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1 Introduction

Determining adequate modifications of the naive bootstrap method introduced by

Efron (1979) in the i.i.d. setting so as to produce asymptotically valid procedures for

dependent data, and time series in particular, constitutes an intense field of research,

still developing. One principle underlying such generalizations is to resample whole

blocks of observations instead of single observed values to mimic the dependence of

the data (see Lahiri, 2003 and the references therein). The moving-block bootstrap

(MBB) illustrates this idea, it consists in resampling (overlapping or disjoint) data

blocks of fixed length to capture the dependence structure of the observations (refer

to Bühlmann, 2002 and Politis, 2003) for recent surveys and exhaustive references).

However, although such a procedure may be proved consistent in many weakly de-

pendent settings, this approach has several drawbacks.

• Stationarity of the observations is usually required by the validity framework of

the MBB approach.

• Moreover, implementing the MBB method calls for a preliminary estimation

of the bias and of the asymptotic variance of the statistic of interest, to which the

asymptotic behavior of the MBB distribution is very sensitive. This makes its appli-

cation difficult in practice (see Götze & Künsch, 1996). The rate of convergence of

the MBB distribution is slower than the one of the i.i.d. bootstrap: the bootstrap

achieves OP(n−1) in the i.i.d. setting, whereas at best it is of order OP(n−3/4) under

restrictive conditions (stipulating that all moments are finite and that strong mixing

coefficients decrease exponentially fast).

• Furthermore, results highly depend on the choice of the block size. Except some

very particular situations (the sample mean or functions of the sample mean, for which

the bootstrap may appear of lesser use) in which it is possible to give some indications

concerning the adequate block size (see Götze & Künsch, 1996), no general method

for solving this problem has yet been developed. In Hall et al. (1995), Bühlmann

& Künsch (1999) and Politis & White (2004) data-driven methods for selecting the

block size of the MBB are proposed, but with the aim to get a sharp approximation of
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the variance, rather than to focus directly on accurate estimation of the studentized

distribution, which is a more difficult task (see Lahiri, 2003).

Recent works have focussed on bootstrapping some particular type of Markov

chains. On the one hand, if a Markovian model is a priori specified (for instance

an ARMA model or a nonlinear model with a finite number of lags and i.i.d residu-

als, such as a GARCH model), the problem reduces then to the random sampling of

estimated centered residuals in the stationary case. The properties of such a semipara-

metric Bootstrap are well understood since Bose (1988) (see the references therein).

Following these ideas, Bühlmann (1997) considered a sieve bootstrap method based

on the approximation of the time series of interest by some AR(p) model with large

lag-order p, eventually depending on n. This kind of bootstrap, which presents both

promising theoretical results and good practical performance at the same time, is well

suited to linear stationary time series rather than to general Markov chains.

On the other hand, most of the recent works on the bootstrap for Markov chains

follow the proposal of Athreya & Fuh (1989) (see also Rajarshi, 1990) in the case

of finite state chains and Datta & McCormick (1993), which uses a nonparametric

estimate of the transition probability in the bootstrap procedure, so as to mimic

the markovian underlying structure of the chain. Paparoditis & Politis (2001) have

introduced a local Markov bootstrap, which avoids the use of an explicit (smooth)

nonparametric estimate of the transition kernel by using a local resampling scheme,

but is nevertheless based on an implicit estimation of the transition probability. Un-

fortunately, the results obtained in that direction are weakened by the form of the

hypotheses made on the models considered. Most of the time, under these regularity

assumptions, the conditions of Götze & Hipp (1983) may be checked directly on these

models, so that Edgeworth expansions are immediately available and may be inverted

straightforwardly, yielding even better results than what can be expected with these

methods.
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In a recent theoretical paper, Bertail & Clémençon (2005a) (see also Bertail &

Clémençon, 2004b), following the approach proposed by Datta & McCormick (1993),

have found that a specific resampling technique for bootstrapping some statistics of

regenerative Markov chains offers attracting advantages both regarding to asymptotic

second order properties and from a practical viewpoint. This method, namely the

Regenerative Block Bootstrap (RBB in abbreviated form), consists in resampling (a

random number of) data blocks corresponding to ’cycles’ of the observed sample

path (i.e. data segment between consecutive regeneration times) until the length

of the reconstructed trajectory is larger than the initial one. In the general (non-

regenerative) setting, Bertail & Clémençon (2005a) have shown that this principle can

still be successfully applied to numerous cases encountered in practice, by adding a

preliminary stage consisting in estimating the distribution of a Nummelin regenerative

extension of the chain (refer to Nummelin, 1984). Due to the approximation step,

this extension is called Approximate Regenerative Block Bootstrap (ARBB).

The paper is organized as follows. In section 2 some basics concerning the re-

generative method in connection with the Markov chain theory and the Nummelin

splitting technique are briefly recalled. Section 3 is devoted to the description of the

(A)RBB algorithm. Practical issues related to its implementation are discussed as

well. The performance of the (A)RBB methodology is then investigated through sev-

eral applications: simulation studies are carried out in section 4, which show on some

(regenerative and pseudo-regenerative) examples of Markov chains, arising from oper-

ational research or standard time series analysis, performs, when compared to natural

bootstrap method competitors. In section 5, some concluding remarks are collected,

together with several lines of further research.
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2 Theoretical Background

In what follows X = (Xn)n∈N denotes an aperiodic Harris Markov chain on a count-

ably generated state space (E, E),with transition probabilityΠ, and initial probability

distribution ν (for basics of the Markov chain theory, refer to Revuz, 1984). We also

denote by Pν (respectively by Px for x in E) the probability measure on the underly-

ing probability space such that X0 ∼ ν (resp. X0 = x), by Eν (.) the Pν-expectation

(resp. by Ex (.) the Px-expectation) and by I{A} the indicator function of the event

A.

We now recall key notions, concerning the regenerative method and its application

to the analysis of the behavior of general Harris chains via the Nummelin splitting

technique (refer to Nummelin,1984, for further detail).

2.1 Regenerative Markov chains

Here we assume that the chain X possesses an accessible atom, i.e. a Harris set

A such that for all (x, y) ∈ A2, Π(x, .) = Π(y, .). Denote by τA = τA(1) =

inf {n ≥ 1, Xn ∈ A} the hitting time on A, by τA(j) = inf {n > τA(j − 1), Xn ∈ A}

for j ≥ 2, the successive return times to A, and by EA (.) the expectation conditioned

on X0 ∈ A.

Regeneration blocks From the strong Markov property it is immediate that, for

any initial distribution ν, the sample paths of the chain may be divided into i.i.d.

blocks of random length corresponding to consecutive visits to the atom A

B1 =
¡
XτA(1)+1, ..., XτA(2)

¢
, ..., Bj =

¡
XτA(j)+1, ..., XτA(j+1)

¢
, ...

taking their values in the torus T = ∪∞n=1En. The τA(j)’s are thus successive random

times at which the chain forgets its past, namely regeneration times. In this regen-

erative setting, the stochastic stability properties of the chain amount to properties
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concerning the speed of return time to the atom only. For instance, X is positive re-

current iff EA(τA) <∞ (see Kac’s theorem in Meyn & Tweedie,1996). In such a case

the unique invariant probability distribution μ is the Pitman’s occupation measure

given by:

(1) ∀B ∈ E , μ(B) = 1

EA(τA)
EA(

τAX
i=1

I{Xi ∈ B}).

In particular, parameters of interest for a positive Harris Markov chain may be ex-

pressed in many cases in terms of regeneration cycles only (mainly those related to

the long term behaviour of the process, as indicated by (1)). Numerous examples are

given in Bertail & Clémençon (2005b).

The regenerative method We point out that first order limit results such as the

LLN, CLT or LIL for an additive functionals of a regenerative Harris positive chain

may be easily derived by applying the corresponding i.i.d. results to functionals of the

i.i.d. regeneration blocks (Bj)j>1 (see Meyn & Tweedie, 1996 for such illustrations of

the regenerative method introduced by Smith, 1955). However, when the matter is to

establish higher order limit results (see Bölthausen, 1980, Malinovskii, 1987 or Bertail

& Clémençon, 2004a) for refinements of the CLT in the Markovian setting), the fact

that the data blocks B0 = (X1, ..., XτA(1)), B1, ..., Bln−1, B
(n)
ln
= (XτA(ln)+1, ..., Xn)

defined by the ln =
P

16k6n I{Xk ∈ A} regeneration times over a trajectory of finite

length n are not independent (the sum of the block lengths is of course n) is essential.

The randomness of the number of blocks plays a crucial role in the distribution of

any statistic based on a finite sample. This observation lies at the heart of the RBB

procedure (see section 3, details are in Bertail & Clémençon, 2005a).

Regeneration-based statistics In the time series framework, inference is gener-

ally based on a single trajectory X1, ..., Xn of the Harris chain X. Therefore, in a

nonstationary setting the distribution of the non-regenerative blocks, B0 and B(n)ln ,
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cannot be estimated from a single realization of the chain only. Furthermore, their

contribution to the value of a functional T (X1, ..., Xn) of interest is generally signif-

icant, leading to first order bias terms in particular (see the discussion in Bertail &

Clémençon, 2004a). Hence, statistics involving B0 and B(n)ln must be avoided in prac-

tice, when it is essential to estimate sampling distributions (for building confidence

intervals for instance, see Bertail & Clémençon, 2005b).

As an illustration, in the case when X is positive recurrent with stationary prob-

ability measure μ, consider f : E → R a μ-integrable function. In the nonstation-

ary case, when the matter is to recover the asymptotic mean μ(f) =
R
fdμ from

data X1, ..., Xn (notice that μ(f) = EA(τA)−1EA(
P

16i6τA f(Xi))), together with

assessing the accuracy of the estimation, rather than the standard sample mean

μn(f) = n−1
P

16k6n f(Xk), it is preferable to use the truncated mean computed

using data collected between the first and last regeneration times, namely

(2) bμn(f) = PτA(ln)
k=1+τA

f(Xk)

τA(ln)− τA
=

Pln−1
j=1 f(Bj)Pln−1
j=1 L(Bj)

,

where f(Bj) =
PτA(j+1)

k=1+τA(j)
f(Xk) and L(Bj) = τA(j + 1)− τA(j) for j > 1, with the

convention that bμn(f) = 0 when ln 6 2. Furthermore, Bertail & Clémençon (2004a)
have shown that the estimator bμn(f) is asymptotically normal with asymptotic mean
μ(f) and variance 1, when standardized by the following sequence, based on regener-

ation data blocks as well,

(3) bσ2n(f) = Pln−1
j=1 (f(Bj)− bμn(f)L(Bj))2Pln−1

j=1 L(Bj)
.

Precisely, they proved that bσ2n(f) is a strongly consistent and asymptotically nor-
mal estimator of the limiting variance σ2f = μ(A)EA(

P
16i6τA f(Xi)), with a bias of

order O(1/n) as n→∞.

When implementing the MBB, the choice of the standardization, the bias it in-

duces and the definition of its Bootstrap counterpart are key points to obtain the
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second order validity of the method. As shown in Bertail & Clémençon (2005a), the

standardization (3), which is specifically tailored for the regenerative setting, does not

weaken the performance of the RBB (see also section 3 below), while the standardiza-

tion of the MBB distribution in the strong mixing case is the main barrier to achieve

good performance (as shown by Götze & Künsch, 1996). In most practical situa-

tions (except for the very special case of m-dependence), positive moving-block based

estimates of the asymptotic variance with such good properties are not available.

2.2 Regenerative extension

Now we recall the splitting technique introduced in Nummelin (1978). This theoretical

construction aims to extend in some sense the probabilistic structure of a general

Harris chain, so as to artificially build a regeneration set. It is based on the following

notion. A set S ∈ E is small for X if there exist m ∈ N∗, a probability measure Φ

supported by S, and δ > 0 such that

(4) ∀x ∈ S,∀A ∈ E , Πm(x,A) ≥ δΦ(A),

where Πm denotes the m-th iterate of Π. Roughly speaking, the small sets are the

ones on which an iterate of the transition kernel is uniformly bounded below. When

(4) holds, we shall say that X satisfies the minorization condition M(m,S, δ,Φ).

Small sets do exist for irreducible chains, a fortiori for Harris chains (any accessible

set actually contains small sets, see Jain & Jamison, 1967). Suppose that X fulfills

M = M(m,S, δ,Φ) for some accessible set S. Take m = 1, even if it entails to

replace X by the chain ((Xnm, ..., Xn(m+1)−1))n∈N. The regenerative chain onto which

the initial chain X is embedded is constructed by expanding the sample space, so as

to define a specific sequence (Yn)n∈N of independent Bernoulli r.v.’s with parameter

δ. This joint distribution Pν,M is obtained by randomizing the transition Π each time

the chain X hits S (this happens a.s. since X is Harris). If Xn ∈ S and
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• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then draw Xn+1 according

to Φ,

• if Yn = 0, (which happens with probability 1 − δ), then draw Xn+1 according

to (1− δ)−1(Π(Xn, .)− δΦ(.)).

For obtaining an insight into this construction, observe simply that, if condition (4)

holds with m = 1, when Xn ∈ S, one may write the distribution of Xn+1 conditioned

on Xn as the following mixture

Π(Xn, .) = (1− δ){(1− δ)−1(Π(Xn, .)− δΦ(.))}+ δΦ(.),

which second component is independent fromXn. The bivariate Markov chain XM =

((Xn, Yn))n∈N constructed this way is called the split chain. The key point lies in the

fact that S×{1} is then an atom for the split chain XM, the latter inheriting all the

communication and stochastic stability properties from X. In particular the blocks

constructed from the consecutive times when XM visits S × {1} are independent (if

X satisfiesM =M(m,S, δ,Φ) for m > 1, the resulting blocks are 1-dependent only,

a form of dependence that can also be easily handled). Using this construction, it

is possible to enlarge the range of applications of the regenerative method so as to

extend all of the results established for atomic chains to general Harris chains. We

omit the subscriptM in what follows and abusively denote by Pν the extensions of

the underlying probability we consider.

2.3 On approximating the regenerative extension

Here we assume further that the conditional distributions {Π(x, dy)}x∈E and the

initial distribution ν are dominated by a σ-finite measure λ of reference, so that

ν(dy) = f(y)λ(dy) and Π(x, dy) = p(x, y)λ(dy) for all x ∈ E. For simplicity’s sake,

we suppose that conditionM is fulfilled withm = 1. This entails that Φ is absolutely
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continuous with respect to λ too, and that

(5) p(x, y) ≥ δφ(y), λ(dy) a.s.

for any x ∈ S, with Φ(dy) = φ(y)dy.

If we were able to generate practically binary random variables Y1, ..., Yn, so that

XM (n) = ((X1, Y1), ..., (Xn, Yn)) be a realization of the split chain XM described

above, then we could divide the sample path X(n) = (X1, ..., Xn) into regeneration

blocks, as in §2.1. Therefore, knowledge of Π is required to draw Y1, ..., Yn this

way. As a matter of fact, the distribution L(n)(p, S, δ,φ, x(n+1)) of Y (n) = (Y1, ..., Yn)

conditioned on X(n+1) = (x1, ..., xn+1) is the tensor product of Bernoulli distributions

given by: ∀β(n) = (β1, ...,βn) ∈ {0, 1}n , ∀x(n+1) = (x1, ..., xn+1) ∈ En+1,

Pν(Y (n) = β(n) | X(n+1) = x(n+1)) =
nY
i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1),

with for 1 6 i 6 n: if xi /∈ S,

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1) = Berδ (βi) ,

and if xi ∈ S,

Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δφ(xi+1)/p(xi, xi+1),(6)

Pν(Yi = 0 | Xi = xi, Xi+1 = xi+1) = 1− δφ(xi+1)/p(xi, xi+1).(7)

In short, given X(n+1), the Yi’s are Bernoulli r.v.’s with parameter δ, unless X has

hit the small set S at time i: in this case Yi is drawn from the Bernoulli distribution

with parameter δφ(Xi+1)/p(Xi,Xi+1). Our proposition for constructing data blocks

relies in approximating this construction by computing first an estimate pn(x, y) of the

transition density p(x, y) from data X1, ..., Xn+1, and then drawing a random vector

(bY1, ..., bYn) from the distribution L(n)(pn, S, δ,φ,X(n+1)), obtained by simply plugging
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pn in (6) and (7) (the estimate pn(x, y) may be picked such that pn(x, y) ≥ δφ(y),

λ(dy) a.s., and pn(Xi, Xi+1) > 0, 1 6 i 6 n).

From a practical viewpoint, it actually suffices to draw the bYi’s only at times
i when the chain hits the small set S, bYi indicating then whether the trajectory
should be divided at time point i or not (see Fig. 1 for instance). This way, on

gets the approximate regeneration blocks bB1, ..., bBbln−1 with bln = P
16k6n I{Xk ∈ S,

Yk = 1}. Of course, knowledge of parameters (S, δ, φ) of condition (5) is required

for this construction. In § 3.2, we shall discuss a practical method for selecting those

parameters.

The question of accuracy of this approximation has been addressed in Bertail &

Clémençon (2005a). Precisely, they established a bound for the deviation between

the distribution of ((Xi, Yi))16i6n and the one of the ((Xi, bYi))16i6n in the sense of the
Mallows distance, which essentially depends on the rate of the uniform convergence

of pn(x, y) to p(x, y) over S × S.

3 The (A)RBB methodology

Now that necessary background material has been reviewed, we turn to describe

the following block-resampling method and discuss practical issues encountered for

implementing the latter.

3.1 The (A)RBB algorithm

Suppose that the finite sample path has been divided into true or approximate re-

generation blocks B1, ...,Bln−1. The (approximate) regenerative block-bootstrap algo-

rithm for estimating the sample distribution of some statistic Tn = T (B1, ...,Bln−1)

estimating some parameter θ with standardization σn = σ(B1, ...,Bln−1), namely

(8) H(x) = P(σ−1n (Tn − θ) 6 x),
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is performed in three steps as follows.

1. Draw sequentially bootstrap data blocks B∗1, ..., B∗k independently from the em-

pirical distribution Fn = (ln − 1)−1
Pln−1

j=1 δBj of the blocks B1, ..., Bln−1, condi-

tioned on X(n) until the length of the bootstrap data series l∗(k) =
Pk

j=1 l(B∗j )

is larger than n. Let l∗n = inf{k > 1, l∗(k) > n}.

2. From the bootstrap data blocks generated at step 1, reconstruct a pseudo-

trajectory by binding the blocks together, getting the reconstructed (A)RBB

sample path

X∗(n) = (B∗1, ...,B∗l∗n−1).

Then compute the (A)RBB statistic and the (A)RBB standardization

T ∗n = T (X
∗(n)) and σ∗(n)n = σ(X∗(n)).

3. The (A)RBB distribution is then given by

H(A)RBB(x) = P∗(σ∗−1n (T ∗n − Tn) 6 x | X(n+1)),

denoting by P∗(. | X(n+1)) the conditional probability given X(n+1).

A Monte-Carlo approximation to HARBB(x) may be straightforwardly computed

by repeating independently N times the procedure above. Based on Edgeworth ex-

pansions proved in Bertail & Clémençon (2004a), one may show that in the regen-

erative positive recurrent case, the RBB method inherits the accuracy of the stan-

dard i.i.d. bootstrap (see Hall, 1992) up to OPν (n
−1) for additive functionals of type

n−1
P

16k6n f(Xk) under weak conditions (see Theorem 3.3 in Bertail & Clémençon,

2005a for further details). In Bertail & Clémençon (2005b) asymptotic validity of the

RBB has also been established for more general functionals, including U or V sta-

tistics based on regeneration blocks. In the general Harris recurrent case, the ARBB
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method for bootstrapping Markov chains simply relies in applying the RBB procedure

to the data ((X1, bY1), ..., (Xn, bYn)) as if they were exactly drawn from the atomic chain
XM. However, as shown in Bertail & Clémençon (2005a), even if it requires to use a

consistent estimate of the ”nuisance parameter” p and the corresponding approximate

blocks it induces, this bootstrap method still remains asymptotically valid.

Remark 3.1 In Bertail & Clémençon (2004a) (see Prop. 3.1) it is shown that in

the nonstationary case (i.e. when the initial law ν differs from μ), the first data

block B0 induces a significant bias, of order O(n−1), which cannot be estimated from

a single realization X(n) of the chain starting from ν. Practitioners are thus recom-

mended not to use estimators based on the whole trajectory. This fact is known as the

burn-in (time) problem in the bayesian literature on MCMC algorithms, related to the

time from which the 1-dimensional marginal of a (simulated) chain is close enough

to the limit distribution μ. When the statistic is built using regeneration blocks only,

the first (non-regenerative) block has no impact on the second order properties of the

ARBB estimate . However, from a practical viewpoint, it may happen that the size

of the first block is large compared to the size n of the whole trajectory (for instance

in the case where the expected return time to the (pseudo-)atom when starting with

ν is large), the effective sample size for constructing the data blocks and the corre-

sponding statistic is then dramatically reduced. In such a case, for mimicking the

distribution of the original statistic, it is preferable, heuristically speaking, to draw se-

quentially the bootstrap blocks B∗1, ..., B∗k independently from the empirical distribution

Fn, until l(B0) +
Pk

j=1 l(B∗j ) is larger than n, taking practically into account the size

l(B0) this way (although it does not play any role in the asymptotic behavior, since

l(B0)/n = OPν(n−1) as n→∞).
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3.2 Tuning parameters

In the general (non-regenerative) case, the procedure above may be very sensitive

to the choice of the minorization condition parameters (S, δ, Φ). It is essential to

pick the latter in a data-driven fashion, so that enough blocks may be obtained for

computing meaningful statistics, their accuracy increasing as the mean number of

pseudo-regenerative blocks, that is

(10) Nn(S) = Eν(
nX
i=1

I{Xi ∈ S, Yi = 1} |X(n+1)),

for a given realization of the trajectory. Therefore, this is somehow determined by

the size of the small set chosen. More precisely, it depends on how often the chain

visits the latter in a finite length path) and how sharp is the lower bound in the

minorization condition. The trade-off is as follows: as the size of the small set S used

for the data blocks construction increases, the number of points of the trajectory

that are candidates for determining a ’cut’ in the trajectory naturally increases, but,

since the uniform lower bound for p(x, y) over S2 then decreases, the probability of

drawing Yi = 1 also decreases (see expression (7)). Thus one may heuristically expect

better numerical results for the ARBB, when one implements it by choosing S so as to

maximize the expected number of data blocks given the trajectory, namely Nn(S)−1.

In the case when the chain takes real values and in lack of any prior information

about its structure, a possible data-driven method for selecting the tuning parame-

ters could be as follows. Let S be a collection of borelian sets S (typically compact

intervals) and let US(dy) = φS(y).λ(dy) denote the uniform distribution on S, where

φS(y) = I{y ∈ S}/λ(S) and λ is the Lebesgue measure on R. For any S ∈ S, we

clearly have p(x, y) ≥ δ(S)φS(y) for all x, y in S, with δ(S) = λ(S). inf(x,y)∈S2 p(x, y).

When δ(S) > 0, the theoretical criterion (10), that one would ideally seek to maximize

13



over S, can be written as follows

(11) Nn(S) = inf
(x,y)∈S2

p(x, y)×
nX
i=1

I{(Xi,Xi+1) ∈ S2}
p(Xi,Xi+1)

.

Observing that Nn(S)/n converges Pν-a.s. to λ(S)μ(S) as n→∞, an alternative

criterion to maximize, independent from the data and asymptotically equivalent to

Nn(S), is given by

(12) Nn(S) = n inf
(x,y)∈S2

p(x, y) λ(S)μ(S),

One gets an empirical counterpart of these quantities by replacing the unknown

transition density p(x, y) by an estimate pn(x, y) in expression (11) or (12), and

μ(S)by the empirical estimator bμn(S) = n−1
P

16i6n I{Xi ∈ S}. Actually from a

bootstrap viewpoint, the conditional criterion (11) is more pertinent because the rate

of convergence of the ARBB distribution is directly related to the effective number

of observed regeneration times conditionally to the trajectory. Note furthermore that

many nonparametric estimators of the transition density of Harris recurrent chains

have been proposed in the literature, among which the standard Nadaraya-Watson

estimator

(13) pn(x, y) =

Pn
i=1K(h

−1(x−Xi))K(h−1(y −Xi+1))Pn
i=1K(h

−1(x−Xi))
,

computed from a Parzen-Rosenblatt kernel K(x) and a bandwidth h > 0. In the

positive recurrent case, their estimation rates have been established under various

smoothness assumptions on the density of the joint distribution μ(dx)Π(x, dy) and

the one of μ(dx) (see Athreya & Atuncar, 1998 or Clémençon, 2000 and the references

therein for instance).

Once pn(x, y) is computed, calculate its minimum over sets S of the class S and

maximize then the practical empirical criterion over S:

S∗ = argmax
S∈S

bNn(S)
14



with

(14) bNn(S) = inf
(x,y)∈S2

pn(x, y)×
nX
i=1

I{(Xi, Xi+1) ∈ S2}
pn(Xi,Xi+1)

.

On many examples of real valued chains (see section 4 below), it is possible to

check at hand that any compact interval Vx0(ε) = [x0 − ε, x0 + ε] for a suitably

chosen x0 ∈ R and ε > 0 small enough, is small, choosing φ as the density φVx0 (ε)

of the uniform distribution on Vx0(ε). For practical purpose, one may perform the

optimization over ε > 0, while x0 is kept fixed (see Bertail & Clémençon, 2005a, b).

But both x0 and ε may be considered as tuning parameters: searching for (x0, ε)

over a pre-selected grid G = {(x0(k), ε(l)), 1 6 k 6 K, 1 6 l 6 L} such that

inf(x,y)∈Vx0(ε)2 pn(x, y) > 0 for any (x0, ε) ∈ G could lead to the following numerically

feasible selection rule. For all (x0, ε) ∈ G, compute the estimated expected number of

approximate pseudo-regenerations:

(15) bNn(x0, ε) = δn(x0, ε)

2ε

nX
i=1

I{(Xi, Xi+1) ∈ Vx0(ε)2}
pn(Xi, Xi+1)

,

with δn(x0, ε) = 2ε. inf(x,y)∈Vx0(ε)2 pn(x, y). Then, pick (x
∗
0, ε

∗) ∈ G maximizing bNn(x0, ε)
over G, corresponding to the set S∗ = [x∗0−ε∗, x∗0+ε∗] and the minorization constant

δ∗n = δn(x
∗
0, ε

∗). It remains next to construct the approximate pseudo-blocks using

S∗, δ∗n and pn as described in § 2.3. We point out that other approaches may be con-

sidered for determining practically small sets and establishing accurate minorization

conditions, which conditions do not necessarily involve uniform distributions besides.

Refer for instance to Roberts & Rosenthal (1996) for Markov diffusion processes.

We end this paragraph by making the following remarks about the practical im-

plementation of the ARBB method. We first emphasize that estimation in specific

null recurrent cases (including AR(p) models with unit roots for instance) has been

dealt with in Karlsen & Tjøstheim (2001), which established in particular consis-

tency results for the Nadaraya-Watson estimator (13). And it is noteworthy that
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the procedures described above, the approximate Nummelin construction and the

ARBB algorithm, are actually still asymptotically valid in this framework, when ap-

plied to adequate functions f . However, in the null recurrent case, the choice of the

standardization may be cumbersome. Investigating the asymptotic properties of the

ARBB at the first order, which corresponds to choosing σn = l
1/2
n and σ∗n = l

∗1/2
n ,

may be done using the same approach as in Bertail & Clémençon (2005a) (the study

of second order properties is currently in progress). As indicated by the results in

Karlsen & Tjøstheim (2001), accurate estimation of the underlying transition density

in the null recurrent case is naturally possible only when a very large data sample is

at disposal. In β-null recurrent cases (i.e. when the distribution of the return time

to the small set has power tail), Chen (1999) also established deterministic approxi-

mations of ln (respectively, of l∗n). To give an insight into the problems encountered

in this case, we considered the case of an AR(1) model with a unit root among our

simulation studies (see § 4.2): the number ln of regenerations over a trajectory of

length n for the split chain being of order n1/2, only large sample sizes n enable us

then to get enough (pseudo-) regeneration cycles for computing significant statistics

with our methodology.

Secondly, a natural question arising from the practical considerations discussed

above is to determine whether the use of the preliminary estimate pn and of bμn even-
tually for selecting S and building the pseudo-blocks affect the second order properties

of the resulting ARBB distribution. This seems to be a very difficult problem, since

by construction the pseudo-regeneration times and the data blocks bBj they induce, all
depend on the whole trajectory now, owing to the transition probability estimation

step. A possible construction to avoid this theoretical problem consists in using a

double splitting trick in a semiparametric sense (see Schick, 2001). This amounts first

to construct the transition density estimator using the firstmn observations say (with

mn → ∞, mn/n → 0 as n → ∞), then to drop the next qn observations (typically
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qn << mn, qn →∞ as n→∞) for allowing the split chain to regenerate with over-

whelming probability, and finally to build the pseudo-blocks bBj from the n−mn− qn
remaining observations. It is easy to understand (but technical to prove) that these

blocks are then, asymptotically i.i.d conditionally to the first mn observations. One

may then prove the second order validity of the procedure in both the studentized

and unstudentized cases. As shown in Bertail & Clémençon (2004c), this splitting

trick entails some loss in the rate of the ARBB distribution, but the latter remains

anyway faster than the best rate the MBB may achieve. However, one may argue,

as in the semiparametric case, that such a modification of the initial procedure is

essentially motivated by our limitations in the analysis of asymptotic properties of

the estimators. From our own practical experience, this construction generally dete-

riorates the finite sample performance of the initial algorithm and estimating p(x, y)

from the whole trajectory leads to better numerical results.

4 Simulation studies

We now give two examples, with a view to illustrate the scope of applications of our

methodology. The first example presents a regenerative Markov chain described and

studied at greater length in Harrison & Resnick (1976) (see also Brockwell, Resnick

& Tweedie, 1982 and Browne & Sigman, 1992) for modeling storage systems. In

consideration of the recent emphasis on nonlinear models in the time series literature,

our second example shows to what extent the ARBB method may apply to a general

nonlinear AR model. Further, we point out that the principles exposed in this paper

are by no means restricted to the markovian setting, but may apply to any process

for which a regenerative extension can be constructed and simulated from the data

available (see chapter 10 in Thorisson, 2000).
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4.1 Example 1 : content-dependent storage systems

We consider a general model for storage, evolving through a sequence of input times

(Tn)n∈N (with T0 = 0 by convention), at which the storage system is replenished. Let

Sn be the amount of input into the storage system at the nth input time Tn and Ct

be the amount of contents of the storage system at time t. When possible, there is

withdrawal from the storage system between these input times at the constant rate r

and the amount of stored contents that drops in a time period [T, T +∆T ] since the

latter input time is equal to CT − CT+∆T = r∆T , and when the amount of contents

reaches zero, it continues to take the value zero until it is replenished at the next

input time. If Xn denotes the amount of contents immediately before the input time

Tn (i.e. Xn = CTn − Sn), we have for all n ∈ N,

Xn+1 = (Xn + Sn − r∆Tn+1)+ ,

with (x)+ = sup (x, 0) , X0 = 0 by convention and ∆Tn = Tn − Tn−1 for all n ≥ 1.

Let K(x, ds) be a transition probability kernel on R+. Assume that, conditionally

to X1, ..., Xn, the amounts of input S1, ..., Sn are independent from each other and

independent from the inter-arrival times ∆T1, ..., ∆Tn and that the distribution of

Si is given by K(Xi, .), for 0 6 i 6 n. Under the further assumption that (∆Tn)n>1 is

an i.i.d. sequence with common distribution G, independent from X = (Xn)n∈N, the

storage process X is a Markov chain with transition probability kernel Π given by

Π(Xn, {0}) = Γ(Xn, [Xn, ∞[),

Π(Xn, ]x, ∞[) = Γ(Xn, ]−∞, Xn − x[)

for all x > 0, where the transition probability Γ is given by the convolution product

Γ(x, ]−∞, y[) =
R∞
t=0

R∞
z=0
G(dt)K(x, dz)I{rt− z < y}.

One may check that the chain Π is δ0-irreducible as soon asK(x, .) has infinite tail

for all x > 0. In this case, {0} is an accessible atom for X and it can be shown that it
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is positive recurrent if and only if there exists b > 0 and a test function V : R+ → [0,

∞] such that V (0) <∞ and for all x > 0 :Z
Π(x, dy)V (y)− V (x) 6 −1 + bI{x = 0}.

The times at which the storage processX reaches the value 0 are thus regeneration

times, and allow to define regeneration blocks dividing the sample path, as shown in

Figure 1. Figure 2 below shows a reconstructed RBB data series, generated by a

sequential sampling of the regeneration blocks (as described in § 3.1), on which RBB

statistics may be based.

)1(Aτ

B0

)( jAτ )1( +jAτ

Bj

)( nA lτ

nl
B

Dividing the trajectory of the storage process into data blocks corresponding to the

regeneration times τA(j)
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Reconstruction of a storage process data series using the RBB resampling procedure

Simulation results We simulated two trajectories of respective length n = 100

and n = 200 drawn from this Markov chain with r = 1, K(x, dy) = Exp3(dy) and

G(dy) = Exp1(dy), denoting by Expλ(dy) the exponential distribution with mean

1/λ > 0, which is a standard M/M/1 model (see Asmussen (1987) for instance). In

Fig. 3 below, a Monte-Carlo estimate of the true distribution of the sample mean

standardized by its estimated standard error (as defined in (3)) computed with 10000

simulated trajectories is compared to the RBB distribution (in both cases, Monte-

Carlo approximations of RBB estimates are computed from B = 2000 repetitions

of the RBB procedure) and to the gaussian approximation. Note also that in the

ideal case where one a priori knows the exact form of the markovian data gener-

ating process, one may naturally construct a bootstrap distribution in a parametric

fashion by estimating first the parameters of the M/M/1 model, and then simulating

bootstrap trajectories based on these estimates. Such an ideal procedure naturally

performs very well in practice. In our simulation study, the resulting distribution

estimate was actually so close to the true distribution that one could not distinguish
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Figure 1:

one from the other in the plot. Of course, in most applications practitioners have

generally no knowledge of the exact form of the underlying Markov model, since this

is often one of the major goals of statistical inference.

With the aim of constructing accurate confidence intervals, Table 1 compares the

quantile of order γ of the true distribution, the one of the gaussian approximation

(both estimated with 10000 simulated trajectories) and the mean of the quantile of

order γ of the RBB distribution over 100 repetitions of the RBB procedure in the tail

regions.

The left tail is clearly very well estimated, whereas the right tail gives a better

approximation than the asymptotic distribution. The gain in term of coverage accu-

racy is quite enormous in comparison to the asymptotic distribution. For instance

at the level 95%, for n = 200, the asymptotic distribution yields a bilateral coverage

interval of level 71% only, whereas the RBB distribution yields a level of 92% in our

simulation.
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n= 100 200 ∞

γ% TD RBB TD RBB ASY

1 -7.733 -7.044 -5.492 -5.588 -2.326

2 -6.179 -5.734 -4.607 -4.695 -2.054

3 -5.302 -5.014 -4.170 -4.165 -1.881

4 -4.816 -4.473 -3.708 -3.757 -1.751

5 -4.374 -4.134 -3.430 -3.477 -1.645

6 -4.086 -3.853 -3.153 -3.243 -1.555

7 -3.795 -3.607 -2.966 -3.045 -1.476

8 -3.576 -3.374 -2.771 -2.866 -1.405

9 -3.370 -3.157 -2.606 -2.709 -1.341

10 -3.184 -2.950 -2.472 -2.560 -1.282

n= 100 200 ∞

γ% TD RBB TD RBB ASY

90 1.041 1.032 1.029 1.047 1.282

91 1.078 1.085 1.083 1.095 1.341

92 1.125 1.145 1.122 1.150 1.405

93 1.168 1.207 1.177 1.209 1.476

94 1.220 1.276 1.236 1.277 1.555

95 1.287 1.360 1.299 1.356 1.645

96 1.366 1.453 1.380 1.442 1.751

97 1.433 1.568 1.479 1.549 1.881

98 1.540 1.722 1.646 1.685 2.054

99 1.762 1.970 1.839 1.916 2.326

Table 1 : Comparison of the tails of the true distribution (TD), RBB and gaussian

distributions.

4.2 Example 2 : General autoregressive models

Consider now the general heteroscedastic autoregressive model

Xn+1 = m(Xn) + σ(Xn)εn+1, n ∈ N,

where m : R→ R and σ : R→ R∗+ are measurable functions, (εn)n∈N is a i.i.d.

sequence of r.v.’s drawn from g(x)dx such that, for all n ∈ N, εn+1 is independent

from the Xk’s, k 6 n with E(εn+1) = 0 and var(εn+1) = 1. See Franke et al. (2002)

for some proposals for bootstrapping such models. The transition kernel density of
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the chain is given by p(x, y) = g((y −m(x))/σ(x)), (x, y) ∈ R2. Assume further that

g, m and σ are continuous functions and there exists x0 ∈ R such that p(x0, x0) > 0.

Then, the transition density is uniformly bounded from below over some neighborhood

Vx0(ε)
2 = [x0 − ε, x0 + ε]2 of (x0, x0) in R2 : there exists δ = δ(ε) ∈]0, 1[ such that,

(16) inf
(x,y)∈V 2x0

p(x, y) > δ(2ε)−1.

Any compact interval Vx0(ε) is thus a small set for the chain X, which satisfies the

minorization conditionM(1, Vx0(ε), δ,UVx0 (ε)), where UVx0(ε) denotes the uniform dis-

tribution on Vx0(ε). Hence, in the case when one knows x0, ε and δ such that (4) holds

(this simply amounts to know a uniform lower bound estimate for the probability to

return to Vx0(ε) in one step), one may effectively apply the ARBB methodology to

X. In the following, we use the practical criterion bNn(x0, ε) with x0 = 0. The choice
x0 = 0 is simply motivated by observing that our temporal simulated data fluctuate

around 0. Actually, to our own practical experience, optimizing over x0 does not

really improve the performance of the procedure in this case.

In what follows, we shall compare the performance of the ARBB to the one of some

reference competitors for bootstrapping time series. In all our simulations the Markov

bootstrap (consisting in generating a Markov chains with an estimated transition

probability) has performed always worse than all the other methods (due to the

difficulty of estimating accurately the transition probability on the whole real line).

We do not present the results for this method to alleviate the graphics and tables.

The sieve bootstrap is specifically tailored for linear time series (see Bühlmann,

1997, 2002). The fact that it fully exploits the underlying linear structure explains

why it performs very well in this framework. When simulating linear time series, we

use it as a benchmark for evaluating the pertinence of the ARBB distribution. Recall

also that this method requires a preliminary estimation of the order q of the sieve : for

this purpose we choose an AIC criterion of the type AIC(q) = nlog(\MSE)+2q in the
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sequel. As will be seen, in the linear AR(q) model below, this information criterion

(almost) always enables us to pick the right order of the model. And the resulting

sieve bootstrap behaves like a parametric bootstrap method in these cases (see Böse,

1988), leading to very good numerical results, as soon as the roots of the AR(q) model

are far from the unit circle. In contradistinction, we actually experienced problems

in our simulations, when dealing with an AR(1) model with a root close to 1: in

such cases, it may happen with high probability that one gets an estimate of the root

larger than one, yielding to explosive bootstrap trajectories.

We also compared the ARBBmethod to the usual MBB. The difficulty for applying

the latter method essentially relies in the choice of the block size for estimating the

variance and in the choice of the block size for the resampling procedure. As there is

actually no reason for these two sizes to be equal, they should be picked separately and

the estimator of the variance should be correctly unbiased (see Götze &Künsch, 1996).

To our knowledge, the problem of simultaneously calibrating these two quantities has

not been treated yet and leads to extremely volatile results. For comparing directly

the MBB distribution to the true studentized distribution (8), we have chosen here to

standardize all the distributions by the estimator (3), so as to avoid a deteriorating

preliminary variance estimation step. The MBB distribution is also correctly centered

(at the bootstrap mean). The block size for the MBB is chosen according to the

method of Hall et al. (1995). It consists in estimating first the MSE of the MBB

distribution corresponding to blocks of size l with a subsampling technique for various

size values l and then picking the size corresponding to a minimum MSE estimate.

This unfortunately requires to select a subsampling size and a plausible pilot size,

which are in their turn also difficult to calibrate (see the discussion in Section 7.3 of

Lahiri, 2003): here we have chosen n1/4 as pilot size and bn = n10/21 as subsampling

size (which is close to n1/2 in our simulations and satisfies the conditions needed

for the MBB to be asymptotically valid). When standardized this way, the MBB has
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performed quite well in most simulations, except notably when data exhibit significant

nonlinear features and/or nonstationarity. The reason of this misbehavior arises from

the fact that, for some drawing of the fixed size blocks, the jumps between the blocks

were so important, that the reconstructed series could not be splitted according to

our randomized procedure leading to an invalid estimator of the variance. In these

case (too few regenerations), we have eliminated the corresponding MBB simulation.

Thus the MBB considered here can be considered as a MBB with a Markovian control

ensuring that the MBB reconstructed series has some regeneration properties. Such

procedure clearly improved the resulting estimated distributions.

Simulation results Here are empirical evidences for three specific autoregressive

models.

The AR(1) model :

Xi+1 = αXi + εi+1, i ∈ N,

with εi
i.i.d.∼ N (0, 1), α = 0.8, X0 = 0 and for a trajectory of length n = 200.

The AR(1) model with ARCH(1) residuals called AR-ARCH model :

Xi+1 = αXi + (1 + βX2
i )
1/2εi+1, i ∈ N,

with εi
i.i.d.∼ N (0, 1), α = 0.6, β = 0.35, X0 = 0 and for a trajectory of length n = 200.

The so called ExpAR(1) model

Xi+1 = (α1 + α2e
−|Xi|2)Xi+1 + εi+1, i ∈ N,

with εi
i.i.d.∼ N (0, 1), α1 = 0.6, α2 = 0.1, X0 = 0 and for a trajectory of length n =

200. Such a chain is recurrent positive under the sole assumption that |α1| < 1, see

Tjøstheim (1990). This highly nonlinear model behaves like a threshold model: when

the chain takes large values, this is almost an AR(1) model with coefficient α1, whereas

for small values, it behaves as an AR(1) model with a larger autoregressive coefficient

α1 + α2.
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Here the true distribution of the sample mean is estimated with 10000 simulations.

And for a given trajectory, the ARBB distribution is approximated with B = 1000

resamplings of the pseudo-blocks. In a previous simulation work, we experienced

that the ARBB distribution obtained may strongly fluctuate, depending on the ran-

domization steps (see §2.3). For a given trajectory, this problem may be avoided

by repeating the ARBB procedure several times (50 times in our simulations) and

averaging the resulting ARBB distribution estimates. According to our experiments,

only a small number of repetitions (leading to different ways of dividing the same

trajectory) suffices for smoothing the ARBB distribution.

For the ARBB, the sieve and the MBB methods, the whole procedure has been

repeated 1000 times. Table 2 below gives the median of the quantiles at several orders

γ of the bootstrap distributions over the 1000 replications for each of the three AR

models, compared to the true and asymptotic corresponding quantiles.

n=200 AR(1) AR-ARCH(1) EXP-AR(1)

γ% TD ARBB Sieve MBB TD ARBB Sieve MBB TD ARBB Sieve MBB ASY

1 -3.51 -3 .61 -3 .41 -3 .42 -3.03 -3 .23 -5 .26 -3 .16 -4 .48 -5 .23 -5 .59 -9 .61 -2 .33

2..5 -2 .84 -2 .78 -2 .81 -2 .72 -2.41 -2 .61 -3 .52 -2 .52 -3 .35 -3 .87 -4 .76 -6 .44 -1 .96

5 -2 .23 -2 .13 -2 .11 -2 .10 -1.97 -2 .14 -2 .85 -2 .06 -2 .58 -2 .79 -3 .74 -5 .00 -1 .65

10 -1.62 -1 .57 -1 .65 -1 .55 -1.52 -1 .59 -2 .25 -1 .53 -1 .83 -1 .98 -2 .93 -3 .51 -1 .28
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n=200 AR(1) AR-ARCH(1) EXP-AR(1)

γ% TD ARBB Sieve MBB TD ARBB Sieve MBB TD ARBB Sieve MBB ASY

90 1.62 1.52 1.61 1.61 1.52 1.33 2.26 1.58 1.80 1.89 2.74 2.26 1.28

95 2.21 2.08 2.19 2.14 2.01 1.74 3.04 2.07 2.58 2.68 3.89 3.07 1.65

97.5 2,79 2.71 2.73 2.69 2.37 2.03 3.93 2.44 3.24 3.47 4.79 4.02 1.96

99 3.46 3.73 3.86 3.48 3.11 2.62 5.97 3.22 4.37 5.36 5.92 6.25 2.33

Table 2: Comparison of the tails of the true, ARBB and gaussian distributions for

the three models

The small set is selected by maximizing over ε > 0 the empirical criterion bNn(0, ε)
described above. The main steps of the procedure are summarized in the graph panels

shown below.
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Graph panel 1: AR(1) model with α = 0.8, n = 200

The first figure in Graph panel 1 shows the Nadaraya-Watson (NW) estimator

(13), the second one represents bNn(0, ε) as ε grows (as well as the smoother empirical
criterion (12), see the dotted line). It clearly allows to identify an optimal value for

the size of the small set. In the case of the AR model for instance, this selection

rule leads to pick in mean bε = 0.83 and bδ = 0.123. Our empirical criterion tends

to overestimate very slightly the size of the ”optimal” small set (a phenomenon that

we have noticed on several occasions in our simulations). The level sets of the NW

estimator, the data points (Xi, Xi+1) and the estimated small set are represented in

the next graphic. This also shows that the small set chosen may be not that ”small”

if the transition density is flat around (x0, x0) = (0, 0) (in some cases it may be thus

preferable to choose x0 6= 0 so as to be in this situation). In the second line of
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the panel, the figure on the left hand side represents a sample path of the chain and

indicates the pseudo-regenerative blocks obtained by applying the randomization rule

with Ber(1 − bδ(2ε)−1/ pn(Xi,Xi+1)) at times i when (Xi, Xi+1) ∈ V0(ε)2. The next
figure shows how binded blocks form a typical ARBB trajectory. It is noteworthy

that such a trajectory presents less artificial ”jumps” than a trajectory reconstructed

from a classical MBB procedure: by construction, blocks are joined end to end at

values belonging to the small set. For comparison purpose, the figure on the right

hand side displays a typical realization of a MBB trajectory. Finally, on the last

line of the panel, the true distribution (green), the ARBB distribution (black), the

sieve bootstrap distribution (gray), the MBB distribution (red dotted line) and the

asymptotic gaussian distribution (blue dotted line) are compared.

Graph panel 2: AR(1)-ARCH(1) model with α = 0.6 and β = 0.35, n = 200
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And the last figure shows the QQ-plots α ∈ [0, 1] 7−→ Gn(H
−1(α)), where H is

the true distribution and Gn denotes one of the approximations: this enables us to

discriminate between the various approximations in a sharper fashion, especially in

the tail regions.

Graph panel 3: EXP-AR(1) model with α1 = 0.8 and α2 = 0.5, n = 200

These results clearly indicate that both the sieve and MBB methods perform very

well for linear time series. In this case, the ARBB distribution tends to have larger

tails. However, when considering nonlinear models, the advantage of the ARBB

method over its rivals plainly come into sight: for moderate sample sizes n, the sieve

bootstrap tends to choose a too large value bqn for the lag order of the approximate sieve
AR(bqn). This problem is less serious for larger sample sizes, as shown in Graph panel
4 (with n = 500). In these situations, the MBB may behave very poorly especially
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when the non-linearity and the non-stationarity is important: we conjecture that it

could be possibly improved by investigating further how to tune optimally the block

size, especially for standardized distributions.

Graph panel 4: EXP-AR(1) model with α1 = 0.8 and α2 = 0.5, n = 500

Pictures in Graph panels 3 and 4 speak volumes: for both nonlinear models, the

true distribution is accurately approximated by the ARBB distribution. Note nev-

ertheless the difference in the size of the ”optimal small set" and in the number of

pseudo-regenerations between these models. We point out that, though remarkable

when compared to the gaussian approximation, the gain in accuracy obtained by

applying the ARBB methodology to the EXP-AR model is higher than the one ob-

tained for the AR-ARCH type model. As may be confirmed by other simulations,
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the ARBB method provides less accurate results for a given (moderate) sample size,

as one gets closer to a unit root model (i.e. as α tends to 1): one may get an insight

into this phenomenon by simply noticing that the rate of the number of regenerations

(respectively, of the number of visits to the small set) then drastically decreases.

5 Concluding remarks

We finally summarize our empirical findings. We first point out that, in the linear case

when roots are much less than 1 in amplitude, the sieve bootstrap clearly surpasses its

competitors. But it is noteworthy that both the ARBB and the MBB also provides

very good numerical results in this case. Besides, all these methods seem to break

down from a practical viewpoint for an AR(1) model with an autoregressive coefficient

α tending to 1 and with a fixed (moderate) sample size: in such a case, too few

pseudo-regeneration blocks may be constructed for the ARBB methodology to be

practically performant (although it is asymptotically valid). In this respect, the graph

of the estimated number of pseudo-regenerations (see Graph panels 1-4) provides a

crucial help for diagnosing the success or the failure of the ARBB method. It is also

remarkable that the sieve bootstrap can lead to very bad results in this case, due to

the fact that the estimated AR model may have a root larger than 1 (generating then

explosive sieve bootstrap trajectories). This strongly advocates the use of preliminary

tests or constrained estimation procedures (ensuring that the resulting reconstructed

series is asymptotically stationary).

And as may be reported from our simulation results, the advantage of the ARBB

over the sieve bootstrap, the MBB and the asymptotic distributions, clearly appears

when dealing with nonlinear models even if in some case the MBB can still give

some good approximation (see the AR-ARCH(1) case, Graph-panel 2). Even if the

lag is chosen very large (in mean 85 for the AR-ARCH(1) model and 21 for the

EXP-AR model), the linear sieve method is unable to capture the non-linearities
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and performs very badly for moderate sample sizes. The MBB also performs poorly

in some nonlinear setting for moderate sample sizes, whereas the ARBB provides

very accurate approximations of the tail distributions in these examples. It should

be mentionned that using a moving-block estimator of the variance leads to even

worse results. In any case, it is recommended to use all the available methods and

to compare the results. The ARBB being much more robust it can be used to check

whether the other methods are trustable for the data at hand.
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