(∫ t

0

{
1 +

〈
ΛN

s , 1
〉2

}
ds

)
≤ Cf,t

N
(4.16)

which goes to 0 as N tends to in�nity. On another hand, since Λ is a.s. strongly continuous,
since f ∈ C2,0

0 and thanks to the assumption (H), the function Ψt,f is a.s. continuous at
Λ. Furthermore, for any ν ∈ D([0, T ],MF (X̄ × U)),

|Ψt,f (ν)| ≤ Ct,f sup
[0,t]

(
1 + 〈νs, 1〉2

)
,

and (4.12) implies that the sequence (Ψt,f (ΛN ))N is uniformly integrable. Thus

lim
N

E
(|Ψt,f (ΛN )|) = E (|Ψt,f (Λ)|) (4.17)

Combining (H1-1), (4.15), (4.16) and (4.17), we conclude that (4.14) holds and that (4.8)
is satis�ed for any f ∈ C2,0

0 .

Then Λ is uniquely identi�ed to ξδ, and the sequence (ΛN ) converges to ξδ in D([0, T ],MF (X̄× U)),
where MF (X̄ × U) is endowed with the vague topology. To extend this result to the weak
topology, we use a criterion proved in [28]. Since the limiting process is continuous, it
su�ces to prove that the sequence (〈ΛN , 1〉)N converges in law to 〈ξδ, 1〉 in D([0, T ],R).
We may apply what has been done above with f ≡ 1. Theorem 4.2 is proved. 2

In the next section, we will be interested in the limit of small spatial interaction range
δ. An intermediate result consists in proving the existence of a density for each measure
ξδ
t , t ≥ 0. We make the additional
Assumption (H2):
1) The di�usion coe�cient m(x, u) is of class C2 in x and the second derivative of m (in
x) is α-Hölderian, uniformly in u, with α > 0. Moreover, m is assumed to be positive.
Hence, since X̄ × U is a compact set, there exists m∗ > 0 such that for all (x, u) ∈ X̄ ×U ,

m(x, u) ≥ m∗ > 0.

2) The drift coe�cient b(x, u) is of class C1 in x and the derivative of b (in x) is α-
Hölderian, uniformly in u, with α > 0.

Assumptions (H) and (H2) and the smoothness of ∂X allow us to adapt Sato-Ueno [40]
(Theorem 2.1 and Appendix) to obtain the following lemma.
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Lemma 4.5 There exists a unique function pt(x, u, y) de�ned on R+ × X̄ × U × X̄ , con-
tinuous in (t, x, y) and which is a density function in y ∈ X̄ such that for each continuous
function ϕ de�ned on X̄ × U , each (x, u) ∈ X̄ × U ,

P u
t ϕ(x, u) =

∫

X̄
pt(x, u, y)ϕ(y, u)dy (4.18)

Let us now prove the propagation in time of the absolute continuity property of the
measure-valued solution ξδ.

Theorem 4.6 Assume (H), (H1) and (H2) and that ξ0(dx, du) = g0(x, u)dxdu. Then for
each time t, the measure ξδ

t has a density gδ ∈ L∞([0, T ], L1) with respect to the Lebesgue
measure on X̄ × U . Moreover, for each t and u, the function gδ

t (., u) is continuous on X̄ .

Proof. Let us come back to the equation (4.9) satis�ed by ξδ.

Using basic results on linear parabolic equations, we construct by induction a sequence
of functions (gn)n satisfying in a weak sense

∂tg
n+1
t (x, u) = ∆x(m(x, u)gn+1

t (x, u))−∇x(b(x, u)gn+1
t (x, u))

+ λ(x, u)gn
t (x, u) +

∫

U
gn
t (x, v)M(x, u, v)dv − µ(x, u, IδW ? gn

t (x, u))gn+1
t (x, u)

gn+1
0 (x, u) = g0(x, u)

∇xgn+1(t, x, u).n(x) = 0 ∀(t, x, u) ∈ R+ × ∂X × U . (4.19)

Thanks to the nonnegativity of g0, µ, λ and M , and applying the maximum principle, we
can show that the functions gn are nonnegative (see [6]). By symmetry of M , Equation
(4.19) (understood in the weak sense) means that for all C2,b

0 -function ϕ from X̄ × U into
R,

〈gn+1
t , ϕ〉 = 〈g0, ϕ〉+

∫ t

0

∫

X̄×U

{(
m(x, u)∆xϕ(x, u) + b(x, u).∇xϕ(x, u)

)
gn+1
s (x, u)

+
(

λ(x, u)ϕ(x, u) +
∫

U
ϕ(x, v)M(x, u, v)dv

)
gn
s (x, u)

− µ(x, u, IδW ? gn
s (x, u))ϕ(x, u)gn+1

s (x, u)
}

dx du ds. (4.20)
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The associated mild equation writes as before: for each continuous function ϕ,

〈gn+1
t , ϕ〉 =

∫

X̄×U

( ∫

X̄
pt(x, u, y)ϕ(y, u)dy

)
g0(x, u)dxdu

+
∫ t

0

∫

X̄×U

{[
λ(x, u)

( ∫

X̄
pt−s(x, u, y)ϕ(y, u)dy

)

+
∫

U

( ∫

X̄
pt−s(x, v, y)ϕ(y, v)dy

)
M(x, u, v)dv

]
gn
s (x, u)

− µ(x, u, IδW ? gn
s (x, u))

( ∫

X̄
pt−s(x, u, y)ϕ(y, u)dy

)
gn+1
s (x, u)

}
dxduds.

(4.21)

Hypotheses on the coe�cients allow us to apply Fubini's theorem and to obtain that
for each (y, u) ∈ X̄ × U ,

gn+1
t (y, u) =

∫

X̄
pt(x, u, y)g0(x, u)dx

+
∫ t

0

∫

X̄

{
(λ(x, u)pt−s(x, u, y)gn

s (x, u) +
∫

U
pt−s(x, u, y)gn

s (x, v)M(x, u, v)dv

− µ(x, u, IδW ? gn
s (x, u))pt−s(x, u, y)gn+1

s (x, u)
}

dxds. (4.22)

Then, thanks to the nonnegativity of gn+1, we get

0 ≤ gn+1
t (y, u) ≤

∫

X̄
pt(x, u, y)g0(x, u)dx +

∫ t

0

∫

X̄

{
(λ(x, u)pt−s(x, u, y)gn

s (x, u)

+
∫

U
pt−s(x, u, y)gn

s (x, v)M(x, u, v)dv

}
dxds, (4.23)

and deduce easily, integrating over y ∈ X̄ , using Fubini's Theorem, the symmetry of M

and Gronwall's Lemma that there exists a constant C independent of δ such that

sup
n∈N

sup
t≤T

‖gn
t ‖1 ≤ ‖g0‖1e

CT . (4.24)

Let us now show the convergence of the sequence gn in L∞([0, T ], L1) to a function gδ.
A straightforward computation using (4.22), Hypotheses (H), (H1) and (H2), and similar
arguments as above yields

sup
s≤t

‖gn+1
s − gn

s ‖1 ≤ C

∫ t

0

(
sup
u≤s

‖gn+1
u − gn

u‖1 + sup
u≤s

‖gn
u − gn−1

u ‖1

)
ds

where C is a positive constant. Thanks to Gronwall's Lemma, we deduce that for each
T > 0, each t ≤ T and each n, sups≤t ‖gn+1

s − gn
s ‖1 ≤ C

∫ t
0 supu≤s ‖gn

u − gn−1
u ‖1ds.

Picard's Lemma allows us to conclude that for any T > 0,
∑

n∈N supt∈[0,T ] ‖gn+1
t −gn

t ‖1 <

+∞, and the sequence (gn)n converges in L∞([0, T ], L1) to a function gδ. We deduce from
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(4.24) that

sup
δ>0

sup
t≤T

‖gδ
t ‖1 ≤ ‖g0‖1e

CT . (4.25)

Moreover, the function gδ is solution of (4.8), and thus, the uniqueness result proved in
Theorem 4.2 implies that ξδ(dx, du) = gδ(x, u)dxdu. Then, the measure ξδ is absolutely
continuous with respect to the Lebesgue measure, and the density gδ is weak solution of
the nonlocal nonlinear partial di�erential equation

∂tg
δ = ∆x(m(x, u)gδ

t (x, u))−∇x(b(x, u)gδ
t (x, u))

+
(
λ(x, u)− µ(x, u, IδW ? gδ

t (x, u))
)
gδ
t (x, u) +

∫

U
gδ
t (x, v)M(x, u, v)dv ;

gδ
0(x, u) = g0(x, u) ;

∇xgδ(t, x, u).n(x) = 0 ∀(t, x, u) ∈ R+ × ∂X × U . (4.26)

Lemma 4.4 implies that gδ is also solution of the mild equation

gδ
t (y, u) =

∫

X
pt(x, u, y)g0(x, u)dx

+
∫ t

0

∫

X

{(
λ(x, u)− µ(x, u, IδW ? gδ

s(x, u))
)
pt−s(x, u, y)gδ

s(x, u)

+
∫

U
pt−s(x, u, y)gδ

s(x, v)M(x, u, v)dv

}
dxds. (4.27)

Using (4.27), the continuity of y 7→ gδ
t (y, u) follows immediately from the continuity of

(t, x, y) 7→ pt(x, u, y), the nonnegativity and boundedness of gδ and the boundedness of
birth parameters. 2

5 Convergence of the number density when the interaction
range decreases

Our aim in this section is to prove that under suitable assumptions, the sequence (gδ)

converges, when δ tends to 0, to a function g ∈ L∞([0, T ], L1) with initial condition g0,
which is weak solution of the locally nonlinear partial di�erential equation

∂tgt(x, u) = ∆x(m(x, u)gt(x, u))−∇x(b(x, u)gt(x, u))

+
(
λ(x, u)− µ(x, u, ρg(t, x, u))

)
gt(x, u) +

∫

U
gt(x, v)M(x, u, v)dv ;

∇xg(t, x, u).n(x) = 0 ∀(t, x, u) ∈ R+ × ∂X × U (5.1)
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where ρg describes the (local) interaction in x, de�ned for (x, u) ∈ X̄ × U by

ρg(t, x, u) =
∫

U
W (u− v)gt(x, v)dv.

In order to control the terms IδW ∗ gδ uniformly in δ in the nonlinear term of (4.26), we
need L∞-estimates on gδ and we make the following initial data assumption:

(H3) The initial density g0(x, u) is bounded on X × U .

Proposition 5.1 Assume (H), (H1), (H2), (H3). Then there exists a positive constant
CT , such that

sup
δ>0

sup
t∈[0,T ]

‖gδ
t ‖∞ ≤ CT ‖g0‖∞. (5.2)

Proof. Let us again consider the sequence (gn)n approximating gδ introduced in the proof
of Theorem 4.6. The maximum principle implies that

sup
n

sup
t≤T

‖gn
t ‖∞ ≤ C‖g0‖∞,

where C > 0 is a constant only depending on T , λ∗ and M∗ (and independent of δ). This
property propagates taking the limit in n, and (5.2) is proved. (For details on the maxi-
mum principle, see [6].) 2

Let us now prove the following convergence theorem:

Theorem 5.2 Assume hypotheses (H), (H1), (H2), (H3). Assume that the measure Iδ(y)dy

weakly converges to the Dirac measure δ0 as δ tends to 0. (To �x ideas we may assume that
Iδ(x) = Cδ1{|x|≤δ}.) Then the sequence (gδ)δ>0 converges in L∞([0, T ], L1) as δ tends to
0, to the unique function g ∈ L∞([0, T ], L1 ∩L∞(X̄ × U)) satisfying for each y, u ∈ X̄ × U
the evolution equation

gt(y, u) =
∫

X
pt(x, u, y)g0(x, u)dx

+
∫ t

0

∫

X

{(
λ(x, u)− µ(x, u, ρg(s, x, u))

)
pt−s(x, u, y)gs(x, u)

+
∫

U
pt−s(x, u, y)gs(x, v)M(x, u, v)dv

}
dxds. (5.3)

Moreover, for each t and u, the function gt(., u) is continuous on X .

Proof. One can easily prove the existence and uniqueness of the integrable and bounded
function g solution of (5.3) by adapting the proofs of Theorem 4.6 and Proposition 5.1,
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replacing µ(x, u, IδW ? g) by µ(x, u, ρg). The continuity of y → gt(y, u) is obtained as in
the proof of Theorem 4.6, and we can show as in the proof of Proposition 5.1 that

sup
t∈[0,T ]

‖gt‖∞ ≤ CT ‖g0‖∞. (5.4)

Let us write

gδ
t (y, u)− gt(y, u) =

∫ t

0

∫

X

{
(λ(x, u)pt−s(x, u, y)

(
gδ
s(x, u)− gs(x, u)

)

+
∫

U
pt−s(x, u, y)

(
gδ
s(x, v)− gs(x, v)

)
M(x, u, v)dv

−
[
µ(x, u, IδW ? gδ

s(x, u))gδ
s(x, u)− µ(x, u, ρg(s, x, u))gs(x, u)

]
pt−s(x, u, y)

}
dxds

(5.5)

Using (5.2) and (5.4), the unique term which deserves attention is the term µ(x, u, ρg(x, u))−
µ(x, u, IδW ? gδ(x, u)). By (4.7), we have

∫

X
|µ(x, u, ρg(t, x, u))− µ(x, u, IδW ? gδ

t (x, u))|dx

≤ kµ

∫

X

∣∣∣∣
∫

U
W (u− v)gt(x, v)dv −

∫

X×U
Iδ(x− z)W (u− v)gδ

t (z, v)dzdv

∣∣∣∣ dx

≤ kµ

∫

X

( ∣∣∣∣
∫

U
W (u− v)gt(x, v)dv −

∫

X×U
Iδ(x− z)W (u− v)gt(z, v)dzdv

∣∣∣∣

+
∫

X×U
Iδ(x− z)W (u− v)

∣∣∣gt(z, v)− gδ
t (z, v)

∣∣∣ dzdv

)
dx

Let us �x our attention on the �rst term in the last right inequality, that we will call Aδ(t, u).
Since Iδ(y)dy weakly converges to δ0,

∫
X Iδ(x− z)gt(z, v)dz converges to gt(x, v) as δ goes

to 0. Because of (5.4), this convergence holds in a bounded pointwise sense with respect to
t ≤ T , x ∈ X and v ∈ U . Then Lebesgue's theorem implies that Aδ,T :=

∫
U

∫ T
0 Aδ(t, u)dtdu

tends to 0 as δ tends to 0.

Now, integrating (5.5) with respect to dy du, a straightforward computation yields

sup
s≤t

‖gδ
s − gs‖1 ≤ CT Aδ,T + C ′

T

∫ t

0
sup
u≤s

‖gδ
u − gu‖1ds.

We conclude using Gronwall's lemma. 2

The zero interaction range equation (5.1) has been numerically studied in Prévost [34].
A lot of simulations based on �nite element schemes are given, studying the simultaneous
e�ects of the di�usion, mutation and selection on the invasion of the domain by the popula-
tion. The simulations show that the coe�cient which seems to a�ect the most the invasion
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aptitude is the mutation size coe�cient. However, they restrict to local interactions.

In the next section, we wish additionally to illustrate, by simulations of the stochastic
discrete model, the e�ect of the spatial interaction range on the interplay between inva-
sion and evolution, and the emergence of spatial and phenotypic diversity (clustering and
polymorphism). Our simulations focus on the qualitative di�erences between local and
nonlocal interactions.

6 Simulations

We will give in this section simulations of several biologically realistic examples, based
on the algorithm of Section 3. The Euler scheme to simulate re�ected di�usions will be
detailed in Section 6.1, as well as some simpli�cations in the algorithm of Section 3, in the
case of linear death rates.

Next, we will give simulations of three biologically relevant examples. First (Sec-
tion 6.2), we show that, when migrations and mutations are not too strong, a large in-
teraction range induces a spatial organization of the population as a �nite set of isolated
clusters. Conversely, for su�ciently small interaction range, the clustering phenomenon is
no more observed. Second (Section 6.3), we propose another example where a similar phase
transition occurs for spatial clustering and in which the critical interaction range can be
identi�ed. In our last example (Section 6.4), we investigate a model describing the invasion
of a species with evolving dispersal speed (the trait is proportional to the migration speed,
as in [6]).

6.1 Euler scheme and algorithm for logistic interaction

As mentionned in Section 3, the re�ected di�usion of our particles can be simulated with
an Euler scheme. We will assume in this subsection and in the following examples that
X = (α, β) ⊂ R and we will use the scheme of Lépingle [24] (see also [17]). Fix x ∈ [α, β]

and u ∈ U . On any time interval where its trait is constant, an indivual at (x, u) moves
according to the re�ected di�usion

Xt = x +
∫ t

0

√
2m(Xs, u)dBs +

∫ t

0
b(Xs, u)ds− kt ,

|k|t =
∫ t

0
1{Xs∈{α,β}}d|k|s ; kt =

∫ t

0

(
1{Xs=β} − 1{Xs=α}

)
d|k|s, (6.1)

where B is a one-dimensional Brownian motion.

If m and b are Lipschitz with respect to the �rst variable, then one can simulate this
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di�usion on [0, T ] as follows. Fix h > 0, ᾱ and β̄ such that α < ᾱ < β̄ < β, and let n be
the �rst integer greater than T/h. For ρ ∈ {0, 1, . . . , n− 1} and ρh < t ≤ (ρ + 1)h, let

X̃0 = x,

X̃t = max[α, min[β, X̃ρh + b(X̃ρh, u)(t− ρh) +
√

2m(X̃ρh, u)(Bt −Bρh)

+ 1{X̃ρh<ᾱ}max(0, Aρ
t − (X̃ρh − α))

− 1{X̃ρh>β̄}max(0, Bρ
t + (X̃ρh − β))]],

where

Aρ
t = sup

ρh≤s≤t

{
−b(X̃ρh, u)(s− ρh)−

√
2m(X̃ρh, u)(Bs −Bρh)

}
,

Bρ
t = sup

ρh≤s≤t

{
b(X̃ρh, u)(s− ρh) +

√
2m(X̃ρh, u)(Bs −Bρh)

}
.

Then, there exists a constant C independent of h such that for any function f on [α, β]

with �nite variation bounded by 1, sup0≤t≤T |E(f(Xt)− f(X̃t))| ≤ C
√

h.

In each step of this scheme, one has to simulate simultaneously Bt and St := sups≤t(aBs+

bs) for �xed constants a, b. This can be done as follows (Shepp [41]). Let U be a Gaussian
centered random variable with variance t, and let V be an exponential random variable
with parameter 1/2t independent of U . Put

Y =
1
2

(
aU + bt +

√
a2V + (aU + bt)2

)
.

Then the vectors (Bt, St) and (U, Y ) have the same distribution.

Note that this scheme can be easily generalized to state spaces of the form (α1, β1) ×
. . .× (αd, βd) ⊂ Rd, as explained in [24].

Next, we want to study a particular case in which we can considerably reduce the
complexity of the algorithm. In Section 3, one needs to compute IδW ∗ ν(x, u) at some
point (x, u) ∈ X × U at each time step, which involves a sum over all individuals in the
population. In the case of logistic competition (linar death rate) where

µ(x, u, r) = µ0(x, u) + µ1(x, u)r, (6.2)

one can use the following algorithm.

Fix a constant Cδ in a similar way as in (2.6) such that µ0(x, u)+λ∗+‖M∗‖1 ≤ Cδ and
µ1(x, u)‖IδW‖∞ ≤ Cδ. Take the Brownian motions (Bj,k)j,k∈N and the random variables
(θk)k∈N, (Vk)k∈N and (τk)k∈N as in Section 3. Set T0 = 0 and N0 = N (the initial number
of individuals). Assume that (Tk−1, Nk−1, XTk−1

, UTk−1
) are given. Nk−1 is the number of

individuals at time Tk−1. At this time, their positions and traits are the coordinates of the
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vectors XTk−1
= (Xi

Tk−1
)1≤i≤Nk−1

and UTk−1
= (U i

Tk−1
)1≤i≤Nk−1

. The two �rst steps of the
algorithm are the same: the new time step is given by Tk = Tk−1 + τk/Nk−1(Nk−1 + 1)

and the motion of each particle is governed by the SDE with normal re�ection (3.1).

The third step deals with the di�erent events that may happen at time Tk. Choose at
random one individual Ik = i uniformly among the Nk−1 individuals living during the time
interval [Tk−1, Tk). Its position and trait are (Xi

Tk
, U i

Tk−1
). The event occurring at time

Tk is decided by comparing θk with constants related to the rate of each kind of event.
The only di�erence with the algorithm of Section 3 is in the �rst sub-step, that has to be
divided in two steps as follows:

• If 0 ≤ θk <
Nk−1

Nk−1+1 =: θi
0(XTk

, UTk−1
), then let j ∈ {1, . . . , Nk−1} be such that

j−1
Nk−1+1 ≤ θk < j

Nk−1+1 . If θk − j−1
Nk−1+1 <

µ1(Xi
Tk

,U i
Tk−1

)Iδ(Xi
Tk
−Xj

Tk
)W (U i

Tk−1
−Uj

Tk−1
)

Cδ
,

then the individual i dies from competition with individual j and Nk = Nk−1 − 1.
Otherwise, nothing happens and Nk = Nk−1.

• If θi
0(XTk

, UTk−1
) ≤ θk ≤ θi

0(XTk
, UTk−1

) +
µ0(Xi

Tk
,U i

Tk−1
)

Cδ(Nk−1+1) =: θi
1(XTk

, UTk−1
), then the

individual i dies by natural death and Nk = Nk−1 − 1.

The three other sub-steps are the same.

The main di�erence with the algorithm of Section 3 is that we no longer have to
compute

∑Nk−1

j=1 Iδ(Xi
Tk
− Xj

Tk
)W (U i

Tk−1
− U j

Tk−1
) in the �rst sub-step, but it su�ces to

compute Iδ(Xi
Tk
−Xj

Tk
)W (U i

Tk−1
− U j

Tk−1
) for chosen i and j. Moreover, we do not need

to compute the position of each individual in the population at each time step. The third
step above only needs to compute the position of at most two particles at time Tk (the
particles numbered i and j).

We assume in the following examples a logistic competition of the form (6.2) and a
physical space of the form X = (α, β). Our simulations are realized with the previous
algorithm.

6.2 Example 1. Spatial clustering

We consider here a set of parameters similar to the one of [10] and [34], in which, for
each spatial position x, the growth rate is maximal for the trait value u = x. This
can represent the e�ect of a gradual spatial distribution of di�erent resources, involving
a gradual distribution of traits. For example, for some bird species, a linearly spatially
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varying seed size determines a linear variation of the beak sizes (Grant and Grant [18]).

X = (0, 1), U = [0, 1], m(x, u) ≡ m, b(x, u) ≡ 0,

λ(x, u) = 2− 20(x− u)2 if |x− u| ≤ 1/
√

10; 0 otherwise,
µN (x, u, r) = 1 +

r

N
, Iδ(y) = Cδ1{|y|≤δ}, W (v) ≡ 1.

Moreover, M(x, u, v) = 0.1 × ks(u, v) where 0.1 is the mutation rate and ks(u, v) is the
probability density of a Gaussian random variable with mean u and standard deviation s

conditioned on staying in U = [0, 1]. Therefore, we have four free parameters in this model,
m, δ, s and the population size N . The initial population in our simulations is composed
of N individuals at (0.5, 0.5).

The simulations of this model show, as in [34], that the invasion of space occurs along
the diagonal x = u, and, as in [10], that speciation (stable coexistence of several sub-
populations with di�erent typical traits) may occur in this model, accompanied with a
spatial specialization. Several di�erent population clusters may coexist at di�erent po-
sition, with trait values located around the corresponding optimal traits. We have in-
vestigated in our simulations the e�ect of the di�erent parameters on the clustering and
polymorphism of the population. We give pictures of the seemingly stable state of the pop-
ulation (Fig. 1). Our �rst general observation is that the clusters are more concentrated
at the boundary of the domain. Indeed, the re�ected di�usion governing the motion of
individuals is not isotropic close to this boundary, so that the population density is bigger.

On the one hand, we have investigated the e�ect of the interaction range δ. The
main result is that the existence, the number of clusters and the distance between clusters
strongly depend on the interaction range δ. As shown in Fig. 1(a�c), the number of clusters
decreases with δ and the distance between two population peaks is roughly 2δ, which is
exactly the width of the interaction interval. The emergence of population clusters is
mainly a consequence of local births ([45]). Indeed, since the progeny of an individual
is close to its original location, each individual's progeny can create a colony with stable
position on short timescales. Once an individual is at a distance greater than δ from the
main part of the population, it experiences very little competition and it can create a new
colony. When several colonies appear, they organize in a way to minimize the competition
between them and to maximize the growth rate.

If δ is su�ciently small, we observe a �at distribution of the population (Fig. 1(c)), and
thus a qualitative di�erence with respect to cases (a�b). As an explanation, decreasing
δ increases the number of clusters and the width of a cluster increases with the speed of
dispersal m and the range of mutation s. Then no distinct colony can be observed for
su�ciently small δ, and �xed m and s.
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(a) N = 3000, s = 0.01, m = 0.01, δ = 0.3.
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(b) N = 3000, s = 0.01, m = 0.01, δ = 0.1.
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(c) N = 3000, s = 0.01, m = 0.01, δ = 0.03.

 0

 5

 10

 15

 20

 25

 30

 35

1

0.5

0

1

0.5

0

 0

 5

 10

 15

 20

 25

 30

 35

N

"SSmatr161.txt" matrix

x

u

N

(d) N = 50, s = 0.01, m = 0.01, δ = 0.1.
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(e) N = 3000, s = 0.003, m = 0.03, δ = 0.1.
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(f) N = 3000, s = 0.03, m = 0.03, δ = 0.1.

Figure 1: Simulations of example 1 for various parameters. All of them are taken at time
4000.
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We also investigated the e�ect of the population size N . It appears that this param-
eter has very little qualitative e�ect on the clustering of the population, except for small
N (Fig. 1(d)), where the width of each clusters is reduced, and we observe much more
�uctuations in the population distribution. However, we still can observe a similar pattern
of population clusters than in Fig. 1(b).

On the other hand, we also studied the e�ect of the di�usion coe�cient m and the
mutation range s. Comparing Fig. 1(b) and (f), we observe that too large s and m induce
the same �at distribution as for small δ. This con�rms that the clusters pattern depends
mainly on the balance between m and s, and δ. In Fig. 1(f), quick movements mix the
population so that no spatial structure can appear.

Finally, we also studied the relative e�ect of s and m in the appearance of spatial or
phenotypic structure. As shown in Fig. 1(e), small s can induce a di�erentiation over the
phenotype space U even when m is large enough to have a �at distribution over space X
(compare with Fig. 1(f)). Fig. 1(e) can be seen as an intermediate state between Fig. 1(a)
and Fig. 1(f). When m is reduced instead of s, a reversed pattern can be observed.

6.3 Example 2. The role of spatial competition for clustering

As we have seen above, the balance between the spatial competition range δ and the
di�usion parameters s and m has an important e�ect on the clustering of the population.
Here we want to address the balance between the range of competition and the growth
rate. For this purpose, we consider the following model, inspired by the adaptive dynamics
model of [7]:

X = (−1, 1), U = [0, 2], m(x, u) ≡ m, b(x, u) ≡ 0,

λ(x, u) = exp(−x2/2ρ2), µN (x, u, r) = 1 +
r

N
,

Iδ(y) = Cδ exp(−y2/2δ2), W (v) = exp(−v2/0.02).

and the same mutation kernel as above. This example has �ve free parameters m, δ, s, N ,
and ρ, which represents the width of the space region with signi�cant growth rate (namely,
a parameter describing the width of the space region with high concentration of resources).
The initial population in our simulations is composed of N individuals at (0, 1). Observe
that in this example, the trait has no e�ect on the growth rate, so that the trait structure
is neutral (all individual's parameters are equal, independent of the trait, in absence of
interaction).

Remark that if we consider the space X as a trait space, this model is similar to
the one of [7]. In particular, the biological theory of adaptive dynamics ([16]) suggests
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(a) δ = 0.9, ρ = 1.

 0

 100

 200

 300

 400

 500

 600

1

0

-1

2

1

0

 0

 100

 200

 300

 400

 500

 600

N

"SSmatr199.txt" matrix

x

u

N

(b) δ = 1.1, ρ = 1.
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(c) δ = 0.5, ρ = 1.
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(d) δ = 0.1, ρ = 1.

Figure 2: Simulations of example 2. Neutral case. All the �gures are taken at time 5000,
except the last one, taken at time 10000 (more time is needed to �ll the whole space). In
all the simulations, N = 1000, s = 0.003 and m = 0.003.

that evolutionary branching, i.e. the split of the population into two sub-populations with
di�erent traits stably coexisting, translating in our model into spatial clustering, occurs
when the range of interaction (δ in our case) is smaller than the range of the growth rate
(ρ in our case). This is illustrated by Fig. 2(a) and (b), where, in (a), δ < ρ and the
population stabilizes around two distinct positions (branching occurs) and in (b), δ > ρ

and the population stabilizes around position 0 (there is no branching).

Figures (c) and (d) prove that other phase transitions occur for smaller δ, leading to
the coexistence of three clusters or more. As in example 1, we notice in Figure (d) that
very small δ leads to a distribution without distinct clusters.

It is possible to add some phenotypic structure to this example by assuming that the
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(a) t = 10000.
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(b) t = 20000.
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(c) t = 45000.
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(d) t = 80000.

Figure 3: Simulations of example 2. Trait-dependent case. In this simulation, N =
1000, s = 0.003, m = 0.003 and δ = 1.

growth rate depends on the trait u, in a way such that spatial branching occurs for some
traits but not for others, according to the above branching criterion. We take the same
parameters, except for the birth rate, which has the following form.

λ(x, u) = exp(−x2/2(u + 0.1)).

The parameter ρ is then replaced by
√

u + 0.1, so that branching occurs if
√

u + 0.1 > δ.

This is what happens actually for small times (Fig. 3(a)), but after a longer time
(Fig. 3(b,c)), the two clusters spread over the trait space because of the mutations. Even-
tually, if we let time go on, we actually observe the appearance and the spread of three
spatial clusters, colonizing all the trait space (Fig. 3(d)).
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6.4 Example 3. Invasion and evolution of migration speed

Here, we investigate a model describing the invasion of a species with evolving dispersal
speed (as in [6]). This can model phenomena such as the invasion of Australia by cane
toads, for which an adaptation to high invasion speeds has been recently detected (Phillips
et al. [33]). The parameters are as follows.

X = (−1, 1), U = [0, 3], m(x, u) ≡ m(u + 0.1), b(x, u) ≡ 0,

λ(x, u) = 1, µN (x, u, r) = 1 +
r

N
,

Iδ(y) = Cδ1{|y|≤δ}, W (v) = exp(−10v2).

and the same mutation kernel as above. Here we study invasion into an homogeneous space
(λ is constant). The di�usion rate m is proportional (up to a constant) to the trait u. Thus,
individuals with large u move fast. The trait u can be a morphological trait responsible
for the speed of dispersal (e.g. the length of legs for toads, [33]). Space competition
occurs between individuals within a distance δ, and the kernel W models competition
between close traits. This example has four free parameters, the di�usion coe�cient m,
the interaction range δ, the standard deviation of mutations s and the population size N .

In Fig. 4 and 5, we present two extreme cases with respect to the initial trait distri-
bution, but with identical parameters. In the �rst one, all individuals are at (physical)
position 0, and with traits regularly distributed in U = [0, 3]. In the second one, all
individuals are initially located at a single point (0, 0).

In both �gures, we observe a triangular invasion pattern indicating that the invasion
front is composed of faster individuals. In Fig. 5, we also observe a simultaneous invasion
in physical and trait spaces, and a slower spread of the population. This can be explained
by the fact that the population, initially composed of slow individuals, has �rst to colonize
the trait space before invading the physical space. Because of the progressive appearance
of larger traits, the invasion speed increases over time (compare the di�erent time values
in Fig. 5).

When parameters vary, the simulations of this microscopic model can show di�erent
ways of colonization. As an illustration, we give an example (Fig. 6) where the interaction
range δ is bigger. The parameters N and m are chosen such that two clusters appear for
large traits and spread over the trait space in a short time. The initial condition is the
same as in Fig. 4. We can observe two branches linking the initial cluster with the two
extreme valued clusters (Fig. 6(c,d)).
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(a) t = 25.
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(b) t = 125.
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(d) t = 500.

Figure 4: Simulations of example 3. The parameters are N = 100, s = 0.03,m = 0.003
and δ = 0.1. The initial condition is composed of N individuals located at 0 and with trait
values 3i/N for 1 ≤ i ≤ N .
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(b) t = 750.
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(c) t = 850.
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(d) t = 1000.

Figure 5: Simulations of example 3. The parameters are N = 100, s = 0.03,m = 0.003
and δ = 0.1. The initial condition is composed of N individuals located at (0, 0).

35



 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

1

0

-1

3

2

1

0

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

N

"SSmatr002.txt" matrix

x

u

N

(a) t = 5.
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(b) t = 10.
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(c) t = 20.
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(d) t = 50.

Figure 6: Simulations of example 3. The parameters are N = 1000, s = 0.03,m = 0.03
and δ = 1. The initial condition is composed of N individuals located at 0 and with trait
values 3i/N for 1 ≤ i ≤ N .
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