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1 Introduction

Borrowing tools and statistical techniques commonly used in the field of in-
surance for risk assessment, many finance experts have to face questions re-
lated to extremal events for handling problems concerning the probable max-
imal loss of investment strategies (see Embrechts et al. (1999), Embrechts
(2000) or Chavez-Demoulin & Embrechts (2004) for instance and refer to
Embrechts et al. (1997) for a comprehensive overview of the applications of
extreme values methodology to insurance and finance). As highlighted by the
recent turbulences in financial markets such as the Russian financial crisis in
1998 or the burst of the speculative information technology bubble in 2001,
extreme price fluctuations may expose at times portfolio managers to high
levels of market risk (cf Zajdenweber (2000)). This phenomenon is naturally
more pronounced for emerging markets, in which such extremal variations are
frequent (see Susmel (2001) for instance). When investing in these markets,
funds managers have to pay more attention on the distribution of ”large”
stocks returns values and implement suitable risk management tools to avoid
big losses. Some funds managers and other market participants have been
driven to adopt such quantitative risk management techniques not only in
reaction to their own experience of market turbulence, but also because of
regulatory climate (see Chapters 1-4 in Crouhy et al. (2000)). Hence, pen-
sion funds and insurance companies portfolio managers are not allowed to
take high risks and are constrained in their management by some statutory
regulatory restrictions like prudent man rule1 or quantitative portfolio restric-
tions2, with the aim to ensure diversification for limiting investment risks:
the primary goal of any prudential control being to ensure that the pension
fund or insurance beneficiaries are adequately protected and that they will
receive the benefits or the compensation they are entitled to. In this spe-
cific context, namely when risk aversion takes precedence of potential gain
in an overwhelming fashion (see Roy (1952), Arzac & Bawa (1977) and refer
to Kahneman & Tversky (1979) for a discussion on the dissymetry in the
perception of gains and losses, see also Rabin (2000) and Rabin & Thaler
(2001) for a quantitative description of the degree of risk aversion of investors

1a concept whereby instruments are made in such a way that they are considered to be

handled ” prudently” as someone would do in the conduct of his own business.
2a quantitative limitation of a given asset class. Typically, those instruments whose

holding is limited are those with high price volatility and low liquidity.
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for large stakes), standard methodologies for portfolio allocation, such as ap-
proaches based on mean-variance optimization (cf Markowitz (1952)), are
not convenient any more. Hence, various methods have been recently pro-
posed for addressing the portfolio construction problem in specific nongaus-
sian frameworks. For instance, in Malevergne & Sornette (2001) gaussian
copulas combined with a family of modified Weibull distributions are used
for modelling the tail of the flow of returns and obtaining as a byproduct
the tail behaviour of the return of any portfolio. And in Bradley & Taqqu
(2004), the problem of how to allocate assets for minimizing particular quan-
tile based measures of risk is considered via the structure variable approach,
using the tools of univariate extreme values theory for modelling the tail of
the portfolio (see also Jansen et al. (2000)).
In this paper, we consider the problem of selecting a portfolio so as to pro-

vide against extreme loss. From a specific modelling of extremal lower fluctu-
ations of asset returns based on Independent Component Analysis (ICA), we
show how to quantify the risk of extreme loss of any investment strategy in
our specific setting and how diversification should be carried for minimizing
this particular extreme risk measure. The outline of the paper is as follows.
In section 2, the tail index is discussed as a specific risk measure regarding
to maximal relative loss for heavy-tailed portfolios. In section 3, the key
concepts of ICA are briefly recalled and the applications of this recent statis-
tical methodology for latent variables analysis to mathematical finance are
reviewed. Section 4 is devoted to the description of the heavy-tailed ICA
model we propose for describing the extreme fluctuations of stock prices re-
turns, in which the IC’s are assumed to have heavy tails of Pareto’s type
(i.e. power-like lower tails) and may be interpreted as elementary portfolios
returns. An estimation method based on conditional maximum likelihood is
detailed, which provides a numerical procedure for recovering the elementary
portfolio strategies and their extreme risk measures as well. The elementary
portfolio with the largest left tail index is shown to be optimal regarding to
extreme risk with respect to our setting. The relevance of this modelling for
financial returns is discussed through several applications: empirical studies
are carried out in section 5, which show on some examples how the diversifi-
cation induced by our model performs. In section 6, some concluding remarks
are collected, together with several lines of further research.
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2 On measuring extreme risks of portfolio

strategies

Risk quantification for financial strategies have been the object of intense
research, still developping. Given the nongaussian character of financial re-
turns distributions and in consequence the limitation of the variance as an
indicator for describing the amount of uncertainty in their fluctuations, var-
ious risk measures have been proposed (see Szegö (2004) for a recent survey
on this subject, as well as Chapters 5-6 in Crouhy et al. (2000)), such as
Value at Risk (VaR, see Jorion (1997), Duffie & Pan (1997) for instance) or
Expected Shortfall (ES, one may refer to Acerbi & Tasche (2002)), which
are both quantile-based risk measures. Risk measures may be considered in
particular for guiding investment behaviour. Once a risk measure is chosen,
the matter is then to select an optimal portfolio with respect to this latter.
Suppose that there are D (risky) assets available, indexed by i ∈ {1, ...,D}.
Let us fix a certain (discrete) time scale for observing the fluctuations of
asset prices and denote by Xi(t) the price of the i-th asset at time t. Let
ri(t) = (Xi(t)−Xi(t−1))/Xi(t−1) be the return at time t > 1 and denote by
r(t) = (r1(t), ..., rD(t))

0 the flow of returns. Consider the portfolio strategy
consisting in investing a fixed relative amount wi ∈ [0, 1] of the capital in the
i-th asset (short sales being excluded), so that

PD
i=1wi = 1 (the portfolio is

fully invested). The return of the corresponding portfolio at time t is then

Rw(t) =
DX
i=1

wiri(t). (1)

Hence, if the r(t)’s are assumed to be i.i.d., so are the Rw(t)’s, with common
distribution function Fw. We point out that, although in the case when one
does not consider investment strategies involving short salesRw(t) is bounded
below by −1 (like the ri(t)’s), here we classically use an infinite lower tail ap-
proximation for modelling extreme lower values of portfolio returns (i.e. the
left tail of the df Fw). Any risk measure is classically defined as a functional
of the portfolio return distribution Fw (a specific quantile or its variance for
instance). In this paper, we focus on the maximal relative loss of the port-
folio over a large period of time T , that is to say on mT = mint=1,...,T Rw(t),
of which fluctuations may be characterized by an asymptotic extreme value
distribution H in some cases, namely in the cases when Fw is in the domain
of attraction of an extreme value distribution H with respect to its lower tail.
It is a well-known result in extreme values theory that there are only three
types of possible limit distributions for the minimum of i.i.d. r.v.’s under pos-
itive affine transformations, depending on the tail behavior of their common
density (refer to Resnick (1987) for further details on extreme values theory).
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Here we shall consider investment strategies w with distribution functions Fw

in the maximum domain of attraction of Fréchet distribution functions Φα,
α > 0 (MDA(Φα) in abbreviated form), which dfs form the prime exam-
ples for modelling heavy-tailed phenomena (see Chap. 6 in Embrechts et al.
(1997) for instance and the references therein). Recall that

Φα(x) = exp(−x−α), for x > 0,

Φα(x) = 0, for x 6 0,

and that a df F ∈ MDA(Φα) iff F (−x) is regularly varying with index −α,
that is F (−x) = x−αL(x), for some measurable function L slowly varying
at ∞ (i.e. for some function L such that L(tx)/L(x) → 1 as x → ∞ for
all t > 0). In the case when the df F behaves as a power law distribution
at −∞, the tail index α characterizes the extreme lower behaviour of an
i.i.d. sequence (R(t))t>0 drawn from F regarding to its minimum value, in
the sense that: for any x > 0, P(c−1T (mint=1,...,T R(t)) 6 −x) → 1 − Φα(x)
as T → ∞, where cT = sup{x ∈ R : F (−x) 6 n−1} (recall that ξ = α−1

is also known as the shape parameter of the extreme value df in this case).
As shown in several empirical studies (see for instance Hogg & Klugman
(1984) for such a modelling in the domain of insurance, and Guillaume et al.
(1997), Longin (1996), Loretan & Phillips (1994) or Pisarenko & Sornette
(2004) for empirical studies assessing the pertinence of such assumption for
daily log-returns in finance and in Gabaix et al. (2003) a testable theory for
the origin of power law tails in price fluctuations is proposed) and illustrated
in Fig. 1 by the quantile plot and the mean excess plot related to the returns
of the portfolio obtained by allocating 25% of the capital in each of the fol-
lowing financial indexes, Dow Jones, IGPA, TSX and Taiwan SE index from
01/1987 to 09/2002 (the pertinence of QQ-plots andME-plots as exploratory
graphical tools for extremes is discussed in § 6.2 in Embrechts et al. for in-
stance), this class of dfs F contains left heavy-tailed distributions, usually
called generalized Pareto or power law-like dfs, that may be appropriate for
modelling large lower fluctuations of returns. Let us observe that the smaller
the tail index α is, the heavier the left tail of F is. Hence, when modelling
the lower tail behaviour of the distribution of portfolio returns this way, the
tail index α may appear as a legitimate measure of extreme risk for the port-
folio strategy (refer to Hyung & de Vries (2005) for a thorough discussion
about the relevance of this specific safety first criterion, when managing the
downside risk of portfolios is the matter).
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Fig. 1: Graphical analysis of returns data for a uniform portfolio: (a) QQ-

plot of the lower returns data vs the Pareto df on R− with tail index 2 (b) the
empirical ME function of the lower returns data compared with the theoretical

ME function of the Pareto df on R− with tail index 2.

Remark 2.1 Moreover, the tail index α rules the asymptotic behaviour of

the excess-of-loss df F (u)(x) = P(R < −u− x | R < −u) below the threshold

−u related to F (x) = P(R 6 x) ∈ MDA(Φα) for large u > 0, as shown

by the following limit distributional approximation (see de Haan (1984) for

further details on the convergence of normalized excesses over large thresholds

to Generalised Pareto Distributions): for 1 + x/α > 0,

lim
u→∞

F (u)(xa(u)) = (1 +
x

α
)−α,

where a(u) is a measurable positive function such that a(u)/u → α−1 as

u→∞.
The set of strategies w of which returns have dfs Fw inMDA(Φα) is thus

naturally equipped with a complete preference relation, as follows.

Definition 2.1 Suppose that w1 and w2 are two portfolio strategies such that

Fwi ∈ MDA(Φαi) with αi > 0 for i = 1, 2. We shall say that strategy w1

is riskier (respectively, strictly riskier) than strategy w2 regarding to extreme

relative loss iff α1 6 α2 (resp., α1 < α2).
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3 ICA: some basics.

Multivariate data are often viewed as multiple indirect measurement of un-
derlying factors or components, which cannot be directly observed. In some
cases, one may hope that a few of these latent factors are responsible for
the essential structure we see in the observed data and correspond to inter-
pretable causes. Latent Variables Analysis aims to provide tractable theoret-
ical framework and develop statistical methods for identifying these underly-
ing components. The general setting of latent variables modelling stipulates
that

X = AY, (2)

where X is an observable D-dimensional random vector and Y is a vector
of d unobserved latent variables converted to X by the linear transform A,
classically called the mixing matrix. Note that in the case when d 6 D and
the mixing matrix is of full rank d, there is no loss (but some redundancy on
the contrary, when d < D) in the information carried by X. As a matter of
fact, one may then invert the relation (2) and write

Y = ΩX, (3)

where the de-mixing matrix Ω is any generalized pseudo-inverse ofA: whereas
in the case d = D, Ω is uniquely determined by (3) and is simply the inverse
A−1 of the mixing matrix, additional identifiability constraints are necessary
for guaranteeing unicity when d < D. Principal Component Analysis (PCA)
and Factor Analysis form part of a family of statistical techniques for recov-
ering Y and A on the basis of an observed sample drawn from X, that are
typically designed for normal distributions, which assumption clearly limited
practical application of such modellings. In spite of the considerable evidence
for non-gaussianity of financial returns or log-returns, and on the basis of the-
oretical market modelling such as CAPM or APT, Factor Analysis and PCA
have been nevertheless extensively used by practicioners for gaining insight to
the explanatory structure in observed returns and finding interpretable fac-
tors such as market confidence that may be hard to measure. In the mid-90’s,
the methodology of Independent Component Analysis (refer to Hyvärinen et
al. (2001) or Everson & Roberts (2001) for a comprehensive presentation
of ICA), comprising highly successfull new algorithms (mainly introduced in
the field of signal processing for Blind Source Separation (BSS)) has emerged
as a serious competitor to PCA and Factor Analysis, and is based, on the
contrary to these latter techniques, on the non-normal nature of the latent
components. As a matter of fact, ICA only relies on the crucial assump-
tion that the underlying factors Y1, Y2, ... are statistically independent (and
are naturally called independent components for this reason), which hypoth-
esis is much stronger than uncorrelation when Y is nongaussian (heuristi-
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cally, uncorrelation determines second-order cross moments, whereas statis-
tical independence determines all of the cross-moments). Stipulating further
identifiability conditions apart from independence and non-normality of the
IC’s, many valid statistical methods have been proposed for estimating the
ICA model, based on entropy, maximum likelihood, mutual information or
tensorial methods (see chapters 8 to 11 in Hyvärinen et al. (2001)). The
nongaussian character of financial returns or log-returns being now carried
unanimously, several contributions to the application of ICA to finance have
been recently made. Finance as a field of application of ICA is now under
intensive investigation, so that no exhaustive list of works in that direc-
tion can be displayed at present (the interested reader is advised to consult
www.cis.hut.fi/projects/ica or www.tsi.enst.fr/icacentral for a listing of the
papers written so far). The modelling of the fluctuations of financial returns
and the search for independent factors through ICA thus gave rise to several
works, among which Back & Weigend (1997), Kiviluoto & Oja (1998) and
Chan & Cha (2001) (see also Chapter 24 in Hyvärinen et al. (2001) and the
references therein). Vassereau (2000) proposed a specific ICA model based
on neural networks for determining factors generating financial returns in
the U.S. market in the APT context and showed it provides an evaluation of
these latter, sharper than by using classical factor analysis, especially when
high idiosyncratic risks are present. In Chin et al. (1999) gaussian mixtures
modelling is combined with ICA for computing the market risk of non-normal
portfolios. Besides, Moody &Wu (1997) applied the ICA methodology in the
context of state space models for interbank foreign exchange rates to improve
the separation between noise and ”true prices”. Malaroiu et al. (2000) show
how to apply ICA for forecasting financial series. And in Capobianco (2002),
ICA combined with a matching pursuit algorithm is used as an exploratory
tool for investigating the structure in (high-frequency) Nikkei index data.
Besides, a study of implicit volatility dynamic through ICA is carried out
in Ané & Labidi (2002) with the aim to identify the essential structure of
time-varying volatility surfaces.

4 Our proposal: the heavy-tailed ICA model

We now present the specific ICA model we propose for describing the extreme
lower fluctuations of asset returns, which we call the heavy-tailed ICA model,
and give some insight in the latter. Here and throughout, we suppose there
are D securities indexed by i ∈ {1, ...,D} and let Xi(t) be the price of the
i-th security at time t. The returns of the i-th security are defined by

ri(t) = (Xi(t)−Xi(t− 1))/Xi(t− 1), t > 1.
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4.1 Modelling the extremal events via ICA

The hypotheses of the heavy-tailed ICA model are laid out as follows. Let us
suppose that the flow of daily returns of theD assets are i.i.d. realizations of a
random vector r = (r1, ..., rD)

0 with components that are linear combinations
of D independent elementary portfolios returns R1, ..., RD, so that

r = AR, (4)

where R = (R1, ..., RD)
0 and A = (aij) is a D by D matrix of full rank, of

which inverse Ω belongs to the (compact and convex) set of parameters

B = {Ω = (ωij)16i6,j6D/ ωij > 0,
DX
k=1

ωik = 1 for 1 6 i, j 6 D}. (5)

We thus have
R = Ωr. (6)

We assume moreover that the Ri’s have heavy-tailed distributions, further-
more lower-tails are supposed to be Pareto-like below some (unknown) thresh-
olds:

Gi(y) = P(Ri < −y) = Ciy
−αi , for y > si, (7)

with strictly positive constants αi, Ci and si, 1 6 i 6 D. In addition, we
suppose that the αi’s are distinct and, with no loss of generality, that the
IC’s are indexed so that α1 > ... > αD (the elementary portfolios are thus
sorted by increasing order of their riskiness regarding to Definition 1), so as
to ensure that the statistical model is identifiable.
In this framework, we have the following result, which shows that an

optimal strategy with respect to extreme relative loss is straightforwardly
available from our specific ICA model.

Theorem 4.1 The elementary portfolio strategy ω1 = (ω11, ..., ω1D) is opti-

mal with respect to the extreme risk measure.

Proof. Theorem 4.1 straightforwardly derives from the following lemma
concerning convolution products of regularly varying densities (refer to Em-
brechts, Goldie & Veraverbeke (1979) for the technical proof).

Lemma 4.1 Suppose that F1 and F2 are probability distributions such that

1 − F1(x) = o(1 − F2(x)) as x → ∞, then 1 − F1 ∗ F2(x) ∼ 1 − F2(x) as

x→∞.
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Therefore, according to the proposed ICA model, any convex linear com-
bination Rw = wr of the asset returns, is also a linear combination of the
elementary portfolio returns (Rw = ewR with ew = Aw and notice that nec-
essarily

P
16i6D ewi = 1). The result thus immediately follows from the as-

sumptions related to the independence structure of the Ri’s and their tail
behaviour.

Remark 4.1 We emphasize that obvious modifications of the heavy-tailed

ICA model described above permits to deal with stakes of completely differ-

ent nature, namely to find strategies w maximizing extreme relative profits

maxt=1,...,T Rw(t), which issue may be somehow considered as ”in duality”

with the problem adressed in this article and typically concerns market par-

ticipants such as hedge funds. In this dual setting, the upper tail behaviour

of portfolio dfs Fw are modelled by Pareto-like distributions P(Rw(t) > x) =

1−Fw(x) = L(x)x−α, with α > 0 and L a slowly varying function at infinity:

the smaller the tail index α is, the more frequent extreme profit values are

encountered: we then have P(c−1T maxt=1,...,T Rw(t) 6 x)→ Φα(x) as T →∞,

for any x > 0, where cT = inf{x ∈ R : F (x) > 1− n−1}. An ICA model for

identifying preferable investment strategies regarding to extreme profit may be

derived by simply replacing condition (7) by the assumption that the Ri’s are

distributed so that P(Ri > x) = Cix
αi , for x over some unknown threshold si.

Experimental studies based on this model will be carried out in a forthcoming

paper (see also Skander (2005)).

4.2 Statistical inference

Several objects must be estimated, the tail indexes α1, ..., αD, the constants
C1, ..., CD, as well as the matrix Ω of elementary strategies (the inverse of
the mixing matrix A of the ICA model). The statistical method we shall now
detail for the parametric ICA model described above is based on conditional
MLE, as the classical Hill inference procedure for tail index estimation (refer
to Hill (1975)), which is widely used in applications related to risk assessment
(see Zajdenweber (1996) or Koedijk & Kool (1992) for instance).
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4.2.1 Conditional likelihood of the heavy-tailed ICA model

Let us first introduce some additional notation. For i ∈ {1, ..., D}, denote
by Ri(1), ..., Ri(N) an i.i.d. sample drawn from Ri and by Ri(σi(1)) 6
... 6 Ri(σi(N)) the corresponding order statistics. Recall that the basic Hill
estimator for the tail index αi based on this sample is:

bαH
i,k = (

1

k

kX
l=1

ln(
Ri(σi(l))

Ri(σi(k))
))−1, (8)

with 1 6 k 6 N such that Ri(σi(k)) < 0, while Ci is estimated by bCi =
k
N
(−Ri(σi(k)))

bαi . These estimates are (weakly) consistent, as soon as k =
k(N) is picked such that k(N) → ∞ and N/k(N) → ∞ as N → ∞ (cf
Mason (1982)) and are strongly consistent if furthermore k(N)/ ln lnN →∞
as N →∞ (see Deheuvels et al. (1988)). They are classically interpreted as
a conditional maximum likelihood estimators based on maximization of the
joint density fi,k(y1, ..., yk) of (−Ri(σi(1)), ..., −Ri(σi(k))) conditioned on the
event {Ri(σi(k)) 6 −si}:

fi,k(y1, ..., yk) =
N !

(N − k)!
(1− Ciy

−αi
k )N−kCk

i α
k
i

kY
l=1

y
−(αi+1)
l , (9)

for 0 < si 6 y1 6 ... 6 yk and fi,k(y1, ..., yk) = 0 otherwise. Hence the
conditional likelihood based on R is

DY
i=1

fi,k(−Ri(σi(1)), ...,−Ri(σi(k))). (10)

Remark 4.2 We would like to stress at this point that the practical choice

of the number k of (lower) order statistics used is crucial when implementing

the Hill estimation procedure. The so-called Hill-plot {(k, bαH
i,k) : 2 6 k 6 N}

is a graphical tool, that may be used efficiently for solving practically this

problem. Regarding our framework, this issue is discussed in § 4.2.3.

Now it is not difficult to derive the conditional likelihood of the heavy-
tailed ICA model from the observation of a sample of length N of asset
returns r(N) = (r(1), ..., r(N)) = ((ri(1))16i6D, ..., (ri(N))16i6D). For all
1 6 i 6 D, sort the return vector observations r(l), 1 6 l 6 N, so that
ωir(σi(1)) 6 ... 6 ωir(σi(N)) (observe that the permutation σi depends on
ωi: ωir(σi(l)) = R(σi(l)), 1 6 l 6 N). Hence, the likelihood function based
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on the observations {r(σi(l)), 1 6 l 6 k, 1 6 i 6 D} and conditioned on the
event {ωir(σi(k)) 6 −si, 1 6 i 6 D} is

Lk(r(N),Ω, α, C) = |detΩ|k
DY
i=1

fi,k(−ωir(σi(1)), ...,−ωir(σi(k))). (11)

Note that, for any given r(N), the functional Lk(r(N), . , . , .) is continuous and
piecewise differentiable on B×R∗+×R∗+. Furthermore, as previously recalled,
for any fixed Ω ∈ B and for all i ∈ {1, ...,D}, fi,k(−ωir(σi(1)), ...,−ωir(σi(k))

is maximum for αi = bαi and Ci = bCi with

bαi = (
1

k

kX
l=1

ln(
ωir(σi(l))

ωir(σi(k))
))−1, (12)

bCi =
k

N
(−ωir(σi(k)))

bαi . (13)

For any Ω ∈ B, L(r(N),Ω, α, C) is thus maximum for α = bα = (bαi)16i6D and

C = bC = ( bCi)16i6D and we denote this maximal value by

eLk(Ω) = Lk(r
(N), Ω, bα, bC). (14)

Here, conditional MLE reduces then to maximizing the multivariate scalar
function eLk(Ω) over Ω ∈ B , which may be easily shown as equivalent to
maximizing over Ω ∈ B :

lk(Ω) = |detΩ|k exp
Ã
−

DX
i=1

{k ln(
kX
l=1

ln(
ωir(σi(l))

ωir(σi(k))
)) +

kX
l=1

ln(−ωir(σi(l))}
!
.

(15)

4.2.2 Algorithms for conditional MLE

In our setting, estimating the ICA model (6) thus boils down to the task of

finding bΩ in the closed convex set B such that
lk(bΩ) = max

Ω∈B
lk(Ω).

In addition to the theoretical estimation principle described above, a numeri-
cal method for maximizing the objective function lk(Ω) (or eLk(Ω)) subject to
the linear matrix constraint Ω ∈ B is required. Various optimization meth-
ods, among which the popular subgradient-type learning algorithms, have
been introduced for solving approximatively such a constrained optimization
problem from a practical viewpoint (refer to Shor (1985) or Kiwiel (1985)
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for an extensive discussion of several classes of algorithms). As a matter of
fact, the objective function lk(Ω) is continuous and piecewise differentiable on
MD(R): its gradient ∇lk(Ω) is well-defined at each point Ω = (ωi,j)16i,j6D
such that detΩ 6= 0 and ωir(σi(k − 1)) < ωir(σi(k)) < ωir(σi(k + 1)) for all
i ∈ {1, ...,D}, we have

∂lk
∂ωi,j

(Ω)/lk(Ω) = kγi,j(Ω)/detΩ+
kX
l=1

rj(σi(l))/ωir(σi(l)) (16)

−k
Pk

l=1{rj(σi(l))/ωir(σi(l))− rj(σi(k))/ωir(σi(k))}Pk
l=1 ln(ωir(σi(l))/ωir(σi(k)))

,

where γi,j(Ω) denotes the cofactor of ωi,j in Ω, 1 6 i, j 6 D (the sub-
differential ∂lk(Ω) is then easily determined through equation (16) at any
point Ω ∈MD(R)). Hence, the classical projected subgradient method (see
Chap. 6 in Bertsekas (1995) for instance) allows to estimate the Heavy-tailed
ICA model and to solve numerically the portfolio selection problem knowing
the sample r(N), as illustrated by the following simple example, using two
independent components with Pareto distributions.

Example (mixtures of two independent Pareto distributions) In
this experiment (see graphpanel in Fig. 2), data are two mixtures of inde-
pendent Pareto r.v.’s on ]−∞,−1[ with respective parameters α1 = 4 and
α2 = 3, where the coefficients of the de-mixing matrix are ω1,1 = 1−ω1,2 = 0.7
and ω2,1 = 1 − ω2,2 = 0.1. Figures 2a) and 2b) show the two independent
underlying i.i.d. series (sources) of length N = 1000. The observed bivariate
data series is plotted in Fig. 2c) together with the directions of the IC’s
and the likelihood function is displayed in Fig. 2d). As shown by Fig. 2e),
the projected gradient algorithm converged correctly to the maximum likeli-
hood solution in m = 38 iterations: the resulting estimates are bα1 = 3.8631,bα2 = 2.8828, bω1,1 = 0.6995 and bω2,1 = 0.0822.
4.2.3 Practical considerations

When applying the estimation algorithm above on financial data, practical
questions naturally arise and must be handled. We now discuss the latter
issues.

On choosing the number k of lower order statistics As for calculating
Hill estimates, the estimation method proposed in § 4.2.1 for the Heavy-tailed
ICA model requires to choose the number k of lower order statistics used in
the likelihood computation. It is well-known that the Hill estimator is very
sensitive to the choice of k. This problem has been the subject of intense

12



Fig. 2: Heavy-tailed ICA model estimation from simulated data: (a) and (b)
the two underlying independent Pareto sources with tail indexes 4 and 3 , (c) ob-
served mixed signal with the IC directions, (d) the likelihood value shown as a func-

tion of iteration count, (e) plot of the likelihood function.

research in theoretical statistics, still developping. For instance, one may try
to pick an optimal k that minimizes the asymptotic mean square error (re-
fer to Danielsson et al. (2001) or Drees & Kaufmann (1998)). However, in
practice one either uses as a rule of thumb the lower 5% say of the sam-
ple in the calculation or else plots the Hill estimate based on k lower order
statistics against k and find a suitable k in a stable region of the graph. In
our framework, given the strong technical difficulties for studying the limit
distribution of the estimator bα = (bα1, ..., bαD) (since the latter depends not

only on the observed data but also on the estimate bΩ) as n and k tend to∞,
13



we preferably use empirical graphical methods for selecting k. As in most
cases encountered in practice the aim of such a modelling is to determine
an optimal investment strategy ω1 and the corresponding risk level α1, a
possible heuristic method would then consist in implementing the estimation
procedure described in § 4.2.1 for several choices of k and plotting the max-
imum tail index bα1 against k only and infering then a value of k such that
the maximum tail index estimate appears to be stable.

On-line implementation In practice, financial data are available ”on-
line”: asset returns keep on being observed daily and the size of the available
sample r(N) = (r(1), ..., r(N)) grows thus with time. In such a setting, it is
naturally possible to adapt the estimation method described in § 4.2.2 and
run an on-line version of the latter by indefinitely pursuing the optimization
procedure and using at each step the whole available data set for updating
the calculation of the conditional likelihood and its subgradient. Further-
more, the underlying data generating process might also evolve through time
(the mixing-matrix and the tail parameters might be slowly varying) and
fast tracking is needed then: an on-line adaptive version of the projected
subgradient algorithm may be implemented by using a forward rolling data
history of fixed length m > 1, i.e. by performing each step of the algorithm
with the m latest observed values r(N −m+ 1), ..., r(N)) for tracking these
structural changes (see § 5.3 below).

5 Applications - Empirical studies

We now carry out several applications of the Heavy-tailed ICA modelling,
illustrating in particular its role in portfolio selection and asset allocation
when the aim is to manage the downside risk.

5.1 Two examples

As explained above, the statistical method we present here aims to search for
independent portfolio strategies and to estimate their Pareto left tail indexes
as well. It also allows us to recover as a byproduct a portfolio strategy with
a maximum left tail index (see Theorem 4.1).

Example 1. As a first illustration of the Heavy-tailed ICA model, we apply
the latter for analyzing the daily return series of D = 11 international equity
indexes of (developed or developing) financial markets over the period run-
ning from 02-January-1987 to 22-October-2002 (the length of the financial
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time series studied is thus N = 4096) listed in Table 1.

Table 1. Extreme value statistics based on daily returns from 11

international equity markets for the period 02/01/87 - 22/10/02.

For each market index, the number k of values used for computing

the Hill estimate bαg of the left tail index is selected using the AMSE

approach as in Danielsson et al. (1997). The empirical Mean Excess

function is computed at levels 1%, 2%and 3%.

Country (Index) k bαg Mean Excess (%) Min (%)

1% 2% 3%

Canada (TSX) 99 2.77 0.81 1.08 1.43 -11.32

Chile (Igpa) 152 2.93 0.68 0.86 1.18 -12.50

Germany (Dax30) 150 2.98 0.94 1.12 1.60 -13.71

Hong Kong (Hang Sang) 195 2.43 1.10 1.17 1.43 -40.54

Korea (Kospi) 196 2.55 1.32 1.44 1.45 -12.80

Japon (Nikkey225) 165 3.44 1.02 0.97 1.02 -16.14

Malaisia (KLSE) 240 2.08 1.25 1.66 1.97 -24.15

Singapore (Straits Times) 193 2.41 1.03 1.42 2.16 -29.19

Taiwan (SE) 200 2.95 1.55 1.51 1.57 -10.29

U.S. (Nasdaq Comp.) 141 3.09 1.29 1.29 1.36 -12.05

U. K. (FTSE100) 118 2.91 0.77 1.05 1.02 -13.03

The results presented in Table 2 indicate the allocations corresponding to the
11 independent elementary portfolios, as well as their left tail index estimate,
sorted by increasing order of their extreme risk measure (as quantified in
section 2), obtained by implementing the statistical procedure described in
§ 4.2 with the k = 200 lowest values (representing roughly the lowest 5%
values). Descriptive statistics related to the lower tail behaviour of each
elementary portfolio are also displayed in Table 2: minimum return values,
empirical estimates of the probability of excess (EPE in short), P(Ri < −u),
that the i-th elementary portfolio looses more than u% of its value (at a one
day horizon) are calculated at various threshold levels u over the time period
considered, as well as the empirical counterpart of the mean excess function
(ME in abbreviated form), ei(u) = −E(Ri + u | Ri < −u), traditionally
referred to as the expected shortfall in the financial risk management context.
For comparison purpose, inferential and descriptive statistics concerning the
lower tail of single equity indexes are also given in Table 1. In a general
fashion, by looking at these indicators one can see that the lower tails of
the single assets are globally much heavier than the ones of the least risky
elementary portfolios we obtained. For instance, the maximum relative loss
suffered by the optimal elementary portfolio (PF1) over the period of interest
is 3.86% , while the minimum values of single market indexes range from
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−10.29% to −40.54%. As expected, except for the FTSE100 index, zero
or small weights in PF1 correspond to the market indexes with the most
heavier left tails (namely, the Hong Kong, Malaisia and Singapore indexes,
which correspond to emerging financial markets that are presumably very
interdependent, for instance the plot in Fig. 3a) shows strong patterns of
left-tail dependence for the returns of the Hong Kong and Singapore market
indexes), whereas on the contrary the latter indexes have the largest weights
for PF11. These results clearly show the benefit of the diversification induced
by our specific modelling of the dependence structure between the assets
regarding to extreme risk. This phenomenon is also illustrated by Table 3.
It shows lower tail statistics of the optimal portfolio obtained by applying
our modelling as a function of the number D of market indexes involved in
the ICA model (financial indexes being progressively added, by decreasing
order of their tail index estimates) and plainly indicates that the lower tail
becomes thinner as D grows.

Fig. 3: Lower Tail Dependence of Returns Pairs (a) Singapore (vertical axis)

and Hong Kong (horizontal axis) (b) Argentina (vertical axis) and Brasil (hori-

zontal axis).
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Table 3. Lower tail characteristics of the optimal

portfolio obtained by using the Heavy-tailed ICA

model with Dmarket indexes, as Dgrows.

Number of assets D 3 5 7 9

Pareto Index 2.57 2.90 3.04 3.30

Minimum (%) -36.54 -14.60 -7.25 -6.71

EME at u = 1% 1.27 0.92 0.58 0.56

EME at u = 2% 1.53 1.09 0.73 0.88

EME at u = 3% 1.98 1.39 1.39 1.19

Example 2. As a second illustration, we also applied our method to the
11 international equity indexes, of developing markets only, listed in Table
4 over the period running from 16-December-1994 to 22-October-2002 (here
the time series length is N = 2048), the model being fitted by conditional
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MLE with the k = 150 lowest values.

Table 4. Extreme value statistics based on daily returns of the 11

international equity markets involved in Example 2 for the period

12/1994 - 10/2002.

Country (Index) k bαg Mean Excess (%) Min (%)

1% 2% 3%

Argentina (Merval) 174 2.30 1.85 1.94 2.00 -14.76

Brazil (Bovespa) 139 2.27 1.79 1.84 1.95 -17.23

Chile (Igpa) 53 3.15 0.58 0.71 0.41 -3.86

China (Shangäı) 115 2.21 1.43 1.62 2.08 -17.91

Greece (Athens SE) 96 2.98 1.28 1.51 1.49 -9.69

Hong Kong (Hang Sang) 122 2.41 1.27 1.42 1.53 -14.73

Mexico (Ipc) 130 2.62 1.20 1.25 1.36 -14.31

Russia (RTS) 188 2.21 2.18 2.31 2.25 -19.02

S. Africa (JSE All Share) 99 3.28 0.91 1.23 1.47 -11.86

Tchekia (Prague SE) 95 3.68 0.88 0.81 0.89 -7.08

Taiwan (SE) 108 3.30 1.18 1.10 1.05 -9.94

As shown by Table 5, the maximum relative losses sustained by the ele-
mentary portfolios we obtained over the period studied range from 2.61%
to 5.64% only, which are globally much lesser than the ones of the single
market indexes, as the empirical Mean Excess values. One may notice for
instance that the Argentina and Brazil market indexes have zero weights in
the resulting optimal portfolio: these financial indexes are very heavy-tailed,
as the Hong Kong index which is also zero weighted, on the one hand and
the plot in Fig. 3b) strongly suggests that extreme values tend to occur
simultaneaously for these two financial markets on the other hand.

5.2 Further comparisons

In order to highlight the solutions that may be obtained by using the spe-
cific modelling we propose for guarding investors from big losses, we first
compared the results described above with the ones obtained by the stan-
dard Mean-Variance (MV) approach (cf Markowitz (1952)). When fixing
the mean return target, the latter method consists then in solving a system
of linear equations for finding the portfolio strategy with minimum variance.
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More precisely, for both examples we calculated here the allocations corre-
sponding to the portfolio with minimum variance among all portfolios with
the same mean as the (estimated) one of the optimal portfolio resulting from
the Heavy-tailed ICA model (which portfolio is to be refered to as the MV
portfolio in what follows, while the optimal elementary portfolio is called the
ICA portfolio): in the first example, the empirical mean return of the opti-
mal elementary portfolio is 0.04%, while it is 0.02% in the second example.
MV portfolios are displayed in Table 6. The performance of these portfo-
lios regarding to huge losses may be compared by representing the lower
tail of their empirical distributions (see the time-plots and the histograms
in Fig.4) in the one hand and plotting their empirical mean excess (EME)
functions in the other hand (see Fig. 5 and Table 7). In these experiments
the Heavy-tailed ICA model clearly outperforms the classical MV approach:
in both examples, the graph of the EME function of the elementary portfolio
is always much below the one of the EME function of the MV portfolio and
this phenomenon is more and more pronounced as the threshold level grows.
This suggests that the Heavy-tailed ICA model describes much more perti-
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nently the dependence structure of the lower fluctuations of the asset returns
considered in these examples than the simple covariance structure, which es-
sentially describes the spread of the distribution of the flow of returns about
its mean value and does not take sufficiently into account the tail behaviour,
given its nongaussian character. One can see for instance, that although the
time plot in Fig. 6 clearly shows that in most cases extreme lower variations
of the Merval index and the ones of RTS index do not occur simultaneously,
the (linear) correlation between these return series is almost zero (namely,
−0.86%), extreme lower values being not enhanced by the latter statistical
indicator due to their rarity.
We also emphasize that many other models have been suggested for solv-

ing the portfolio selection problem, involving different measures of risk. Pro-
viding a systematic list of their respective advantages and limitations is be-
yond the scope of the present paper, but we nevertheless point out that a
possible approach, could consist in fixing a (large) threshold loss u and im-
plementing a greedy search algorithm for finding a portfolio strategy ω that
minimizes the mean excess function at the point u, which objective function
is −E(ωr+u | ωr < −u) = (σ+ξu)/(1−ξ), when modelling the lower tail of
the portfolio return ωr by a Generalized Pareto Distribution P(ωr < −z) =
Fξ,σ,u(z) = 1−P(ωr < −u)(1+ ξ(z−u)/σ)

−1/ξ
+ , with ξ ∈ (0, 1) and σ > 0, in

the same spirit as the approach developped by Bradley & Taqqu (2004) (ex-
cept that the Value at Risk V arω(α) = u+σ(((1−α)/P(ωr < −u))−ξ−1)/ξ
at a fixed level α is chosen as loss threshold), the shape and scale parameters
ξ and σ being estimated by maximum likelihood for each possible alloca-
tion vector ω. We call such a portfolio the ESu portfolio in the following.
Beyond the practical difficulties encountered when performing such an op-
timization procedure, the resulting portfolio strategy is highly dependent of
the loss threshold u chosen, as confirmed by our experiments. As a matter
of fact, the EME plots in Fig. (a) and (b) and the results displayed in Table
7 show that, for a given threshold u0, though the ESu0 portfolio may have
smaller empirical mean excess and probability of excess at level u = u0 (in
some cases only, namely for low threshold levels), its performance is rapidly
becoming worse, compared to the ICA portfolio, when the risk level u in-
creases. These findings suggest that, for guarding from catastrophic losses,
optimizing globally the tail behaviour of the portfolio, or equivalently the
asymptotic behaviour of the Mean Excess function (see Remark 2.1) as per-
mitted by the Heavy-tailed ICA model may be preferable to performing a
local optimization of the Mean Excess function at an arbitrary fixed level
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and lead to stabler results.

Table 6. MV and ESu portfolio allocations (%). ESu is minimized at threshold
1%, 2% and 3%.

Example 1 Example 2

Country MV ESu Country MV ESu
1% 2% 3% 1% 2% 3%

Canada 0.00 19.08 12.34 0.13 Argentina 5.76 0.00 0.00 0.00

Chile 48.62 23.45 31.62 31.13 Brazil 0.00 0.00 0.00 0.00

Germany 6.92 15.99 18.40 11.88 Chile 27.05 45.80 46.78 45.83

H. Kong 0.00 0.00 4.74 4.73 China 40.10 8.79 7.87 7.71

Korea 0.00 3.67 12.08 9.54 Geece 0.00 3.29 2.32 3.28

Japon 0.00 5.53 0.20 0.04 H. Kong 2.56 0.00 0.00 1.00

Malaisia 12.62 9.09 1.49 2.01 Mexico 1.98 0.00 0.00 0.00

Singapore 17.07 3.88 0.28 0.68 Russia 9.48 3.59 3.67 3.59

Taiwan 0.00 0.59 18.04 38.80 S. Africa 7.62 19.65 20.08 19.66

U.K. 2.97 7.87 0.76 0.02 Tchekia 5.45 12.38 12.64 12.42

U.S. 11.81 10.85 0.05 1.04 Taiwan 0.00 6.50 6.64 6.51

Table 7. Empirical Mean Excess and Probability of Excess over a

threshold u0 for portfolios obtained by direct ES minimization,

Heavy-tailed ICA and MV optimization.

Example 1 Example 2

ESu0 ICA MV ESu ICA MV

EME at u0 = 1% 0.57 0.46 0.61 0.37 0.41 0.58

EPE at u0 = 1% 0.1910 0.0604 0.1121 0.0747 0.1636 0.1717

EME at u0 = 2% 0.57 0.54 1.19 0.39 0.26 0.63

EPE at u0 = 2% 0.0290 0.0067 0.0166 0.0070 0.0185 0.0384

EME at u0 = 3% 0.56 0.20 2.25 0.41 0.00 0.72

EPE at u0 = 3% 0.0041 0.0008 0.0043 0.0341 0.0000 0.0114
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Fig. 4. Figures on the left (resp. on the right) are related to Example 1 (resp.

to Example 2) (a), (b): Time plots of the returns of the ICA optimal portfolio.

(c), (d): Histograms of the returns of the ICA optimal portfolio. (e), (f): Time

plots of the returns of the MV portfolio. (g), (h): Histograms of the returns of the

MV portfolio fitted to the gaussian density.

5.3 On-line implementation - Dynamic asset allocation

As mentioned in § 4.2.3, the dynamic of financial markets may evolve through
time (economic structural changes, ruptures due to shocks, business cycles...).
Hence it may appear as legitimate to make the parameters of the ICA Heavy-
tailed possibly evolve for tracking eventual changes. Such a problem may be
solved by taking a sliding window approach. As new values of financial returns
keep on being observed each (opening) day, this method simply amounts to
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Fig. 5: (a) Example 1: Mean Excess of the ICA optimal strategy (black dotted

line) compared to the ESu portfolio relative to the threshold u = 2% (grey slashed

line) and the MV portfolio (grey line). (b) Example 2: ICA versus ESu (u = 3%)
and MV.

Fig. 6: Lowertail dependence: Merval Index (horizontal axis) versus RTS
Index (vertical axis).

implement the estimation algorithm we proposed from the latest ob-
served return values only, at time intervals of fixed length L (it would be
naturally vain to attempt to track changes of the lower tail behaviour of
the flow of returns each day). In the following illustration, we consider the
problem of constructing a safety-first portfolio based on eight stock indexes
(among which two indexes of developed markets and six indexes of emerging
markets) and describe the performance of the investment strategy consist-
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ing in rebalancing the portfolio every L = 120 days (that is to say every
six months roughly speaking) according to the optimal elementary portfolio
computed from the least observed returns values (see the time-plot of the
returns of the resulting portfolio in Fig. 7). By examining the results dis-
played in Table 8, one can see that some of the portfolio weights exhibit high
degrees of variability, which does not necessarily affect the lower tail index
estimate (for instance the weight of the Chile index ranges from 19.61% to
0% over the period 18/11/96-20/10/97, whereas the Pareto index is almost
constant). Some economic considerations may provide helpful interpretation
for these results. The significant decrease of the weights of the two developed
market (mainly in favor of the Chile and Taiwan indexes) from the year 2001
may be attributed to the effects of the burst of the speculative bubble and
the growing integration of the Chile market into the global financial market.
It seems thus that this market has not been much affected by the ”tequila
crisis” in 1994, contrary to most emerging markets of South America (the
effect of this crisis on the weight of the mexican market is obvious and has
apparently lasted until new informations could restore the confidence). In a
similar fashion, the Taiwan index seems to have escaped the effects of the
asian crisis in 1997, which certainly explains why the two other asian market
indexes correspond to very small weights since then.

Fig. 7: Time plot of the returns of the dynamic ICA portfolio.
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Table 8. Temporal evolution of the constitution of the safety-first portfolio

constructed by rebalancing the capital every 120 days using the Heavy-tailed

ICA model and of its lower tail index estimate.

Rebalancing Chile Fra. Gre. H.K. Korea Mexi. Tai. U.S. bα
date

04/10/1988 15.20 41.14 8.70 0.00 1.00 8.00 1.44 24.52 2.62

20/03/1989 19.61 29.40 2.00 12.88 11.97 5.00 3.00 16.14 3.11

04/09/1989 4.48 15.18 5.56 18.45 23.35 2.27 0.03 30.68 3.15

19/02/1990 0.00 13.96 20.99 11.05 9.66 5.46 8.00 30.88 3.13

21/01/1991 14.76 20.00 13.03 6.00 5.00 2.00 7.81 31.40 2.80

08/07/1991 21.64 17.75 14.48 4.88 2.00 5.41 0.32 33.52 2.60

23/12/1991 25.29 18.31 7.95 4.13 8.00 4.49 11.81 20.02 2.78

08/06/1992 22.54 8.36 6.21 11.29 3.00 10.00 19.55 19.05 2.83

23/11/1992 12.79 13.43 10.81 9.51 0.65 12.27 20.46 20.08 2.53

10/05/1993 16.56 18.04 4.86 5.88 2.12 14.32 28.18 10.04 3.19

25/01/1993 8.00 27.04 19.13 0.00 0.00 10.70 24.03 11.11 2.54

11/04/1994 28.70 14.84 7.41 0.00 0.00 12.42 17.58 19.05 2.67

26/09/1994 35.79 0.33 15.66 4.81 4.00 5.02 30.11 4.28 2.98

13/03/1995 46.07 10.07 11.07 0.47 0.00 0.00 21.50 10.82 3.12

28/08/1995 32.64 4.93 14.63 0.00 0.00 6.20 24.18 17.42 2.79

12/02/1996 37.37 0.00 26.30 1.01 0.00 0.00 31.32 4.00 3.04

25



6 Concluding remarks

Although we are far from having covered the application of the heavy-tailed
ICA model to financial data in this paper, we endeavoured to present here
enough material to illustrate the interest of the method. Now we conclude by
pointing out several issues and sketching some lines of further research. First,
in ICA applications, a common issue consists in determining the minimum
number of independent components for explaining the data well enough (re-
fer to Chap. 13 in Hyvärinen et al. (2001) for instance). In the application of
the ICA methodology presented here, there is as much IC’s as assets consid-
ered. And it is straightforward to extend our specific ICA model to the case
when the number d of IC’s is a priori known and smaller than the number D
of assets. It would be thus interesting to develop a valid practical procedure
for selecting an adequate value for d in the same fashion as methods based
on Akaike, Bayesian or other information-theoretic criteria. This defines an
ambitious direction for further investigation. Secondly, the parametrization
of our ICA model concerns the lower tail behaviour of the IC’s only, since
we focussed here on the downside risk. Hence, another problem would con-
sist in considering other parametrizations of the distributions of the IC’s, so
as to deal with different measures of risk, involving different features of the
portfolio distribution and permitting pertinent trade-offs between potential
profits and losses. Finally, we emphasize that the ICA model described in
this paper is based on the observation of i.i.d. samples of linearly combined
independent random variables. However, numerous statistical studies in the
economic literature have exhibited a (possibly linear) dependence structure
of financial returns both in time and across stocks and motivated intense
research for modelling the latter in a time series framework and going past
the i.i.d. assumption. Therefore several ICA methods have been recently
developed for exploiting the time structure of data series, among which pro-
cedures based on local autocovariance estimates (see Belouchrani & Amin
(1998) and Chap. 18 in Hyvärinen et al. (2001)). Hence a possible approach
for analyzing returns data could consist in combining ICA to a method for
local autocovariance estimation (as in Clémençon & Slim (2004) under the
assumption of local stationarity), we leave this question for further research.
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