
A CONVEX OPTIMIZATION PROBLEM ARISING FROM
PROBABILISTIC QUESTIONS

CHRISTIAN LÉONARD

Abstract. An abstract convex minimization problem is solved by means of the classical
conjugate duality. No topological constraint qualifications are imposed and the represen-
tation of the minimizers is obtained in great generality. Such a minimization naturally
arises in minimum entropy methods, mass transportation problems and in large devia-
tions theory when looking at conditional laws of large numbers. Some applications are
derived in the area of variational processes and Markov processes.

1. Introduction

1.1. A few motivations. Let {Ln} be a collection of random vectors which obeys a
Large Deviation Principle (LDP) in some topological space L with the good rate function
I. Suppose that I is strictly convex and let Qo be the unique global minimizer of I :
I(Qo) = 0. Then, the sequence (Ln) tends in law (and almost surely in some probability
space) to Qo. Let us consider a sequence of conditioning events {Ln ∈ A0} for some
measurable convex set A0 and suppose that IP (Ln ∈ A0) is positive for all n ≥ 1 (this
will be relaxed later). The Conditional Law of Large Numbers states that conditionally
on Ln ∈ A0 for all n, the sequence (Ln) tends in law to the deterministic vector Q̄ which
is the unique minimizer of I(Q) subject to the constraint Q ∈ A0. More precisely, this
means that IP (Ln ∈ · | Ln ∈ A0) converges weakly to the Dirac measure at Q̄ : δQ̄. This
simple fact is the foundation of many important convergence results in statistical physics
such as the Gibbs Conditioning Principle. The analytic counterpart of this probabilistic
question is the optimization problem

minimize I(Q) subject to Q ∈ A0, Q ∈ L. (1.1)

On the other hand, suppose for instance that I(Q) is the relative entropy I(Q | R) of
the probability measure Q with respect to some reference probability measure R. If some
criterion insures the existence of a solution to (1.1), it implies a fortiori that there exists
at least a probability measure in A0 which is absolutely continuous with respect to R.
Typical examples of constraints Q ∈ A0 are moment constraints:

∫
fi dQ ∈ Ci, i ∈ I or

marginal constraints: Qa ∈ Ca and Qb ∈ Cb where Qa and Qb are the marginal measures
of Q on the product space Ωa × Ωb.

Another interesting problem is the Monge-Kantorovitch mass transportation problem.
It corresponds to I(Q) =

∫
Ωa×Ωb

c(ωa, ωb) Q(dωadωb) where c is interpreted as a cost
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function, Q is a probability measure on the product space Ωa × Ωb and Q ∈ A0 is given
by the above marginal constraints.

In the present paper, the above convex minimization problem is studied in great details.
Our approach is based on the very well known theory of conjugate duality applied to con-
vex optimization as developped in Rockafellar’s monograph [28]. Our abstract results are
also applied to specific probabilistic questions in relation to minimum entropy methods,
conditional laws of large numbers and the construction of constrained variational processes
such as Bernstein’s and Nelson’s processes.

1.2. Applying conjugate duality. Conjugate duality is a powerful tool to solve prob-
lems of the type of (1.1), provided that I and A0 are convex. Assume that I = Ψ∗ is
the convex conjugate of some convex function Ψ : U → (−∞,∞] on a vector space U in
duality with L. Also assume that Q ∈ A0 means that TQ ∈ C0 where T : L → X is a
linear operator with values in another vector space X . Then (1.1) becomes

minimize Ψ∗(Q) subject to TQ ∈ C0, Q ∈ L. (1.2)

Let Y be a vector space in duality with X and define T T : Y → U as the adjoint operator
of T. The dual problem of (1.2) is the unconstrained maximization problem:

maximize inf
x∈C0

〈x, y〉 −Ψ(T T y), y ∈ Y (1.3)

Let us illustrate this conjugate duality by means of a classical example in large deviation
theory. Let Ln = 1

n

∑n
i=1 δZi

∈ L be the empirical measure of an R-iid sample (Zi)i≥1

with values in a vector space X and let Xn = 1
n

∑n
i=1 Zi ∈ X be its empirical mean.

By Sanov’s theorem, {Ln} obeys the LDP with the relative entropy I(Q) = I(Q | R)
as rate function, while by Cramér’s theorem {Xn} obeys the LDP with rate function
J(x) = supy∈Y{〈x, y〉 − log

∫
e〈y,x〉 R(dx)}, x ∈ X . Not getting into the details, think of L

as the dual space of some space U of measurable functions on X . Consider the operator
TQ =

∫
xQ(dx), so that TLn = Xn and T T y ∈ U is defined by T T y(x) = 〈y, x〉, x ∈ X .

It appears that taking Ψ(u) = log
∫

eu(x) R(dx) for u ∈ U , we have I = Ψ∗ for the duality
(L,U). Taking C0 = {xo} in the dual problem, we also obtain sup(1.3) = J(xo). More,
by the contraction principle, we get J(xo) = inf{I(Q); Q, TQ = xo}. This equality is
inf(1.2) = sup(1.3) with C0 = {xo}.
With C0 a general subset of X , the solution to (1.2) is connected to the generalized I-
projection of R onto A0 = {Q; TQ ∈ C0} (see (Csiszár, [12]) and (Léonard, [21])) and the
solution to

minimize J(x) subject to x ∈ C0, x ∈ X (1.4)

is called the predominationg point of C0 with respect to the rate function J, see (Ney,
[25]) and (Einmahl and Kuelbs, [15]).

In regular situations, we obtain the equality of the values of these problems: inf(1.2) =
sup(1.3). In particular, sup(1.3) < ∞ is a variational criterion for the existence of a
solution to (1.2). If the constraint operator T has a finite dimensional range X , then
(1.3) is a finite dimensional unconstrained problem whose solution ȳ is an inward normal
vector to C0 and is linked to the solution Q̄ to (1.1) by the formal identity:

Q̄ = Ψ′(T T ȳ). (1.5)
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If the constraint is infinite dimensional, several spaces Y may be dually linked to X , so
that several dual problems may be considered. In order that a representation formula
(1.5) holds, one has to consider the largest possible Y : the algebraic dual space X ] of X .
This shifts the difficulty to the computation of the convex conjugate Ψ of I = Ψ∗ for the
saturated duality (X ,X ]). We are going to implement this program in the case where I
is an entropy, that is a convex integral functional of the form

I(Q) =

∫

Ω

λ∗
(

dQ

dR

)
dR (1.6)

with λ∗ a convex function and R a reference probability measure on some measure space
Ω.

In this paper, based on the theory of conjugate duality, we solve the primal problem (1.2)
via the dual problem (1.3). Although this approach is highly classical, our implementation
is unusual since we consider the saturated duality (X ,Y = X ]) to build the dual problem.
This allows us not to assume any a priori topological regularity on the constraint (no
topological qualification of the constraints).

1.3. Outline of the paper. In Section 2, an abstract conditional law of large numbers
is stated to motivate the minimization problem (1.1). Some details are also given about
randomly weighted means whose large deviations admit entropies of the type of (1.6) as
rate functions.

Section 3 is devoted to the statements of the main results about the convex minimization
problem (1.2). These results are Theorem 3.4: dual equalities and primal attainment,
Theorem 3.7: dual attainment, and Theorem 3.10: dual representation of the minimizers.

These abstract results are applied in Section 4 to the minimization of entropies of the
type of (1.6) in the context of stochastic processes with marginal constraints. In partic-
ular we look at the case where the initial and final laws of the processes are prescribed.
These variational processes are called Bernstein processes. They are the foundation of the
Euclidean Quantum Mechanics initialized by Schrödinger [30] and developped by Zam-
brini [34]. We also consider the situation where a whole flow of t-marginals is prescribed.
This gives rise to another kind of variational processes called Nelson processes. They
are the foundation of the Stochastic Mechanics initialized by E. Nelson. At the end of
this section, at Theorem 4.15, it is proved that minimizing the relative entropy I(Q | R)
under some well-suited constraints preserves the conditional independence properties of
the reference measure R. For instance, when minimizing the relative entropy with respect
to some Markov law R to build Bernstein’s or Nelson’s processes, one obtains a Markov
process (which is absolutely continuous w.r.t. R) as a solution.

Section 5 is a short review of the main results of conjugate duality. It is there for the
convenience of the reader and allows us to give at Section 6 self-contained proofs of the
results of Section 3.

1.4. About the literature. A well-known application of conditional laws of large num-
bers is the Gibbs Conditioning Principle. For a clear account on this subject, one may
read (Dembo and Zeitouni, [14], Section 7.3).

The literature about the minimization of entropy functionals under convex constraints
is considerable: many papers are concerned with an engineering approach, working on
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the implementation of numerical procedures in specific situations. In fact, entropy min-
imization is a popular method to solve ill-posed inverse problems. For connections with
statistics, see for instance [23].
Surprisingly enough, rigorous general results on this topic are quite recent. Let us cite,
among others, the main contribution of Borwein and Lewis: [1], [2], [3], [4], [5], [6] to-
gether with the paper [33] by Teboulle and Vajda. In these papers, topological constraint
qualifications are required: it is assumed that the constraints stand in some topological
interior of the domain of I. Such restrictions are removed in the present article.
In the special case where I is the relative entropy, Csiszár has obtained the best existence
results in [11] together with powerful dual equalities. His proofs are based on geometrical
properties of the relative entropy; no convex analysis is needed. Based on the same geo-
metrical ideas, the same author has obtained later in [12] a powerful Gibbs Conditioning
Principle for noninteracting particles.

Although we provide a new proof for the representation of Bernstein’s and Nelson’s
processes, the entropic approach to build variational processes is already known. This
technique is developped by Cattiaux and Léonard in [9], in connection with Sanov’s and
Cramér’s theorems, to build Nelson’s processes. The same approach is used by Cruzeiro,
Wu and Zambrini in [10] to build Bernstein’s processes. When displaying at Section 4
these applications, our aim was to give a non trivial illustration in stochastic analysis of
the general results of Section 3. On the other hand, Theorem 4.15 is a new result.

As already alluded to, another natural probabilistic application of the abstract con-
vex minimization problems (1.2) and (1.4) is the theory of generalized I-projections and
dominating points. Generalized projections are studied by Csiszár in [12] and [13]. Dom-
inating points have been introduced by Ney in [24] and [25]. Their properties are also
investigated by Einmahl and Kuelbs in [15] and Kuelbs in [18]. The author extends and
explains these results in the light of the results of Section 3 in another paper [21].

Mass transportation problems are extensively investigated in the monograph [26] by
Rachev and Rüschendorf. Let us mention that the proof of the celebrated Strassen’s the-
orem on the existence of probabilities with given marginals [31] is based on the conjugate
duality of some minimization problem (1.2) related to a mass transportation problem.
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1.5. Some notations. Let X and Y be topological vector spaces.

- The algebraic dual space of X is X].
- The topological dual space of X is X ′.
- The topology of X weakened by Y is σ(X, Y ).
- One writes 〈X, Y 〉 to specify that X and Y are in dual pairing. This means that

X ′ = Y, Y ′ = X and that X and Y separate each other.

Let f : X → [−∞, +∞] be an extended numerical function.

- The convex conjugate of f with respect to 〈X, Y 〉 is f ∗(y) = supx∈X{〈x, y〉 −
f(x)} ∈ [−∞, +∞], y ∈ Y.

- The subdifferential of f at x with respect to 〈X, Y 〉 is ∂f(x) = {y ∈ Y ; f(x+ ξ) ≥
f(x) + 〈y, ξ〉,∀ξ ∈ X}.

Let Ω be some measurable space.

- The space of all signed measures on Ω is M(Ω).
- The space of all probability measures on Ω is P(Ω).

2. Probabilistic questions

In this section, we state at Theorem 2.3 conditional laws of large numbers. It is an easy
result, which motivates the study of a naturally associated convex minimization problem,
see (2.1). This minimization problem will be solved in great generality at Section 3.



6 CHRISTIAN LÉONARD

2.1. Conditional laws of large numbers. Let {Ln} be a sequence of random vectors in
the algebraic dual space L0 of some vector space U0. As a typical instance, one can think
of random measures Ln with U0 a function space. Let T : L0 → X0 be a linear operator
with values in another vector space X0. We are going to investigate the behavior of the
conditional law IP (Ln ∈ · | TLn ∈ C0) of Ln as n tends to infinity, for some measurable
set C0 in X0. It appears that this type of conditional law of large numbers is connected
with large deviations. We assume that {Ln} obeys the LDP with a good rate function I
in L0 endowed with the weak topology σ(L0,U0) and the associated Borel σ-field. It is
also clear that one should assume that IP (TLn ∈ C0) > 0 for all n, not to divide by zero.
To overcome this restriction, we look at IP (Ln ∈ · | TLn ∈ Cδ) where Cδ tends to C0 as δ
tends to zero.
Let us assume that X0 is a topological vector space with its Borel σ-field and that T :
L0 → X0 is continuous. The contraction principle tells us that

Xn
M
= TLn

obeys the LDP in X0 with the rate function

J(x) = inf{I(`); ` ∈ L0, T ` = x}.
If Ln = 1

n

∑n
i=1 δZi

is the empirical measure of an iid sequence (Zi) of X0-valued random

variables and Xn = 1
n

∑n
i=1 Zi is its empirical mean, the large deviations for Ln (taking

for U0 the space of bounded measurable functions) and Xn are described by Sanov ’s and
Cramér ’s theorems.

We make the following

Assumptions on {Ln}. The sequence {Ln} obeys the LDP in L0 with a good rate
function I. This means that I is inf-compact.

As a convention, one writes J(C) for infx∈C J(x).
Assumptions on the conditioning event.

(a) The linear operator T : L0 → X0 is continuous.
(b) J(C0) < ∞.

(c) The set C0 is closed, it is the limit as δ decreases to 0: C0
M
= ∩δcl Cδ, of the

closures of a nonincreasing family of Borel sets Cδ in X0 such that for all δ > 0
and all n ≥ 1, IP (Xn ∈ Cδ) > 0

(d) and one of the following statements
(1) Cδ = C0 for all δ > 0 and J(int C0) = J(C0), or
(2) C0 ⊂ int Cδ for all δ > 0.
is fulfilled.

This framework is based on (Stroock and Zeitouni, [32]) and (Dembo and Zeitouni, [14],
Section 7.3).

Let G be the set of all solutions of the following minimization problem:

minimize I(`) subject to T` ∈ C0, ` ∈ L0. (2.1)

Similarly, let H be the set of all solutions of the following minimization problem:

minimize J(x) subject to x ∈ C0, x ∈ X0. (2.2)
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We can now state a result about conditional laws of large numbers. This theorem is
proved in ([21], Section 7).

Theorem 2.3. For all open subset G of L0 such that G ⊂ G and all open subset H of X0

such that H ⊂ H, we have

lim sup
δ→0

lim sup
n→∞

1

n
log IP (Ln 6∈ G | TLn ∈ Cδ) < 0 and

lim sup
δ→0

lim sup
n→∞

1

n
log IP (Xn 6∈ H | Xn ∈ Cδ) < 0.

In particular, if C0 is convex and the rate functions I and J are strictly convex, we have
the conditional laws of large numbers:

lim
δ

lim
n

IP (Ln ∈ · | TLn ∈ Cδ) = δ¯̀

lim
δ

lim
n

IP (Xn ∈ · | Xn ∈ Cδ) = δx̄

where the limits are understood with respect to the usual weak topologies of probability
measures and ¯̀ is the unique solution to the convex minimization problem (2.1) and x̄ = T ¯̀

is the unique solution to (2.2).

In the rest of this paper, one will only work with functionals I which are the convex
conjugates of some function Φ on U0. This means that

I(`) = Φ∗(`) = sup
u∈U0

{〈`, u〉 − Φ(u)}, ` ∈ L0.

In the following examples, U0 is a space of measurable functions u : Ω → IR on a
measurable space Ω. Consequently L0 may contain measures on Ω.

Empirical means of an iid sequence. In the special situation where

Ln =
1

n

n∑
i=1

δZi

is the empirical measure of an iid sequence (Zi) of X0-valued random variables and Xn =
1
n

∑n
i=1 Zi is its empirical mean, I is the relative entropy with respect to R

M
= Law(Z) :

the common law of the Zi,’s and J is the convex conjugate of the log-Laplace transform of
R. We have: I = Φ∗ with Φ(u) = log IEeu(Z), u ∈ U0 and J = Γ∗ with Γ(y) = log IEe〈y,Z〉,
y ∈ Y0 where Y0 is a vector space in duality with X0.
The notation R is chosen to remind that R is a reference measure.
The vector x̄ is called a predominating point of C0 for the empirical mean of the Zi’s
and the measure ¯̀ is the I-projection (in the sense of Csiszár) of R on the convex set
{` probability measure on X0;

∫
X0

z `(dz) ∈ C0}.
Empirical measures with random weights. Let us consider a deterministic triangular array
{(ωn

i )1≤i≤n, n ≥ 1} of elements ωn
i in a measurable space Ω such that the empirical measure

Rn
M
= 1

n

∑n
i=1 δωn

i
tends to some probability measure R as n tends to infinity (in some weak

sense). A random weight W n
i is attached to each ωn

i ∈ Ω : {W n
i ; i ≤ n, n ≥ 1} is a family

of independent real-valued random variables. In addition, the law of W n
i is assumed to

depend on ωn
i . We denote Wωn

i
a copy of W n

i : Law(W n
i ) = Law(Wωn

i
) where {Wω; ω ∈ Ω}
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is a collection of random variables. Under some assumptions, the large deviations as n
tends to infinity of the sequence of random signed measures on Ω :

Ln
M
=

1

n

n∑
i=1

W n
i δωn

i
, n ≥ 1 (2.4)

are governed by the rate function

I(`) =

∫

Ω

γ∗
(

ω,
d`

dR
(ω)

)
R(dω) (2.5)

if ` ∈ L0 is an absolutely continuous measure with respect to R and I(`) = +∞ otherwise,
where γ∗(ω, t), t ∈ IR is the convex conjugate of γ(ω, s) = log IEesWω , s ∈ IR.
The large deviations of empirical measures with random weights have been studied in the
context of statistical physics by Ellis, Gough and Puli [16] and Boucher, Ellis and Turk-
ington [7] and in statistics by Gamboa and Gassiat [17]. In the paper [8] by Cattiaux and
Gamboa, these large deviations have been used to obtain variational results in the area
of marginal problems. For a detailed statement of this LDP, see ([21], Theorem 2.16).
When γ doesn’t depend on ω, the functional I is sometimes called γ∗-entropy. An impor-
tant instance is the relative entropy which corresponds to γ(s) = es − 1 : the log-Laplace
transform of the Poisson law with unit expectation. Indeed, γ∗(t) = t log t− t + 1 if t ≥ 0
and γ∗(t) = +∞ if t < 0. Therefore, requiring the constraint 〈`,1〉 = 1, one obtains
I(`) =

∫
Ω

log( d`
dR

) dR if ` is a probability measure which is absolutely continuous with
respect to R and +∞ otherwise. In other words, under this unit mass constraint I(`) is
the relative entropy of ` with respect to the reference measure R.
It appears that (provided that U0 is large enough) I = Φ∗ is the convex conjugate of
Φ(u) =

∫
Ω

γ(ω, u(ω)) R(dω), u ∈ U0.

2.2. Some constraints. The conditioning events TLn ∈ Cδ become T` ∈ C0 in the
minimization problem (2.1) as n tends to infinity and δ tends to zero. Now, one can
interpret T` ∈ C0 as a constraint for the minimization problem.
As before, U0 is a space of measurable functions u : Ω → IR on a measurable space Ω and
L0 may contain measures on Ω.
Moment constraints. Let θ1, . . . , θn be n functions on Ω which belong to the space U0. The
constraint 〈`, θi〉 ∈ Ai for all 1 ≤ i ≤ n where the Ai’s are intervals is written: T` ∈ C0

with T` = (〈`, θi〉)1≤i≤n ∈ X0 = IRn and C0 = A1 × · · · × An ⊂ IRn.
The problems of minimization of γ∗-entropies under moment constraints are widely

investigated in numerous domains of applied mathematics, including statistical physics
and ill-posed inverse problems, see [23] for instance.

Marginal constraints. Let Ω = Ω0 × Ω1 be a product space. If ` is a probability measure
on Ω0 × Ω1, its marginals `0 on Ω0 and `1 on Ω1 are defined by 〈`0, u0〉 = 〈`, u0 ⊗ 1〉 and
〈`1, u1〉 = 〈`,1⊗u1〉 for all bounded measurable functions u0 on Ω0 and u1 on Ω1. Therefore
the marginal couple (`0, `1) = T` is specified by infinitely many moment constraints.

Minimizing a γ∗-entropy under marginal constraint is a well known problem. A large
deviation approach to this problem is used by Cattiaux and Gamboa in [8] and a complete
answer to this problem with a convex analytical approach which differs from this paper’s
one, is given by the author in [20].
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2.3. The Monge-Kantorovich problem. This problem enters a class of problems
which isn’t directly connected to large deviations. It is a relaxed form of the original
Monge transportation problem. It consists in minimizing the functional ` 7→ ∫

Ω0×Ω1
c(ω0, ω1) `(dω0dω1)

where c : Ω0 × Ω1 → [0, +∞] is a cost function, among all the probability measures `
on Ω0 × Ω1 with prescribed marginals (`0, `1). This problem enters our framework tak-
ing Φ(u) = 0 if u ≤ c and +∞ otherwise. Many recent papers are concerned with this
problem. For a comprehensive account on this subject see (Rachev and Rüschendorf,
[26]).

3. An abstract convex minimization problem

Let us consider U0 a vector space, L0 = U ]
0 its algebraic dual space, Φ a (−∞, +∞]-

valued convex function on U0 and Φ∗ its convex conjugate for the duality 〈U0,L0〉 which
is defined by

Φ∗(`) = sup
u∈U0

{〈`, u〉 − Φ(u)}, ` ∈ L0.

We shall be concerned with the following convex minimization problem

minimize Φ∗(`) subject to T` ∈ C0, ` ∈ L0 (P0)

where C0 is a convex subset of a vector space X0 and T : L0 → X0 is a linear operator.
The problem (2.1) is (P0) in the situation where I = Φ∗ is a closed convex function,

which is a common feature when independent variables are considered, and C0 is a convex
set.

3.1. The operator T and its adjoint. Let X0 be in separating duality with a vector
space Y0. It is often useful to define the constraint operator T by means of its adjoint
T T : Y0 → L]

0 (L]
0 is the algebraic dual space of L0), as follows. For all ` ∈ L0, x ∈ X0,

T ` = x
M⇐⇒∀y ∈ Y0, 〈T T y, `〉L]

0,L0
= 〈x, y〉X0,Y0 .

We shall assume that the restriction T T (Y0) ⊂ U0 holds, where U0 is identified with a

subspace of L]
0 = U ]]

0 . This provides us with the diagram

〈
U0 , L0

〉

T T
x

yT〈
Y0 , X0

〉 (Schema 0)

For the moment constraints T` = (〈`, θi〉)1≤i≤n ∈ X0 = IRn we have: T T y =
∑n

i=1 yiθi
M
=

〈y, θ(·)〉, y ∈ Y0 = IRn with θ(ω) = (θi(ω))1≤i≤n ∈ X0.
In the setting of the marginal constraints, the set X0 = P(Ω0)×P(Ω1) is dually linked

with Y0 = B(Ω0) × B(Ω1) where P(Ω) is set of all probability measures on Ω and B(Ω)
is the space of all measurable bounded functions on Ω. The constraint operator is T` =
(`0, `1) ∈ X0 and for any y = (y0, y1) ∈ B(Ω0)× B(Ω1) we have [T T y](ω0, ω1) = y0(ω0) +
y1(ω1), that is T T y = y0⊕y1. Let us notice that as for the moment constraints one can write
T T y = 〈y, θ(·)〉 with θ(ω0, ω1) = (δω0 , δω1) ∈ X0 since 〈y, θ(·)〉 = 〈(y0, y1), (δω0 , δω1)〉 =∫
Ω0

y0 δω0 +
∫
Ω1

y1 δω1 = y0(ω0) + y1(ω1).
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3.2. A formal Lagrangian approach. The existence of a solution to (P0) implies that
its value

inf(P0)
M
= inf{Φ∗(`); T` ∈ C0, ` ∈ L0}

is finite: inf(P0) < +∞. It is often useful to have an alternate variational expression for
this value. Such an expression

inf(P0) = sup(D0)

is called a dual equality where (D0) is a maximization problem dually linked to (P0). The
minimization problem (P0) is called the primal problem and the maximization problem
is called its dual problem. In some situations, sup(D0) < +∞ is easier to obtain than
inf(P0) < +∞.

In the following we are going to introduce formally the problem (D0). The Lagrange

multipliers method mainly states that as A0
M
= {` ∈ L0; T` ∈ C0} is a convex subset of

L0 since C0 is a convex subset of X0, ¯̀ minimizes the convex function Φ∗ on A0 if the
derivative Φ∗′(¯̀) is an inward normal of A0 at ¯̀. Hence, let us take our Lagrangian of
the following form: Φ∗(`) − [〈`, u〉 − α(u)] where α is a concave function. If (¯̀, ū) is a
saddle-point, cancelling the partial derivatives of the Lagrangian we obtain Φ∗′(¯̀) = ū and
¯̀∈ ∂α(ū) (the superdifferential of α at ū.) Therefore we want ū to be an inward normal
of A0 at ¯̀ and ∂α(ū) ⊂ A0. One can choose for α the function α(u) = inf`∈A0〈`, u〉. But,
inf`∈A0〈`, u〉 = infx∈C0 inf{〈`, u〉; T` = x, ` ∈ L0} and in order that inf{〈`, u〉; T` = x, ` ∈
L0} is finite, it is necessary that for all `, T ` = 0 implies that 〈`, u〉 = 0. Formally, this is
obtained with u = T T y, for some y. Finally, we have got α(u) = α(T T y) = infx∈C0〈x, y〉
and the natural Lagrangian for the problem (P0) is Φ∗(`)−〈T`, y〉+infx∈C0〈x, y〉, ` ∈ L0,
y ∈ Y0. The identity Φ∗′(¯̀) = ū becomes Φ∗′(¯̀) = T T ȳ and the corresponding Young
equality is Φ∗(¯̀) − 〈T ¯̀, ȳ〉 = −Φ∗∗(T T ȳ) where Φ∗∗ is the convex biconjugate of Φ for
the duality 〈U0,L0〉. Therefore, the natural dual problem associated with (P0) is of the
following form

maximize inf
x∈C0

〈x, y〉 − Γ(y), y ∈ Y0 (D0)

where Γ(y)
M
= Φ∗∗(T T y). The desired variational formulation inf(P0) = sup(D0) is of the

form

inf{Φ∗(`); T` ∈ C0, ` ∈ L0} = sup
y∈Y0

{ inf
x∈C0

〈x, y〉 − Γ(y)}.

Moreover, the formal identity Φ∗′(¯̀) = T T ȳ leads us via convex duality to the formal
representation formula of the solutions of (P0)

¯̀∈ ∂Φ(T T ȳ).

3.3. Main questions. The main natural questions arising with (P0) and (D0) are related
to

• the dual equality: Does inf(P0) = sup(D0) hold?
• the primal attainment: Does there exist a solution ¯̀ to (P0)? What about the

minimizing sequences, if any?
• the dual attainment: Does there exist a solution ȳ to (D0)?
• the representation of the primal solutions: Find an identity of the type of ¯̀ ∈

∂Φ(T T ȳ).
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It appears that when the constraints are infinite-dimensional one can choose many
different Y0’s without modifying (P0). So that for a small set Y0 the dual attainment
is not the rule. As a consequence, we are facing the problem of finding an extension
of (D0) such that the extended dual problem admits solutions in generic cases and the
representation of the primal solution is ¯̀∈ ∂Φ̄(T T ȳ) where Φ̄ is an extension of Φ.

We are going to give an answer to these questions. Our strategy is to use convex duality
as developed by Rockafellar in [28]. The main features of this approach are recalled in
Section 5 for the reader’s convenience.

We have taken as a rule not to introduce arbitrary topological assumptions since (P0)
is expressed without any topological notion. The convexity of the problem will allow us
to take advantage of geometrical easy properties: the topologies to be considered later
are related to gauges of some level sets of convex functions.

3.4. Assumptions. Let us give a list of our main hypotheses.

(HΦ) 1- Φ : U0 → [0, +∞] is convex and Φ(0) = 0
2- ∀u ∈ U0,∃α > 0, Φ(αu) < ∞
3- ∀u ∈ U0, u 6= 0,∃t ∈ IR, Φ(tu) > 0

(HT ) 1- T T (Y0) ⊂ U0

2- ker T T = {0}
(HC) C

M
= C0 ∩ X is a convex σ(X ,Y1)-closed subset of X

The definitions of the vector spaces X and Y1 which appear in the last assumption are
stated below at Section 3.5. For the moment, let us only say that if C0 is convex and
σ(X0,Y0)-closed, then (HC) holds.

Comments about the assumptions. By construction, Φ∗ is a convex σ(L0,U0)-closed func-
tion, even if Φ is not convex. Assuming the convexity of Φ is not a restriction and this
will be useful.
The assumption (HΦ1) also expresses that Φ achieves its minimum at u = 0 and that
Φ(0) = 0. This is a practical normalisation requirement which will allow us to build a
gauge functional associated with Φ. More, (HΦ1) implies that Φ∗ also shares this property:
Φ∗ achieves its minimum value at ` = 0 and Φ∗(0) = 0. Gauge functionals related to Φ∗

will also appear later.
With any convex function Φ̃ satisfying (HΦ2), one can associate a function Φ satisfying
(HΦ1) in the following manner. Because of (HΦ2), Φ̃(0) is finite and there exists `o ∈ L0

such that `o ∈ ∂Φ̃(0). Then, Φ(u)
M
= Φ̃(u) − 〈`o, u〉 − Φ̃(0), u ∈ U0, satisfies (HΦ1) and

Φ̃∗(`) = Φ∗(`− `o)− Φ̃(0), ` ∈ L0.
The hypothesis (HΦ3) is not a restriction. Indeed, let us suppose that there exists a di-
rection uo 6= 0 such that Φ(tuo) = 0 for all real t. Then any ` ∈ L0 such that 〈`, uo〉 6= 0
satisfies Φ∗(`) ≥ supt∈IR t〈`, uo〉 = +∞ and can’t be a solution to (P0).
The hypothesis (HT2) isn’t a restriction either: If y1 − y2 ∈ ker T T , we have 〈T`, y1〉 =
〈T`, y2〉, for all ` ∈ L0. In other words, the spaces Y0 and Y0/ker T T both specify the
same constraint sets {` ∈ L0; T` = x}.
The effective assumptions are the following ones. (HΦ2) and (HC) are geometrical re-
strictions while (HT1) is a regularity assumption on T. The specific form of the objective
function Φ∗ as a convex conjugate makes it a convex σ(L0,U0)-closed function.
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3.5. Some newcomers. The gauge functional on U0 of the set {u ∈ U0; max(Φ(u), Φ(−u)) ≤
1} is

|u|Φ M
= inf{α > 0; max(Φ(u/α), Φ(−u/α)) ≤ 1}, u ∈ U0.

Let us define
Γ(y)

M
= Φ(T T y), y ∈ Y0, (3.1)

taking (HT1) into account. The gauge functional on Y0 of the set {y ∈ Y0; max(Γ(y), Γ(−y)) ≤
1} is

|y|Γ M= inf{α > 0; max(Γ(y/α), Γ(−y/α)) ≤ 1}, y ∈ Y0.

It is shown at Lemma 6.3 that | · |Φ and | · |Γ are norms. Let

L M
= (U0, | · |Φ)′ be the topological dual space of (U0, | · |Φ) and let

U1 be the | · |Φ−completion of U0.

Of course, we have (U1, | · |Φ)′ = L ⊂ L0. Similarly, let

X M
= X0 ∩ (Y0, | · |Γ)′ be the space of | · |Γ−continuous elements of X0 and let

Y1 be the | · |Γ−completion of Y0.

We have also (Y1, | · |Γ)′ = X ⊂ X0. We denote

C = C0 ∩ X .

The σ(U0,L0)-lsc regularization of Φ is Φ∗∗
0 (u) = sup`∈L0

{〈`, u〉 − Φ∗(`)}, u ∈ U0. Of
course, we have Φ∗ = (Φ∗∗

0 )∗. We define

Γ0(y)
M
= Φ∗∗

0 (T T y), y ∈ Y0.

The convex σ(U1,L)-lsc regularization of Φ is Φ∗∗
1 (u) = sup`∈L{〈`, u〉 − Φ∗(`)}, u ∈ U1. It

satisfies Φ∗(`) = supu∈U1
{〈`, u〉 − Φ∗∗

1 (u)}, for all ` ∈ L. We define

Γ1(y)
M
= Φ∗∗

1 (T T
1 y), y ∈ Y1

where, for any y ∈ Y1, T T
1 y is the linear form on L defined by: 〈T T

1 y, `〉L],L = 〈T`, y〉X ,Y1 ,
for all ` ∈ L. The above definitions of T T

1 and Γ1 are meaningful because of the following
lemma.

Lemma 3.2. Under the hypotheses (HΦ) and (HT ), we have

(a) TL ⊂ X
(b) T T

1 Y1 ⊂ U1.

This lemma is part of Lemma 6.3. Its proof is postponed to Section 6.7.

3.6. The optimization problems. The convex conjugate of Γ and Γ0 for the duality
〈Y0,X0〉 is

Γ∗(x)
M
= sup

y∈Y0

{〈x, y〉 − Γ(y)}, x ∈ X0. (3.3)

Let us denote Y2 = X ] the algebraic dual space of X and consider

Γ̄(y)
M
= sup

x∈X
{〈x, y〉 − Γ∗(x)}, y ∈ Y2
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the greatest convex σ(Y2,X )-lsc extension of Γ to Y2. This allows us to state below the
extended dual problem (D2). The optimization problems to be considered are

minimize Φ∗(`) subject to T` ∈ C0, ` ∈ L0 (P0)

minimize Φ∗(`) subject to T` ∈ C, ` ∈ L (P )

minimize Γ∗(x) subject to x ∈ C0, x ∈ X0 (PX
0 )

maximize inf
x∈C0

〈x, y〉 − Γ0(y), y ∈ Y0 (D0)

maximize inf
x∈C

〈x, y〉 − Γ1(y), y ∈ Y1 (D1)

maximize inf
x∈C

〈x, y〉 − Γ̄(y), y ∈ Y2 (D2)

3.7. Statement of the abstract results. We are now ready to give answers to the
questions of Section 3.3.

Theorem 3.4 (Dual equalities and primal attainment.). Let us assume (HΦ) and (HT ).

(a) The following little dual equality holds

inf{Φ∗(`); T` = x, ` ∈ L0} = Γ∗(x) ∈ [0, +∞],∀x ∈ X0 (3.5)

(b) The problems (P0) and (P ) admit the same solutions and the same values.

Let us suppose that in addition (HC) is fulfilled. Then,

(c) We have the following dual equalities

inf(P0) = inf(P ) = sup(D1) = inf
x∈C0

Γ∗(x) ∈ [0, +∞].

(d) If inf(P0) < ∞, then (P0) is attained in L. Moreover, any minimizing sequence
for (P0) has σ(L,U1)-cluster points and every such cluster point solves (P0).

(e) If in addition C0 is σ(X0,Y0)-closed, then

inf(P0) = sup(D0) ∈ [0, +∞]. (3.6)

Let us state some remarks about these results.

• It will proved at Lemma 6.3 that dom Φ∗ ⊂ L. Hence, any minimizing sequence
for (P0) stands in L and the topology σ(L,U1) is meaningful in (d).

• Since Y0 ⊂ Y1, if C0 is σ(X0,Y0)-closed, then C is σ(X ,Y1)-closed.
• The little dual equality (3.5) is the dual equality (3.6) with C0 = {x}.

We define the adjoint operator T ∗ : Y2 → U2 for all y ∈ Y2 by:

〈T ∗y, `〉U2,L = 〈y, T `〉Y2,X ,∀` ∈ L.

This definition is meaningful because TL ⊂ X by Lemma 3.2.

Theorem 3.7 (Dual attainment). Let us assume (HΦ), (HT ) and (HC). Then, we have
the following dual equality

inf(P ) = sup(D2) ∈ [0,∞] (3.8)

If in addition the following constraint qualification

C0 ∩ icordom Γ∗ 6= ∅ (3.9)

is satisfied, then (D2) is attained and any solution ȳ to (D2) shares the following properties
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(a) ȳ stands in the σ(Y2,X )-closure of dom Γ ⊂ Y0.
(b) T ∗ȳ stands in the σ(U2,L)-closure of T T (dom Γ).
(c) For any xo ∈ X , let us denote Dxo = {x ∈ X ; Γ∗(xo + x) ≤ Γ∗(xo) + 1}. We

also denote jDxo
and j−Dxo

the gauge functionals on X of the convex sets Dxo and
−Dxo .
Then, for any xo in C0 ∩ icordom Γ∗, ȳ is jDxo

-upper semicontinuous and j−Dxo
-

lower semicontinuous at 0.

It will be proved at Lemma 6.3 that dom Γ∗ ⊂ X so that any xo in C0 ∩ icordom Γ∗ is
in X .

Let us denote U2 = L] the algebraic dual space of L. The greatest convex σ(U2,L)-lsc
extension of Φ is

Φ̄(u)
M
= sup

`∈L
{〈`, u〉 − Φ∗(`)}, u ∈ U2.

Theorem 3.10 (Dual representation of the minimizers). Let us assume (HΦ), (HT ), (HC)
and (3.9). Then there exists (¯̀, ȳ) ∈ L × Y2 a solution to (P0) and (D2).
Moreover, (¯̀, ȳ) ∈ L0 × Y2 is a solution to (P0) and (D2) if and only if

(a) x̄
M
= T ¯̀∈ C

(b) 〈ȳ, x̄〉 ≤ 〈ȳ, x〉,∀x ∈ C.
(c) ¯̀∈ ∂Φ̄(T ∗ȳ)

In this situation, x̄ minimizes Γ∗ on C0 and we also have x̄ ∈ ∂Γ̄(ȳ) and

Φ∗(¯̀) + Φ̄(T ∗ȳ) = 〈x̄, ȳ〉 = Γ∗(x̄) + Γ̄(ȳ). (3.11)

In the special situation where U0 = Y0, Φ = Γ and T is the identity, the primal problem
becomes (PX

0 ) and the above results are expressed as follows.

Corollary 3.12. Let Γ : Y0 7→ [0,∞] be an extended nonnegative convex function satisfy-
ing the following requirements: Γ(0) = 0, and for any y 6= 0, there exist α > 0 and t ∈ IR
such that Γ(αy) < ∞ and Γ(ty) > 0. This is the case if Γ is defined by (3.1) and Φ and
T satisfy (HΦ) and (HT ).
Let us suppose that (HC) is satisfied. Then,

inf
x∈C0

Γ∗(x) = inf
x∈C

Γ∗(x) = sup(D1) = sup(D2) ∈ [0,∞]

If in addition the constraint qualification (3.9) holds, then there exist a solution to (PX
0 )

and (D2). Moreover, (x̄, ȳ) ∈ X0 × Y2 is a solution to (PX
0 ) and (D2) if and only if

(a) x̄ ∈ C
(b) 〈ȳ, x̄〉 ≤ 〈ȳ, x〉,∀x ∈ C.
(c) x̄ ∈ ∂Γ̄(ȳ)

We also have
〈x̄, ȳ〉 = Γ∗(x̄) + Γ̄(ȳ).

4. Some applications

In this section one gives illustrations of the general results of Section 3. Our main
example is concerned with entropies. It is motivated by conditional laws of large numbers,
see Section 2.1.
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4.1. Entropies. Let (Ω,A, R) be a probability space where A is supposed to be R-
complete. The λ∗-entropy is defined for all nonnegative measure Q on Ω, by

I(Q)
M
=

∫

Ω

λ∗(
dQ

dR
) dR ∈ [0,∞]

if Q is absolutely continuous with respect to the reference probability measure R and
I(Q) = +∞ otherwise.
We are concerned with the following minimization problem:

minimize I(Q) subject to TQ ∈ C0, Q nonnegative measure on Ω (4.1)

where T is a linear operator and C0 is a convex set. Let us make some
Assumptions on λ∗. We assume that λ∗ is a closed strictly convex [0, +∞]-valued func-
tion on [0,∞) which achieves its minimum at t = 1 with λ∗(1) = 0 and which is finite on
a neighbourhood of t = 1.
As a consequence I uniquely achieves its minimum value at R and I(R) = 0. In order
not to be disturbed by sign considerations, let us extend λ∗ to IR with λ∗(t) = +∞ for
any t < 0. It is still a closed convex function, and as such, the convex conjugate of some

convex function λ(s). Let us introduce γ(s)
M
= λ(s)− s, s ∈ IR, and the convex functional

Φ(u)
M
=

∫

Ω

γ(u(ω)) R(dω), u ∈ U0

where U0 is a space of functions on Ω to be defined later. It appears that γ(s) is a [0, +∞]-
valued convex function which achieves its minimum value at 0 with γ(0) = 0 and that
under some conditions to be made precise in a moment, we have

I(Q) = Φ∗(Q−R) (4.2)

where Φ∗ is the convex conjugate of Φ for the duality (L0,U0) with L0
M
= U ]

0 as in the
Section 3. It has been already encountered at (2.5). In order that the identity (4.2) holds,
one must take U0 large enough to separate the measures, for instance such that the space
B(Ω) of all bounded measurable functions on Ω is included in U0, but not too large. A
good choice is

U0
M
= {u : Ω → IR measurable such that for all α ∈ IR,

∫

Ω

γ(αu) dR < ∞}.

In fact, U0 is the Orlicz space U0 = Mγo associated with the Young function γo(s)
M
=

max(γ(−s), γ(s)) on (Ω, R). For definitions, notations and basic results on Orlicz spaces,
see Section 4.2 below. It is proved in ([19], Proposition 6.2) that in this situation L is
equal to the Orlicz space Lγo

∗ and for any ` ∈ L0,

Φ∗(`) =

{ ∫
Ω

γ∗( d`
dR

(ω)) R(dω) if ` ¿ R
+∞ otherwise

where ` ¿ R means that ` is a signed measure on Ω which is absolutely continuous with
respect to R. Since γ∗(t) = λ∗(t + 1), (4.2) is satisfied.
One must be aware of the fact that if U0 had been a larger space, for instance the space
of all measurable functions u on Ω such that for some α > 0,

∫
Ω

γ(αu) dR < ∞ and∫
Ω

γ(−αu) dR < ∞, L0 would have been different and Φ∗ would possess a singular com-
ponent: its domain would contain singular forms (in Ls

γo
.)
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To apply our previous results, one must compute the function Φ̄. This may be difficult in
some situations. This result is stated in ([19], Theorem 6.3). Being careless with annoying
details, it is essentially

Φ̄(u) =

∫

Ω

γ(uac) dR + sup{〈us, f〉; f ∈ dom Φ∗}, u ∈ dom Φ̄ ⊂ U2

where u = uac + us is a unique decomposition of u into a measurable function uac and
a singular part us. This singular part will not play any role in the sequel since one only
needs to compute the subdifferential ∂Φ̄(u) and

∂Φ̄(u) = {γ′(uac).R} (4.3)

for any u in dom Φ̄. To make things easier, we have supposed that λ∗ is strictly convex,
so that γ is differentiable. To prove (4.3), note that for any h ∈ U0 = Mγo and any
u ∈ dom Φ̄ ⊂ Lγo ⊕ Ls

γo
∗ , we have (u + h)ac = uac + h and (u + h)s = us since hs = 0.

Hence, Φ̄(u+h)− Φ̄(u) = [
∫
Ω

γ(uac +h) dR+sup{〈us, f〉; f ∈ dom Φ∗}]− [
∫
Ω

γ(uac) dR+
sup{〈us, f〉; f ∈ dom Φ∗}] =

∫
Ω

γ(uac + h) dR− ∫
Ω

γ(uac) dR.
One easily checks that our assumptions on λ∗ together with our choice of U0, imply
that (HΦ) is satisfied. As the transformation λ → γ corresponds to the transformation
Q → ` = Q − R, under the additional conditions on T and C0 of Theorem 3.10, by this
theorem the minimizer of (4.1) is

Q̄ = λ′((T ∗ȳ)ac) ·R (4.4)

for some ȳ ∈ Y2.
Before going on with entropies, let us talk about Orlicz spaces.

4.2. A short reminder about Orlicz spaces. Let us recall that a Young function θ is
a convex even [0,∞]-valued function on IR such that θ(0) = 0. Let R be a nonnegative
measure on the measure space Ω. We consider two Orlicz spaces associated with θ :

Mθ
M
= {u : Ω → IR measurable such that for all α > 0,

∫

Ω

θ(αu) dR < ∞}
and

Lθ
M
= {u : Ω → IR measurable such that for some α > 0,

∫

Ω

θ(αu) dR < ∞}.
Both are vector spaces andMθ ⊂ Lθ where the inclusion may be strict. We also introduce
the vector spaces Mθ and Lθ which correspond to Mθ and Lθ when identifying R-almost
equal functions.

For instance, with θ(s) = θp(s)
M
= |s|p/p, 1 < p < ∞, we have Mθp = Lθp = Lp. But with

θ = τ given by
τ(s) = e|s| − |s| − 1 (4.5)

provided that R is a bounded measure, we obtain

Mτ = {u;∀α > 0,

∫

Ω

eα|u| dR < ∞} ⊂ Lτ = {u;∃α > 0,

∫

Ω

eα|u| dR < ∞}
where the inclusion is strict if Ω contains infinitely many elements.

The gauge seminorm on Lθ is ‖u‖θ
M
= inf{β > 0;

∫
Ω

θ(u/β) dR ≤ 1}. It becomes a norm
on the vector spaces Mθ and Lθ which are Banach spaces. The topological dual of Mθ
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is Lθ∗ for the dual bracket 〈u, v〉 =
∫
Ω

uv dR where θ∗ is the convex conjugate of θ. Note
that θ∗ is also a Young function.
For instance, with θ = θp, we have θ∗ = θq with 1/p + 1/q = 1, and L′p = M ′

θ = Lq, for
1 < p < ∞. We also have M ′

τ = Lτ∗ with

τ ∗(t) = (|t|+ 1) log(|t|+ 1)− |t|
But, L′θ = Lθ∗ ⊕Ls

θ where Ls
θ is a space of singular (with respect to R) linear forms on Lθ

which may not even be measures. In particular, we have L′τ = Lτ∗ ⊕ Ls
τ and if Mθ = Lθ,

Ls
θ = {0}.

4.3. Bernstein processes. We are going to specify conditioning events for random paths
and solve (4.1). Let Ω = D([0, 1], S) be the space of cadlag paths from [0, 1] to a Polish
space S. The state space S is endowed with its Borel σ-field S and Ω with A : the R-
completion of the canonical σ-field where R is some probability measure on Ω. Bernstein
processes are solutions of minimization problems of the type of (4.1) where I is some action
functional (not necessarily an entropy) and Q is subject to the marginal constraints

Qa = νa and Qb = νb

where 0 ≤ a < b ≤ 1, Qt is the law of the position Xt at time t under the law Q of the
process X = (Xt)0≤t≤1 and νa, νb are prescribed probability measures on S. We introduced
a and b not to overuse the subscripts 0 and 1, but one should typically think of initial
and final marginals, that is a = 0 and b = 1. It appears that a physically relevent action
functional I(Q) is the relative entropy I(Q | R) with respect to R (see (4.11)) which
enters the framework of the present paper (see Section 4.5 below).
Such an approach to the construction of Bernstein’s processes is used in (Cruzeiro, Wu
and Zambrini, [10]) with the relative entropy. It is based on Csiszár’s results on the
I-projection [11], but it unfortunately inherits a mistake of [11], see (Rüschendorf and
Thomsen, [29]) about this delicate problem.

Anyhow, it is worth (see Section 2.1) studying the minimization problem

minimize I(Q) subject to Q is a probability measure, Qa = νa and Qb = νb (4.6)

where I is a λ∗-entropy on Ω = D([0, 1], S). Taking the transformation λ∗ → γ∗ into
account, this constraint is represented by the adjoint operator T T (ya, yb) = ya⊕yb for any
y = (ya, yb) ∈ Y0 = Cb(S)2 and the constraint set C0 = {(νa−Ra, νb−Rb)} ⊂ X0 = M(S)2.
The assumptions (HT ) and (HC) are obviously fulfilled. Recall that M(S) is the space
of all signed measures on S.
Note that I(Q) < ∞ implies that Q is a nonnegative measure and that the constraint
Qa = νa implies that Q(Ω) = νa(S) = 1. Therefore, under our marginal constraints any
Q in dom I is a probability measure.

In order to go further, we identify the relevent spaces and topologies associated with
problem (4.6).
We have U0 = Mγo(R), L0 = Mγo(R)], |u|Φ = ‖u‖γo , u ∈ U1 = Mγo(R).
By a simple computation, γo

∗(·) = cv min(γ∗(−·), γ∗(·)) where cv stands for the convex
envelope. We have L = Lγo

∗(R).
Taking Y0 = Cb(S)2 and X0 = M(S)2, we have |(ya, yb)|Γ = ‖ya ⊕ yb‖γo,Ra,b

for all
(ya, yb) ∈ Y1 which is the space of all couples of measurable functions on S such that
ya⊕yb ∈ Lγo(S

2, Ra,b) where Ra,b is the joint law of the couple of positions (Xa, Xb) under
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the process law R.
The space X is the set of all couples (xa, xb) of measures on S such that there exists

k ∈ Lγo
∗(S2, Ra,b) with xa(dα) = ka(dα)

M
= [

∫
S

k(α, β) Rb|a(dβ | α)] Ra(dα) and xb(dβ) =

kb(dβ)
M
= [

∫
S

k(α, β) Ra|b(dα | β)] Rb(dβ) where Ra|b(dα | β) is the law of Xa conditionally
on Xb = β and Rb|a(dβ | α) is the law of Xb conditionally on Xa = α. We assumed that
S is a Polish space to insure the existence of regular versions of conditional probability
measures. The function Γ is given by

Γ(ya, yb) =

∫

S×S

γ(ya ⊕ yb) dRa,b, ya, yb ∈ Cb(S).

Taking the transformation λ∗ → γ∗ into account together with the results of the Sections
3 and 4.1, we obtain the following

Results 1 The problem (4.6) admits a solution if and only if

inf{I(Q); Q ∈ P(Ω), Qa = νa, Qb = νb} = Ψ(νa, νb)

is finite, that is if (νa, νb) is in dom Ψ where

Ψ(νa, νb)
M
= sup{

∫

S

ya dνa +

∫

S

yb dνb −
∫

S×S

λ(ya ⊕ yb) dRa,b; ya, yb ∈ Cb(S)}

This dual equality is given by Theorem 3.4. In this situation, the dual equality inf(P0) =
sup(D1) yields

Ψ(νa, νb) = sup{
∫

S

ya dνa +

∫

S

yb dνb −
∫

S×S

λ(ya ⊕ yb) dRa,b;

ya, yb such that ya ⊕ yb ∈ Mγo(S
2, Ra,b)}

since the ‖ · ‖θ-completion of Cb is Mθ.
In the opposite direction, if the state space S is IRd, one can choose a “small” Y0, for
instance Y0 = C∞

c (IRd)2 which also separates X0, to obtain

Ψ(νa, νb) = sup{
∫

S

ya dνa +

∫

S

yb dνb −
∫

S×S

λ(ya ⊕ yb) dRa,b; ya, yb ∈ C∞
c (IRd)}

As I is strictly convex, by Theorem 3.4-(d), if Ψ(νa, νb) < ∞, any minimizing sequence of
(4.6) σ(Lγo

∗(R),Mγo(R))-converges to the unique minimizer Q̄.
We also have

I(Q̄) = Ψ(νa, νb).

If (νa, νb) is in icordom Ψ, one can apply Theorems 3.7 and 3.10 to obtain the represen-
tation (4.4) of the minimizer. Our aim now is to give some details about the dual param-
eter T ∗ȳ. By Theorem 3.7, T ∗ȳ ∈ dom Φ̄ stands in the σ(U2,L)-closure of T T (dom Γ).
By (4.4), one only needs to consider its absolutely continuous part (T ∗ȳ)ac. Because of
the special form of Φ̄, we know that the absolutely continuous parts of the elements of
dom Φ̄ are in Lγo(R) and a fortiori (T ∗ȳ)ac ∈ L1(R). We have just seen that L = Lγo

∗(R).
Therefore, L∞(R) ⊂ L. As any singular form in Ls

γo
∗ vanishes at any bounded function,

it follows that (T ∗ȳ)ac is in the σ(L1, L∞)-closure of the convex set T T (dom Γ) which is
also the ‖ · ‖1-closure of T T (dom Γ) = {ya ⊕ yb;

∫
S2 γ(ya ⊕ yb) dRa,b < ∞}. Hence, one
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can extract a sequence (yn
a , yn

b ) in dom Γ such that yn
a (Xa)⊕ yn

b (Xb) converges R-almost
everywhere to (T ∗ȳ)ac. This implies that yn

a ⊕ yn
b converges Ra,b-almost everywhere to

some function h ∈ Lγo(S
2, Ra,b). By (Borwein and Lewis, [4], Corollary 3.4) this limit h

keeps the same additive form: h = ȳa ⊕ ȳb Ra,b-almost everywhere. Hence, there exist
functions ȳa and ȳb on S such that

(T ∗ȳ)ac = ȳa(Xa) + ȳb(Xb), R−almost everywhere

Note that it is not clear that, although h is jointly measurable, both ȳa and ȳb are mea-
surable. One concludes that this holds in some sense, thanks to Lemma 4.8 below. We
have obtained the following

Results 2 If (νa, νb) stands in icordom Ψ, there exist two numerical functions ȳa and ȳb

on S such that ȳa ⊕ ȳb is measurable with respect to the Ra,b-completion of S⊗2 and the
unique minimizer Q̄ of Problem (4.6) is

Q̄(dω) = λ′(ȳa(ωa) + ȳb(ωb)) ·R(dω) (4.7)

For Rb-almost every β ∈ S, ȳa is measurable with respect to the Ra|b(·|β)-completion of S
and for Ra-almost every α ∈ S, ȳb is measurable with respect to the Rb|a(·|α)-completion
of S.
We also have:∫

S

ȳa dνa +

∫

S

ȳb dνb =

∫

S2

λ(ȳa(α) + ȳb(β)) Ra,b(dαdβ) + Ψ(νa, νb)

Lemma 4.8 (Negligible troubles). Let us consider A and B two Polish spaces endowed
with their Borel σ-fields A and B, the product space A × B, its product σ-field A ⊗ B,
X = (XA, XB) the canonical couple on A × B and P a probability measure on A × B
interpreted as the law of X. We endow A×B with the P -completion of A⊗B and extend
P to this σ-field. Let us denote PA, PB, PA|XB=b and PB|XA=a the laws of XA, XB and
the regular conditional versions of the laws of XA conditioned on XB and XB conditioned
on XA.
If h : A × B → IR is a jointly measurable function such that h = f(XA) + g(XB), P -
almost everywhere, then for PB-almost every b, f : A → IR is measurable with respect to
the PA|XB=b-completion of A and for PA-almost every a, g : B → IR is measurable with
respect to the PB|XA=a-completion of B.
In particular, if XA and XB are P -independent, then f is measurable with respect to the
PA-completion of A and g is measurable with respect to the PB-completion of B.

Proof. Let h be a measurable function on A × B and k a not necessarily measurable
function such that k(X) = h(X), P -almost surely. There exists a measurable set N such
that P (N) = 0 and k(X) = h(X) on (A × B) \ N. Under the Polish assumption, one
can take advantage of the existence of regular versions of the conditional expectations.
As P (N) =

∫
B

P (N | XB = b) PB(db) = 0, we obtain that PB-almost everywhere, P (N |
XB = b) = 0. Let N(XB=b) = {a ∈ A; (a, b) ∈ N} be the (XB = b)-section of N. Since we
work with the P -completion ofA⊗B, the section N(XB=b) is measurable with respect to the
PA|XB=b-completion of A. Therefore, we have PA(N(XB=b) | XB = b) = P (N | XB = b) = 0
and k(a, b) = h(a, b) for PB-almost every b and all a 6∈ N(XB=b).
As h is jointly measurable, for every bo ∈ B, the section a 7→ h(a, bo) is measurable with
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respect to the PA|XB=bo-completion of A. Taking k(a, b) = f(a)+ g(b) in the above result,
we obtain that a 7→ f(a) + g(bo) is measurable with respect to the PA|XB=bo-completion
of A, for PB-almost every bo. This proves the result for f. A similar proof works for g.
The last statement of the lemma follows from PA|XB=b = PA for PB-almost every b and
PB|XA=a = PB for PA-almost every a, in the case where P = PA ⊗ PB. ¤
4.4. Nelson processes. Nelson processes are solutions of minimization problems of the
type of (4.1) where I is some action functional (not necessarily an entropy) and Q is
subject to the marginal constraints

Qt = νt,∀0 ≤ t ≤ 1

where ν = (νt)0≤t≤1 is a prescribed flow of probability measures on S. The minimization
problem to be considered in this paper is similar to Bernstein’s one:

minimize I(Q) subject to Q is a probability measure, Qt = νt for all 0 ≤ t ≤ 1 (4.9)

where I is a λ∗-entropy on Ω = D([0, 1], S) as in Section 4.3.
We assume that t 7→ νt is continuous. Without loss of information, we identify the

flow ν with the probability measure νt(dα)dt on [0, 1] × S. The centering procedure
is now xt(dα)dt = [νt − Rt](dα)dt, and the dual bracket 〈x, y〉 is given by 〈x, y〉 =∫
[0,1]×S

y(t, α)xt(dα)dt for all y ∈ Y0
M
= Cb([0, 1] × S). The constraint is expressed for

all y ∈ Cb([0, 1]× S) by

T T y =

∫

[0,1]

y(t,Xt) dt

and the function Γ is

Γ(y) =

∫

Ω

(∫

[0,1]

γ[y(t, ωt)] dt

)
R(dω).

Following the approach of the previous section, we obtain the following

Results 3 The problem (4.9) admits a solution if and only if

inf{I(Q); Q ∈ P(Ω), Qt = νt,∀0 ≤ t ≤ 1} = Ψ(ν)

is finite, where

Ψ(ν)
M
= sup{

∫

[0,1]×S

y(t, α) νt(dα)dt−
∫

Ω

λ(y(t, ωt)) R(dω); y ∈ Cb([0, 1]× S)}

One also gets

Ψ(ν) = sup{
∫

[0,1]×S

y(t, α) νt(dα)dt−
∫

Ω

λ(y(t, ωt)) R(dω); y ∈ Mγo([0, 1]× S,Rt(dα)dt)}.
(4.10)

Any minimizing sequence of (4.9) σ(Lγo
∗(R),Mγo(R))-converges to the unique minimizer

Q̄. We also have I(Q̄) = Ψ(ν).
If ν stands in icordom Ψ, there exists a measurable function ȳ on [0, 1]×S in Lγo([0, 1]×
S, Rt(dα)dt) such that the unique minimizer Q̄ of Problem (4.9) is given by

Q̄(dω) = λ′
(∫

[0,1]

ȳ(t, ωt) dt

)
·R(dω)
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We also have: ∫

[0,1]×S

ȳ(t, α) νt(dα)dt =

∫

[0,1]×S

λ(ȳ(t, α)) Rt(dα)dt + Ψ(ν)

4.5. Relative entropy and conditional independence. As already remarked the rel-
ative entropy of a probability Q on Ω with respect to R

I(Q | R)
M
=

{ ∫
Ω

log
(

dQ
dR

)
dQ if Q ∈ P(Ω) and Q ¿ R

+∞ otherwise
(4.11)

is a λ∗-entropy with λ∗(t) = t log t− t+1, t ≥ 0 (λ∗(0) = 1) and the constraint Q(Ω) = 1.
This corresponds to λ(s) = es − 1, γo(s) = e|s| − |s| − 1 and the representation (4.4)
becomes

Q̄ = exp
(
(T ∗ȳ)ac

) ·R
Roughly speaking, if R has a product form and T ∗ȳ has a sum form, Q̄ preserves the
product form. We are going to formalize this remark. This will lead us to the following
typical result: if R is the law of a Markov process and Q̄ is the solution of the minimization
problem

minimize I(Q | R) subject to Q ∈ P(Ω), TQ ∈ Co (4.12)

where TQ ∈ Co is a convex marginal constraint (Bernstein or Nelson processes, for in-
stance), then Q̄ is also the law of a Markov process. Note that the mass constraint
Q(Ω) = 1 should enter the definition of T when considering I(Q | R) as a λ∗-entropy.
The spaces Mγo and Lγo are

Mτ (R)
M
= {u : Ω → IR; measurable, ∀α > 0,

∫

Ω

eα|u| dR < ∞}

Lτ (R)
M
= {u : Ω → IR; measurable, ∃α > 0,

∫

Ω

eα|u| dR < ∞}

since γo(s) = τ(s)
M
= e|s| − |s| − 1. Recall that τ ∗(t) = (|t| + 1) log(|t| + 1) − |t|. Any

minimizing sequence of (4.12) is σ(Lτ∗ ,Mτ )-converging to Q̄.
Let’s have a look at T. Let θ : Ω → X0 be a measurable function, in the sense that for

all y ∈ Y0, ω ∈ Ω 7→ 〈y, θ(ω)〉 ∈ IR is a measurable function. The operator T is defined

by T T y
M
= 〈y, θ(·)〉, for all y ∈ Y0. This means that

〈y, TQ〉 =

∫

Ω

〈y, θ(ω)〉Q(dω).

The marginal constraint of Bernstein processes corresponds to θ(ω) = (δωa , δωb
) ∈ X0 =

M(S)2 and the marginal constraint of Nelson processes corresponds to θ(ω) = δωt(dα)dt ∈
X0 = P([0, 1]× S).
In terms of θ, the assumption (HT )is

(1)
∫
Ω

exp(|〈y, θ(ω)〉|) R(dω) < ∞, for all y ∈ Y0.
(2) For y ∈ Y0, if 〈y, θ(ω)〉 = 0,∀ω ∈ Ω, then y = 0.
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These requirements are assumed to hold together with the assumption (HC) on Co.
The little dual equality is

inf{I(Q | R); TQ = z} = Ψ(z)
M
= sup

y∈Y0

{〈y, z〉 −
∫

Ω

e〈y,θ(ω)〉 R(dω)}+ 1

To be able to state our result about conditional independence and relative entropy, one
must introduce
Additional assumptions on θ and R. There exist three measure spaces (Ωk,Ak),
k = a, b, c, a measurable function α = (αa, αb, αc) : (Ω,A) → (Ωa×Ωb×Ωc,Aa⊗Ab⊗Ac)
and three measurable functions θk : (Ωk,Ak) → X0, k = a, b, c, in the sense that for all
y ∈ Y0, 〈y, θk〉 is measurable, such that

θ = θa ◦ αa + θb ◦ αb + θc ◦ αc (4.13)

We also assume that αa and αb are R-independent conditionally on αc. This means that
for every Ak ∈ Ak, k = a, b, c

R((αa, αb) ∈ Aa × Ab | αc ∈ Ac) = R(αa ∈ Aa | αc ∈ Ac)R(αb ∈ Ab | αc ∈ Ac). (4.14)

An example: Markov processes. Let Ω = S[0,1] be endowed with the natural σ-
field generated by the the canonical process X = (Xt)0≤t≤1. For any 0 ≤ t ≤ 1 let
Pt = σ(Xs; 0 ≤ s ≤ t), Ft = σ(Xs; t ≤ s ≤ 1) and Nt = σ(Xt) be the σ-field of the
past, future and present (now) at time t. The law R of X is Markov if and only if for any
0 < t < 1, Pt and Ft are R(· | Nt)-independent. This fits (4.14) choosing

• Ωa = S[0,t], Aa = Pt, αa(ω) = (ωs)0≤s≤t

• Ωb = S[t,1], Ab = Ft, αb(ω) = (ωs)t≤s≤1

• Ωc = S{t}, Ac = Nt, αc(ω) = ωt.

Bernstein’s marginal constraints. We consider the constraints Q0 = ν0 and Q1 = ν1 : that
is θ = (δX0 , δX1) ∈M(S)2. Choosing θa◦αa = (δX0 , 0), θb◦αb = (0, δX1) and θc◦αc = (0, 0),
one obtains the representation formula (4.13).
Nelson’s marginal constraints. We consider the constraints Qt = νt, for all 0 ≤ t ≤ 1 : that
is θ(ω)(dsdα) = δωs(dα)ds ∈M([0, 1]×S). Choosing θa◦αa(ω)(dsdα) = 1[0,t](s)δωs(dα)ds,
θb ◦ αb(ω)(dsdα) = 1[t,1](s)δωs(dα)ds, θc ◦ αc = 0, one obtains the representation formula
(4.13).

Theorem 4.15. We suppose that Ω is a Polish space endowed with the R-completion of its
Borel σ-field. We assume that icordom Ψ∩Co is nonempty. Under the above assumptions
on θ and R, the minimizer Q̄ of (4.1) shares the same conditional independence property
(4.14) as R :

Q̄((αa, αb) ∈ Aa × Ab | αc ∈ Ac) = Q̄(αa ∈ Aa | αc ∈ Ac)Q̄(αb ∈ Ab | αc ∈ Ac)

for every Ak ∈ Ak, k = a, b, c.
We also have

Q̄(dω) = exp〈ȳ, θ(ω)〉 ·R(dω)

for some linear form ȳ on X0 such that 〈ȳ, θ〉 ∈ Lτ (R).
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Proof. We shall make use of the following basic result. If P = ZR, Y is a bounded random
variable and H is a σ-field,

EP (Y | H)ER(Z | H) = ER(ZY | H).

The last identity of the theorem is a consequence of Theorems 3.7 and 3.10. As one proves
it similarly as (4.7), we omit the details.

Therefore, Z
M
= dQ̄

dR
= ZaZbZc with Zk = exp〈ȳ, θk〉, k = a, b, c. Thanks to the last

statement of Lemma 4.8 with the conditional independence property (4.14), we obtain

that Za is measurable with respect to the Ra(· | Ac)-completion of Aa where Ra
M
= R◦α−1

a

and Zb is measurable with respect to the Rb(· | Ac)-completion of Ab where Rb
M
= R◦α−1

b .
It follows that for any Ya and Yb bounded and measurable with respect to Aa and Ab

respectively,

EQ̄(Ya | Ac) =
ER(YaZa | Ac)

ER(Za | Ac)
and EQ̄(Yb | Ac) =

ER(YbZb | Ac)

ER(Zb | Ac)
.

are well defined. Then EQ̄(YaYb | Ac) = ER(YaZaYbZbZc|Ac)
ER(ZaZbZc|Ac)

= ER(YaZa|Ac)
ER(Za|Ac)

ER(YbZb|Ac)
ER(Zb|Ac)

, by

conditional independence. Hence, EQ̄(YaYb | Ac) = EQ̄(Ya | Ac)EQ̄(Yb | Ac) which is the
desired result. ¤

5. Convex minimization

For the convenience of the reader, we are going to sketch the main lines of the modern
approach to convex minimization problems, by means of conjugate duality, as developed
in Rockafellar’s monograph [28].

Let A be a vector space and f : A → [−∞, +∞] an extended real convex function. We
consider the following convex minimization problem

minimize f(a), a ∈ A (P)

Let Q be another vector space. The pertubation of the objective function f is a function
F : A × Q → [−∞, +∞] such that for q = 0 ∈ Q, F (·, 0) = f(·). The problem (P) is
imbedded in a parametrized family of minimization problems

minimize F (a, q), a ∈ A (Pq)

The value function of (Pq)q∈Q is

ϕ(q)
M
= inf(Pq) = inf

a∈A
F (a, q) ∈ [−∞, +∞], q ∈ Q.

Let us assume that the perturbation is chosen such that

F is jointly convex on A×Q. (5.1)

Then, (Pq)q∈Q is a family of convex minimization problems. More, the value function
ϕ is convex. This follows from the fact that the epigraph of ϕ is “essentially” a linear
(marginal) projection of the convex epigraph of F so that it is also convex.

Let B be a vector space in separating duality with Q. The Lagrangian associated with
the perturbation F and the duality 〈B, Q〉 is

K(a, b)
M
= inf

q∈Q
{〈b, q〉+ F (a, q)}, a ∈ A, b ∈ B. (5.2)
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In other words, for any a ∈ A, b 7→ K(a, b) is the concave conjugate of the function
q 7→ −F (a, q) and as such it is a concave function. Under (5.1), for any b ∈ B, a 7→ K(a, b)
is a convex function (same argument as for the convexity of ϕ.) Therefore, K is a convex-
concave function. We shall see that its saddle-points will play a central role.

Let us assume that 〈B,Q〉 is a dual pairing: this means that B and Q are locally convex
topological vector spaces such that their topological dual spaces B′ and Q′ satisfy B′ = Q
and Q′ = B up to some isomorphisms. A typical instance of dual pairing is given by the
weak topologies σ(Q, B) and σ(B, Q). More generally: Q is a locally convex topological
vector space and B = Q′ is equipped with σ(B, Q). An interesting aspect of dual pairing
is that, thanks to Hahn-Banach’s theorem, the closed convex sets are the weakly closed
convex sets. Applied to the epigraphs, this implies that closed convex functions are weakly
closed convex functions.

Assuming in addition that F is chosen such that

q 7→ F (a, q) is a closed convex function for any a ∈ A, (5.3)

one can reverse the conjugate duality relation (5.2) to obtain

F (a, q) = sup
b∈B

{K(a, b)− 〈b, q〉},∀a ∈ A, q ∈ Q (5.4)

Let us think of K as a pivot: −K is concave in a and convex in b. This suggests to
introduce another vector space P in separating duality with A such that 〈P, A〉 is a dual
pairing and to introduce also the function

G(b, p)
M
= inf

a∈A
{K(a, b)− 〈a, p〉}, b ∈ B, p ∈ P. (5.5)

This formula is analogous to (5.4). Since

G(b, p) = inf
a,q
{〈b, q〉 − 〈a, p〉+ F (a, q)}, b ∈ B, p ∈ P,

one sees that G is jointly closed concave, as a concave conjugate. Going on symetrically,
one interprets G as the concave perturbation of the objective concave function

g(b)
M
= G(b, 0), b ∈ B

associated with the concave maximization problem

maximize g(b), b ∈ B (D)

which is called the dual problem of the primal problem (P). It is imbedded in the family
of concave maximization problems (Dp)p∈P

maximize G(b, p), b ∈ B (Dp)

whose value function is

γ(p)
M
= sup

b∈B
G(b, p), p ∈ P.
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Since G is jointly concave, γ is also concave. We have the following diagram

γ(p) f(a)〈
P , A

〉

G(b, p) K(a, b) F (a, q)〈
B , Q

〉

g(b) ϕ(q)

Because of (5.4) and (5.5) with q = 0 and p = 0 we obtain

f(a) = sup
b∈B

K(a, b), a ∈ A (5.6)

g(b) = inf
a∈A

K(a, b), b ∈ B (5.7)

and the values of the optimization problems satisfy

sup(D) = γ(0) = sup
b

g(b) = sup
b

inf
a

K(a, b) ≤ inf
a

sup
b

K(a, b) = inf
a

f(a) = ϕ(0) = inf(P).

It appears that the dual equality: inf(P) = sup(D) holds if and only if K has a saddle-
value.

Maybe the main result of this theory is the following one.

Lemma 5.8. We assume that 〈P,A〉 and 〈B, Q〉 are dual pairings.

(a) Without any additional assumptions, we have

−g(−b) = ϕ∗(b), ∀b ∈ B.

(b) Under the additional assumption (5.3), (5.1) is equivalent to: a 7→ K(a, b) is
closed convex for all b ∈ B.

(c) Under the additional assumptions (5.1) and (5.3), we have

f(a) = (−γ)∗(a), ∀a ∈ A.

Proof. The proof of (b) is left to the reader, see (Rockafellar, [28]). Statement (a) is

a direct consequence of the definitions. Indeed, for all b ∈ B, g(b)
M
= infa K(a, b)

M
=

infa,q{〈b, q〉+ F (a, q)} M= infq{〈b, q〉+ ϕ(q)}, which is the desired result.
Let us prove (c). Statement (b) allows us to reverse the conjugate duality relation (5.5)
to obtain

K(a, b) = sup
p∈P

{〈a, p〉+ G(b, p)}, ∀a ∈ A, b ∈ B.

Therefore, for all a ∈ A, f(a) = supb K(a, b) = supb,p{〈a, p〉 + G(b, p)} M= supp{〈a, p〉 +
γ(p)}, which is the desired result. The first equality is (5.6) and the last one is the
definition of γ. ¤

Note that by (c), under our assumptions (5.1) and (5.3), f must be a closed convex
function.

Theorem 5.9. We assume that 〈P, A〉 and 〈B, Q〉 are dual pairings.

(a) We have sup(D) = cl co ϕ(0), where cl co ϕ is the closed convex regularization of
ϕ. The dual equality inf(P) = sup(D) holds if and only if ϕ(0) = cl co ϕ(0). In
particular, this is the case if (5.1) holds and ϕ is lower semicontinuous at q = 0.
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(b) If the dual equality holds, then

argmax g = −∂ϕ(0)
M
= {b ∈ B; ϕ(q)− ϕ(0) ≥ −〈b, q〉,∀q ∈ Q}

where argmax g is the set of maximizers of (D) and ∂ϕ(0) is the subdifferential of
ϕ at 0, for the duality 〈B, Q〉.

Let us assume in addition that (5.1) and (5.3) are satisfied.

(c) We have inf(P) = −cl (−γ)(0) where cl (−γ) is the closed regularization of the
convex function −γ. The dual equality inf(P) = sup(D) holds if and only if
−γ(0) = cl (−γ)(0). In particular, this is the case if γ is upper semicontinuous at
p = 0.

(d) If the dual equality holds, then

argmin f = ∂(−γ)(0)
M
= {a ∈ A;−γ(p) + γ(0) ≥ 〈a, p〉,∀p ∈ P}

where argmin f is the set of minimizers of (P) and ∂(−γ)(0) is the subdifferential
of −γ at 0, for the duality 〈P,A〉.

Proof. Let us prove (a). Reversing the conjugate identity of Lemma 5.8-(a), one obtains
for all q ∈ Q, ϕ∗∗(q) = supb{〈b, q〉 + g(−b)}. In particular, with q = 0, one gets ϕ∗∗(0) =
supb g(b) = sup(D). The dual equality is ϕ(0) = ϕ∗∗(0). It is the desired result since the
biconjugate ϕ∗∗ is the closed convex regularization of ϕ.
Let us prove (b). Because of the conjugate identity of Lemma 5.8-(a), since the dual
equality is ϕ(0) = ϕ∗∗(0), we have for any b ∈ B, ∂(−g)(−b) = ∂ϕ∗(b) 3 0 if and only if
b ∈ ∂ϕ(0). This implies that b̄ ∈ argmax g if and only if −b̄ ∈ ∂ϕ(0), which is the desired
result.
Let us prove (c). Reversing the conjugate identity of Lemma 5.8-(c), one obtains for
all p ∈ P, (−γ)∗∗(p) = f ∗(p) = supa{〈a, p〉 − f(a)}. In particular, with p = 0, we get
−(−γ)∗∗(0) = infa f(a) = inf(P) and the dual equality is −γ(0) = (−γ)∗∗(0).
Let us prove (d). As in (b), since −γ(0) = (−γ)∗∗(0), ∂f(ā) = ∂(−γ)∗(ā) 3 0 is equivalent
to ā ∈ ∂(−γ)(0). ¤

Let us investigate now what is usually called the Kuhn-Tucker conditions. It is related to
the notion of saddle-points of the Lagrangian K. Suppose that the optimization problems
(P) and (D) are both attained. This means that there exist ā ∈ A and b̄ ∈ B such that
for all a ∈ A, f(ā) ≤ f(a) and all b ∈ B, g(b̄) ≥ g(b). Because of (5.6) and (5.7), we obtain
for all a and b that g(b) ≤ K(a, b) ≤ f(a). Suppose that the dual equality f(ā) = g(b̄)
also holds. Then, we have g(b̄) = K(ā, b̄) = f(ā) and

K(ā, b) ≤ K(ā, b̄) ≤ K(a, b̄), ∀a ∈ A, b ∈ B.

This means that (ā, b̄) is a saddle-point of K. Hence, we have proved the following impor-
tant result.

Theorem 5.10 (Kuhn-Tucker conditions). We assume that 〈P, A〉 and 〈B,Q〉 are dual
pairings and that (5.1) and (5.3) are satisfied. Suppose that (P) is attained at ā ∈ A, (D)
is attained at b̄ ∈ B and the dual equality holds. Then we have

∂aK(ā, b̄) 3 0 (5.11)

∂b(−K)(ā, b̄) 3 0 (5.12)
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where ∂aK(ā, b̄)
M
= {p ∈ P ; K(a, b̄) − K(ā, b̄) ≥ 〈p, a − ā〉,∀a ∈ A} and ∂b(−K)(ā, b̄)

M
=

{q ∈ Q;−K(ā, b) + K(ā, b̄) ≥ 〈q, b − b̄〉, ∀b ∈ B} are the subdifferentials of the convex
functions a 7→ K(a, b̄) and b 7→ −K(ā, b) at ā and b̄ respectively.

6. The proofs of the results of Section 3

We are going to apply the general results of the Lagrangian approach of Section 5 to
the minimization problem (P0).

6.1. A first dual equality. Let us begin applying the Lagrangian approach with 〈P, A〉 =
〈U0,L0〉 and 〈B, Q〉 = 〈Y0,X0〉 and the topologies are the weak topologies σ(L0,U0),
σ(U0,L0), σ(X0,Y0) and σ(Y0,X0). The function to be minimized is f0(`) = Φ∗(`) +

δC0(T`), ` ∈ L0 where δC(x) =

{
0 if x ∈ C
+∞ if x 6∈ C

denotes the convex indicator of C. The

perturbation F0 of f0 is Fenchel’s one:

F0(`, x) = Φ∗(`) + δC0(T` + x), ` ∈ L0, x ∈ X0

the value function of which is

ϕ0(x) = inf{Φ∗(`); ` ∈ L0, T ` + x ∈ C0}, x ∈ X0

We assume (HT1): T TY0 ⊂ U0, so that the duality schema is

〈
U0 , L0

〉

T T
x

yT〈
Y0 , X0

〉 (Schema 0)

The analogue of F0 for the dual problem is

G0(y, u)
M
= inf

`,x
{〈x, y〉 − 〈`, u〉+ F0(`, x)} = inf

x∈C0

〈x, y〉 − Φ∗∗
0 (T T y + u)

where Φ∗∗
0 is the σ(U0,L0)-lsc regularization of Φ. The corresponding value function is

γ0(u) = sup
y∈Y0

{ inf
x∈C0

〈x, y〉 − Φ∗∗
0 (T T y + u)}, u ∈ U0

and the dual problem is (D0).
Since C0 is convex, F0 is jointly convex. Assuming that C0 is σ(X0,Y0)-closed, one obtains
that for all ` ∈ L0, the function F0(`, ·) is σ(X0,Y0)-closed. Therefore, assuming that C0

is a σ(X0,Y0)-closed convex set, one can apply the general theory of Section 5 since the
perturbation function F0 satisfies the assumptions (5.1) and (5.3). In particular, we have
by Theorem 5.9-(c): inf(P0) = −cl (−γ0)(0).

Proposition 6.1. Let us assume (HΦ) and (HT1).

(a) We have the little dual equality

inf{Φ∗(`); T` = x, ` ∈ L0} = Γ∗(x) ∈ [0,∞], x ∈ X0. (6.2)

(b) If C0 is convex and σ(X0,Y0)-closed, we have the dual equality

inf(P0) = sup(D0) ∈ [0,∞].
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Proof. (a) is (b) with C0 = {x}.
Let us show (b). Because of the identity inf(P0) = −cl (−γ0)(0), by Theorem 5.9-(a)
it remains to prove that −γ0 is σ(U0,L0)-lsc at 0. Taking y = 0 instead of supy∈Y0

in
the definition of γ0(u), one obtains for all u ∈ U0 : −γ0(u) ≤ Φ∗∗

0 (u) ≤ Φ(u). The norm
| · |Φ is designed so that Φ is bounded above on a | · |Φ-neighbourhood of zero. By the
previous inequality, so is the convex function −γ0. Therefore, −γ0 is | · |Φ-continuous on
icordom (−γ0) 3 0. As it is convex and L = (U0, | · |Φ)′, it is also σ(U0,L)-lsc and a fortiori
σ(U0,L0)-lsc, since L ⊂ L0. ¤
6.2. An improvement. We are going to consider the following duality schema, see Sec-
tion 3.5:

〈
U1 , L

〉

T T
1

x
yT〈

Y1 , X
〉 (Schema 1)

which is associated with the optimization problems (P ) and (D1). We need some prelim-
inary results, gathered in the next lemma whose proof is postponed to Section 6.7.

Lemma 6.3. Let us assume (HΦ) and (HT ).

(a) | · |Φ and | · |Γ are norms
(b) dom Φ∗ ⊂ L and dom Γ∗ ⊂ X
(c) T (dom Φ∗) ⊂ dom Γ∗ and TL ⊂ X
(d) T T

1 Y1 ⊂ U1

(e) Γ0(y) = Γ1(y) for all y ∈ Y0

Note that the inclusions TL ⊂ X and T T
1 Y1 ⊂ U1 stated in this lemma are necessary

to validate the above duality schema.
Let F1, G1 and γ1 be the analogous functions to F0, G0 and γ0. We obtain

F1(`, x) = Φ∗(`) + δC(T` + x), ` ∈ L, x ∈ X
G1(y, u) = inf

x∈C
〈x, y〉 − Φ∗∗

1 (T T
1 y + u), y ∈ Y1, u ∈ U1

and
γ1(u) = sup

y∈Y1

{ inf
x∈C

〈x, y〉 − Φ∗∗
1 (T T

1 y + u)}, u ∈ U1

Proposition 6.4. Assuming (HΦ), (HT ) and (HC), we have the dual equality

inf(P ) = sup(D1) ∈ [0,∞]. (6.5)

Proof. Because of (HC), F1 is jointly convex and F1(`, ·) is σ(X ,Y1)-closed convex for all
` ∈ L. As T T

1 Y1 ⊂ U1 (Lemma 6.3), one can apply the approach of Section 5 to the duality
schema 1. Therefore, by Theorem 5.9-(c), the dual equality holds if γ1 is σ(U1,L)-lsc at
0. As for Schema 0, we have −γ1(u) ≤ Φ∗∗

1 (u), for all u ∈ U1. Φ∗∗
1 is the σ(U1,L)-lsc

regularization of Φ̃(u) =

{
Φ(u) if u ∈ U0

+∞ otherwise
and Φ is bounded above by 1 on the ball

{u ∈ U0; |u|Φ < 1}. As L = (U1, | · |Φ)′, Φ∗∗
1 is also the | · |Φ-regularization of Φ̃. Therefore,

Φ∗∗
1 is bounded above by 1 on {u ∈ U1; |u|Φ < 1}, since {u ∈ U0; |u|Φ < 1} is | · |Φ-dense in
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{u ∈ U1; |u|Φ < 1}. As −γ1(≤ Φ∗∗
1 ) is convex and bounded above on a | · |Φ-neighbourhood

of 0, it is | · |Φ-continuous on icordom (−γ1) 3 0. Hence, it is σ(U1,L)-lsc at 0. This
completes the proof of the proposition. ¤
Corollary 6.6. Assuming (HΦ) and (HT ), we have

(a) (P0) and (P ) are equivalent: they have the same solutions and inf(P0) = inf(P ) ∈
[0,∞].

(b) Γ∗1(x) = Γ∗(x), for all x ∈ X .

Proof. (a) is a direct consequence of dom Φ∗ ⊂ L and TL ⊂ X , see Lemma 6.3.
Let us show (b). By Proposition 6.4, for all x ∈ X , we have inf{Φ∗(`); T` = x, ` ∈ L} =
Γ∗1(x). But dom Φ∗ ⊂ L so that inf{Φ∗(`); T` = x, ` ∈ L} = inf{Φ∗(`); T` = x, ` ∈
L0}. By (6.2): inf{Φ∗(`); T` = x, ` ∈ L0} = Γ∗(x). One concludes bringing these three
identities together. ¤

6.3. Primal attainment. One proves the existence of solutions to (P ) showing that Φ∗

is inf-compact. As dom Φ∗ ⊂ L, the restriction of Φ∗ to L is also denoted by Φ∗.

Proposition 6.7. Let us assume (HΦ), (HT ) and (HC). We have

(a) inf(P0) = infx∈C0 Γ∗(x) = infx∈C Γ∗(x) ∈ [0,∞]
(b) If in addition inf(P0) < ∞, then (P0) is attained in L.

(c) Let ¯̀∈ L be a solution to (P0), then x̄
M
= T ¯̀ is a solution to (PX

0 ) and inf(P0) =
Φ∗(¯̀) = Γ∗(x̄).

The following lemma is needed for the proof of the proposition.

Lemma 6.8. Under the hypothesis (HΦ), Φ∗ is σ(L,U1)-inf-compact.

Proof of the lemma. For all ` ∈ L0 and α > 0, Young’s inequality yields: 〈`, u〉 =
α〈`, u/α〉 ≤ [Φ(u/α)+Φ∗(`)]α, for all u ∈ U0. Hence, for any α > |u|Φ, 〈`, u〉 ≤ [1+Φ∗(`)]α.
It follows that 〈`, u〉 ≤ [1 + Φ∗(`)]|u|Φ. Considering −u instead of u, one gets

|〈`, u〉| ≤ [1 + Φ∗(`)]|u|Φ,∀u ∈ U0, ` ∈ L0. (6.9)

By completion, one deduces that for all ` ∈ L and u ∈ U1, |〈`, u〉| ≤ [1 + Φ∗(`)]|u|Φ.
Hence, Φ∗(`) ≤ A implies that |`|∗Φ ≤ A + 1 where |`|∗Φ stands for the uniform dual norm
of ` ∈ L = U ′1. Therefore, the level set {Φ∗ ≤ A} is relatively σ(L,U1)-compact.
By construction, Φ∗ is σ(L0,U0)-lsc and a fortiori σ(L,U1)-lsc. Hence, {Φ∗ ≤ A} is
σ(L,U1)-closed and σ(L,U1)-compact. ¤
Proof of the Proposition 6.7. Let us begin proving (b). By Lemma 6.3, T maps L into
X and T TY1 ⊂ U1. It follows that T is σ(L,U1)-σ(X ,Y1)-continuous. Indeed, for all
y ∈ Y1, ` 7→ 〈T`, y〉X ,Y1 = 〈`, T T y〉L,U1 is σ(L,U1)-continuous. Since C is σ(X ,Y1)-closed,
{` ∈ L; T` ∈ C} is σ(L,U1)-closed.
As Φ∗ is σ(L,U1)-inf-compact (Lemma 6.8), it achieves its infimum on the closed set
{` ∈ L; T` ∈ C} if inf(P ) = inf(P0) < ∞.
Let us show (a). The dual equality (6.5) gives us, for all xo ∈ C, inf(P ) = supy∈Y1

{infx∈C〈x, y〉−
Γ1(y)} ≤ supy∈Y1

{〈xo, y〉 − Γ1(y)} = Γ∗1(xo) = Γ∗(xo) where the last equality comes from
Corollary 6.6. Therefore

inf(P ) ≤ inf
x∈C

Γ∗(x). (6.10)
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In particular, equality holds instead of inequality if inf(P ) = +∞. Suppose now that
inf(P ) < ∞. From statement (b), we already know that there exists ¯̀ ∈ L such that

x̄
M
= T ¯̀ ∈ C and inf(P ) = Φ∗(¯̀). Clearly inf(P ) ≤ inf{Φ∗(`); T` = x̄, ` ∈ L} ≤ Φ∗(¯̀).

Hence, inf(P ) = inf{Φ∗(`); T` = x̄, ` ∈ L}. By the little dual equality (6.2) we have
inf{Φ∗(`); T` = x̄, ` ∈ L} = Γ∗(x̄). Finally, we have obtained inf(P ) = Γ∗(x̄) with x̄ ∈ C.
Together with (6.10), this leads us to the desired identity: inf(P ) = infx∈C Γ∗(x). By
Lemma 6.3: dom Γ∗ ⊂ X , so that we also have infx∈C0 Γ∗(x) = infx∈C Γ∗(x).
Finally, (c) is a by-product of the proof of (a). ¤

6.4. Dual attainment. We now consider the following duality schema

〈
L , U2

〉

T
y

xT ∗
〈
X , Y2

〉 (Schema 2)

where U2 = L] and Y2 = X ]. The topologies are the respective weak topologies. The
associated perturbation functions are

F2(`, x) = F1(`, x) = Φ∗(`) + δC(T` + x), ` ∈ L, x ∈ X
G2(u, y) = inf

x∈X
〈x, y〉 − Φ̄(T ∗y + u), u ∈ U2, y ∈ Y2

As F2 = F1, the primal problem is (P ) and its value function is

ϕ(x) = inf{Φ∗(`); T` + x ∈ C, ` ∈ L}, x ∈ X .

The dual problem is

maximize inf
x∈X

〈x, y〉 − Φ̄(T ∗y), y ∈ Y2

In fact this problem is nothing else than (D2). Indeed, for all y ∈ Y2, Φ̄(T ∗y) = sup`∈L{〈T`, y〉X ,Y2−
Φ∗(`)} = supx∈X{〈x, y〉 − inf`;T`=x Φ∗(`)} = supx∈X 〈x, y〉 − Γ∗(x) where the last identity
is the little dual equality (6.2). This means that Φ̄(T ∗y) = Γ̄(y) and this dual problem is
(D2).

We assume that the hypotheses (HΦ), (HT ) and (HC) are satisfied. In particular, as
F2 = F1, one can apply the approach of Section 5 to the duality Schema 2.

Let us denote ϕ∗∗1 the σ(X ,Y1)-lsc regularization of ϕ and ϕ∗∗2 its σ(X ,Y2)-lsc regu-
larization. Since X separates Y1, the inclusion Y1 ⊂ Y2 holds. It follows that ϕ∗∗1 (0) ≤
ϕ∗∗2 (0) ≤ ϕ(0). But we have (6.5) which is ϕ∗∗1 (0) = ϕ(0). Therefore, one also obtains
ϕ∗∗2 (0) = ϕ(0) which is the dual equality

inf(P ) = sup(D2), (6.11)

and one can apply the general theory of Section 5. Theorem 5.9-(b) gives

argmax(D2) = −∂ϕ(0) = {ȳ ∈ Y2; ϕ(x)− ϕ(0) ≥ 〈−ȳ, x〉,∀x ∈ X} (6.12)

On the other hand, ϕ(x) = inf(Px) where (Px) is the minimization problem of Φ∗(`)
subject to T` ∈ C − x. As C − x shares the same requirements as C one can apply
Proposition 6.7 to (Px). This leads us to ϕ(x) = infx′∈C−x Γ∗(x′) ≤ Γ∗(xo − x), for all
xo ∈ C. Under the constraint qualification (3.9), one can pick xo in icordom Γ∗ and the
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previous inequality together with the geometric version of Hahn-Banach theorem provide
us with ∂ϕ(0) 6= ∅. Taking (6.12) into account, this implies that (D2) is attained:

argmax(D2) 6= ∅ (6.13)

Let us prove Theorem 3.7-(b). Let us first note that T ∗ extends T T . Indeed, as X ⊂ X0,
for all ` ∈ L and y ∈ Y0, 〈T T y, `〉U0,L0 = 〈y, T `〉Y0,X = 〈T ∗y, `〉U2,L.
As TL ⊂ X , T ∗ is σ(Y2,X )-σ(U2,L)-continuous.
As a direct consequence of (3.11) we have Γ̄(ȳ) < ∞ which implies Theorem 3.7-(a): ȳ
stands in the σ(Y2,X )-closure of dom Γ since Γ̄ is the convex σ(Y2,X )-lsc extension of Γ.
It follows by the continuity of T ∗ that T ∗ȳ stands in the σ(U2,L)-closure of T ∗dom Γ.
But T ∗dom Γ = T T dom Γ, as T ∗ extends T T . This proves Theorem 3.7-(b).

Let us prove Theorem 3.7-(c). Let ȳ ∈ argmax(D2). By (6.12), for all x ∈ X and any
xo ∈ C ∩ icordom Γ∗, 〈−ȳ, x〉 ≤ ϕ(x)− ϕ(0) ≤ Γ∗(xo − x)− ϕ(0) ≤ Γ∗(xo − x). It follows

that 〈ȳ, x〉 ≤ Γ∗(xo) + 1 for all x ∈ Dxo

M
= {x ∈ X ; Γ∗(xo + x) ≤ Γ∗(xo) + 1}. This implies

that for all x ∈ X , 〈ȳ, x〉 ≤ [1 + Γ∗(xo)]jDxo
(x). Since jD(−x) = j−D(x), we finally obtain

−[1 + Γ∗(xo)]j−Dxo
(x) ≤ 〈ȳ, x〉 ≤ [1 + Γ∗(xo)]jDxo

(x),∀x ∈ X (6.14)

for any xo standing in C ∩ icordom Γ∗.

6.5. Dual representation of the minimizers. We keep the framework of Schema 2
and derive the Kuhn-Tucker conditions in this situation. The Lagrangian associated with
F2 = F1 and Schema 2 is for any ` ∈ L, y ∈ Y2,

K2(`, y)
M
= inf

x∈X
{〈x, y〉+ Φ∗(`) + δC(T` + x)},

= Φ∗(`)− 〈T`, y〉+ inf
x∈C

〈x, y〉.
Under the constraint qualification (3.9), the dual equality (6.11) holds and we have both
the primal and dual attainments. Hence the Kuhn-Tucker conditions (Theorem 5.10) are
satisfied. Let (¯̀, ȳ) ∈ L×Y2 be a solution to (P ) and (D2). It is a saddle-point of K2 and
the Kuhn-Tucker conditions (5.11) and (5.12) are ∂`K2(¯̀, ȳ) 3 0 and ∂y(−K2)(¯̀, ȳ) 3 0.
Since −〈T`, y〉 is locally weakly upper bounded as a function of y around ȳ and as a
function of ` around ¯̀, one can apply (Rockafellar, [28], Theorem 20) to derive ∂`K2(¯̀, ȳ) =
∂Φ∗(¯̀) − T ∗ȳ and ∂y(−K2)(¯̀, ȳ) = ∂(− infx∈C〈x, ·〉) + T ¯̀. Therefore the Kuhn-Tucker
conditions are

T ∗ȳ ∈ ∂Φ∗(¯̀)

−T ¯̀ ∈ ∂(δ∗−C)(ȳ)

where δ∗−C is the convex conjugate of the convex indicator of −C. Indeed, − infx∈C〈x, y〉 =
supx∈−C〈x, y〉 = supx∈X{〈x, y〉 − δ−C(x)} = δ∗−C(y). Both Φ∗ and δ∗−C are lsc functions
as convex conjugates. Hence, considering the dual Schema 2, the following conjugate
relations hold:

¯̀ ∈ ∂Φ̄(T ∗ȳ) (6.15)

ȳ ∈ ∂δ−C̄(−x̄) (6.16)

where x̄
M
= T ¯̀ and C̄ stands for the σ(X ,Y2)-closure of C. Of course, as C is σ(X ,Y1)-

closed by hypothesis (HC), it is a fortiori σ(X ,Y2)-closed, so that C̄ = C. Therefore, one



32 CHRISTIAN LÉONARD

can replace C̄ by C in (6.16). The statements (6.15) and (6.16) are equivalent to the
Young’s identities

Φ∗(¯̀) + Φ̄(T ∗ȳ) = 〈x̄, ȳ〉 (6.17)

δC(x̄) + δ∗−C(ȳ) = 〈−x̄, ȳ〉 (6.18)

It follows from (6.18) that δC(x̄) < ∞ which is equivalent to

x̄ ∈ C. (6.19)

Now (6.18) is −〈x̄, ȳ〉 = δ∗−C(ȳ) = − infx∈C〈x, ȳ〉 :

〈x̄, ȳ〉 = inf
x∈C

〈x, ȳ〉 (6.20)

6.6. Collecting the results. The results are collected as follows.
Theorem 3.4: (a) is Proposition 6.1-(a); (b) is Corollary 6.6-(a); (c) is Propositions 6.4
and 6.7-(a); (d) is Proposition 6.7-(b) and a consequence of Lemma 6.8; (e) is Proposition
6.1-(b).
Theorem 3.7: The dual equality is (6.11); the dual attainment is (6.13); (a), (b) and (c)
have been proved at the end of Section 6.4.
Theorem 3.10: The first part is already proved. For the second part, (a) is (6.19), (b)
is (6.20), (c) is (6.15), the first equality of (3.11) is (6.17), x̄ minimizes Γ∗ on C0 by
Proposition 6.7-(c), the representation of ȳ together with the second equality of (3.11)
follow from Corollary 3.12.
Corollary 3.12 is a direct application of the previous results.

Notice that the results of Corollary 3.12 which are used in the proof of the last state-
ments of Theorem 3.10 are consequences of the first statements of this theorem.

6.7. Proof of Lemma 6.3.

Proof of Lemma 6.3. (a) Because of (HΦ), {u ∈ U0; max(Φ(u), Φ(−u)) ≤ 1} is a convex,
absorbing and balanced set. Hence, | · |Φ is a seminorm on U0. It is a norm under the
assumption (HΦ3). Indeed, let u ∈ U0 be such that |u|Φ = 0. It implies that for all real
t, 0 ≤ Φ(tu) ≤ 1 and since Φ is convex Φ(tu) = Φ(0) = 0. By (HΦ3), this implies that
u = 0.
Because of (HΦ) and (HT1), {y ∈ Y0; max(Γ(y), Γ(−y)) ≤ 1} is also a convex, absorbing
and balanced set. Hence, | · |Γ is a seminorm on Y0. It is a norm under the assumption
(HΦ3) and (HT2). Indeed, by (HΦ3) as above, |y|Γ = 0 implies that T T y = 0 and by
(HT2): y = 0.
(b) It follows from (6.9) that dom Φ∗ ⊂ L. One proves dom Γ∗ ⊂ X similarly.

(c) Let us denote Φmax(u)
M
= max(Φ(u), Φ(−u)) and Γmax(y)

M
= max(Γ(y), Γ(−y)),

so that |u|Φ = inf{α > 0; Φmax(u/α) ≤ 1} and |y|Γ = inf{α > 0; Γmax(y/α) ≤ 1}.
Let us introduce the dual uniform norms |`|∗Φ M

= supu,|u|Φ≤1 |〈`, u〉|, ` ∈ L and |x|∗Γ M
=

supy,|y|Γ≤1 |〈x, y〉|, x ∈ X . Let us also consider | · |Φ∗max
and | · |Γ∗max

the gauge functionals
of the level sets {Φ∗

max ≤ 1} and {Γ∗max ≤ 1}.
The little dual equality (6.2) for Φmax and Γmax implies that

Γ∗max(x) ≤ Φ∗
max(`), for all ` ∈ L0 and x ∈ X0 such that T` = x (6.21)

Therefore, T (dom Φ∗
max) ⊂ dom Γ∗max. On the other hand, by Proposition 6.22 below,

the linear space spanned by dom Φ∗
max is dom | · |Φ∗max

and the linear space spanned by
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dom Γ∗max is dom |·|Γ∗max
. But, dom |·|Φ∗max

= dom |·|∗Φ = L and dom |·|Γ∗max
= dom |·|∗Γ =

X by Proposition 6.22. Hence, TL ⊂ X .
(d) Let us show that T : (L, | · |∗Φ) → (X , | · |∗Γ) is continuous. We know by Proposition
6.22 that | · |Φ∗max

and | · |∗Φ as well as | · |Γ∗max
and | · |∗Γ are equivalent norms on L and

X respectively. For all ` ∈ L, |T`|∗Γ ≤ 2|T`|Γ∗max
= 2 inf{α > 0; Γ∗max(T`/α) ≤ 1} ≤

2 inf{α > 0; Φ∗
max(`/α) ≤ 1}. This last inequality follows from (6.21). Going on, we get

|T`|∗Γ ≤ 2|`|Φ∗max
≤ 4|`|∗Φ, which proves that T shares the desired continuity property.

Let us take y ∈ Y1. For all ` ∈ L, |〈T T
1 y, `〉L],L| = |〈y, T `〉Y1,X | ≤ |y|Γ|T`|∗Γ ≤ 4|y|Γ|`|∗Φ.

Hence, T T
1 y stands in the topological bidual space of (U0, | · |Φ). More, it is the strong limit

of a sequence in U0. Indeed, there exists a sequence (yn) in Y0 such that limn→∞ yn = y in
(Y1, | · |Γ). Hence, for all ` ∈ L, |〈T T

1 yn − T T
1 y, `〉L],L| = |〈yn − y, T `〉Y1,X | ≤ 4|yn − y|Γ|`|∗Φ

and sup`∈L,|`|∗Φ≤1 |〈T T
1 yn − T T

1 y, `〉| ≤ 4|yn − y|Γ tends to 0 as n tends to infinity, where

T T
1 yn = T T yn belongs to U0 for all n ≥ 1. Consequently, T T

1 y ∈ U1.

(e) For all y ∈ Y0, Γ0(y)
M
= Φ∗∗

0 (T T y) = sup`∈L0
{〈T T y, `〉 − Φ∗(`)} = sup`∈L{〈T T y, `〉 −

Φ∗(`)} = Φ∗∗
1 (T T y)

M
= Γ1(y), where the identity sup`∈L0

= sup`∈L comes from dom Φ∗ ⊂
L. ¤

6.8. Gauge functionals associated with a convex function. Let θ : S → [0,∞] be
an extended nonnegative convex function on a vector space S, such that θ(0) = 0. Let S]

be the algebraic dual space of S and θ∗ the convex conjugate of θ :

θ∗(r) M= sup
s∈S
{〈r, s〉 − θ(s)}, r ∈ S].

It is easy to show that θ∗ : S] → [0,∞] and θ∗(0) = 0. We denote Cθ
M
= {θ ≤ 1} and

Cθ∗
M
= {θ∗ ≤ 1} the unit level sets of θ and θ∗. The gauge functionals to be considered are

jθ(s)
M
= inf{α > 0; αs ∈ Cθ} = inf{α > 0; θ(s/α) ≤ 1} ∈ [0,∞], s ∈ S.

jθ∗(r)
M
= inf{α > 0; αr ∈ Cθ∗} = inf{α > 0; θ∗(r/α) ≤ 1} ∈ [0,∞], r ∈ S].

As 0 belongs to Cθ and Cθ∗ , one easily proves that jθ and jθ∗ are positively homogeneous.
Similarly, as Cθ and Cθ∗ are convex sets, jθ and jθ∗ are convex functions.

Proposition 6.22. Let θ : S → [0,∞] be an extended nonnegative convex function on a
vector space S, such that θ(0) = 0 as above, then for all r ∈ S], we have

1

2
jθ∗(r) ≤ δ∗Cθ

(r)
M
= sup

s∈Cθ

〈r, s〉 ≤ 2jθ∗(r).

We also have
cone dom θ∗ = dom jθ∗ = dom δ∗Cθ

where cone dom θ∗ is convex cone (with vertex 0) generated by dom θ∗.

Proof. • Let us first show that δ∗Cθ
(r) ≤ 2jθ∗(r) for all r ∈ S]. If jθ∗(r) > 0, then for all

s ∈ Cθ, 〈r, s〉 = 〈r/jθ∗(r), s〉jθ∗(r) ≤ [θ(s) + θ∗(r/jθ∗(r))]jθ∗(r) ≤ (1 + 1)jθ∗(r).
If jθ∗(r) = 0, then θ∗(tr) ≤ 1 for all t > 0. For any s ∈ Cθ, we get 〈r, s〉 = 1

t
〈tr, s〉 ≤

1
t
[θ(s) + θ∗(tr)] ≤ 2/t. Letting t tend to infinity, one obtains that 〈r, s〉 ≤ 0.
• Let us show that jθ∗(r) ≤ 2δ∗Cθ

(r). If δ∗Cθ
(r) = ∞, there is nothing to prove. So, let us

suppose that δ∗Cθ
(r) < ∞. As 0 ∈ Cθ, we have δ∗Cθ

(r) ≥ 0.
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First case: δ∗Cθ
(r) > 0. For all s ∈ S and ε > 0, we have s/[jθ(s) + ε] ∈ Cθ. It

follows that 〈r/δ∗Cθ
(r), s〉 = 〈r, s/[jθ(s) + ε]〉 jθ(s)+ε

δ∗Cθ
(r)

≤ δ∗Cθ
(r) jθ(s)+ε

δ∗Cθ
(r)

= jθ(s) + ε. Therefore,

〈r/δ∗Cθ
(r), s〉 ≤ jθ(s), for all s ∈ S.

If s doesn’t belong to Cθ, then jθ(s) ≤ θ(s). This follows from the the assumptions on θ :
convex function such that θ(0) = 0 = min θ and the positive homogeneity of jθ. Otherwise,
if s belongs to Cθ, we have jθ(s) ≤ 1. Hence, 〈r/δ∗Cθ

(r), s〉 ≤ max(1, θ(s)), ∀s ∈ S. On the
other hand, there exists so ∈ S such that θ∗(r/[2δ∗Cθ

(r)]) ≤ 〈r/[2δ∗Cθ
(r)], so〉 − θ(so) + 1/2.

The last two inequalities provide us with θ∗(r/[2δ∗Cθ
(r)]) ≤ 1

2
max(1, θ(so))−θ(so)+ 1

2
≤ 1

since θ(so) ≤ 0. We have proved that jθ∗(r) ≤ 2δ∗Cθ
(r).

Second case: δ∗Cθ
(r) = 0. We have 〈r, s〉 ≤ 0 for all s ∈ Cθ. As dom Cθ is a subset of

the cone generated by Cθ, we also have for all t > 0 and s ∈ dom θ, 〈tr, s〉 ≤ 0. Hence
〈tr, s〉− θ(s) ≤ 0 for all s ∈ S and θ∗(tr) ≤ 0, for all t ≥ 0. As θ∗ ≥ 0, we have θ∗(tr) = 0,
for all t ≥ 0. It follows that jθ∗(r) = 0. This completes the proof of the equivalence of jθ∗

and δ∗Cθ
.

• Finally, this equivalence implies that dom jθ∗ = dom δ∗Cθ
and as θ∗(0) = 0 we have

0 ∈ dom θ∗ which implies that cone dom θ∗ = dom jθ∗ . ¤
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