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Abstract

The problem of ranking/ordering instances, instead of simply clas-

sifying them, has recently gained much attention in machine learning.

In this paper we formulate the ranking problem in a rigorous statistical

framework. The goal is to learn a ranking rule for deciding, among two

instances, which one is "better," with minimum ranking risk. Since the

natural estimates of the risk are of the form of a U-statistic, results of

the theory of U-processes are required for investigating the consistency

of empirical risk minimizers. We establish in particular a tail inequality

for degenerate U-processes, and apply it for showing that fast rates of

convergence may be achieved under speci�c noise assumptions, just like

in classi�cation. Convex risk minimization methods are also studied.

�The second author acknowledges support by the Spanish Ministry of Science and Tech-

nology and FEDER, grant BMF2003-03324 and by the PASCAL Network of Excellence under

EC grant no. 506778.
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1 Introduction

Motivated by various applications including problems related to document re-

trieval or credit-risk screening, the ranking problem has received increasing

attention both in the statistical and machine learning literature. In the rank-

ing problem one has to compare two di�erent observations and decide which

one is �better�. For example, in document retrieval applications, one may

be concerned with comparing documents by degree of relevance for a partic-

ular request, rather than simply classifying them as relevant or not. Similarly,

credit establishments collect and manage large databases containing the socio-

demographic and credit-history characteristics of their clients to build a ranking

rule which aims at indicating reliability.

In this paper we de�ne a statistical framework for studying such ranking

problems. The ranking problem de�ned here is closely related to Stute's condi-

tional U-statistics [36, 37]. Indeed, Stute's results imply that certain non-

parametric estimates based on local U-statistics gives universally consistent

ranking rules. Our approach here is di�erent. Instead of local averages, we

consider empirical minimizers of U-statistics, more in the spirit of empirical

risk minimization popular in statistical learning theory, see, e.g., Vapnik and

Chervonenkis [40], Bartlett and Mendelson [6], Bousquet, Boucheron, Lugosi

[8], Koltchinskii [24], Massart [29] for surveys and recent development. The im-

portant feature of the ranking problem is that natural estimates of the ranking

risk involve U-statistics. Therefore, the methodology is based on the theory of

U-processes, and the key tools involve maximal and concentration inequalities,

symmetrization tricks, and a �contraction principle� for U-processes. For an

excellent account of the theory of U-statistics and U-processes we refer to the

monograph of de la Peña and Giné [12].

Furthermore we provide a theoretical analysis of certain nonparametric rank-

ing methods that are based on an empirical minimization of convex cost func-

tionals over convex sets of scoring functions. The methods are inspired by

boosting-, and support vector machine-type algorithms for classi�cation. The

main results of the paper prove universal consistency of properly regularized

versions of these methods, establish a novel tail inequality for degenerate U-

processes and, based on the latter result, show that fast rates of convergence

may be achieved for empirical risk minimizers under suitable noise conditions.

We point out that under certain conditions, �nding a good ranking rule

amounts to constructing a scoring function s. An important special case is

the bipartite ranking problem in which the available instances in the data are

labelled by binary labels (good and bad). In this case the ranking criterion is

closely related to the so-called auc (area under the �roc� curve) criterion (see

the Appendix for more details).

The rest of the paper is organized as follows. In Section 2, the basic models
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and the two special cases of the ranking problem we consider are introduced.

Section 3 provides some basic uniform convergence and consistency results for

empirical risk minimizers. Section 4 contains the main statistical results of

the paper, establishing performance bounds for empirical risk minimization for

ranking problems. In Section 5, we describe the noise assumptions which guar-

antee fast rates of convergence in particular cases. In Section 6 a new expo-

nential concentration inequality is established for U-processes which serves as

a main tool in our analysis. In Section 7 we discuss convex risk minimization

for ranking problems, laying down a theoretical framework for studying boost-

ing and support vector machine-type ranking methods. In the Appendix we

summarize some basic properties of U-statistics and highlight some connections

of the ranking problem de�ned here to properties of the so-called roc curve,

appearing in related problems.

2 The ranking problem

Let (X, Y) be a pair of random variables taking values in X � R where X is

a measurable space. The random object X models some observation and Y its

real-valued label. Let (X 0, Y 0) denote a pair of random variables identically

distributed with (X, Y), and independent of it. Denote

Z =
Y − Y 0

2
.

In the ranking problem one observes X and X 0 but not their labels Y and Y 0.

We think about X being �better� than X 0 if Y > Y 0, that is, if Z > 0. (The factor

1/2 in the de�nition of Z is not signi�cant, it is merely here as a convenient

normalization.) The goal is to rank X and X 0 such that the probability that the

better ranked of them has a smaller label is as small as possible. Formally, a

ranking rule is a function r : X � X → {−1, 1}. If r(x, x 0) = 1 then the rule

ranks x higher than x 0. The performance of a ranking rule is measured by the

ranking risk

L(r) = P{Z � r(X,X 0) < 0} ,
that is, the probability that r ranks two randomly drawn instances incorrectly.

Observe that in this formalization, the ranking problem is equivalent to a binary

classi�cation problem in which the sign of the random variable Z is to be guessed

based upon the pair of observations (X,X 0). Now it is easy to determine the

ranking rule with minimal risk. Introduce the notation

ρ+(X,X 0) = P{Z > 0 | X,X 0}

ρ−(X,X 0) = P{Z < 0 | X,X 0} .

Then we have the following simple fact:
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Proposition 1 De�ne

r�(x, x 0) = 2I[ρ+(x,x 0)�ρ−(x,x 0)] − 1

and denote L� = L(r�) = E{min(ρ+(X,X 0), ρ−(X,X 0))}. Then for any ranking

rule r,

L� � L(r) .

proof. Let r be any ranking rule. Observe that, by conditioning �rst on (X,X 0),

one may write

L(r) = E
�
I[r(X,X 0)=1]ρ−(X,X 0) + I[r(X,X 0)=−1]ρ+(X,X 0)

�
.

It is now easy to check that L(r) is minimal for r = r�.

Thus, r� minimizes the ranking risk over all possible ranking rules. In the

de�nition of r� ties are broken in favor of ρ+ but obviously if ρ+(x, x 0) =

ρ−(x, x 0), an arbitrary value can be chosen for r� without altering its risk.

The purpose of this paper is to investigate the construction of ranking rules

of low risk based on training data. We assume that n independent, identically

distributed copies of (X, Y), are available: Dn = (X1, Y1), . . . , (Xn, Yn). Given

a ranking rule r, one may use the training data to estimate its risk L(r) =

P{Z � r(X,X 0) < 0}. The perhaps most natural estimate is the U-statistic

Ln(r) =
1

n(n− 1)

∑
i6=j

I[Zi,j�r(Xi,Xj)<0].

In this paper we consider minimizers of the empirical estimate Ln(r) over a

class R of ranking rules and study the performance of such empirically selected

ranking rules. Before discussing empirical risk minimization for ranking, a few

remarks are in order.

Remark 1 Note that the actual values of the Yi's are never used in the ranking

rules discussed in this paper. It is su�cient to know the values of the Zi,j, or,

equivalently, the ordering of the Yi's.

Remark 2 (a more general framework.) One may consider a generaliza-

tion of the setup described above. Instead of ranking just two observations X,X 0,

one may be interested in ranking m independent observations X(1), . . . , X(m).

In this case the value of a ranking function r(X(1), . . . , X(m)) is a permutation

π of {1, . . . ,m} and the goal is that π should coincide with (or at least resemble

to) the permutation π for which Y(π(1)) � � � � � Y(π(m)). Given a loss function

` that assigns a number in [0, 1] to a pair of permutations, the ranking risk is

de�ned as

L(r) = E`(r(X(1), . . . , X(m)), π) .
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In this general case, natural estimates of L(r) involve m-th order U-statistics.

Many of the results of this paper may be extended, in a more or less straight-

forward manner, to this general setup. In order to lighten the notation and

simplify the arguments, we restrict the discussion to the case described above,

that is, to the case when m = 2 and the loss function is `(π, π) = I[π 6=π].

Remark 3 (ranking and scoring.) In many interesting cases the ranking

problem may be reduced to �nding an appropriate scoring function. These are

the cases when the joint distribution of X and Y is such that there exists a

function s� : X → R such that

r�(x, x 0) = 1 if and only if s�(x) � s�(x 0) .
A function s� satisfying the assumption is called an optimal scoring function.

Obviously, any strictly increasing transformation of an optimal scoring function

is also an optimal scoring function. Below we describe some important special

cases when the ranking problem may be reduced to scoring.

Example 1 (the bipartite ranking problem.) In the bipartite ranking

problem the label Y is binary, it takes values in {−1, 1}. Writing η(x) = P{Y =

1|X = x}, it is easy to see that the Bayes ranking risk equals

L� = Emin{η(X)(1− η(X 0)), η(X 0)(1− η(X))}

= Emin{η(X), η(X 0)} − (Eη(X))2

and also,

L� = Var

�
Y + 1

2

�
−
1

2
E |η(X) − η(X 0)| .

In particular,

L� � Var

�
Y + 1

2

�
� 1/4

where the equality L� = Var
�

Y+1
2

�
holds when X and Y are independent and the

maximum is attained when η � 1/2. Observe that the di�culty of the bipartite

ranking problem depends on the concentration properties of the distribution

of η(X) = P(Y = 1 | X) through the quantity E(|η(X) − η(X0)|) which is a

classical measure of concentration, known as Gini's mean di�erence. For given

p = E(η(X)), Gini's mean di�erence ranges from a minimum value of zero, when

η(X) � p, to a maximum value of 1
2p(1−p) in the case when η(X) = (Y + 1) /2.

It is clear from the form of the Bayes ranking rule that the optimal ranking rule is

given by a scoring function s� where s� is any strictly increasing transformation

of η. Then one may restrict the search to ranking rules de�ned by scoring

functions s, that is, ranking rules of form r(x, x 0) = 2I[s(x)�s(x 0)] − 1. Writing

L(s)
def
= L(r), one has

L(s) − L� = E
�
|η(X 0) − η(X)| I[(s(X)−s(X 0))(η(X)−η(X 0))<0]

�
.
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We point out that the ranking risk in this case is closely related to the auc

criterion which is a standard performance measure in the bipartite setting (see

[14] and Appendix 2). More precisely, we have:

auc(s) =P {s(X) � s(X0) | Y = 1, Y0 = −1} = 1−
1

2p(1− p)
L(s),

where p = P (Y = 1), so that maximizing the auc criterion boils down to mini-

mizing the ranking error.

Example 2 (a regression model). Assume now that Y is real-valued and

the joint distribution of X and Y is such that Y = m(X) + ε where m(x) =

E(Y|X = x) is the regression function, ε is independent of X and has a sym-

metric distribution around zero. Then clearly the optimal ranking rule r� may

be obtained by a scoring function s� where s� may be taken as any strictly

increasing transformation of m.

3 Empirical risk minimization

Based on the empirical estimate Ln(r) of the risk L(r) of a ranking rule de�ned

above, one may consider choosing a ranking rule by minimizing the empirical

risk over a class R of ranking rules r : X � X → {−1, 1}. De�ne the empirical

risk minimizer, over R, by

rn = argmin
r2R

Ln(r) .

(Ties are broken in an arbitrary way.) In a ��rst-order� approach, we may study

the performance L(rn) = P{Z �rn(X,X 0) < 0|Dn} of the empirical risk minimizer

by the standard bound (see, e.g., [13])

L(rn) − inf
r2R

L(r) � 2 sup
r2R

|Ln(r) − L(r)| . (1)

This inequality points out that bounding the performance of an empirical min-

imizer of the ranking risk boils down to investigating the properties of U-

processes, that is, suprema of U-statistics indexed by a class of ranking rules.

For a detailed and modern account of U-process theory we refer to the book

of de la Peña and Giné [12]. In a �rst-order approach we basically reduce the

problem to the study of ordinary empirical processes.

By using the simple Lemma 14 given in the Appendix, we obtain the fol-

lowing:

Proposition 2 De�ne the Rademacher average

Rn = sup
r2R

1

bn/2c

������
bn/2c∑
i=1

εiI[Zi,bn/2c+ir(Xi,Xbn/2c+i)<0]

������
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where ε1, ..., εn are i.i.d. Rademacher random variables (i.e., random sym-

metric sign variables). Then for any convex nondecreasing function ψ,

Eψ

�
L(rn) − inf

r2R
L(r)

�
� Eψ(4Rn) .

proof. The inequality follows immediately from (1), Lemma 14 (see the Ap-

pendix), and a standard symmetrization inequality, see, e.g., Giné and Zinn

[17].

One may easily use this result to derive probabilistic performance bounds

for the empirical risk minimizer. For example, by taking ψ(x) = eλx for some

λ > 0, and using the bounded di�erences inequality (see McDiarmid [31]), we

have

E exp

�
λ(L(rn) − inf

r2R
L(r))

�
� E exp(4λRn)

� exp

�
4λERn +

4λ2

(n− 1)

�
.

By using Markov's inequality and choosing λ to minimize the bound, we readily

obtain:

Corollary 3 Let δ > 0. With probability at least 1− δ,

L(rn) − inf
r2R

L(r) � 4ERn + 4

r
ln(1/δ)

n− 1
.

The expected value of the Rademacher average Rn may now be bounded by

standard methods, see, e.g., Lugosi [27], Boucheron, Bousquet, and Lugosi [8].

For example, if the class R of indicator functions has �nite vc dimension V ,

then

ERn � c
r
V

n

for a universal constant c.

This result is similar to the one proved in the bipartite ranking case by

Agarwal, Graepel, Herbrich, Har-Peled, and Roth [2] with the restriction that

their bound holds conditionally on a label sequence. The analysis of [2] relies

on a particular complexity measure called rank-shatter coe�cient but the core

of the argument is the same.

The proposition above is convenient, simple, and, in a certain sense, not im-

provable. However, it is well known from the theory of statistical learning and

empirical risk minimization for classi�cation that the bound (1) is often quite
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loose. In classi�cation problems the looseness of such a ��rst-order� approach

is due to the fact that the variance of the estimators of the risk is ignored and

bounded uniformly by a constant. Therefore, the main interest in considering

U-statistics precisely consists in the fact that they have minimal variance among

all unbiased estimators. However, the reduced-variance property of U-statistics

plays no role in the above analysis of the ranking problem. Observe that all

upper bounds obtained in this section remain true for an empirical risk mini-

mizer that, instead of using estimates based on U-statistics, estimates the risk

of a ranking rule by splitting the data set into two halves and estimates L(r) by

1

bn/2c
bn/2c∑
i=1

I[Zi,bn/2c+i�r(Xi,Xbn/2c+i)<0] .

Hence, in the previous study one loses the advantage of using U-statistics. In

Section 4 it is shown that under certain, not uncommon, circumstances sig-

ni�cantly smaller risk bounds are achievable. There it will have an essential

importance to use sharp exponential bounds for U-processes, involving their

reduced variance.

4 Fast rates

The main results of this paper show that the bounds obtained in the previous

section may be signi�cantly improved under certain conditions. It is well known

(see, e.g., �5.2 in the survey [8] and the references therein) that tighter bounds

for the excess risk in the context of binary classi�cation may be obtained if one

can control the variance of the excess risk by its expected value. In classi�cation

this can be guaranteed under certain �low-noise� conditions (see Tsybakov [39],

Massart and Nédélec [30], Koltchinskii [24]).

Next we examine possibilities of obtaining such improved performance bounds

for empirical ranking risk minimization. The main message is that in the rank-

ing problem one also may obtain signi�cantly improved bounds under some

conditions that are analogous to the low-noise conditions in the classi�cation

problem, though quite di�erent in nature.

Here we will greatly bene�t from using U-statistics (as opposed to splitting

the sample) as the small variance of the U-statistics used to estimate the ranking

risk gives rise to sharper bounds. The starting point of our analysis is the

Hoe�ding decomposition of U-statistics (see Appendix 1).

Set �rst

qr((x, y), (x
0, y 0)) = I[(y−y 0)�r(x,x 0)<0] − I[(y−y 0)�r�(x,x 0)<0]

and consider the following estimate of the excess risk Λ(r) = L(r) − L� =
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Eqr((X, Y), (X 0, Y 0)):

Λn(r) =
1

n(n− 1)

∑
i6=j

qr((Xi, Yi), (Xj, Yj)),

which is a U-statistic of degree 2 with symmetric kernel qr. Clearly, the mini-

mizer rn of the empirical ranking risk Ln(r) over R also minimizes the empirical

excess risk Λn(r). To study this minimizer, consider the Hoe�ding decomposi-

tion of Λn(r):

Λn(r) −Λ(r) = 2Tn(r) +Wn(r) ,

where

Tn(r) =
1

n

n∑
i=1

hr(Xi, Yi)

is a sum of i.i.d. random variables with

hr(x, y) = Eqr((x, y), (X
0, Y 0)) −Λ(r)

and

Wn(r) =
1

n(n− 1)

∑
i6=j

bhr((Xi, Yi), (Xj, Yj))

is a degenerate U-statistic with symmetric kernel

bhr((x, y), (x
0, y 0)) = qr((x, y), (x

0, y 0)) −Λ(r) − hr(x, y) − hr(x
0, y 0) .

In the analysis we show that the contribution of the degenerate part Wn(r)

of the U-statistic is negligible compared to that of Tn(r). This means that

minimization of Λn is approximately equivalent to minimizing Tn(r). But since

Tn(r) is an average of i.i.d. random variables, this can be studied by known

techniques worked out for empirical risk minimization.

The main tool for handling the degenerate part is a new general moment

inequality for U-processes that may be interesting on its own right. This in-

equality is presented in Section 6. We mention here that for vc classes one may

use an inequality of Arcones and Giné [4].

It is well known from the theory of empirical risk minimization (see Tsybakov

[39], Bartlett and Mendelson [6], Koltchinskii [24], Massart [29]), that, in order

to improve the rates of convergence (such as the bound O(
p
V/n) obtained for

vc classes in Section 3), it is necessary to impose some conditions on the joint

distribution of (X, Y). In our case the key assumption takes the following form:

Assumption 4 There exist constants c > 0 and α 2 [0, 1] such that for all

r 2 R,
Var(hr(X, Y)) � cΛ(r)α .
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The improved rates of convergence will depend on the value of α. We will

see in some examples that this assumption is satis�ed for a surprisingly large

family of distributions, guaranteeing improved rates of convergence. For α = 0

the assumption is always satis�ed and the corresponding performance bound

does not yield any improvement over those of Section 3. However, we will see

that in many natural examples Assumption 4 is satis�ed with values of α close

to one, providing signi�cant improvements in the rates of convergence.

Now we are prepared to state and prove the main result of the paper. In

order to state the result, we need to introduce some quantities related to the

class R. Let ε1, . . . , εn be i.i.d. Rademacher random variables independent of

the (Xi, Yi). Let

Zε = sup
r2R

������
∑
i,j

εiεj
bhr((Xi, Yi), (Xj, Yj))

������ ,
Uε = sup

r2R
sup

α:kαk2�1

∑
i,j

εiαj
bhr((Xi, Yi), (Xj, Yj)) ,

M = sup
r2R,k=1,...,n

�����
n∑

i=1

εi
bhr((Xi, Yi), (Xk, Yk))

����� .
Introduce the �loss function�

`(r, (x, y)) = 2EI[(y−Y)�r(x,X)<0] − L(r)

and de�ne

νn(r) =
1

n

n∑
i=1

`(r, (Xi, Yi)) − L(r) .

(Observe that νn(r) has zero mean.) Also, de�ne the pseudo-distance

d(r, r 0) =
�
E
�
E[I[r(X,X 0)6=r 0(X,X 0)]|X]

�2�1/2

.

Let φ : [0,∞) → [0,∞) be a nondecreasing function such that φ(x)/x is nonin-

creasing and φ(1) � 1 such that for all r 2 R,

p
nE sup

r 02R,d(r,r 0)�σ

|νn(r) − νn(r 0)| � φ(σ) .

Theorem 5 Consider a minimizer rn of the empirical ranking risk Ln(r)

over a class R of ranking rules and assume Assumption 4. Then there

exists a universal constant C such that, with probability at least 1 − δ, the
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ranking risk of rn satis�es

L(rn) − L� � 2

�
inf
r2R

L(r) − L�
�

+C

 
EZε

n2
+
EUε

p
log(1/δ)

n2
+
EM log(1/δ)

n2
+

log(1/δ)

n

+ ρ2 log(1/δ)
�

where ρ > 0 is the unique solution of the equation

p
nρ2 = φ(ρα) .

The theorem provides a performance bound in terms of expected values of

certain Rademacher chaoses indexed by R and local properties of an ordinary

empirical process. These quantities have been thoroughly studied and well

understood, and may be easily bounded in many interesting cases. Below we

will work out an example when R is a vc class of indicator functions.

proof.We consider the Hoe�ding decomposition of theU-statistic Λn(r) that is

minimized over r 2 R. The idea of the proof is to show that the degenerate part

Wn(r) is of a smaller order and becomes negligible compared to the part Tn(r).

Therefore, rn is an approximate minimizer of Tn(r) which can be handled by

recent results on empirical risk minimization when the empirical risk is de�ned

as a simple sample average.

Let A be the event on which

sup
r2R

|Wn(r)| � κ

where

κ = C

 
EZε

n2
+
EUε

p
log(1/δ)

n2
+
EM log(1/δ)

n2
+

log(1/δ)

n

!

for an appropriate constant C. Then by Theorem 11, P[A] � 1 − δ/2. By the

Hoe�ding decomposition of the U-statistics Λn(r) it is clear that, on A, rn is a

ρ-minimizer of

2

n

n∑
i=1

`(r, (Xi, Yi))

over r 2 R in the sense that the value of this latter quantity at its minimum is

at most κ smaller than at rn.

De�ne �rn as rn on A and an arbitrary minimizer of (2/n)
∑n

i=1 `(r, (Xi, Yi))

on Ac. Then clearly, with probability at least 1− δ/2, L(rn) = L(�rn) and �rn is

a κ-minimizer of (2/n)
∑n

i=1 `(r, (Xi, Yi)). But then we may use Theorem 8.3

of Massart [29] to bound the performance of �rn which implies the theorem.
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Observe that the only condition for the distribution is that the variance of

hr can be bounded in terms of Λ(r). In Section 5 we present examples in which

Assumption 4 is satis�ed with α > 0. We will see below that the value of α

in this assumption determines the magnitude of the last term which, in turn,

dominates the right-hand side (apart from the approximation error term).

The factor of 2 in front of the approximation error term infr2R L(r)−L� has

no special meaning. It can be replaced by any constant strictly greater than

one at the price of increasing the value of the constant C. Notice that in the

bound for L(rn)−L� derived from Corollary 3, the approximation error appears

with a factor of 1. Thus, the improvement of Theorem 5 is only meaningful if

infr2R L(r) − L� does not dominate the other terms in the bound. Ideally, the

class R should be chosen such that the approximation error and the other terms

in the bound are balanced. If this was the case, the theorem would guarantee

faster rates of convergence. Based on the bounds presented here, one may design

penalized empirical minimizers of the ranking risk that select the class R from

a collection of classes achieving this objective. We do not give the details here,

we just mention that the techniques presented in Massart [29] and Koltchinskii

[24] may be used in a relatively straightforward manner to derive such �oracle

inequalities� for penalized empirical risk minimization in the present framework.

In order to illustrate Theorem 5, we consider the case when R is a vc class,

that is, it has a �nite vc dimension V .

Corollary 6 Consider the minimizer rn of the empirical ranking risk Ln(r)

over a class R of ranking rules of �nite vc dimension V and assume As-

sumption 4. Then there exists a universal constant C such that, with prob-

ability at least 1− δ, the ranking risk of rn satis�es

L(rn) − L� � 2
�
inf
r2R

L(r) − L�
�

+ C

�
V log(n/δ)

n

�1/(2−α)

proof. In order to apply Theorem 5, we need suitable upper bounds for EZε,

EUε, EM, and ρ. To bound EZε, observe that Zε is a Rademacher chaos

indexed by R for which Propositions 2.2 and 2.6 of Arcones and Giné [3] may

be applied. In particular, by using Haussler's [19] metric entropy bound for vc

classes, it is easy to see that there exists a constant C such that

EZε � CnV .

Similarly, EεM is just an expected Rademacher average that may be bounded

by C
p
Vn (see, e.g., [8]).

12



Also, by the Cauchy-Schwarz inequality,

EU2
ε � E sup

r2R

vuuut∑
j

 ∑
i

εi
bhr((Xi, Yi), (Xj, Yj))

!2

= E sup
r2R

∑
j

∑
i

bhr((Xi, Yi), (Xj, Yj))
2

+
∑

j

∑
i,k

εiεk
bhr((Xi, Yi), (Xj, Yj))bhr((Xj, Yj), (Xk, Yk))


� n2 + E sup

r2R

∑
j

∑
i,k

εiεk
bhr((Xi, Yi), (Xj, Yj))bhr((Xj, Yj), (Xk, Yk)) .

Observe that the second term on the right-hand side is a Rademacher chaos of

order 2 that can be handled similarly to EZε. By repeating the same argument,

one obtains

EU2
ε � n2 + CVn2

Thus,

E(Uε) �
q
E(U2

ε) � CnV1/2 .

This shows that the value of κ de�ned in the proof of Theorem 5 is of the order

of n−1 (V + log(1/δ)). The main term in the bound of Theorem 5 is ρ2. By

mimicking the argument of Massart [29, pp. 297�298], we get

C

�
V logn

n

�1/(2−α)

as desired.

5 Examples

5.1 The bipartite ranking problem

Next we derive a simple su�cient condition for achieving fast rates of conver-

gence for the bipartite ranking problem. Recall that here it su�ces to consider

ranking rules of the form r(x, x 0) = 2I[s(x)�s(x 0)]−1 where s is a scoring function.

With some abuse of notation we write hs for hr.

Noise assumption. There exist constants c > 0 and α 2 [0, 1] such that for

all x 2 X ,

EX 0(|η(x) − η(X0)|
−α

) � c . (2)

13



Proposition 7 Under (2), we have, for all s 2 F

Var(hs(X, Y)) � cΛ(s)α .

proof.

Var(hs(X, Y))

� EX

h�
EX 0(I[(s(X)−s(X0))(η(X)−η(X 0))<0])

�2i
� EX

�
EX 0

�
I[(s(X)−s(X 0))(η(X)−η(X 0))<0] |η(X) − η(X 0)|

α�
�
�
EX 0(|η(X) − η(X 0)|

−α
)
�i

(by the Cauchy-Schwarz inequality)

� c
�
EXEX 0

�
I[(s(X)−s(X 0))(η(X)−η(X 0))<0] |η(X) − η(X 0)|

��α
(by Jensen's inequality and the noise assumption)

= cΛ(s)α .

Condition (2) is satis�ed under quite general circumstances. If α = 0 then

clearly the condition poses no restriction, but also no improvement is achieved

in the rates of convergence. On the other hand, at the other extreme, when

α = 1, the condition is quite restrictive as it excludes η to be di�erentiable, for

example, if X has a uniform distribution over [0, 1]. However, interestingly, for

any α < 1, it poses quite mild restrictions as it is highlighted in the following

example:

Corollary 8 Consider the bipartite ranking problem and assume that η(x) =

P{Y = 1|X = x} is such that the random variable η(X) has an absolutely con-

tinuous distribution on [0, 1] with a density bounded by B. Then for any

ε > 0,

8x 2 X , EX 0(|η(x) − η(X0)|
−1+ε

) � 2B

ε

and therefore, by Propositions 4 and 7, there is a constant C such that for

every δ, ε 2 (0, 1), the excess ranking risk of the empirical minimizer rn
satis�es, with probability at least 1− δ,

L(rn) − L� � 2
�
inf
r2R

L(r) − L�
�

+ CBε−1

�
V log(n/δ)

n

�1/(1+ε)

.

proof. The corollary follows simply by checking that (2) is satis�ed for any

14



α = 1− ε < 1. Denoting the density of η(X) by f, we have

EX 0(|η(x) − η(X 0)|
−α

) =

∫1

0

1

|η(x) − u|α
f(u)du

� B

∫1

0

1

|η(x) − u|α
du

= B
η(x)1−α + (1− η(x))1−α

1− α
� 2B

1− α
.

The condition (2) of the corollary requires that the distribution of η(X) is

su�ciently spread out, for example it cannot have atoms or in�nite peaks in its

density. Under such a condition a rate of convergence of the order of n−1+ε is

achievable for any ε > 0.

Remark 4 Note that we crucially used the reduced variance of the U-statistic

L(rn) to derive fast rates from the rather weak condition (2). Applying a similar

reasoning for the variance of qs((X, Y), (X 0, Y 0)) (which would be the case if one

considered a risk estimate based on independent pairs by splitting the training

data into two halves, see Section 3), would have led to the condition:

|η(x) − η(x0)| � c, (3)

for some constant c, and x 6= x0. This condition is satis�ed only when η(X) has

a discrete distribution.

5.2 Noiseless regression model

Next we consider the noise-free regression model in which Y = m(X) for some

(unknown) function m : X → R. Here obviously L� = 0 and the Bayes rank-

ing rule is given by the scoring function s� = m (or any strictly increasing

transformation of it). Clearly, in this case

qr(x, x
0) = I[(m(x)−m(x 0))�r(x,x 0)<0]

and therefore

Var(hr(X, Y)) � Eq2
r(X,X 0) = L(r) ,

and therefore the condition of Proposition 4 is satis�ed with c = 1 and α = 1.

Thus, the risk of the empirical risk minimizer rn satis�es, with probability at

least 1− δ,

L(rn) � 2 inf
r2R

L(r) + C
V log(n/δ)

n

provided R has �nite vc dimension V .

15



5.3 Regression model with noise

Now we turn to the general regression model with heteroscedastic errors

in which Y = m(X) + σ(X)ε for some (unknown) functions m : X → R and

σ : X → R, where ε is a standard gaussian random variable, independent of X.

We set

∆(X,X 0) =
m(X) −m(X 0)p
σ2(X) + σ2(X 0)

.

We have again s� = m (or any strictly increasing transformation of it) and

the optimal risk is

L� = EΦ (− |∆(X,X 0)|)

where Φ is the distribution function of the standard gaussian random variable.

The maximal value of L� is attained when the regression function m(x) is con-

stant. Furthermore, we have

L(s) − L� = E
�
|2Φ (∆(X,X 0)) − 1| � I[(m(x)−m(x 0))�(s(x)−s(x 0))<0]

�
.

Noise assumption. There exist constants c > 0 and α 2 [0, 1] such that for

all x 2 X ,

EX 0(|∆(x, X 0)|−α) � c . (4)

Proposition 9 Under (4), we have, for all s 2 F
Var(hs(X, Y)) � (2Φ(c) − 1)Λ(s)α .

proof. By symmetry, we have

|2Φ (∆(X,X 0)) − 1| = 2Φ (|∆(X,X 0)|) − 1 .

Then, using the concavity of the distribution function Φ on R+, we have,

by Jensen's inequality,

8x 2 X , EX 0Φ(|∆(x, X 0)|−α) � Φ(EX 0 |∆(x, X 0)|−α) � Φ(c) ,

where we have used (4) together with the fact that Φ is increasing. Now the

result follows following the argument given in the proof of Proposition 7.

The preceding noise condition is ful�lled in many cases, as illustrated by the

example below.

Corollary 10 Suppose that m(X) has a bounded density and the conditional

variance σ(x) is bounded over X . Then the noise condition (4) is satis�ed

for any α < 1.

Remark 5 The argument above still holds if we drop the gaussian noise as-

sumption. Indeed we only need the random variable ε to have a symmetric

density decreasing over R+.
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6 A moment inequality for U-processes

In this section we establish a general exponential inequality for U-processes.

This result is based on moment inequalities obtained for empirical processes

and Rademacher chaoses in Bousquet, Boucheron, Lugosi, and Massart [9] and

generalizes an inequality due to Arcones and Giné [4]. We also refer to the

corresponding results obtained for U-statistics by Adamczak [1], Giné, Latala,

and Zinn [16], and Houdré and Reynaud-Bouret [22].

Theorem 11 Let X,X1, ..., Xn be i.i.d. random variables and let F be a

class of kernels. Consider a degenerate U-process Z of order 2 indexed by

F ,

Z = sup
f2F

������
∑
i,j

f(Xi, Xj)

������
where Ef(X, x) = 0, 8x, f. Assume also f(x, x) = 0, 8x and supf2F kfk∞ =

F. Let ε1, ..., εn be i.i.d. Rademacher random variables and introduce the

random variables

Zε = sup
f2F

������
∑
i,j

εiεjf(Xi, Xj)

������ ,
Uε = sup

f2F
sup

α:kαk2�1

∑
i,j

εiαjf(Xi, Xj) ,

M = sup
f2F,k=1...n

�����
n∑

i=1

εif(Xi, Xk)

����� .
Then there exists a universal constant C > 0 such that for all n and q � 2,

(EZq)
1/q � C

�
EZε + q1/2

EUε + q(EM+ Fn) + q3/2Fn1/2 + q2F
�
.

Also, there exists a universal constant C such that for all n and t > 0,

P{Z > CEZε+t} � exp

 
−
1

C
min

 �
t

EUε

�2

,
t

EM+ Fn
,

�
t

F
p
n

�2/3

,

r
t

F

!!
.

Remark 6 A generously overestimated value of the constants may be easily

deduced from the proof. We are convinced that these are far from being the

best possible but do not have a good guess of what the best constants might

be.

proof. The proof of Theorem 11 is based on symmetrization, decoupling, and

concentration inequalities for empirical processes and Rademacher chaos.
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Since the f are degenerate kernels, one may relate the moments of Z to those

of Zε by the randomization inequality

EZq � 4q
EZq

ε ,

valid for q � 1, see Chapter 3 of [12]. Thus, it su�ces to derive moment

inequalities for the symmetrized U-process Zε. We do this by conditioning.

Denote by Eε the expectation taken with respect to the variables εi (i.e., con-

ditional expectation given X1, . . . , Xn). Then we write EZq
ε = EEεZ

q
ε and study

the quantity EεZ
q
ε , with the Xi �xed. But then Zε is a so-called Rademacher

chaos whose tail behavior has been studied, see Talagrand [38], Ledoux [26],

Boucheron, Bousquet, Lugosi, and Massart [9]. In particular, for any q � 2,�
EεZ

q
ε

�1/q � EεZε +
�
Eε

�
Zε − EεZε

�q
+

�1/q
(since Z � 0)

� EεZε + 3
p
q EεUε + 4qB

with Uε de�ned above and

B = sup
f2F

sup
α,α 0:kαk2,kα 0k2�1

������
∑
i,j

αiα
0
jf(Xi, Xj)

������
where the second inequality follows by Theorem 14 of [9]. Using the inequality

(a+ b+ c)q � 3q−1(aq + bq + cq) valid for q � 2, a, b, c > 0, we have

EεZ
q
ε � 3q−1

��
EεZε

�q
+ 3qqq/2

�
EεUε

�q
+ 4qqqBq

�
.

It remains to derive suitable upper bounds for the expectation of the three terms

on the right-hand side.

First term: E
�
EεZε

�q
In order to handle the moments of EεZε, �rst we note that by a decoupling

inequality in de la Peña and Giné [12, page 101],

EεZε � 8EεZ
0
ε

where

Z 0ε = sup
f2F

������
∑
i,j

εiε
0
jf(Xi, Xj)

������
Here ε 01, . . . , ε

0
n are i.i.d. Rademacher variables, independent of the Xi and the

εi. Nothe that Eε now denotes expectation taken with respect to both the εi

and the ε 0i.

Thus, we have

E
�
EεZε

�q � 8q
E
�
EεZ

0
ε

�q
18



In order to bound the moments of the random variable A = EεZ
0
ε, we apply

Corollary 3 of [9]. In order to apply this corollary, de�ne, for k = 1, . . . , n, the

random variables

Ak = Eε sup
f2F

������
∑

i,j6=k

εiε
0
jf(Xi, Xj)

������
It is easy to see that Ak � A.

On the other hand, de�ning

Rk = sup
f2F

�����
n∑

i=1

εif(Xi, Xk)

����� ,
we clearly have

A−Ak � 2EεRk .

Also, denoting by f� the (random) function achieving the maximum in the

de�nition of Z, we have

n∑
k=1

(A−Ak) � Eε

0@ n∑
k=1

εk

n∑
j=1

ε 0jf
�(Xk, X

0
j) +

n∑
k=1

ε 0k

n∑
i=1

εif
�(Xi, X

0
k)

1A
= 2A ,

Therefore,
n∑

k=1

(A−Ak)2 � 4AEεM

where M = maxk Rk. Then by Corollary 3 of [9], we obtain

E
�
EεZ

0
ε

�q
= EAq � 2q−1

�
2q
�
EZ 0ε

�q
+ 5qqq

E (EεM)
q
�
.

By un-decoupling (see de la Peña and Giné [12, page 101]), we have EZ 0ε �
4EZε.

To bound E (EεM)
q
, observe that EεM is a conditional Rademacher aver-

age, for which Theorem 13 of of [9] may be applied. According to this,

E (EεM)
q � 2q−1

�
2q (EM)

q
+ 5qqqFq

�
Collecting terms, we have

E
�
EεZε

�q � 128q (EZε)
q

+ 320qqq (EM)
q

+ 800qFqq2q .

Second term: EX

�
EεUε

�q
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The moments of EεUε can be estimated by the same inequality as the one we

used for EεM since EεUε is also a conditional Rademacher average. Observing

that

sup
f,i

sup
α:kαk2�1

∑
j 6=i

αjf(Xi, Xj) � F
p
n

by the Cauchy-Schwarz inequality, we have, by Theorem 13 from [9],

E
�
EεUε

�q � 2q−1
�
2q
�
EUε

�q
+ 5qqqFqnq/2

�
.

Third term: EXB
q

Finally, by the Cauchy-Schwarz inequality, we have B � nF so

EXB
q � nqFq .

Now it remains to simply put the pieces together to obtain

EZq � 12q
�
128q

�
EZε

�q
+ 12qqq/2

�
EUε

�q
+ 320qqq

�
EM

�q
+ 4qFqnqqq

+30qFqnq/2q3q/2 + 800qFqq2q
�
,

proving the announced moment inequality.

In order to derive the exponential inequality, use Markov's inequality P{Z >

t} � t−q
EZq and choose

q = Cmin

 �
t

EUε

�2

,
t

EM
,
t

Fn
,

�
t

F
p
n

�2/3

,

r
t

F

!

for an appropriate constant C.

7 Convex risk minimization

Several successful algorithms for classi�cation, including various versions of

boosting and support vector machines are based on replacing the loss func-

tion by a convex function and minimizing the corresponding empirical convex

risk functionals over a certain class of functions (typically over a ball in an ap-

propriately chosen Hilbert or Banach space of functions). This approach has

important computational advantages, as the minimization of the empirical con-

vex functional is often computationally feasible by gradient descent algorithms.

Recently signi�cant theoretical advance has been made in understanding the

statistical behavior of such methods, see, e.g., Bartlett, Jordan, and McAuli�e

[5], Blanchard, Lugosi and Vayatis [7], Breiman [10], Jiang [23], Lugosi and

Vayatis [28], Zhang [41].
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The purpose of this section is to extend the principle of convex risk minimiza-

tion to the ranking problem studied in this paper. Our analysis also provides

a theoretical framework for the analysis of some successful ranking algorithms

such as the RankBoost algorithm of Freund, Iyer, Schapire, and Singer [14].

In what follows we adapt the arguments of Lugosi and Vayatis [28] (where a

simple binary classi�cation problem was considered) to the ranking problem.

The basic idea is to consider ranking rules induced by real-valued functions,

that is, ranking rules of the form

r(x, x 0) =

{
1 if f(x, x 0) > 0

−1 otherwise

where f : X � X → R is some measurable real-valued function. With a slight

abuse of notation, we will denote by L(f) = P{sgn(Z) � f(X,X 0) < 0} = L(r) the

risk of the ranking rule induced by f. (Here sgn(x) = 1 if x > 0, sgn(x) = −1

if x < 0, and sgn(x) = 0 if x = 0.) Let φ : R → [0,∞) be a convex cost

function satisfying φ(0) = 1 and φ(x) � I[x�0]. Typical choices of φ include

the exponential cost function φ(x) = ex, the �logit� function φ(x) = log2(1+ex),

or the �hinge loss� φ(x) = (1 + x)+. De�ne the cost functional associated to

the cost function φ by

A(f) = Eφ(− sgn(Z) � f(X,X 0)) .

Obviously, L(f) � A(f). We denote by A� = inffA(f) the �optimal� value of

the cost functional where the in�mum is taken over all measurable functions

f : X � X → R.

The most natural estimate of the cost functional A(f), based on the training

data Dn, is the empirical cost functional de�ned by the U-statistic

An(f) =
1

n(n− 1)

∑
i6=j

φ(− sgn(Zi,j) � f(Xi, Xj)) .

The ranking rules based on convex risk minimization we consider in this sec-

tion minimize, over a set F of real-valued functions f : X�X → R, the empirical

cost functional An, that is, we choose fn = argminf2F An(f) and assign the

corresponding ranking rule

rn(x, x 0) =

{
1 if fn(x, x 0) > 0

−1 otherwise.

(Here we assume implicitly that the minimum exists. More precisely, one may

de�ne fn as any function f 2 F satisfying An(fn) � inff2F An(f) + 1/n.)

By minimizing convex risk functionals, one hopes to make the excess convex

risk A(fn) − A� small. This is meaningful for ranking if one can relate the

excess convex risk to the excess ranking risk L(fn) − L�. This may be done
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quite generally by recalling a result of Bartlett, Jordan, and McAuli�e [5]. To

this end, introduce the functions

H(ρ) = inf
α2R

(ρφ(−α) + (1− ρ)φ(α))

and

H−(ρ) = inf
α:α(2ρ−1)�0

(ρφ(−α) + (1− ρ)φ(α)) .

De�ning ψ over R by

ψ(x) = H−

�
1+ x

2

�
−H−

�
1− x

2

�
,

Theorem 3 of [5] implies that for all functions f : X � X → R,

L(f) − L� � ψ−1 (A(f) −A�)

where ψ−1 denotes the inverse of ψ. Bartlett, Jordan, and McAuli�e show

that, whenever φ is convex, limx→0ψ
−1(x) = 0, so convergence of the excess

convex risk to zero implies that the excess ranking risk also converges to zero.

Moreover, in most interesting cases ψ−1(x) may be bounded, for x > 0, by

a constant multiple of
p
x (such as in the case of exponential or logit cost

functions) or even by x (e.g., if φ(x) = (1+ x)+ is the so-called hinge loss).

Thus, to analyze the excess ranking risk L(f) − L� for convex risk mini-

mization, it su�ces to bound the excess convex risk. This may be done by

decomposing it into �estimation� and �approximation� errors as follows:

A(fn) −A�(f) �
�
A(fn) − inf

f2F
A(f)

�
+

�
inf
f2F

A(f) −A�

�
.

Clearly, just like in Section 3, we may (loosely) bound the excess convex risk

over the class F as

A(fn) − inf
f2F

A(f) � 2 sup
f2F

|An(f) −A(f)| .

To bound the right-hand side, assume, for simplicity, that the class F of func-

tions is uniformly bounded, say supf2F,x2X |f(x)| � B. Then once again, we may

appeal to Lemma 14 (see the Appendix) and the bounded di�erences inequality

which imply that for any λ > 0,

E exp

�
λ sup

f2F
|An(f) −A(f)|

�

� E exp

0@λ sup
f2F

0@ 1

bn/2c
bn/2c∑
i=1

φ
�
− sgn(Zi,bn/2c+i) � f(Xi, Xbn/2c+i)

�
−A(f)

1A1A
� exp

0@λE sup
f2F

0@ 1

bn/2c
bn/2c∑
i=1

φ
�
− sgn(Zi,bn/2c+i) � f(Xi, Xbn/2c+i)

�
−A(f)

1A+
λ2B2

2n

1A .
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Now it su�ces to derive an upper bound for the expected supremum appearing

in the exponent. This may be done by standard symmetrization and contraction

inequalities. In fact, by mimicking Koltchinskii and Panchenko [25] (see also

the proof of Lemma 2 in Lugosi and Vayatis [28]), we obtain

E sup
f2F

0@ 1

bn/2c
bn/2c∑
i=1

φ
�
− sgn(Zi,bn/2c+i) � f(Xi, Xbn/2c+i)

�
−A(f)

1A
� 4Bφ 0(B)E sup

f2F

0@ 1

bn/2c
bn/2c∑
i=1

σi � f(Xi, Xbn/2c+i)

1A
where σ1, . . . , σbn/2c i.i.d. Rademacher random variables independent of Dn,

that is, symmetric sign variables with P{σi = 1} = P{σi = −1} = 1/2.

We summarize our �ndings:

Proposition 12 Let fn be the ranking rule minimizing the empirical convex

risk functional An(f) over a class of functions f uniformly bounded by −B

and B. Then, with probability at least 1− δ,

A(fn) − inf
f2F

A(f) � 8Bφ 0(B)Rn(F) +

r
2B2 log(1/δ)

n

where Rn denotes the Rademacher average

Rn(F) = E sup
f2F

0@ 1

bn/2c
bn/2c∑
i=1

σi � f(Xi, Xbn/2c+i)

1A .

Many interesting bounds are available for the Rademacher average of various

classes of functions. For example, in analogy of boosting-type classi�cation

problems, one may consider a class FB of functions de�ned by

FB =

f(x, x 0) =

N∑
j=1

wjgj(x, x
0) : N 2 N, ,

N∑
j=1

|wj| = B, gj 2 R


where R is a class of ranking rules as de�ned in Section 3. In this case it is easy

to see that

Rn(FB) � BRn(R) � const.
BVp
n

where V is the vc dimension of the �base� class R.

Summarizing, we have shown that a ranking rule based on the empirical

minimization An(f) over a class of ranking functions FB of the form de�ned

above, the excess ranking risk satis�es, with probability at least 1− δ,

L(fn) − L� � ψ−1

 
8Bφ 0(B)c

BVp
n

+

r
2B2 log(1/δ)

n
+

�
inf

f2FB

A(f) −A�

�!
.
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This inequality may be used to derive the universal consistency of such ranking

rules. For example, the following corollary is immediate.

Corollary 13 Let R be a class of ranking rules of �nite vc dimension V

such that the associated class of functions FB is rich in the sense that

lim
B→∞ inf

f2FB

A(f) = A�

for all distributions of (X, Y). Then if fn is de�ned as the empirical min-

imizer of An(f) over FBn where the sequence Bn satis�es Bn → ∞ and

B2
nφ

0(Bn)/
p
n → 0, then

lim
n→∞L(fn) = L� almost surely.

Classes R satisfying the conditions of the corollary exist, we refer the reader

to Lugosi and Vayatis [28] for several examples.

Proposition 12 can also be used for establishing performance bounds for

kernel methods such as support vector machines. A prototypical kernel-based

ranking method may be de�ned as follows. To lighten notation, we write W =

X � X .

Let k : W �W → R be a symmetric positive de�nite function, that is,

n∑
i,j=1

αiαjk(wi, wj) � 0 ,

for all choices of n, α1, . . . , αn 2 R and w1, . . . , wn 2 W.

A kernel-type ranking algorithm may be de�ned as one that performs min-

imization of the empirical convex risk An(f) (typically based on the hinge loss

φ(x) = (1+x)+) over the class FB of functions de�ned by a ball of the associated

reproducing kernel Hilbert space of the form (where w = (x, x 0))

FB =

f(w) =

N∑
j=1

cjk(wj, w) : N 2 N,
N∑

i,j=1

cicjk(wi, wj) � B2, w1, . . . , wN 2 W
 .

In this case we have

Rn(FB) � 2B

n
E

vuutbn/2c∑
i=1

k((Xi, Xbn/2c+i), (Xi, Xbn/2c+i)) ,

see, for example, Boucheron, Bousquet, and Lugosi [8]. Once again, universal

consistency of such kernel-based ranking rules may be derived in a straightfor-

ward way if the approximation error inff2FB A(f)−A� can be guaranteed to go

to zero as B → ∞. For the approximation properties of such kernel classes we

refer the reader to Cucker and Smale [11], Scovel and Steinwart [32], Smale and

Zhou [34], Steinwart [35], etc.
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Appendix 1: Basic facts about U-statistics

Here we recall some basic facts about U-statistics. Consider the i.i.d. random

variables X,X1, ..., Xn and denote by

Un =
1

n(n− 1)

∑
i6=j

q(Xi, Xj)

a U-statistic of order 2 where the kernel q is a symmetric real-valued function.

U-statistics have been studied in depth and their behavior is well understood.

One of the classical inequalities concerning U-statistics is due to Hoe�ding [21]

which implies that, for all t > 0,

P{|Un − EUn| > t} � 2e−2b(n/2)ct2 � 2e−(n−1)t2

.

Hoe�ding also shows that, if σ2 = Var(q(X1, X2)), then

P{|Un − EUn| > t} � 2 exp
�

−
b(n/2)ct2
2σ2 + 2t/3

�
. (5)

It is important noticing here that the latter inequality may be improved

by replacing σ2 by a smaller term. This is based on the so-called Hoe�ding's

decomposition as described below.

The U-statistic Un is said degenerate if its kernel q satis�es

8x, E (q(x, X)) = 0 .

There are two basic representations of U-statistics which we recall next (see

Ser�ing [33] for more details).

Average of 'sums-of-i.i.d.' blocks

This representation is the key for obtaining '�rst-order' results for non-

degenerate U-statistics. The U-statistic Un can be expressed as

Un =
1

n!

∑
π

1

bn/2c
bn/2c∑
i=1

q
�
Xπ(i), Xπ(bn/2c+i)

�
where the sum is taken over all permutations π of {1, . . . , n}. The idea underlying

this representation is to reduce the analysis to the case of sums of i.i.d. random

variables. The next simple lemma is based on this representation.

Lemma 14 Let qτ : X � X → R be real-valued functions indexed by τ 2 T
where T is some set. If X1, . . . , Xn are i.i.d. then for any convex nonde-
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creasing function ψ,

Eψ

0@sup
τ2T

1

n(n− 1)

∑
i6=j

qτ(Xi, Xj)

1A
� Eψ

0@sup
τ2T

1

bn/2c
bn/2c∑
i=1

qτ(Xi, Xbn/2c+i)

1A ,

assuming the suprema are measurable and the expected values exist.

proof. The proof uses the same trick Hoe�ding's above-mentioned inequalities

are based on. Observe that

Eψ

0@sup
τ2T

1

n(n− 1)

∑
i6=j

qτ(Xi, Xj)

1A
= Eψ

0@sup
τ2T

1

n!

∑
π

1

bn/2c
bn/2c∑
i=1

qτ(Xπ(i), Xπ(bn/2c+i))

1A
� Eψ

0@ 1

n!

∑
π

sup
τ2T

1

bn/2c
bn/2c∑
i=1

qτ(Xπ(i), Xπ(bn/2c+i))

1A
(since ψ is non-decreasing)

� 1

n!

∑
π

Eψ

0@sup
τ2T

1

bn/2c
bn/2c∑
i=1

qτ(Xπ(i), Xπ(bn/2c+i))

1A
(by Jensen's inequality)

= Eψ

0@sup
τ2T

1

bn/2c
bn/2c∑
i=1

qτ(Xi, Xbn/2c+i)

1A
as desired.

Hoe�ding's decomposition

Another way to interpret a U-statistics is as an orthogonal expansion known

as Hoe�ding's decomposition.

Assuming that q(X1, X2) is square integrable, Un−EUn may be decomposed

as a sum Tn of i.i.d. random variables plus a degenerate U-statistic Wn. In

order to write this decomposition, consider the following function of one variable

h(Xi) = E(q(Xi, X) | Xi) − EUn ,
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and the function of two variables

bh(Xi, Xj) = q(Xi, Xj) − EUn − h(Xi) − h(Xj).

Then we have the orthogonal expansion

Un = EUn + 2Tn +Wn ,

where

Tn =
1

n

n∑
i=1

h(Xi),

Wn =
1

n(n− 1)

∑
i6=j

bh(Xi, Xj) .

Wn is a degenerate U-statistic because its kernel bh satis�es

E

�bh(Xi, X) | Xi

�
= 0 .

Clearly, the variance of Tn is

Var(Tn) =
Var(E(q(X1, X) | X1))

n
.

Note that Var(E(q(X1, X) | X1)) is less than Var(q(X1, X)) (unless q is already

degenerate). Furthermore, the variance of the degenerate U-statistic Wn is of

the order 1/n2. Tn is thus the leading term in this orthogonal decomposition.

Indeed, the limit distribution of
p
n(Un − EUn) is the normal distribution

N (0, 4Var(E(q(X1, X) | X1)) (see [20]). This suggests that inequality (5) may

be quite loose.

Indeed, exploiting further Hoe�ding's decomposition (combined with argu-

ments related to decoupling, randomization and hypercontractivity of Radema-

cher chaos) de la Peña and Giné [12] established a Bernstein's type inequality of

the form (5) but with σ2 replaced by the variance of the conditional expectation

(see Theorem 4.1.13 in [12]).

Specialized to our setting with q(Xi, Xj) = I[Zi,j�r(Xi,Xj)<0] the inequality

of de la Peña and Giné states that

P{|Ln(r) − L(r)| > t} � 4 exp
�

−
nt2

8s2 + ct

�
,

where s2 = Var(P{Z � r(X,X 0) < 0|X}) is the variance of the conditional expec-

tation and c is some constant.
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Appendix 2: Connection with the roc curve and

the auc criterion

In the bipartite ranking problem, the roc curve (roc standing for Receiving

Operator Characteristic, see [18]) and the auc criterion are popular measures

for evaluating the performance of scoring functions in applications.

Let s : X → R be a scoring function. The roc curve is de�ned by plotting

the true positive rate

tprs(x) = P (s(X) � x | Y = 1)

against the false positive rate

fprs(x) = P (s(X) � x | Y = −1) .

By a straightforward change of parameter, the roc curve may be expressed

as the graph of the power of the test de�ned by s(X) as a function of its level

α:

βs(α) = tprs(qs,α)

where qs,α = inf{x 2 (0, 1) : fprs(x) � α}.

Observe that if s(X) and Y are independent (i.e., when tprs = fprs), the

roc curve is simply the diagonal segment βs(α) = α. This measure of accuracy

induces a partial order on the set of all scoring functions: for any s1, s2, we say

that s1 is more accurate than s2 if and only if its roc curve is above the one of

s2 for every level α, that is, if and only if βs2(α) � βs1(α) for all α 2 (0, 1).

Proposition 15 The regression function η induces an optimal ordering on

X in the sense that its roc curve is not below any other scoring function

s:

8α 2 [0, 1], βη(α) � βs(α).

proof. The result follows from the Neyman-Pearson lemma applied to the test

of the null assumption "Y = −1" against the alternative "Y = 1" based on

the observation X: the test based on the likelihood ratio η(X)/(1 − η(X)) is

uniformly more powerful than any other test based on X.

Remark 7 Note that the roc curve does not characterize the scoring function.

For any s and any strictly increasing function h : R → R, s and h � s clearly
yield the same ordering on X : βs = βh�s.
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Instead of optimizing the roc curve over a class of scoring functions which

is a di�cult task, a simple idea is to search for s that maximizes the Area Under

the roc Curve (known as the auc criterion) :

auc(s) =

∫1

0

βs(α)dα .

This theoretical quantity may be easily interpreted in a probabilistic fashion

as shown by the following proposition.

Proposition 16 For any scoring function s,

auc(s) = P (s(X) � s(X0) | Y = 1, Y0 = −1) ,

where (X, Y) and (X0, Y0) are independent pairs drawn from the binary clas-

si�cation model.

proof. Let U be a uniformly distributed random variable over (0, 1), indepen-

dent of (X, Y). Denote by Fs the distribution function of s(X) given Y = −1.

Then

auc(s) =

∫1

0

P (s(X) � qs,α | Y = 1) dα

= E(P(s(X) � F−1
s (U) | Y = 1))

= P (s(X) � s(X0) | Y = 1, Y0 = −1) .
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