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Abstract

We are interested in the computation of spatial statistical solutions’ intensities for
the McKean-Vlasov and 2d-vortex equations. Inspired by the probabilistic approach of
Talay and Vaillant [33], we introduce and study a new adaptive particle approximation
which uses wavelet estimators with hard thresholding. Convergence rates are proved
by adapting to our dependent particle model a wavelet regression approach inspired
by Kerkyacharian and Picard [18] in random and independent design. The difficulties
arise from the fact that our particles are no more in mean field interaction. Because
of the special dependency, we can not use usual coupling methods like in Sznitman
[31] or Méléard [25]. The new key is to prove spectral gap inequalities in order to deal
directly with the interacting particles, as Malrieu and Talay did in a different context
[22].

The vortex equation associated with the 2d-Navier-Stokes equation is carried as an
illustration. Additional difficulties are introduced since the interaction kernel is not
bounded and since the initial conditions may have a weight and a sign. 2

In this paper, we are interested in partial differential equations (PDEs in the following)
with random initial conditions. The flow of such PDE is therefore random, and its law is
called statistical solution of the problem.

Statistical solutions are particularly interesting when modelling complex phenomena or
when introducing the notion of uncertainty in the initial state. The 2d-vortex equation we
study in Part 5 of this article has been one of the equations motivating these developments.
It is obtained from the famous 2d-Navier-Stokes equation, which models the velocity of
a viscous incompressible fluid in the plane. In the case of this equation, the theory of
statistical solutions is for instance an attempt to take into account the turbulence arising
with high velocities and low viscosities. Vishik and Fursikov [35] or Constantin and Wu
[8] have studied such problems with analytical tools.

Talay and Vaillant [33, 34] generalized the probabilistic approach of McKean-Vlasov
equations developed by Sznitman [31] and Méléard [25] to the case of a random initial
condition. In particular, they proposed an original stochastic particle method with ran-
dom weights to compute numerically the moments of the statistical solutions. They left
however the case of the 2d-vortex equation open.

We consider the McKean-Vlasov and 2d-vortex equations with random initial condi-
tions, and our aim is to provide a new numerical method for the computation of the
intensities of the associated spatial statistical solutions, which are the time marginals of
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the statistical solutions. We follow the probabilistic approach in Talay and Vaillant [33].
The new approximation we propose is based on wavelet regression estimators. This allows
us to extend the method of Talay and Vaillant [33] to a larger class of initial conditions
and to obtain better asymptotic convergence rates. Another advantage is that we obtain
an adaptive numerical scheme. The latter does not require any a priori knowledge of regu-
larities for the parameters which govern the randomness of the initial condition. Our main
result is presented as Theorem 1.2, for McKean-Vlasov equations, and is used to obtain
Theorems 5.1 and 5.3, for the 2d-vortex equation.

First, we work in the quite general frame of McKean-Vlasov equations. In section 1,
we recall the probabilistic setting we will consider and define the statistical solutions and
their intensities. We then introduce our new particle systems and explain the advantages
of using the nonlinear wavelet regression estimators inspired by the work of Kerkyacharian
and Picard [18]. Parts 2 to 4 are devoted to the proof of our main result, Theorem 1.2,
concerning the rate of convergence of our approximation. Because of the nonlinearity of the
estimators we use, we can not couple our interacting particles with independent nonlinear
diffusions as it is usually done (see Sznitman [31], Méléard [25]). The new key is to establish
the concentration inequalities, which we need to obtain the convergence rates, directly on
the interacting particle system, with the use of spectral gap inequalities. The calculations
are similar to the ones carried by Malrieu and Talay in [22] when they construct confidence
intervals for Euler schemes. We show here how these ideas are well suited for the use of
statistical tools on particle systems.

Finally, Section 5 is an adaptation of our numerical method to the 2d-vortex equation.
Additional difficulties arise since the interaction kernel is not bounded and since the initial
conditions may have a weight and a sign. We use a cut-off equation, and a trick due to
Jourdain [15] to overcome these problems. The main results for the vortex equation are
given in Theorems 5.1 and 5.3. We conclude with some simulations which seem to confirm
the efficiency of the algorithm that we propose.

Notation:
We denote by C(E, F ) the set of continuous maps from E to F . The space Ck

b (E, F )
is the set of functions of class Ck, bounded, and whose successive partial derivatives are
continuous and bounded to the order k ∈ N. The space Ck+ε

b (E, F ) is the set of functions
of Ck

b (E, F ) whose derivatives of order k are ε-Hölder continuous. The space Bb(E, F )
denotes the set of bounded measurable functions from E to F . We denote by Lp(E) the
usual space of measurable functions f from E to R such that

∫ |f |p < ∞. Finally, we use
D(E) for the set of density functions on E.

For any random variable X, we write L(X) or PX for its law.
For a measurable space E, we write P(E) the set of probabilities on E. For Q ∈ P(E)

and f ∈ Bb(E,R), we use the notation 〈Q, f〉 for ∫
E fdQ.

Let (Ω, P ) be a probability space which will characterize the randomness of the initial
condition.

The stochastic processes studied here will be considered as random variables defined on
(C([0, T ],Rn), PW ), where PW is the Wiener probability measure. The canonical process
is thus a Brownian motion in Rn, which we will write (Wt)t∈[0,T ]. E is the expectation
operator under the Wiener law. (Ft)t∈[0,T ] denotes the natural filtration associated with
(Wt)t∈[0,T ].

We will be lead to introduce the space C([0, T ],Rn) × R, on which we will define a
reference measure Pν := PW ⊗ν, with ν a probability measure on R. Eν is the expectation
operator under this measure.
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When we will be dealing with Euler schemes, we will write ∆t for the discretization
step, which will be assumed constant and less than 1 for the sake of simplicity. On the
interval [0, T ], with T > 0, we can choose for instance ∆t = T

K , which defines K + 1
discretization times tk = k ∆t for k = 0 to K.

Finally, C is a positive real constant that can change from line to line.

1 A Probabilistic Approach for the Computation of McKean-
Vlasov Spatial Statistical Solutions’ Intensities

1.1 Statistical Solutions for a McKean-Vlasov PDE and their Intensities

Let us consider a random function p̂0(x, ω) depending on x ∈ Rn and on an alea ω ∈ Ω,
such that P (dω)-almost surely (P (dω)-a.s. in the following) p̂0(., ω) is a density function.
We call µ the law of probability of p̂0, considered as a L1(Rn)-valued random variable
with support in D(Rn).We will suppose, in all the article, that the randomness of p̂0 arises
through its dependence on a scalar random variable θ ∈ R of law ν:

P (dω)− a.s., p̂0(., ω) = p0(., θ(ω)),

where p0 is a deterministic measurable function on Rn × R. In this case, µ is the image
measure of ν through the mapping:

Φ : a 7→ p0(., a).

We consider the following McKean-Vlasov equation with random initial condition p̂0:
P (dω)− a.s., ∀t ∈ [0, T ], ∀x ∈ Rn,





∂
∂tp(t, x, θ) = −∑n

i=1
∂

∂xi
(ub,i(t, x, θ)p(t, x, θ))

+ 1
2

∑n
i,j=1

∂2

∂xi∂xj
((uσ(t, x, θ)u∗σ(t, x, θ))ijp(t, x, θ))

p(0, x, θ) = p0(x, θ)
ub(t, x, θ) =

∫
Rn b(x, y)p(t, y, θ)dy

uσ(t, x, θ) =
∫
Rn σ(x, y)p(t, y, θ)dy,

(1)

where b and σ are functions respectively defined from (Rn)2 to Rn and from (Rn)2 to
Mn×n(R), the set of n× n real matrices.

The probabilistic approach which constitutes the frame of our study relies on the weak
form of PDE (1).

Definition 1. We say that the random variable in C([0, T ],P(Rn)), (Qt(dx, θ))t∈[0,T ], is
a weak measure-solution of the McKean-Vlasov equation if it satisfies:

P (dω)− a.s., ∀φ ∈ C2
b (Rn,R), ∀t ∈ [0, T ],





∫
φ(x)Qt(dx, θ) =

∫
φ(x)p0(x, θ)dx +

∫ t

0

∫ (∑n
i=1 ub,i(s, x, θ) ∂φ

∂xi
(x)

+ 1
2

∑n
i,j=1(uσ(s, x, θ)u∗σ(s, x, θ))ij

∂2φ
∂xi∂xj

(x)
)

Qs(dx, θ) ds

ub(t, x, θ) =
∫
Rn b(x, y)Qt(dy, θ)

uσ(t, x, θ) =
∫
Rn σ(x, y)Qt(dy, θ)

Q0(dx, θ) = p0(x, θ)dx.

(2)

♦
Remark 1. With an abuse of notation, we will say that a random probability measure Q(θ)
on C ([0, T ],Rn) is a weak measure-solution of PDE (2) when its time marginals constitute
a weak measure-solution in the sense of Definition 1. 2
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Remark 2. When P (dω)− a.s. and for all t ∈ [0, T ], the time marginals Qt(dx, θ) of the
weak measure-solution of PDE (2) admit densities p(t, x, θ) with respect to the Lebesgue
measure dx on Rn, the family of these densities is called weak function-solution of the PDE.
It can be viewed as a random function in C([0, T ], L1(Rn)), the continuity being a L1-weak
continuity. 2

Let us now define the statistical solutions of the McKean-Vlasov problem:

Definition 2. When the evolution problem (2) admits a unique weak measure-solution
(Qt(dx, θ))t∈[0,T ] (up to a null-set), then the following map is µ-a.s. well defined:

S : L1(Rn) → C ([0, T ],P(Rn))
p = p0(., a) 7→ (Qt(dx, a))t∈[0,T ].

The law m ∈ P (C ([0, T ],P(Rn))) of the weak measure-solution of (2) can thus be
written as the image measure of µ through the mapping S, and is called statistical solution
of the McKean-Vlasov problem:

m = µ ◦ S−1 = ν ◦ (S ◦ Φ)−1. (3)

The marginal Qt(dx, θ) at time t of the weak measure-solution of (2) is a random
probability measure on Rn whose law mt ∈ P (P(Rn)) is the t-time marginal of m. The
probability measure mt is called spatial statistical solution at time t of the McKean-Vlasov
equation. ♦

The setting of the problem can be summed up in the following diagram:

Ω θ→ R Φ→ L1(Rn) S→ C ([0, T ], P (Rn))
ω 7→ a 7→ p0(., a) 7→ Sp0(dx, a) = (Qt(dx, a))t∈[0,T ]

P ν µ = ν ◦ Φ−1 m

When dealing with statistical solutions, only mean quantities can be computed. Since
we consider random probabilities, interesting mean quantities are their intensities (see
Sznitman [31]). The intensity I(mt) ∈ P (Rn) of the spatial statistical solution mt at time
t is defined by:

∀f ∈ Bb (Rn,R) , 〈I(mt), f〉 =
∫

P(Rn)

〈Q, f〉mt(dQ)

=
∫

R
〈(S ◦ Φ(a))t, f〉 ν(da). (4)

The aim of this article is to approximate this last expression (4) by using a wavelet stochas-
tic particle method.

Remark 3. When there exists a unique weak function-solution to PDE (2), and when
the initial mean energy is finite (

∫
R ||p0(., a)||L2ν(da) < ∞), the intensity I(mt) can be

linked to the first moment of the statistical solution as defined in Talay and Vaillant [33]:
∀t ∈ [0, T ], ∃!M1(t) ∈ L2(Rn), ∀f ∈ L2(Rn), 〈I(mt), f〉 = 〈M1(t), f〉L2(Rn). 2

1.2 Probabilistic Approach of the Problem

We now recall the probabilistic interpretation for the McKean-Vlasov equation given in
Talay and Vaillant [33].

We deal here with two different sources of randomness. The first one comes from the
initial condition and will be considered through the random variable θ. The second one
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is related to the probabilistic approach, which consists in looking for Markovian processes
whose time marginals satisfy the weak PDE (2). Here, the process of interest is given by
the nonlinear stochastic differential equation (SDE ) introduced in Theorem 1.1.

We state existence and uniqueness results for this SDE, then we enounce existence and
uniqueness results for the weak PDE (2).

Assumption 1. The following assumptions will be made for b, σ and p0:

(A1) The functions b and σ are Lipschitz continuous functions:
∃L > 0, ∀x, y, z, u ∈ Rn, |b(x, y)− b(z, u)|+ ||σ(x, y)− σ(z, u)|| ≤ L(|x− z|+ |y − u|),

(A2) The functions b and σ are bounded,
(A3) P (dω)− a.s., p0(., θ) is a density function,
(A4) P (dω)− a.s.,

∫
x2p0(x, θ)dx < ∞.

Theorem 1.1. Suppose that Assumptions (A1) to (A4) are satisfied. Let (Wt)t∈[0,T ] be
a Brownian motion on Rn, let θ be a random variable of law ν and let (X0(a))a∈R be a
family of random variables such that a 7→ X0(a) is measurable and such that P (dω) −
a.s., L(X0(θ)) = p0(x, θ)dx. We assume that (Wt)t∈[0,T ], θ and (X0(a))a∈R are inde-
pendent. Then, pathwise existence and uniqueness are available for the following SDE:
P (dω)− a.s., ∀t ∈ [0, T ],





dXt(θ) = ub(t,Xt(θ), θ)dt + uσ(t, Xt(θ), θ)dWt

ub(t, x, θ) =
∫
Rn b(x, y)PXt(θ)(dy)

uσ(t, x, θ) =
∫
Rn σ(x, y)PXt(θ)(dy)

L (X0(θ)) = p0(x, θ)dx.

(5)

2

Proof. Notice first that the law of Xt(θ) depends continuously on the initial condition
X0(θ) (see Kunita [19]), which is itself measurable in θ. The conditional law of Xt(θ)
knowing θ is therefore well defined. The idea of the proof is that existence and uniqueness
results for the conditioned diffusion knowing θ are similar to their non-conditioned coun-
terparts.

Since the random variable θ is independent of the Brownian motion (Wt)t∈[0,T ] and of
the family of random variables (X0(a))a∈R, looking at the conditional version knowing θ
of SDE (5) amounts to considering this equation for every realization a of θ. Hence, we
are lead to study existence and pathwise properties for the following SDE:

{
dXt(a) = ub(t,Xt(a), a)dt + uσ(t,Xt(a), a)dWt

L (X0(a)) = p0(x, a)dx.
(6)

The solution (Xt(θ))t∈[0,T ] of SDE (5) is then linked to the solution (Xt(a))t∈[0,T ] of
SDE (6) by:

L (Xt(θ) | θ = a) = L (Xt(a)) . (7)

For a given realization a of θ, we can use the proofs in Sznitman [31] and Méléard [25].
Let µ = (µt(dx))t∈[0,T ] be a given family of probabilities in C([0, T ],P(Rn)). Let us define:

uµ
b (t, x) =

∫

Rn

b(x, y)µt(dy), uµ
σ(t, x) =

∫

Rn

σ(x, y)µt(dy). (8)

We can associate with the nonlinear SDE (6) a linear SDE by replacing the coefficients
ub(t, x, a) and uσ(t, x, a) with uµ

b (t, x) and uµ
σ(t, x) respectively:

Xµ
t (a) = X0(a) +

∫ t

0
uµ

σ(s, Xµ
s (a))dWs +

∫ t

0
uµ

b (s,Xµ
s (a))ds, for t ∈ [0, T ]. (9)
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Pathwise existence and uniqueness of the solution of the linear SDE (9) hold, thanks to
Theorems 2.5 and 2.9 (pages 287 and 289) in Karatzas and Shreve [16].

To deduce the existence and uniqueness of a weak solution for SDE (6), we use a fixed
point theorem. The weak solutions of SDE (6) and SDE (9) belong to the space:

P2(C([0, T ],Rn)) =
{
P probability law on C([0, T ],Rn) | 〈P, supt≤T |Xt|2〉 < ∞
where Xt is the canonical process on C([0, T ],Rn)} .

This space, endowed with the weak convergence, is metrisable with the Vaserstein complete
metric ρT , defined for m1,m2 ∈ P2(C([0, T ],Rn)) by (see Rachev [29]):

ρ2
T (m1,m2) = inf

{∫
C([0,T ],Rn)2

supt≤T |xt − yt|2m(dx, dy) | m ∈ P2(C([0, T ],Rn)× C([0, T ],Rn))
with marginals m1 and m2

}
.

Existence and uniqueness of the weak solution of SDE (6) are equivalent to the existence
and uniqueness of a fixed point for the mapping:

ζa : P2(C([0, T ],Rn)) → P2(C([0, T ],Rn))
µ 7→ L(Xµ(a)),

where Xµ(a) solves SDE (9). The latter result is obtained thanks to the completeness of
(P2(C([0, T ],Rn)), ρT ) and to the following inequality (see Sznitman [31] or Méléard [25]
for a complete proof):

∀t ∈ [0, T ], ∀m1, m2 ∈ P2(C([0, T ],Rn)), ρ2
t (ζa(m1), ζa(m2)) ≤ CT

∫ t

0
ρ2

u(m1,m2)du.

Finally, for a given initial condition X0(a) and a given Brownian motion (Wt)t∈[0,T ],
pathwise existence and uniqueness for the linear SDE (9) where µ has been set to the unique
weak solution of SDE (6) imply pathwise existence and uniqueness for SDE (6). ¥

Proposition 1.1. Under Assumptions (A1) to (A4), there exists a weak measure-solution
to PDE (2). 2

Proof. This can be seen by using Itô’s formula to compute Eνφ(Xt(θ)), where φ ∈ C2
b (Rn,R)

and (Xt(θ))t∈[0,T ] is the solution of SDE (5). ¥

Proposition 1.2. Suppose that Assumptions (A1) to (A4) are satisfied. Then if (P 1
t (dx, θ))t∈[0,T ]

and (P 2
t (dx, θ))t∈[0,T ] are two weak measure-solutions of PDE (2):

P (dω)− a.s., ∀t ∈ [0, T ], P 1
t (dx, θ) = P 2

t (dx, θ).

2

Proof. As in the proof of Theorem 1.1, we can work conditionally to a realization a of θ
such that Assumptions (A1) to (A4) are satisfied.

Let µ = (µt(dx))t∈[0,T ] be a given family of probabilities in C([0, T ],P(Rn)). We can
associate with the nonlinear PDE (2) and with the nonlinear SDE (5) linear versions by
replacing the coefficients ub(t, x, a) and uσ(t, x, a) by uµ

b (t, x) and uµ
σ(t, x) defined in (8).

Take µ1
a = (P 1

t (dx, a))t∈[0,T ] and µ2
a = (P 2

t (dx, a))t∈[0,T ] two measure-solutions of non-
linear PDE (2).

Consider the solutions X1(a) = (X1
t (a))t∈[0,T ] and X2(a) = (X2

t (a))t∈[0,T ] of the linear
SDE (9) with respectively µ1

a and µ2
a. Using Itô’s formula, we see that L(X1(a)) and

L(X2(a)) are solutions of the linear PDE associated with (2) with respectively µ1
a and µ2

a.
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Since µ1
a and µ2

a solve the nonlinear PDE (2), they also solve the associated linear PDEs
defined respectively with µ1

a and µ2
a.

Since the generator of the linear PDE associated with (2) for a given µ is a diffusion
generator with bounded coefficients, we can use Theorem 5.2 in Bhatt and Karandikar [3] to
obtain uniqueness of the weak measure solution of this PDE. Thus: ∀t ∈ [0, T ], L(X1

t (a)) =
P 1

t (dx, a), and L(X2
t (a)) = P 2

t (dx, a).
Consequently, X1(a) and X2(a) also solve the nonlinear SDE (6) (Notice that the

nonlinearity in SDE (6) only plays through the solutions’ marginal laws). Thanks to
Theorem 1.1, uniqueness implies: L(X1(a)) = L(X2(a)).

Thus: ∀t ∈ [0, T ], P 1
t (dx, a) = P 2

t (dx, a). ¥

We can now reformulate the intensity of the spatial statistical solutions defined in (4)
with the nonlinear diffusions (5) and (6):

∀t ∈ [0, T ], ∀f ∈ Bb(Rn,R), 〈I(mt), f〉 =
∫

R
Ef (Xt(a)) ν(da) (10)

= Eνf(Xt(θ)). (11)

1.3 Particle Approximations

Remark 4. Until section 4, we will assume, for the sake of simplicity, that n = 1. 2

We review here three approximations for the computation of the intensity I(mT ) ap-
plied to a test function f ∈ Bb(Rn,R). This allows us to explain our purpose. The first
approximation relies on the formulation (10), while the second and third ones use the ex-
pression (11). The two first approximations have been studied by Talay and Vaillant [33].
The third one is the original approximation which makes the object of this article.

We are interested here in the case where the law ν is absolutely continuous with respect
to the Lebesgue measure on R. We refer to Talay and Vaillant [33] for the discrete case.

1.3.1 Existing Particle Approximations and Problematics

Method 1: The first "naive" idea is to return to the standard McKean-Vlasov case, using
(10). This first method has been mentioned by Talay and Vaillant [33].

We set θ to a and approximate the expectation Ef(XT (a)) under the integral in (10)
by computing a mean over interacting particles. The latter are simulated by replacing
the unknown law L(Xt(a)) appearing in the coefficients ub(t, x, a) and uσ(t, x, a) by the
empirical law of the particle system. The convergence of the empirical law to L(Xt(a))
is known as propagation of chaos and has been described in Méléard [25] or Sznitman
[31]. Once we have done this, we evaluate in turn the integral in a with a Monte-Carlo
approximation.

The algorithm is thus the following:

1. We simulate N1 random variables (θl)l∈[1,N1] i.i.d. of law ν.

2. For each θl, we simulate N2 particles,
(
Ȳ i,l,N2(θl)

)
i∈[1,N2]

. To this purpose, we simulate

N2 random initial conditions
(
Ȳ i,l,N2

0 (θl)
)

i∈[1,N2]
i.i.d. of law p0(x, θl)dx. Then, we define

the paths of the particle system with an Euler scheme of discretization step ∆t and of
discretization times tk = k∆t: ∀l ∈ [1, N1], ∀i ∈ [1, N2], ∀k ∈ [0,K],

Ȳ i,l,N2
tk+1

(θl) = 1
N2

∑N2
j=1 b

(
Ȳ i,l,N2

tk
(θl), Ȳ

j,l,N2
tk

(θl)
)

∆t

+ 1
N2

∑N2
j=1 σ

(
Ȳ i,l,N2

tk
(θl), Ȳ

j,l,N2
tk

(θl)
)

(W i,l
tk+1

−W i,l
tk

),
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where (W i,l)i∈[1,N1],l∈[1,N2] is a N1 ×N2-dimensional Brownian motion, independent from

the random variables (θl)l∈[1,N1] and from the initial conditions
(
Ȳ i,l,N2

0 (θl)
)

i∈[1,N2],l∈[1,N1]
.

3. An approximation of 〈I(mT ), f〉 is given by:

〈I(mT ), f〉 ' 1
N1

N1∑

l=1

1
N2

N2∑

i=1

f
(
Ȳ i,l,N2

T (θl)
)

.

The corresponding approximation error, though not given by Talay and Vaillant [33],
can be fairly obtained:

Proposition 1.3. If b, σ ∈ C4+ε
b (R2,R), with ε > 0, and if the initial condition p0 satisfies

(A3) and (A4), then: ∀f ∈ C4+ε
b (R,R), ∃C = C(T, f, b, σ) > 0,

E|〈I(mT ), f〉 − 1
N1

N1∑

l=1

1
N2

N2∑

i=1

f(Ȳ i,l,N2
T (θl))| ≤ C

(
1√
N1

+
1√
N2

+ ∆t

)
.

2

The asymptotic rate of convergence here is the one of the Central Limit Theorem
(CLT ), which is the best we can hope with stochastic methods.

However, as pointed out by Talay and Vaillant, this method is numerically very expen-
sive, since it uses a two-steps imbricated simulation procedure. The number of simulations
at each stage has to be high. The total number of simulations, N1 ×N2, with N1 and N2

high, is therefore very large: Vaillant ([34], section 3.7 page 79) showed that the complexity
of this method is of order O

(
N1N

2
2 /∆t

)
.

Notice also, that contrarily to the two other methods, Method 1 does not require any
assumption on the dimension of the space where θ takes its values.

Methods 2 and 3: The aim is to find numerically more efficient methods. In order
to avoid imbricated simulations, we follow Talay and Vaillant [33] and consider particle
approximations based on Expression (11) and SDE (5).

We approximate directly the expectation Eνf(XT (θ)) in (11) by computing a mean over
interacting particles (X̄i,N

T (θi))i∈[1,N ] whose laws are expected to be close to L(XT (θ)).
To simulate these particles, we have to replace the unknown coefficients ub(t, x, θ) and

uσ(t, x, θ) by quantities depending on the empirical measure of the system. Since SDE (5)
can be rewritten as: P (dω)− a.s., ∀t ∈ [0, T ],





dXt(θ) = Eν ((b(x,Xt(θ))|θ) |x=Xt(θ) dt + Eν ((σ(x,Xt(θ))|θ) |x=Xt(θ) dWt

L (X0(θ), θ) = p0(x, a)dx ν(da)
W is a Brownian motion independent of the random variable θ and of X0(θ),

(12)

(we will choose for (t, x) 7→ Eν (b(x,Xt(θ))|θ) and (t, x) 7→ Eν (σ(x,Xt(θ))|θ) continuous
modifications of the conditional expectation processes), this amounts to approximating the
expectations in the law of Xt(θ) conditionally to θ. To this purpose, we will use regression
estimators.

The particle approximations which are considered here are based on the following al-
gorithm:

1. Simulate N random variables (θi)i∈[1,N ] of law ν,

8



2. For all i ∈ [1, N ], associate a (single) particle, defined by its initial condition X̄i,N
0 (θi) of law

p0(x, θi)dx and by its trajectory described by the following Euler scheme: ∀i ∈ [1, N ], ∀k ∈
[0,K],

X̄i,N
tk+1

(θi) = X̄i,N
tk

(θi)+ûb

(
tk, X̄i,N

tk
(θi), θi

)
∆t+ûσ

(
tk, X̄i,N

tk
(θi), θi

)(
W i

tk+1
−W i

tk

)
, (13)

where ûb(tk, X̄i,N
tk

(θi), θi) and ûσ(tk, X̄i,N
tk

(θi), θi) are some regression estimators constructed

on our particle system: we compute the regression of the observations
(
b(X̄i,N

tk
(θi), X̄

j,N
tk

(θj))
)

j∈[1,N ]

on (θj)j∈[1,N ] to approximate a 7→ ub(tk, X̄i,N
tk

(θi), a) = Eν (b(x,Xtk
(θ))|θ = a) |x=X̄i,N

tk
(θi)

.

The value of the regression function at point θi gives us ûb(tk, X̄i,N
tk

(θi), θi). The same goes
for ûσ.

3. The approximation of 〈I(mT ), f〉 is then:

〈I(mT ), f〉 ' 1
N

N∑

i=1

f
(
X̄i,N

T (θi)
)

. (14)

The two following stochastic particle methods use this approach, but with different
regression estimators.

Method 2: The Particle Method with Random Weights.
This method has been introduced by Talay and Vaillant [33]. It is based on the use of

Nadaraya-Watson regression estimators to compute ûb and ûσ: ∀i ∈ [1, N ], ∀k ∈ [0, K],

ûb

(
tk, X̄i,N

tk
(θi), θi

)
=

N∑

j=1

HN (θj − θi)∑N
l=1 HN (θj − θl)

b
(
X̄i,N

tk
(θi), X̄

j,N
tk

(θj)
)

ûσ

(
tk, X̄i,N

tk
(θi), θi

)
=

N∑

j=1

HN (θj − θi)∑N
l=1 HN (θj − θl)

σ
(
X̄i,N

tk
(θi), X̄

j,N
tk

(θj)
)

, (15)

where HN = H(./hN )/hN for a given window hN and a given Parzen-Rosenblatt kernel
H on R (see Bosq and Lecoutre [4] for more information. A possible choice for H is the
Gaussian density function for instance).

Talay and Vaillant [33] and Vaillant [34] computed the accuracy of this second method:

Proposition 1.4. (Talay and Vaillant [33]) Under the following assumptions:

1. The functions b and σ are in C4+ε
b (R,R),

2. The law ν of θ is absolutely continuous w.r.t. the Lebesgue measure and has a strictly positive
Lipschitz continuous density g supported by a compact interval Θ ⊂ R,

3. The application Φ : a 7→ p0(., a) is Lipschitz continuous for the norm in L1(R),

4. ∀a ∈ Θ, p0(., a) is a density function,

5. supa∈Θ

∫
R x4p0(x, a)dx < ∞,

6. limN→∞ hN → 0 and limN→∞
log N
Nh2

N
= 0,

7. The kernel H used in the weights is a Parzen-Rosenblatt kernel.

Consider the particle system (13) constructed with the estimators defined in (15), then:

∀0 < ε < 1, ∀ f ∈ C4+ε
b (R,R), ∃C = C(T, f, b, σ) > 0, ∃N0, ∀N ≥ N0,

Eν |〈I(mT ), f〉 − 1
N

N∑

i=1

f(X̄i,N
T (θi))| ≤ C

(
∆t +

1

N1/4h
1/4
N

+ h
1/4
N

)
. (16)

2
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The asymptotic rate is not as accurate as the one obtained with Method 1 because con-
vergence rates of non-parametric regression estimators are slower than the ones of empirical
means.

An optimisation of the right hand side in hN tells us that a window hN ∼ 1/
√

N gives
a convergence rate in N−1/8. This rate is however never attained, since the condition on
the window constrains us to choose hN such that log N/(Nh2

N ) → 0.
However, simulations are faster than in Method 1 and less demanding in memory.

The random weights HN (θj − θi)/
(∑N

l=1 HN (θj − θl)
)

depend only on the realizations
of (θi)i∈[1,N ] and neither on the function being regressed, nor on tk. These weights are
thus computed once and for all at the beginning of the algorithm, when the (θi)i∈[1,N ] are
simulated, and are then used for the computation of ûb and ûσ at each date tk.

From the computations of Vaillant ([34], section 3.7 page 79), we deduce that the
complexity of this method is of order O

(
N2/∆t

)
.

1.3.2 Method 3: The Wavelet Particle Approximation

We now propose a third method. It is based on the algorithm (13) with the choice of
truncated warped wavelet regression estimators for the computation of ûb and ûσ. These
estimators are inspired by the works of Kerkyacharian and Picard [18]. Since the two re-
gression estimators are similar, we deal only with ûb. The results are the same for ûσ. A
short review on the wavelet theory and on wavelet regression in random design is given in
Appendices A and B.

Let us consider a Multi-Resolution Analysis (MRA) generated by the father wavelet
φ ∈ L2(R) and the mother wavelet ψ ∈ L2(R), satisfying the following concentration and
moment properties:

Assumption 2. 1. Concentration Property (H): ∀α ∈ R,
∑

I2∈Z |φ(α+ I2)| ≤ C < ∞.

2. M Null-Moments Property (M):

∃M ≥ 1,
∫ (

1 + |α|M) |φ(α)|dα < ∞∫ (
1 + |α|M) |ψ(α)|dα < ∞,

∀m ∈ [0,M − 1],
∫

αmψ(α)dα = 0.

We define the descendants of ψ by ψI(α) = 2I1/2ψ(2I1α − I2), where I = (I1, I2) is a
double index with I1 ≥ 0 and I2 ∈ Z. To simplify notations, φ is often written ψ−1,0, and
we define for any I2 ∈ Z, ψ−1I2(α) = φ(α− I2).

A wavelet decomposition on the MRA (ψI)I1≥−1,I2∈Z is available for any function of
L2 (see Appendix A).

Recall that our aim is to approximate the conditional expectation:

ub(tk, x, a) = Eν (b(x, Xtk(θ))|θ = a) .

In the following, we denote by G the distribution function of θ. We will assume that the
law ν of θ admits a density g w.r.t. the Lebesgue measure on R and that this density has
a connected support Θ ⊂ R, possibly R itself. The distribution function G hence defines a
bijection from the interior of Θ into ]0, 1[. We also define GN the empirical equivalent of
G:

∀a ∈ R, GN (a) =
1
N

N∑

i=1

1θi≤a. (17)
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Since α 7→ ub(tk, x, G−1(α)) is a bounded application with support in [0, 1], it belongs
to L2([0, 1]) and a wavelet expansion on the MRA (ψI)I is thus available for this function:

∀α ∈ [0, 1], ∀k ∈ [0,K], ∀x ∈ R, ub(tk, x, G−1(α)) =
∑

I

β
(b,tk)
I (x)ψI (α) .

This expansion is equivalent to the expansion of a ∈ R 7→ ub(t, x, a) on the warped wavelet
basis (ψI ◦G)I :

∀a ∈ Θ, ∀k ∈ [0,K], ∀x ∈ R, ub(tk, x, a) =
∑

I

β
(b,tk)
I (x)ψI (G(a)) . (18)

The coefficients β
(b,tk)
I (x) can be expressed with respect to these two equivalent expansions:

β
(b,tk)
I (x) =

∫

[0,1]

ψI(α)ub(tk, x, G−1(α))dα =
∫

R
ψI(G(a))ub(tk, x, a)ν(da). (19)

Using (18) and (19), we propose the following regression estimator for ûb inspired by
Kerkyacharian and Picard [18] (To see how this estimator has been built, refer to Appendix
B): ∀a ∈ Θ, ∀k ∈ [0,K], ∀x ∈ R,

ûb(tk, x, a) =
IN
1∑

I1=−1

∑

I2

β̃
(b,tk)
I (x)ψI (GN (a)) , (20)

with:

β̂(b,tk)(x) =
N∑

j=1

1
N

ψI (GN (θj)) b
(
x, X̄j,N

tk
(θj)

)
, and β̃

(b,tk)
I (x) = thr

(
β̂(b,tk)(x), tN

)
, (21)

where thr(x, λ) = x1|x|>λ is the thresholding function, tN , the threshold level and IN
1 , the

resolution level.

The expression of estimators (21) is simpler when we rank the couples
(
θj , X̄

j,N
tk

(θj)
)

j∈[1,N ]

in increasing order of (θj)j∈[1,N ]. The ranked sequence of (θj)j∈[1,N ] is denoted by (θ(j))j∈[1,N ].
The ranked couples are noted (θ(j), X̄

(j),N
tk

(θ(j)))j∈[1,N ] with the index j between parenthe-
sis. For any x ∈ R, estimators (21) can then be rewritten as:

β̂
(b,tk)
I (x) =

N∑

j=1

1
N

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

(θ(j))
)

. (22)

When we plug the regression estimators (20) in the particle system defined in (13),
with X̄i,N

tk
(θi) as x and θi as a, for the regressions defining the path of X̄i,N

tk
(θi), we obtain

the particle system on which Method 3 is based:

Definition 3. Let (θi)i∈[1,N ] be i.i.d. variables of law ν, let
(
X̄i,N

0 (θi)
)

i∈[1,N ]
be inde-

pendent random variables of initial laws p0(x, θi)dx, and let W = (W 1, · · · ,WN ) be a N -
dimensional Brownian motion independent of the variables (θi)i∈[1,N ] and of (X̄i,N

0 (θi))i∈[1,N ].
Introduce the coefficients β̃

(b,tk)
I (x) and β̃

(σ,tk)
I (x) as in (21). We can define the following

particle system: ∀i ∈ [1, N ], ∀k ∈ [0,K],

X̄
(i),N
tk+1

(θ(i)) = X̄
(i),N
tk

(θ(i)) +
∑IN

1
I1=−1

∑
I2∈Z β̃

(b,tk)
I (X̄(i),N

tk
(θ(i)))ψI

(
i
N

)
∆t

+
∑IN

1
I1=−1

∑
I2∈Z β̃

(σ,tk)
I (X̄(i),N

tk
(θ(i)))ψI

(
i
N

) (
W i

tk+1
−W i

tk

)
.

(23)

♦
11



In the sequel, it will be useful to notice that the sequence of particles ((X̄(i),N
tk

(θ(i)))i∈[1,N ])k∈[1,K]

for the discretization times tk can be considered as a RN -Markov chain with transition ker-
nel S defined by:

∀x ∈ RN , ∀f ∈ Cb(RN ,R),

Sf(x) = E


f


x +


 1

N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )b(xi,xj)|>tN
b(xi, xj)∆t




1≤i≤N

+


 1

N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN
σ(xi, xj)

√
∆tBi




1≤i≤N





 ,(24)

where the (Bi)i∈[1,N ] are independent centered reduced Gaussian variables.

Our main result deals with the convergence rate of this method:

Theorem 1.2. Consider the following assumptions:

1. The functions b, σ ∈ C4+ε
b (R2,R),

2. The law ν of θ admits a density g on R w.r.t. the Lebesgue measure. The support Θ of g is
assumed to be connected, and can be R itself,

3. P (dω)− a.s., p0(., θ) is a density function with moments of order 2,

4. The marginal law in x of p0(x, a)g(a)da dx, satisfies a Poincaré inequality with the positive
deterministic constant c0:

∀f ∈ C1(R,R),
∫

R
f2(x)

(∫

R
p0(x, a)g(a)da

)
dx−

(∫

R
f(x)

(∫

R
p0(x, a)g(a)da

)
dx

)2

≤ c0

∫

R
|∇f(x)|2

(∫

R
p0(x, a)g(a)da

)
dx,

5. The application Φ ◦G−1 : α ∈ [0, 1] 7→ p0(., G−1(α)) is s-Hölder continuous for the norm in
L1(R), with s > 1/2, and G the distribution function of θ,

6. The father and mother wavelets φ and ψ used to construct the estimators ûb and ûσ are
compactly supported, Lipschitz continuous, and satisfy Assumptions (H) and (M),

7. We threshold the estimators with tN = κ(log N)/
√

N where κ is a positive constant that
depends only on b, σ, c0, φ, ψ, T and ∆t (see (55) in the proof for more information on the
choice of κ),

8. The resolution level IN
1 satisfies 2IN

1 ∼
√

N
log N ,

Then the particle system (23) is well defined and satisfies:

∀0 < ε < 1, ∀ f ∈ C4+ε
b , ∃C = C(T, f, b, σ) > 0, ∃N0, ∀N ≥ N0,

Eν |〈I(mT ), f〉 − 1
N

N∑

i=1

f(X̄i,N
T (θi))| ≤ C

(
∆t + log N

(
log N√

N

) 2s
1+2s

)
.

2

The asymptotic convergence rate of this method, still slower than the one of Method
1, is better than the one of Method 2, given by Proposition 1.4. The Nadaraya-Watson
estimators depend indeed linearly on the empirical measure of the particle system and
do not always attain minimax rates (see Härdle et al. [14] section 10.4, Donoho et al.
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[11, 12] or Kerkyacharian and Picard [17]). Since they are nonlinear, the Kerkyacharian-
Picard estimators can achieve better convergence rates. If Φ◦G−1 is Lipschitz continuous,
we have a rate slightly slower than N−1/3 which is more accurate than the preceding N−1/8.

The assumptions of Theorem 1.2 are also weaker than those of Proposition 1.4.
First, Theorem 1.2 allows weaker regularities for G and Φ, which characterize the alea

of the initial condition. For instance, when the law ν of θ admits a positive Lipschitz
density g with respect to the Lebesgue measure on a compact set Θ, as in Proposition 1.4,
it suffices that Φ be s-Hölder continuous to achieve the assumption of Theorem 1.2, which
is weaker than Φ Lipschitz in Proposition 1.4.

Secondly, in Theorem 1.2, the support of the law ν does not need to be a compact
interval of R any more, as it was required in Proposition 1.4. A much larger class of prob-
ability laws, including Gaussian laws and Gaussian mixing in particular, is then available
to parameterize the randomness of the initial condition p̂0.

Notice moreover that the optimal choice of the window hN in Method 2 (see Proposition
1.4) usually depends on the regularities of Φ and g, which may be unknown (see Bosq and
Lecoutre [4]). The wavelet regression estimator introduced by Kerkyacharian and Picard
[18] is adaptive: it adjusts itself automatically to the unknown regularity of the regres-
sion function we estimate. Here, the parameters tN and I1

N only depend on the number
of observations and on basic bounds for c0, b and σ (and not on the regularity s of Φ◦G−1).

Numerically, this method is more demanding in computations than Method 2, since
the regression estimators have to be recomputed entirely at each date, because of the
thresholding procedure. Still, if we use for instance the Mallat cascade algorithm, which
complexity is of order O (N) (see Härdle et al. [14], Chapter 12, page 223, or Mallat [21]
Chapter VII, sections 7.3 and 7.5), the complexity of Method 3 remains in O

(
N2/∆t

)
,

which is better than Method 1.

2 Convergence Rate of the Wavelet Particle Approximation

In this section, we will prove Theorem 1.2, which gives the asymptotic convergence rate
of the wavelet approximation (14) constructed on the particle system (23). We thus work
under the assumptions of this theorem.

Let us first introduce some objects we will use for the proof. The Euler scheme associ-
ated with SDE (5) is given by: ∀k ∈ [0,K],

{
X̄tk+1(θ) = X̄tk

(θ) + ub(tk, X̄tk
(θ), θ)∆t + uσ(tk, X̄tk

(θ), θ)
(
Wtk+1 −Wtk

)
X̄0 = X0.

(25)

Consider as well i.i.d. copies of this Euler scheme coupled with the particles defined
in (23) (same parameters (θ(i))i∈[1,N ], same initial conditions (X̄i,N

0 (θ(i)))i∈[1,N ] and same
Brownian motions (W i)i∈[1,N ]), and which are also ranked in increasing order of (θi)i∈[1,N ]:
∀i ∈ [1, N ], ∀k ∈ [0,K],

{
X̄

(i)
tk+1

(θ(i)) = X̄
(i)
tk

(θ(i)) + ub(tk, X̄
(i)
tk

(θ(i)), θ(i))∆t + uσ(tk, X̄
(i)
tk

(θ(i)), θ(i))
(
W i

tk+1
−W i

tk

)

X̄
(i)
0 = X̄

(i),N
0 .

(26)
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Since the (unordered) particles
(
θi, X̄

i,N
tk

(θi)
)

i∈[1,N ]
defined with the regression esti-

mators (21) are exchangeable, they have a common law. We will call L(X̄ .,N
tk

(θ)) the

common first marginal law, and denote by Eν
(
b(x, X̄ .,N

tk
(θ))|θ

)
the expectation of b(x, .)

under this law conditioned by the random variable θ. Notice that the conditional laws
L

(
X̄i,N

tk
(θi) | θi

)
may be all different. This makes the difficulty.

In the developments, we will also need the wavelet decomposition of the function a ∈
Θ 7→ ūb(tk, x, a) := Eν

(
b(x, X̄ .,N

tk
(θ))|θ = a

)
on the warped wavelet basis (ψI ◦G)I :

∀a ∈ Θ, ūb(tk, x, a) =
∑

I

β̄
(b,tk)
I (x)ψI(G(a)), (27)

with:
β̄

(b,tk)
I (x) =

∫
ψI(G(a))Eν

(
b(x, X̄ .,N

tk
(θ)) | θ = a

)
ν(da). (28)

Remark 5. From now on, we will write with a notational abuse X̄
(i)
tk

and X̄
(i),N
tk

for
the particles ranked in increasing order of (θi)i∈[1,N ], instead of X̄

(i)
tk

(θ(i)) and X̄
(i),N
tk

(θ(i))
respectively. 2

Proof of Theorem 1.2. We can decompose the approximation error at time T in three
sources:

〈I(mT ), f〉 − 1
N

N∑

i=1

f
(
X̄

(i),N
T

)
= (1) + (2) + (3), (29)

where:

(1) = 〈I(mT ), f〉 − Eν
(
f(X̄T (θ))

)

(2) = Eν
(
f(X̄T (θ))

)− 1
N

N∑

i=1

f
(
X̄

(i)
T

)

(3) =
1
N

N∑

i=1

f
(
X̄

(i)
T

)
− 1

N

N∑

i=1

f
(
X̄

(i),N
T

)
.

The discretization error (1) can be upper bounded thanks to the following result due
to Talay and Vaillant ([33], Proposition 5.1), which generalizes a result from Talay and
Tubaro [32]:

Theorem 2.1. (Talay and Vaillant [33]) For b and σ in C4+ε
b (R2,R):

∀f ∈ C4+ε
b (R,R), ∃C = C(T, f, b, σ) > 0, ∀a ∈ Θ, |Ef(XT (a))− Ef(X̄T (a))| ≤ C ∆t. (30)

The constant C = C(T, f, b, σ) can be upper bounded uniformly in a by a sum of terms of
type ||∂(i)

x b||∞||∂(j)
x σ||∞||f (k)||∞ for 0 ≤ i, j, k ≤ 4. Integrating over a, we obtain:

∀f ∈ C4+ε
b (R,R), ∃C = C (T, f, b, σ) > 0, |Eν (f(XT (θ)))− Eν

(
f(X̄T (θ))

) | ≤ C ∆t. (31)

2

The L1-norm of the statistical error (2) can be upper bounded thanks to the CLT:

∃C > 0, Eν

∣∣∣∣∣E
ν
(
f(X̄T (θ))

)− 1
N

N∑

i=1

f
(
X̄

(i)
T

)∣∣∣∣∣ ≤
C||f ||∞√

N
. (32)
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Now let us focus on Term (3). This term appears because we use approximated coef-
ficients to overcome nonlinearity. The difficulty here is that the classical propagation of
chaos is no longer available since the particles X̄(i),N are no more in mean-field interactions.

From the definition, for any i ∈ [1, N ] and any k ∈ [0, K]:

X̄
(i)
tk+1

− X̄
(i),N
tk+1

= X̄
(i)
tk
− X̄

(i),N
tk

+
(
ub(tk, X̄

(i)
tk

, θ(i))− ûb(tk, X̄
(i),N
tk

, θ(i))
)

∆t

+
(
uσ(tk, X̄

(i)
tk

, θ(i))− ûσ(tk, X̄
(i),N
tk

, θ(i))
)(

W i
tk+1

−W i
tk

)
.

Taking the square, then the expectation:

Eν
(
| X̄(i)

tk+1
− X̄

(i),N
tk+1

|2
)

= Eν
(
| X̄(i)

tk
− X̄

(i),N
tk

|2
)

+ Eν
(
| ub(tk, X̄

(i)
tk

, θ(i))− ûb(tk, X̄
(i),N
tk

, θ(i)) |2
)

∆t2

+ Eν
(
| uσ(tk, X̄

(i)
tk

, θ(i))− ûσ(tk, X̄
(i),N
tk

, θ(i)) |2
)

∆t

+ 2∆tEν
((

X̄
(i)
tk
− X̄

(i),N
tk

)(
ub(tk, X̄

(i)
tk

, θ(i))− ûb(tk, X̄
(i),N
tk

, θ(i))
))

+ 2Eν
((

X̄
(i)
tk
− X̄

(i),N
tk

)(
uσ(tk, X̄

(i)
tk

, θ(i))− ûσ(tk, X̄
(i),N
tk

, θ(i))
)(

W i
tk+1

−W i
tk

))

+ 2∆tEν
((

ub(tk, X̄
(i)
tk

, θ(i))− ûb(tk, X̄
(i),N
tk

, θ(i))
) (

uσ(tk, X̄
(i)
tk

, θ(i))− ûσ(tk, X̄
(i),N
tk

, θ(i))
)

(
W i

tk+1
−W i

tk

))
.

(33)
The last two terms are zero. This can be seen when conditioning by Ftk ∨σ(θi, i ∈ [1, N ]).
Given that 2ab ≤ a2 + b2, an upper bound of the fourth term in the right hand side of (33)
is:

∆t
[
Eν

(
|X̄(i)

tk
− X̄

(i),N
tk

|2
)

+ Eν
(
| ub(tk, X̄

(i)
tk

, θ(i))− ûb(tk, X̄
(i),N
tk

, θ(i)) |2
)]

.

Moreover:

Eν

(∣∣∣ub(tk, X̄
(i)
tk

, θ(i))− ûb(tk, X̄
(i),N
tk

, θ(i))
∣∣∣
2
)

≤ 2

[
Eν

(∣∣∣∣Eν
(
b(x, Xtk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

− Eν
(
b(x, X̄tk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

∣∣∣∣
2
)

+ Eν

(∣∣∣∣Eν
(
b(x, X̄tk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

− ûb(tk, X̄
(i),N
tk

, θ(i))
∣∣∣∣
2
)]

.

The expectation Eν

(∣∣∣uσ(tk, X̄
(i)
tk

, θ(i))− ûσ(tk, X̄
(i),N
tk

, θ(i))
∣∣∣
2
)

can be treated similarly.

Let us introduce the notation:

SN (tk+1) =
1
N

N∑

i=1

Eν |X̄(i)
tk+1

− X̄
(i),N
tk+1

|2.

By summation, and for ∆t ≤ 1, we deduce from (33):

∀k ∈ [0,K], SN (tk+1) ≤ (1 + ∆t)SN (tk) + C ∆t

(
1
N

N∑

i=1

A1(i, tk) +
1
N

N∑

i=1

A2(i, tk)

)
, (34)

where A1 and A2 are given by: ∀i ∈ [1, N ], ∀k ∈ [0,K],

A1(i, tk) = Eν | Eν
(
b(x, X̄tk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

− ûb(tk, X̄
(i),N
tk

, θ(i)) |2

+ Eν | Eν
(
σ(x, X̄tk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

− ûσ(tk, X̄
(i),N
tk

, θ(i)) |2 (35)

A2(i, tk) = Eν | Eν
(
b(x,Xtk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

− Eν
(
b(x, X̄tk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

|2

+ Eν | Eν
(
σ(x,Xtk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

− Eν
(
σ(x, X̄tk

(θ))|θ = θ(i)

) |
x=X̄

(i)
tk

|2 .(36)
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To complete the computation of an upper bound for the L1-norm of Term (3) in (29),
we need to consider the terms A1 and A2 defined in (35) and (36). Since the terms in b
and in σ are similar, we do the computations only for the terms with b.

Term A2 results from the discretization step and can be handled with arguments simi-
lar to those used to obtain (30). We replace T with tk, f with b

(
X̄

(i)
tk

(θ(i)), .
)
, and choose

θ(i) as a. Summing over the particles gives: 1
N

∑N
i=1 A2(i, tk) ≤ C (∆t)2.

Now, turn to Term A1. Because of the nonlinearity of the wavelet regression estimator,
we do not use coupling methods as in Sznitman [31] or Méléard [25]. We choose to work
at once on the part of the error linked to the estimation:

Eν

(∣∣∣∣ûb(tk, X̄
(i),N
tk

, θ(i))− Eν
(
b
(
x, X̄tk

(θ)
) |θ = θ(i)

) |
x=X̄

(i)
tk

∣∣∣∣
2
)
≤ C

(
Eν(A)2 + Eν(B)2 + Eν(C)2

)
, (37)

where:

(A) = ûb(tk, X̄
(i),N
tk

, θ(i))− ūb(tk, X̄
(i),N
tk

, θ(i))

(B) = ūb(tk, X̄
(i),N
tk

, θ(i))− Eν
(
b
(
x, X̄tk

(θ)
) |θ = θ(i)

) |
x=X̄

(i),N
tk

(C) = Eν(b(x, X̄tk
(θ))|θ = θ(i)) |x=X̄

(i),N
tk

−Eν
(
b
(
x, X̄tk

(θ)
) |θ = θ(i)

) |
x=X̄

(i)
tk

.

Since Term (B) can be rewritten as:

(B) = Eν
(
b
(
x, X̄ .,N

tk
(θ)

)
− b

(
x, X̄tk(θ)

) |θ = θ(i)

)
|
x=X̄

(i),N
tk

,

we have:
Eν(B)2 ≤ LEν(|X̄(i),N

tk
− X̄

(i)
tk
|2).

To deal with (C), we use the Lipschitz property of x 7→ Eν
(
b
(
x, X̄tk(θ)

) |θ = θ(i)

)
.

Thus:
Eν(C)2 ≤ LEν(|X̄(i),N

tk
− X̄

(i)
tk
|2).

To upper bound Eν(A)2, we use the two following lemmas:

Lemma 2.1. Consider the particle system defined in (23). Under the assumptions of
Theorem 1.2, the coefficients β̂

(b,tk)
I (x) and β̄

(b,tk)
I (x), defined in (22) and (28) respectively,

satisfy:∃N0, C > 0, ∀γ > 0, ∀N ≥ N0, ∀i ∈ [1, N ], ∀I = (I1, I2) ∈ [−1, IN
1 ]× Z, ∀k ∈ [0,K], ∃κ =

κ(γ, T, ∆t, b, σ, φ, ψ),

Pν

(
|β̂(b,tk)

I (X̄(i),N
tk

)− β̄
(b,tk)
I (X̄(i),N

tk
)| ≥ κ log N

2
√

N

)
≤ C

Nγ
. (38)

2

This lemma is proved in Section 3. It can be noticed that in the sequel, we will
choose γ > 7/2 (see Lemma 4.1). Then, the above property determines the constant
κ = κ(7/2, T,∆t, b, σ, φ, ψ) that we should use for the wavelet thresholding procedure (see
Equation (55) in the proof for the accurate expression of κ).

The second lemma we will need gives us the regularity s of the function α 7→ ūb(tk, x,G−1(α))
that will eventually appear in the convergence rate of our method.
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Lemma 2.2. Under Assumptions 5) of Theorem 1.2, the application α ∈ [0, 1] 7→ ūb(tk, x, G−1(α))
is s-Hölder continuous. 2

Proof. A sufficient condition is that Φ◦G−1 is s-Hölder continuous, where Φ : a 7→ p0(., a)
and G−1 is the quantile function for θ.

To see this, notice that for −1 ≤ a1 ≤ a2 ≤ · · · ≤ aN ≤ 1, the law of the particle system
(X̄(i),N

tk
(ai))i∈[1,N ] is: (p0(., a1), · · · , p0(., aN ))Sk, where S has been defined in (24). For any

j ∈ [1, N ] and for the measurable bounded function fj : (y1, · · · , yN ) ∈ RN 7→ b(x, yj) ∈ R,
we have: ∀α1, α2 ∈ [0, 1],

∣∣∣Eν
(
b
(
x, X̄

(j),N
tk

(G−1(α1))
))

− Eν
(
b
(
x, X̄

(j),N
tk

(G−1(α2))
))∣∣∣

≤ ||p0(., G−1(α1))− p0(., G−1(α2))||L1 ||Skfj ||∞
≤ C |α1 − α2|s,

thanks to Assumption 5) in Theorem 1.2.
Since this is true for every j ∈ [1, N ], we deduce that α 7→ Eν

(
b
(
x, X̄ .,N

tk
(G−1(α))

))

is also s-Hölder continuous. ¥

The following corollary then concludes the computation of an upper bound for A1. It
is proved in Section 4:

Corollary 2.1. Let us consider the particle system defined in (23). Under the assumptions
of Theorem 1.2, and with the choice of κ for the threshold tN as in Lemma 2.1, the estimator
ûb(tk, X̄

(i),N
tk

, θ(i)) defined in (20) satisfies: ∃N0, C > 0, ∀N ≥ N0, ∀i ∈ [1, N ], ∀I =
(I1, I2) ∈ [−1, IN

1 ]× Z, ∀k ∈ [0,K],

Eν

(∣∣∣ûb(tk, X̄
(i),N
tk

, θ(i))− ūb(tk, X̄
(i),N
tk

, θ(i))
∣∣∣
2
)
≤ C(log N)2

(
log N√

N

) 4s
1+2s

,

where ūb(tk, x, a) has been defined in (27) and is s-Hölder continuous thanks to Lemma
2.2. 2

Let us come back to the proof of Theorem 1.2. Gathering the upper bounds of A1 and
A2 in (34), we deduce:

SN (tk+1) = (1 + C ∆t)SN (tk) + C ∆t

(
(∆t)2 + (log N)2

(
log N√

N

) 4s
1+2s

)

≤ (1 + C ∆t)k+1SN (0) +
(1 + C ∆t)k − 1

C ∆t
C ∆t

(
(∆t)2 + (log N)2

(
log N√

N

) 4s
1+2s

)
.

As k ≤ T/∆t and log(1 + x) ≤ x for any x > −1:

(1 + C∆t)k = exp (k log(1 + C∆t)) ≤ exp(Ck∆t) ≤ exp(CT ), (39)

Thus, if we notice in addition that SN (0) = 0:

SN (tk+1) ≤ C(T )

(
(∆t)2 + (log N)2

(
log N√

N

) 4s
1+2s

)
.

We can now conclude the computation of an upper bound for the L1-norm of Term (3) in
(29). Using the fact that f is Lipschitz continuous with constant ||f ′||∞ and the Cauchy-
Schwarz inequality, we have:

Eν

∣∣∣∣∣
1
N

N∑

i=1

f
(
X̄

(i)
T

)
− 1

N

N∑

i=1

f
(
X̄

(i),N
T

)∣∣∣∣∣ ≤ C(T )||f ′||∞
(

∆t + log N

(
log N√

N

) 2s
1+2s

)
.

(40)
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The result announced in Theorem 1.2 is finally obtained by gathering (31), (32) and
(40). ¥

3 Proof of Lemma 2.1

We have:

Pν

(∣∣∣β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)
∣∣∣ ≥ κ log N

2
√

N

)

≤ Pν

(∣∣∣∣β̂
(b,tk)
I (X̄(i),N

tk
)− Eν

(
β̂

(b,tk)
I (x)

)∣∣∣
x=X̄

(i),N
tk

∣∣∣∣ ≥
κ log N

4
√

N

)

+ Pν

(∣∣∣∣Eν
(
β̂

(b,tk)
I (x)

)∣∣∣
x=X̄

(i),N
tk

− β̄
(b,tk)
I (X̄(i),N

tk
)
∣∣∣∣ ≥

κ log N

4
√

N

)
. (41)

The first term in the right hand side of (41) is dealt with Lemma 3.1 which is proved in
Paragraph 3.1. The second term vanishes for sufficiently large N , thanks to Lemma 3.2
which is proved in Paragraph 3.2. This concludes the proof of Lemma 2.1. ¥
Lemma 3.1. We consider the particle system (23) and work under the assumptions of
Theorem 1.2. Then: ∃N0, C > 0, ∀N > N0, ∀i ∈ [1, N ], I = (I1, I2) ∈ [−1, IN

1 ]× Z, ∀k ∈
[0,K], ∀γ > 0, ∃κ = κ(γ, T,∆t, b, σ, φ, ψ) :

Pν

(∣∣∣∣β̂
(b,tk)
I

(
X̄

(i),N
tk

)
− Eν

(
β̂

(b,tk)
I (x)

)∣∣∣
x=X̄

(i),N
tk

∣∣∣∣ >
κ log N

4
√

N

)
≤ C

Nγ
. (42)

2

Lemma 3.2. We consider the particle system (23) and work under the assumptions of
Theorem 1.2. In particular, we define tN and IN

1 as in Theorem 1.2, with the constant
κ appearing in Lemma 3.1 for the thresholding. Then: ∃N0, C > 0, ∀N > N0, ∀i ∈
[1, N ], ∀I = (I1, I2) ∈ [−1, IN

1 ]× Z, ∀k ∈ [0,K] :

Pν − a.s.,

∣∣∣∣Eν
(
β̂

(b,tk)
I (x)

)∣∣∣
x=X̄

(i),N
tk

− β̄
(b,tk)
I

(
X̄

(i),N
tk

)∣∣∣∣ ≤
C√
N

.

2

3.1 Proof of Lemma 3.1

The difficulty in establishing the inequality (42) of Lemma 3.1 lies in the fact that our
data are dependent. This prevents us from using the same techniques as in Kerkyacharian
and Picard [18]: Bernstein and Rosenthal inequalities (see Härdle et al. [14], page 239) do
not hold any longer. We do not deal with a classical mixing case either since the addition
of a supplementary particle changes the definition of the whole system

(
X̄

(i),N
tk

)
i∈[1,N ]

.

The idea is to prove a spectral gap inequality and to deduce a concentration of measure
phenomenon.

Let us first recall some definitions (see Ane and al. [1], Bakry [2] or Ledoux [20] for
further details).

Definition 4. Poincaré Inequality (or Spectral Gap Inequality)
A probability measure µ ∈ P(RN ) satisfies a Poincaré inequality with constant ρ > 0 if for
every function f ∈ C1(RN ,R):

V arµ(f) := 〈µ, f2〉 − (〈µ, f〉)2 ≤ ρ〈µ, |∇f |2〉.
2
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Remark 6. Let us give two examples:
The Gaussian measure on RN , N (m,Σ) satisfies a Poincaré inequality with constant

ρ > 0 the greatest eigenvalue in absolute value of the covariance matrix Σ (and thus also
with all other real number greater than ρ)(see Ané and al. [1] page 10).

The Dirac measure δx, x ∈ RN , satisfies a Poincaré inequality with any positive con-
stant. 2

An interest in looking for a Poincaré inequality is that it implies the following Concen-
tration Phenomenon:

Corollary 3.1. Concentration Phenomenon (Ledoux, [20])
Let µ be a probability measure that satisfies a Poincaré inequality with constant ρ > 0. For
every r ≥ 0, for every Lipschitz application f with Lipschitz constant Lf , we have:

∃C > 0, µ (|f − 〈µ, f〉| ≥ r) ≤ C exp
(
− r

2 Lf
√

ρ

)
.

The constant C does not depend on f nor on µ. 2

Our purpose in the sequel is to show that the law of the particle system
(
X̄

(i),N
tk

)
i∈[1,N ]

satisfies at each discretization time tk (k ∈ [0,K]) a Poincaré inequality. Then, we will use
the Concentration Phenomenon to obtain inequality (42).

3.1.1 A Technical Lemma

We first provide a technical lemma, which will be useful to prove that some of the quantities
which will appear are well-defined. The difficulty lies in the fact that wavelets can not be
uniformly upper bounded: their suprema 2I1/2||ψ||∞ tend to ∞ when the resolution levels
I1 increase.

Lemma 3.3. Assume that the father and mother wavelets φ and ψ are Lipschitz continuous
functions with compact support. Then, for any functions ηi : (x, y) ∈ R2 7→ ηi(x, y) ∈ R,
i ∈ {1, 2}, such that η2 is bounded by M , and for the choice of tN = κ(log N)/

√
N and IN

1

such that 2IN
1 ∼ t−1

N , terms:

1
N

N∑

j=1

∣∣∣∣∣∣

IN
1∑

I1=−1

∑

I2

ψI (α) ψI

(
j

N

)
1{| 1

N

∑N
j=1 ψI( j

N )η1(z,xj)|>tN}η2(z, xj)

∣∣∣∣∣∣
,

are bounded by C × M , where C is a constant, uniformly in N ∈ N, κ ∈ R, α ∈ [0, 1],
z ∈ R and x = (x1, · · · , xN ). 2

Proof. Let us write:

1
N

N∑

j=1

∣∣∣∣∣∣

IN
1∑

I1=−1

∑

I2

ψI (α) ψI

(
j

N

)
1{| 1

N

∑N
j=1 ψI( j

N )η1(z,xj)|>tN}η2(z, xj)

∣∣∣∣∣∣
≤ T1 + T2,

with:

T1 =

∣∣∣∣∣∣

N∑

j=1

∫ j/N

(j−1)/N

KIN
1

(α, y) dyη2(z, xj)

∣∣∣∣∣∣
,

T2 =
N∑

j=1

∣∣∣∣∣∣
1
N

IN
1∑

I1=−1

∑

I2

ψI (α) ψI

(
j

N

)
1{| 1

N

∑N
j=1 ψI( j

N )η1(z,xj)|>tN}η2(z, xj)

−
∫ j/N

(j−1)/N

KIN
1

(α, y) dyη2(z, xj)

∣∣∣∣∣ ,
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where: KIN
1

(x, y) =
∑IN

1
I1=−1

∑
I2

ψI(x)ψI(y)1{| 1
N

∑N
j=1 ψI( j

N )η1(z,xj)|>tN} looks like the pro-
jection kernel on the space VIN

1
generated by (ψI)−1≤I1≤IN

1 , I2∈Z (see Appendix B).
To upper bound T1, let us write:

T1 ≤
N∑

j=1

∫ j/N

(j−1)/N

∣∣∣KIN
1

(α, y)
∣∣∣ dy |η2(z, xj)|

≤ M

∫ 1

0

IN
1∑

I1=−1

∑

I2

|ψI(α)||ψI(y)|dy ≤ MC,

by using the Concentration Assumption (H) (introduced in Paragraph 1.3.2).
Let us now work on T2:

T2 ≤
N∑

j=1

∫ j/N

(j−1)/N

∣∣∣∣∣∣

IN
1∑

I1=−1

∑

I2∈Z
ψI (α)ψI

(
j

N

)
1{| 1

N

∑N
j=1 ψI( j

N )η1(z,xj)|>tN} −KIN
1

(α, y)

∣∣∣∣∣∣
|η2(z, xj)| dy

≤ M

N∑

j=1

∫ j/N

(j−1)/N

IN
1∑

I1=−1

∑

I2

|ψI(α)|
∣∣∣∣ψI

(
j

N

)
− ψI(y)

∣∣∣∣ |1{| 1
N

∑N
j=1 ψI( j

N )η1(z,xj)|>tN}|dy

Since ψ is Lipschitz continuous (we denote by Lψ its Lipschitz norm), ψI1,I2 is Lipschitz
continuous with constant 23I1/2Lψ. Moreover, using compact supported wavelets implies
that the sum on I2 corresponds to a finite number C of non nul terms that does not depend
on I1. Resuming the above computation gives:

T2 ≤ M
N∑

j=1

IN
1∑

I1=−1

∑

I2∈Z
|ψI1,I2 (α)| 23I1/2Lψ

∣∣∣∣∣
∫ j/N

j−1/N

(
j

N
− y

)
dy

∣∣∣∣∣

≤ M
N∑

j=1

IN
1∑

I1=−1

C 2I1/2||ψ||∞23I1/2Lψ
1

2N2

≤ C M
22IN

1 ||ψ||∞Lψ

2N
.

From the choice of IN
1 such that 2IN

1 ∼
√

N
κ log N , we have 22IN

1

N → 0. ¥

3.1.2 Spectral Gap Inequality for the Transition Kernel associated with a
discretization step

Lemma 3.4. For any x ∈ RN , for the transition kernel S defined in (24), and for ρ1 an
upper bound of:

sup
x∈RN

max
i∈[1,N ]





 1

N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN
σ(xi, xj)




2

 ,

δxS satisfies a Poincaré inequality with constant ρ1∆t:

∀f ∈ C1
b (RN ,R), V arδxS(f) ≤ ρ1 ∆t S

(|∇f |2) (x). (43)

2
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Proof. From (24), δx S is the law of a Gaussian variable with expectation:

x +


 1

N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )b(xi,xj)|>tN
b(xi, xj)∆t




1≤i≤N

,

and with covariance matrix the diagonal matrix:

diag





 1

N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN
σ(xi, xj)




2

∆t




1≤i≤N

.

(Lemma 3.3 tells us that the terms in the expectation and of the covariance matrix are
well-defined.)

The conclusion is a consequence of Remark 6. ¥

3.1.3 Permutation Formula

We now want to obtain a Poincaré inequality for the transition kernels of our particle
system (23) between 0 and any discretization time tk. The reiteration we will consider in
Paragraph 3.1.4 will let terms like δx|∇Skf |2 appear. To deal with these terms and prove
a Poincaré inequality for δxSk, an interversion formula of ∇ and S is established.

Lemma 3.5. For the transition kernel S defined in (24) and for any probability law µ(dx)
on RN , we have for almost every real κ (that appears in the definition tN = κ log N√

N
):

µ(dx)− a.s., ∃ρ2 > 0, ∀f ∈ C1
b (RN ,R), |∇Sf(x)|2 < ρ2 S |∇f |2 (x). (44)

2

Proof. Let us compute ∇Sf(x). Looking at the definition (24), we would like to take
the derivatives under the expectation. The term under the expectation is however not
differentiable everywhere since discontinuities originate from the thresholding.

However, the set
{

κ > 0 | µ
(∣∣∣ 1

N

∑N
j=1 ψI

(
j
N

)
b (xi, xj)

∣∣∣ = κ log N√
N

)
> 0

}
is at most

countable. Let us choose κ > 0, such that µ
(∣∣∣ 1

N

∑N
j=1 ψI

(
j
N

)
b (xi, xj)

∣∣∣ = κ log N√
N

)
= 0.

Then, for f bounded and smooth enough, we can µ(dx)-almost surely take the derivatives
under the expectation:

|∇Sf(x)|
≤ E

∣∣∣∣A(x)∇f

(
x +

(
1
N

∑N
j=1

∑IN
1

I1=−1

∑
I2

ψI

(
i
N

)
ψI

(
j
N

)
1| 1

N

∑N
j=1 ψI( j

N )b(xi,xj)|>tN
b(xi, xj)∆t

)
1≤i≤N

+
(

1
N

∑N
j=1

∑IN
1

I1=−1

∑
I2

ψI

(
i
N

)
ψI

(
j
N

)
1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN
σ(xi, xj)

√
∆tBi

)
1≤i≤N

)∣∣∣∣ ,

(45)
where the (Bi)i∈[1,N ] are centered and reduced Gaussian variables, and where A(x) is a
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random matrix that can be decomposed into: A(x) = Id+M(x)+D(x), with: ∀(i, j) ∈ [1, N ]

Mij(x) =
1
N

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )b(xi,xj)|>tN
∇yb(xi, xj)∆t

+
1
N

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN
∇yσ(xi, xj)

√
∆tBi,

and:

D(x) = diag


 1

N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )b(xi,xj)|>tN
∇xb(xi, xj)∆t

+
1
N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN
∇xσ(xi, xj)

√
∆tBi




1≤i≤N

.

Recall that: ∀R ∈ MN×N (R),∀v ∈ RN , |Rv|2 ≤ ρ(RR∗)2|v|2, where ρ(RR∗) is the
greatest eigenvalue of RR∗. Let us hence look for an upper bound for ρ(A(x)A∗(x)).

Using Lemma 3.3 and the fact that b and σ have bounded derivatives, we deduce the
following upper bound:

sup
x∈RN

sup
i∈[1,N ]

|Dii(x)| ≤ C sup
i∈[1,N ]

(||∇xb||∞∆t + ||∇xσ||∞
√

∆t |Bi|).

On the other hand, we are also able to control the eigenvalues of M(x), thanks to
Hadamard’s Theorem (see [30]). Take λ(x) the greatest eigenvalue of M(x) in absolute
value:

|λ(x)| ≤ sup
x∈RN

max
i∈[1,N ]

N∑

j=1

|Mij(x)|

≤ sup
x∈RN

max
i∈[1,N ]


 1

N

N∑

j=1

∣∣∣∣∣∣

IN
1∑

I1=−1

∑

I2∈Z
ψI

(
i

N

)
ψI

(
j

N

)
∇yb(xi, xj)1| 1

N

∑N
j=1 ψI( j

N )b(xi,xj)|>tN
∆t

∣∣∣∣∣∣

+
1
N

N∑

j=1

∣∣∣∣∣∣

IN
1∑

I1=−1

∑

I2∈Z
ψI

(
i

N

)
ψI

(
j

N

)
∇σy(xi, xj)1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN

√
∆tBi

∣∣∣∣∣∣


 . (46)

Lemma 3.3 again assures us that the spectre of M(x) is uniformly controlled in x by:

sup
i∈[1,N ]

C
(
||∇yb||∞∆t + ||∇yσ||∞

√
∆t |Bi|

)
.

The spectre of A(x)A∗(x) is therefore controlled by:

sup
i∈[1,N ]

(
1 + C

(
(||∇xb||∞ + ||∇yb||∞)∆t + (||∇xσ||∞ + ||∇yσ||∞)

√
∆t |Bi|

))2
,

which is almost surely finite. Moreover:

E
(
|ρ(A(x)A∗(x))|2

)

≤ sup
i∈[1,N ]

E
(
1 + C

(
(||∇xb||∞ + ||∇yb||∞)∆t + (||∇xσ||∞ + ||∇yσ||∞)

√
∆t |Bi|

))4

≤ ρ2 < ∞. (47)
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Resuming the preceding computation (45) gives that µ(dx)− a.s.:

|∇Sf(x)|

≤ Eν


|ρ(A(x)A∗(x))|

∣∣∣∣∣∣
∇f


x +


 1

N

N∑
j=1

IN
1∑

I1=−1

∑
I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )b(xi,xj)|>tN
b(xi, xj)∆t




1≤i≤N

+


 1

N

N∑
j=1

IN
1∑

I1=−1

∑
I2

ψI

(
i

N

)
ψI

(
j

N

)
1| 1

N

∑N
j=1 ψI( j

N )σ(xi,xj)|>tN
σ(xi, xj)

√
∆tBi




1≤i≤N




∣∣∣∣∣∣




≤
√
Eν (ρ2(A(x)A∗(x)))

√
S |∇f |2 ≤ √

ρ2

√
S |∇f |2.

¥

3.1.4 Spectral Gap Inequality for the Law of the Particle System at Discretiza-
tion Time tk

Now, we are ready to prove that, at each discretization time tk, the law of the particle
system (23) conditioned on its initial position x ∈ RN satisfies a Poincaré inequality:

Proposition 3.1. Consider the transition kernel S defined in (24). Then: ∃ρ1, ρ2 >
0, for almost every κ > 0, ∀x ∈ RN , ∀k ∈ [0,K], ∀f ∈ C1

b (RN ,R),

V arδxSk(f) ≤ ρ1 ∆t
1− ρk

2

1− ρ2
Sk

(|∇f |2) (x).

2

Proof. We follow here the computations in Talay and Malrieu [22].

V arδxSk(f) = Sk
(
f2

)
(x)− (

Skf(x)
)2

=
k∑

i=1

[
Si

((
Sk−if

)2
)

(x)− Si−1
((

Sk−i+1f
)2

)
(x)

]

=
k∑

i=1

Si−1
[
S

((
Sk−if

)2
)

(x)− (
S

(
Sk−if

)
(x)

)2
]

=
k∑

i=1

Si−1V arδxS

(
Sk−if

)

≤
k∑

i=1

Si−1ρ1 ∆t S
(|∇Sk−if |2) (x) (48)

≤
k∑

i=1

ρ1 ∆t ρk−i
2 Sk

(|∇f |2) (x) (49)

≤ ρ1 ∆t
1− ρk

2

1− ρ2
Sk

(|∇f |2) (x).

Inequality (48) is obtained with Lemma 3.4 and Inequality (49) comes from the use of
Lemma 3.5 with the measures µ = δxSi, i ∈ [1, k]. ¥

3.1.5 Generalization to Non-Dirac Initial Measures

Now, we generalize the result of Proposition 3.1 to the case where the initial condition at
time t = 0 is not a Dirac in x ∈ RN but any probability measure u0 ∈ P(RN ) (we have in
mind the law of

(
X̄

(i),N
0

)
i∈[1,N ]

).

23



Theorem 3.1. Let u0 be a probability measure that satisfy a Poincaré inequality with
constant c0: V aru0f ≤ c0

∫ |∇f |2du0. Consider a transition kernel S̃ on RN satisfying a
Poincaré inequality with constant ρ > 0 for every initial condition x ∈ RN : V ar

δxS̃
f ≤

ρ S̃
(|∇f |2) (x), and for which the following permutation inequality is available: u0(dx) −

a.s., |∇S̃f(x)|2 ≤ CS
(|∇f |2) (x).

Then, the measure u0S̃ satisfies a Poincaré inequality with constant: ρ + c0 C. 2

Proof. Take f ∈ C1
b (RN ,R). We have:

V aru0S̃f = 〈u0,
(
V arδxS̃f

)
〉+ V aru0

(
S̃f

)

≤ ρu0S̃
(|∇f |2) + c0u0

(
|∇S̃f |2

)

≤ (ρ + c0 C) u0S̃
(|∇f |2) .

We used the spectral gap inequality for u0 to obtain the first inequality and the permu-
tation formula to obtain the second one. ¥

Notice that in our numerical procedure, the particles at time t = 0 are independent.
Hence, the following tensorization lemma and Assumption 4) in Theorem 1.2 ensure that
the law of

(
X̄

(i),N
0

)
i∈[1,N ]

satisfies a spectral gap inequality with constant c0:

Lemma 3.6. Tensorization(see Ledoux [20]) Assume that the measures µ1, · · · , µN sat-
isfy Poincaré inequalities with constants C1, · · · , CN respectively. Then ⊗N

i=1µi satisfies a
Poincaré inequality with constant C ≤ maxi∈[1,N ] Ci. 2

We can finally deduce the spectral gap inequality we were looking for:

Corollary 3.2. Under the assumptions of Theorem 1.2, the law at discretization time
tk of the particle system defined in (23) satisfies a spectral gap inequality with constant:
Dk = ρ1∆t

1−ρk
2

1−ρ2
+ c0ρ

k
2. 2

3.1.6 End of Lemma 3.1’s Proof

We use Corollary 3.2 and the Concentration Phenomenon (Corollary 3.1) to obtain a first
inequality, that we will exploit to obtain Inequality (42) in Lemma 3.1.

Lemma 3.7. We consider the particle system (23) and assume that the law of (X̄(i),N
0 )i∈[1,N ]

satisfies a Poincaré inequality with constant upper bounded by c0. Then, we have: ∃C >
0, ∃C ′ > 0, ∀k ∈ [0,K], ∀N ∈ N, ∀I = (I1, I2) ∈ [−1, IN

1 ]× Z, ∀x ∈ R, ∀r > 0,

Pν
(∣∣∣β̂(b,tk)

I (x)− Eν
(
β̂

(b,tk)
I (x)

)∣∣∣ > r
)
≤ C exp

(
−

√
Nr

2C ′L
√

Dk

)
, (50)

where Dk = ρ1∆t
1−ρk

2
1−ρ2

+ c0 ρk
2 is a positive constant independent from N . (Recall that L

is the Lipschitz constant for b). 2

Proof. If f : R 7→ R is Lipschitz continuous with constant L, then the application:
F (x) = 1/N

∑N
j=1 ψI (j/N) f (xj) from RN to R is Lipschitz continuous with constant

C ′L/
√

N , where C ′ is an upper bound for the terms
√

1/N
∑N

j=1 ψ2
I (j/N) which con-

verge deterministically to
√∫

[0,1] ψ
2
I (x) dx upper bounded by 1, when N grows to ∞.
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We have indeed, using f Lipschitz and Cauchy-Schwarz inequality:
∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
f (xj)− 1

N

N∑

j=1

ψI

(
j

N

)
f (yj)

∣∣∣∣∣∣
≤ L√

N

√√√√ 1
N

N∑

j=1

ψ2
I

(
j

N

)√√√√
N∑

j=1

|xj − yj |2

≤ C ′L√
N
|x− x′|.

The result then follows from the use of the Concentration Phenomenon (Corollary 3.1)
with the Lipschitz function F since Corollary 3.2 tells us that the law at time tk of the
particle system satisfies a Poincaré inequality with constant Dk. ¥

Now let us prove Lemma 3.1. Our purpose is to extend inequality (50) by replacing
the parameter x with the random position of particle (i), X̄

(i),N
tk

. To achieve this, we will
show the tail bound somehow holds uniformly in x:

Proof of Lemme 3.1. Let r > 0, and let us define the intervalK = [Eν
(
X̄

(i),N
tk

)
−ς,Eν

(
X̄

(i),N
tk

)
+

ς] with ς > 0. From Corollaries 3.1 and 3.2, we deduce that:

Pν
(∣∣∣X̄(i),N

tk
− Eν

(
X̄

(i),N
tk

)∣∣∣ > ς
)
≤ Ce

− ς

2
√

Dk . (51)

Since K is a compact interval, it can be covered by a finite number of balls ]xl−%, xl+%[,
with (xl)l∈[1,`] a finite sequence of K and % > 0. It is possible to choose ` = [ς/%]+1, where
[.] stands for the integer part. Then:

Pν




∣∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
X̄

(i),N
tk

, X̄
(j),N
tk

)
− E


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

∣∣∣∣∣∣∣
> r




≤ Pν




∣∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
X̄

(i),N
tk

, X̄
(j),N
tk

)
− E


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

∣∣∣∣∣∣∣
> r

and X̄
(i),N
tk

∈ K
)

+ Pν
(
X̄

(i),N
tk

/∈ K
)

≤
∑̀

l=1

Pν




∣∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
X̄

(i),N
tk

, X̄
(j),N
tk

)
− E


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

∣∣∣∣∣∣∣
> r

and
∣∣∣X̄(i),N

tk
− xl

∣∣∣ ≤ %
)

+ Pν
(
X̄

(i),N
tk

/∈ K
)

. (52)
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For a given l ∈ [1, `], we have:
∣∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
X̄

(i),N
tk

, X̄
(j),N
tk

)
− E


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

) (
b
(
X̄

(i),N
tk

, X̄
(j),N
tk

)
− b

(
xl, X̄

(j),N
tk

))
∣∣∣∣∣∣

+

∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
xl, X̄

(j),N
tk

)
− Eν


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
xl, X̄

(j),N
tk

)



∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
Eν


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
xl, X̄

(j),N
tk

)

− Eν


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

∣∣∣∣∣∣∣

≤ 2C ′L
∣∣∣xl − X̄

(i),N
tk

∣∣∣

+

∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
xl, X̄

(j),N
tk

)
− Eν


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
xl, X̄

(j),N
tk

)



∣∣∣∣∣∣
, (53)

where C ′ is an upper bound for (
√

1/N
∑N

j=1 ψ2
I (j/N))N∈N. Thus, using Lemma 3.1:

Pν




∣∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
X̄

(i),N
tk

, X̄
(j),N
tk

)
− E


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

∣∣∣∣∣∣∣
> r

and
∣∣∣X̄(i),N

tk
− xl

∣∣∣ ≤ %
)

≤ Pν




∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
xl, X̄

(j),N
tk

)
− E


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
xl, X̄

(j),N
tk

)



∣∣∣∣∣∣
> r − 2C ′L%




= Pν
(∣∣∣β̂(b,tk)

I (xl)− E
(
β̂

(b,tk)
I (xl)

)∣∣∣ > r − 2C ′L%
)

≤ C e
−
√

N(r−2C′L%)
2C′L

√
Dk .

Thus:

Pν




∣∣∣∣∣∣∣
1
N

N∑

j=1

ψI

(
j

N

)
b
(
X̄

(i),N
tk

, X̄
(j),N
tk

)
− E


 1

N

N∑

j=1

ψI

(
j

N

)
b
(
x, X̄

(j),N
tk

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

∣∣∣∣∣∣∣
> r




≤ C

([
ς

%

]
+ 1

)
e
−
√

N(r−2C′L%)
2C′L

√
Dk + e

− ς

2
√

Dk . (54)

If we choose % = r
4C′L , we can upper bound the right hand side of (54) by:

f(ς) = 4C ′CL
ς

r
e
−

√
Nr

4C′L√Dk + e
− ς

2
√

Dk .

The derivative in ς of this bound vanishes for:

ς0 = 2
√

Dk log
(

r

8C ′CL
√

Dk

)
+
√

Nr

2C ′L
,

and:

f(ς0) ≤ C

(
8C ′L

√
Dk

r
log

(
r

8C ′CL
√

Dk

)
+ 2

√
N +

8C ′CL
√

Dk

r

)
e
−

√
Nr

4C′L√Dk .
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Let us finally choose r = κ log N/(4
√

N), then:

f(ς0) ≤ C

N
κ

16C′L
√

Dk

(
24C ′L

√
Dk

√
N

κ log N
log

(
κ log N

24C ′CL
√

Dk

√
N

)
+ 2

√
N +

24C ′CL
√

Dk

√
N

κ log N

)

≤ C

N
κ

16C′L
√

Dk
− 1

2
.

Choosing:

κ > 16C ′L
√

Dk

(
γ +

1
2

)
, (55)

allows us to obtain the announced result. ¥

3.2 Proof of Lemma 3.2

Recall that β̄
(b,tk)
I (x) and β̂

(b,tk)
I (x) are defined in (28) and (22) respectively. We can rewrite

them as:

β̄
(b,tk)
I (X̄(i),N

tk
) = Eν


 1

N

N∑

j=1

ψI (G(θj))Eν
(
b(x, X̄ .,N

tk
(θ)) | θ = θj

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

Eν
(
β̂

(b,tk)
I (x)

)∣∣∣
x=X̄

(i),N
tk

= Eν


 1

N

N∑

j=1

ψI (GN (θj))Eν
(
b(x, X̄ .,N

tk
(θ)) | θ = θj

)



∣∣∣∣∣∣
x=X̄

(i),N
tk

.

Then:

A = Eν
(
β̂

(b,tk)
I (x)

)∣∣∣
x=X̄

(i),N
tk

− β̄
(b,tk)
I

(
X̄

(i),N
tk

)

=
1
N

N∑

j=1

Eν ([ψI (GN (θj))− ψI (G(θj))] ūb(tk, x, θj))|x=X̄i,N
tk

The immediate use of the Lipschitz continuity of ψI does not lead to the result we
are looking for, because the Lipschitz constant 23I1/2||ψ||∞ is not counterbalanced by
Eν ||GN − G||∞ ≤ C√

N
. We follow here some ideas in Kerkyacharian and Picard [18] and

use more deeply the structure of wavelets. The idea is to take advantage of the regularity
of α 7→ ūb(tk, x,G−1(α)) by an integration by parts-like formula.

To this purpose, let us recall that if ψ is a wavelet with compact support, then, there
exists a compact supported Lipschitz continuous function Ψ such that: ψ = ∆−h(Ψ) =
Ψ(.− h)−Ψ(.), with h = 2−1. Thus:

ψI = ∆−hI (ΨI), with hI = 2−I1−1 and ΨI(y) = 2I1/2Ψ(2I1y − I2).

Let us also introduce the following notations:

UN (α) =
1
N

N∑

i=1

1]−∞,α](G(θi))(= GN (G−1(α)).)

U
(−j)
N (α) =

1
N

N∑

i=1,i6=j

1]−∞,α](G(θi)) = UN (α)− 1{α≥G(θj)}
N

.

Recall the Dvoretsky-Kiefer-Wolfowitz inequality (DKW ) (see [13]):

∃K > 0, ∀λ > 0, Pν

(
sup

α∈[0,1]
|UN (α)− α| ≥ λ

)
≤ Ke−2Nλ2

. (56)
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Integrating this inequality in λ gives:

∃K > 0, Eν

(
sup

α∈[0,1]
|UN (α)− α|

)
≤ K

√
π

2N
. (57)

We are now ready to prove Lemma 3.2. We first use the independence of the (θj)j∈[1,N ]

and separate the term A into two parts. The first one (A1 in the sequel) allows us to carry
out the integration by parts mentioned previously. The second one (A2) is a residual term.

A =
1
N

N∑

j=1

Eν
(
[∆−hI

(ΨI)(UN (G(θj)))−∆−hI
(ΨI)(G(θj))]Eν

(
b(x, X̄ .,N (θ)) | θ = θj

))∣∣
x=X̄i,N

tk

= A1 + A2,

with:

A1 =
1
N

N∑

j=1

Eν

(∫ 1

0

∆−hI

(
ΨI

(
U

(−j)
N (.)

)
−ΨI(.)

)
(α)ūb(tk, x, G−1(α))

)∣∣∣∣
x=X̄i,N

tk

dα (58)

A2 =
1
N

N∑

j=1

Eν

(∫ 1

0

(
ΨI(U

(−j)
N (α)− hI)−ΨI(U

(−j)
N (α− hI))

)
ūb(tk, x,G−1(α))dα

)∣∣∣∣
x=X̄i,N

tk

+
1
N

N∑

j=1

Eν

(∫ 1

0

(
ΨI

(
U

(−j)
N (α)

)
−ΨI

(
U

(−j)
N (α) +

1
N

))
ūb(tk, x, G−1(α))dα

)∣∣∣∣
x=X̄i,N

tk

dα.(59)

We first upper bound A1 defined in (58). Using an integration by parts formula as well
as the properties of MRAs on an interval (see Cohen et al. [7]), we have:

A1 =
1
N

N∑

j=1

Eν

(∫ 1

0

(
ΨI

(
U

(−j)
N (α)

)
−ΨI(α)

)
∆hI

ūb(tk, x,G−1(.))(α)dα

)∣∣∣∣
x=X̄i,N

tk

,

Thanks to Lemma 2.2, the application α 7→ ūb(tk, x,G−1(α)) is s-Hölder continuous
with s > 1/2 for every x ∈ R. We thus have:

|A1| ≤ C
√

hI

N

N∑

j=1

∣∣∣∣Eν

(∫ 1

0

(
ΨI

(
U

(−j)
N (α)

)
−ΨI(α)

)
dα

)∣∣∣∣ . (60)

Let us introduce the following set:

BN (ς) =

{
sup

α∈[0,1]
|UN (α)− α| ≥ ς

√
log N

N

}
, (61)

where the constant ς has to be properly chosen (in the sequel, we will be lead to choose
ς >

√
3/8). Using DKW (56) yields:

Pν (BN (ς)) ≤ K

N2ς2
. (62)

Then: ∣∣∣∣Eν

(∫ 1

0

(
ΨI

(
U

(−j)
N (α)

)
−ΨI(α)

)
dα

)∣∣∣∣ ≤ A
(j)
11 + A

(j)
12 , (63)

where:

A
(j)
11 = Eν

(∫ 1

0

∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI(α)

∣∣∣ dα 1BN (ς)

)

A
(j)
12 = Eν

(∫ 1

0

∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI(α)

∣∣∣ dα 1Bc
N (ς)

)
.
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Using (62), we obtain the following bound for A
(j)
11 :

A
(j)
11 ≤ 2× 2I1/2||Ψ||∞ Pν (BN (ς)) ≤ 2× 2I1/2||Ψ||∞K

N2ς2
. (64)

Now consider the term A
(j)
12 . On the set BN (ς), we have:

sup
α∈[0,1]

|U (−j)
N (α)− α| ≤ sup

α∈[0,1]
|UN (α)− α|+ 1

N
≤ ς

√
log N

N
+

1
N

.

Thus, the support of α 7→ Ψ
(
U

(−j)
N (α)

)
−ΨI(α) is included in a compact interval of length

C(ς) depending only on ς, Ψ and N . For any double index I ∈ [−1, IN
1 ]× Z, there exists

an interval II of length C(ς)2−I1 such that:
∫ 1

0

∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI(α)

∣∣∣ dα 1Bc
N (ς) =

∫

II

∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI(α)

∣∣∣ dα 1Bc
N (ς). (65)

Thus:

A
(j)
12 ≤ 23I1/2LΨEν

(∫

II

∣∣∣U (−j)
N (α)− α

∣∣∣ dα 1Bc
N (ς)

)

≤ 23I1/2LΨEν

(
sup

α

∣∣∣U (−j)
N (α)− α

∣∣∣
)

C(ς)2−I1

≤ 2I1/2LΨC(ς)K
√

π

2N
, (66)

where the third inequality has been obtained thanks to (57).

Therefore, from (60), (63), (64) and (66) we deduce:

|A1| ≤ C

(
1

N2ς2
+

1√
N

)
≤ C√

N
, (67)

if we choose ς such that ς > 1/2.

Now turn to the residual term A2 defined in (59). We consider as before the set BN (ς)
defined in (61):

|A2| ≤ ||b||∞
N

N∑

j=1

Eν

(∫ 1

0

∣∣∣ΨI(U
(−j)
N (α)− hI)−ΨI(U

(−j)
N (α− hI))

∣∣∣ dα

)

+
||b||∞

N

N∑

j=1

Eν

(∫ 1

0

∣∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI

(
U

(−j)
N (α) +

1
N

)∣∣∣∣ dα

)

≤ ||b||∞
N

N∑

j=1

[
A

(j)
21 + A

(j)
22

]
, (68)
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where:

A
(j)
21 = Eν

(∫ 1

0

(∣∣∣ΨI(U
(−j)
N (α)− hI)−ΨI(U

(−j)
N (α− hI))

∣∣∣

+
∣∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI

(
U

(−j)
N (α) +

1
N

)∣∣∣∣
)

dα1BN (ς)

)

A
(j)
22 = Eν

(∫ 1

0

(∣∣∣ΨI(U
(−j)
N (α)− hI)−ΨI(U

(−j)
N (α− hI))

∣∣∣

+
∣∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI

(
U

(−j)
N (α) +

1
N

)∣∣∣∣
)

dα1Bc
N (ς)

)
.

We have for A
(j)
21 :

A
(j)
21 ≤ 4× 2I1/2||Ψ||∞Pν (BN (ς)) ≤ 4× 2I1/2||Ψ||∞K

N2ς2
. (69)

Now let us study the term A
(j)
22 . Similarly to (65), we have:

A
(j)
22 = Eν

(∫

II

(∣∣∣ΨI(U
(−j)
N (α)− hI)−ΨI(U

(−j)
N (α− hI))

∣∣∣

+
∣∣∣∣ΨI

(
U

(−j)
N (α)

)
−ΨI

(
U

(−j)
N (α) +

1
N

)∣∣∣∣
)

dα1Bc
N (ς)

)

≤ 23I1/2LΨC(ς)2−I1 sup
α∈[0,1]

(
Eν

∣∣∣∣U
(−j)
N (α)− U

(−j)
N (α− hI)− N − 1

N
hI

∣∣∣∣ +
hI + 1

N

)
.

Using the Cauchy-Schwarz inequality then the independence of (θi)i∈[1,N ]:

Eν

∣∣∣∣U
(−j)
N (α)− U

(−j)
N (α− hI)− N − 1

N
hI

∣∣∣∣ ≤

√√√√√Eν





 1

N

N∑

i=1,i6=j

(
1]α−hI ,α]G(θi)− hI

)



2


≤
√

1
N

V ar
(
1]α−hI ,α]G(θ)

)

≤
√

hI(1− hI)
N

.

Then, we finally have:

A
(j)
22 ≤ 2I1/2LΨC(ς)

(√
hI(1− hI)

N
+

hI + 1
N

)

≤ C

(
1√
N

+
2I1/2

N

)
. (70)

From (68), (69), (70), and as I1 ∈ [1, IN
1 ]:

|A2| ≤ C

(
1√

log NN2ς2−1/4
+

1√
N

+
1√

log N N3/4

)
≤ C√

N
, (71)

if we choose ς such that ς >
√

3/8.

From (67), (71), and if we choose ς >
√

3/8, we conclude that:

|A| ≤ C√
N

,

and Lemma 3.2 is proved. ¥
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4 Proof of Corollary 2.1

Let us now prove Corollary 2.1. Since:

Eν

(∣∣∣ûb(tk, X̄
(i),N
tk

, θ(i))− ūb(tk, X̄
(i),N
tk

, θ(i))
∣∣∣
2
)

≤ Eν

(
sup

α∈[0,1]

∣∣∣ûb(tk, X̄
(i),N
tk

, G−1(α))− ūb(tk, X̄
(i),N
tk

, G−1(α))
∣∣∣
2
)

,

≤ 2Eν


 sup

α∈[0,1]

∣∣∣∣∣∣
ûb(tk, X̄

(i),N
tk

, G−1(α))−
IN
1∑

I1=−1

∑

I2

β̃
(b,tk)
I (X̄(i),N

tk
)ψI(G(G−1(α)))

∣∣∣∣∣∣

2



+ 2Eν


 sup

α∈[0,1]

∣∣∣∣∣∣

IN
1∑

I1=−1

∑

I2

β̃
(b,tk)
I (X̄(i),N

tk
)ψI(α)− ūb(tk, X̄

(i),N
tk

, G−1(α))

∣∣∣∣∣∣

2

 , (72)

it appears that we can conclude with a proof similar to the classical computation of uni-
form convergence rates for wavelet regression estimators (see Donoho et al.). We first
give a lemma allowing to control some moments, then we upper bound the first term in
the right hand side of (72) thanks to Lemma 4.2 and the second term thanks to Lemma 4.3.

Lemma 4.1. Under the assumptions of Lemma 2.1, we have: ∀γ > 0, ∃N0, C > 0, ∀N ≥
N0, ∀i ∈ [1, N ], ∀I = (I1, I2) ∈ [−1, IN

1 ]×Z, ∀k ∈ [0,K], ∃κ = κ(γ, T, ∆t, b, σ, φ, ψ) (as in
Lemma 2.1),

Pν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)| ≥ κ log N

2
√

N

)
≤ C

log NNγ−1/2
. (73)

Moreover, if we choose γ > 7/2, we can deduce from the preceding inequality (73) that:
∀p ∈ [1, 6],

Eν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)|p

)
≤ C(log N)p

Np/2
. (74)

2

Proof. The tail upper bound of Lemma 2.1 implies that:

Pν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)| ≥ κ log N

2
√

N

)

≤
∑

I2

Pν

(
|β̂(b,tk)

I (X̄(i),N
tk

)− β̄
(b,tk)
I (X̄(i),N

tk
)| ≥ κ log N

2
√

N

)

≤ C2I1Pν

(
|β̂(b,tk)

I (X̄(i),N
tk

)− β̄
(b,tk)
I (X̄(i),N

tk
)| ≥ κ log N

2
√

N

)

≤ C

log NNγ−1/2
,

since the number of non nul coefficients for a given level I1 is of order 2I1 when we consider
MRAs generated by compact supported wavelets. From the preceding inequality, we have:
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∀p ≥ 1,

Eν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)|p

)

≤ tpN
2p

P ν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)| < tN

2

)

+ (2C ′)p||b||p∞Pν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)| ≥ tN

2

)

≤ κp(log N)p

2pNp/2
+

(2C ′)p||b||p∞
log NNγ−1/2

,

since supI2 |β̂
(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)| is bounded by 2C ′||b||∞, where C ′ is an upper

bound for
√

1/N
∑N

j=1 ψ2
I (j/N) that converges to 1. The choice of γ > 7/2 gives the

desired conclusion. ¥

Lemma 4.2. Under the assumptions of Theorem 1.2, and with the choice of κ for the
threshold tN as in Lemma 2.1: ∃N0, C > 0, ∀N ≥ N0, ∀i ∈ [1, N ], ∀I = (I1, I2) ∈ [−1, IN

1 ] ×
Z, ∀k ∈ [0,K],

Eν


 sup

α∈[0,1]

∣∣∣∣∣∣
ûb(tk, X̄

(i),N
tk

, G−1(α))−
IN
1∑

I1=−1

∑

I2

β̃
(b,tk)
I (X̄(i),N

tk
)ψI(G(G−1(α)))

∣∣∣∣∣∣

2

 ≤ C

(
log N√

N

) 4s
1+2s

.

2

Lemma 4.3. Under the assumptions of Theorem 1.2, and with the choice of κ for the
threshold tN as in Lemma 2.1: ∃N0, C > 0, ∀N ≥ N0, ∀i ∈ [1, N ], ∀I = (I1, I2) ∈ [−1, IN

1 ] ×
Z, ∀k ∈ [0,K],

Eν


 sup

α∈[0,1]

∣∣∣∣∣∣

IN
1∑

I1=−1

∑

I2

β̃
(b,tk)
I (X̄(i),N

tk
)ψI(α)− ūb(tk, X̄

(i),N
tk

, G−1(α))

∣∣∣∣∣∣

2

 ≤ C(log N)2

(
log N√

N

) 4s
1+2s

.

2

Let us notice that the convergence rates depend on the regularity s of α 7→ ūb(tk, x, G−1(α))
(see Lemma 2.2). This was to be expected, since this regularity can be traduced in term of
properties of the wavelet coefficients β̄

(b,tk)
I . Recall indeed that when φ and ψ satisfy As-

sumptions (H) and (M) (see Paragraph 1.3.2), the wavelet coefficients βI of any s-Hölder
continuous function f satisfy:

∃C > 0, ∀I1 ≥ −1, sup
I2

|βI1I2 | ≤ C 2−I1(s+ 1
2). (75)

4.1 Proof of Lemma 4.2

Let us introduce some notations. We write ∆I,N (a) for ψI(G(a)) − ψI(GN (a)). As we
deal with compact supported wavelets, for any given I1, the number of index I2 such
that ∆I,N (a) does not vanish is finite and does not depend on I1. Since ψI is Lipschitz
continuous with constant Lψ23I1/2, we notice that:

∀p ≥ 1, Eν ||∆I,N ||p∞ ≤ C 23I1p/2

Np/2
. (76)
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We are now ready to start the proof of Lemma 4.2:

Eν


‖ûb(tk, X̄

(i),N
tk

, G−1(α))−
IN
1∑

I1=−1

∑

I2

β̃
(b,tk)
I (X̄(i),N

tk
)ψI(G(G−1(α)))‖2∞




≤ IN
1

IN
1∑

I1=−1

E

(
‖

∑

I2

β̃
(b,tk)
I (X̄(i),N

tk
)(ψI ◦GN − ψI ◦G) ‖2∞

)
.

The number C of non nul terms in the sum
∑

I2
is finite and depends only on ψ and

φ. Thus, we have:

||
∑

I2

β̃
(b,tk)
I (X̄(i),N

tk
)∆I,N (a)||2∞ ≤ C sup

I2

|β̃(b,tk)
I (X̄(i),N

tk
)|2||∆I,N ||2∞ ≤ (1) + (2) + (3),

where:

(1) = C sup
I2

∣∣∣β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)
∣∣∣
2

1{|β̂(b,tk)
I (X̄

(i),N
tk

)|≥tN}1{|β̄(b,tk)
I (X̄

(i),N
tk

)|≤tN /2}||∆I,N ||2∞

(2) = C sup
I2

∣∣∣β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)
∣∣∣
2

1{|β̂(b,tk)
I (X̄

(i),N
tk

)|≥tN}1{|β̄(b,tk)
I (X̄

(i),N
tk

)|>tN /2}||∆I,N ||2∞

(3) ≤ C sup
I2

∣∣∣β̄(b,tk)
I (X̄(i),N

tk
)
∣∣∣
2

1{|β̂(b,tk)
I (X̄

(i),N
tk

)|≥tN}||∆I,N ||2∞.

Let us work on Term (1):

Eν (1) = Eν

(
sup
I2

∣∣∣β̂(b,tk)
I (X̄

(i),N
tk

)− β̄
(b,tk)
I (X̄

(i),N
tk

)
∣∣∣
2
1{|β̂(b,tk)

I
(X̄

(i),N
tk

)|≥tN}
1{|β̄(b,tk)

I
(X̄

(i),N
tk

)|≤tN /2}‖∆I,N‖2∞
)

≤
(
Eν

(
sup
I2

∣∣∣β̂(b,tk)
I (X̄

(i),N
tk

)− β̄
(b,tk)
I (X̄

(i),N
tk

)
∣∣∣
6
))1/3 (

P

(
sup
I2

∣∣∣β̂(b,tk)
I (X̄

(i),N
tk

)− β̄
(b,tk)
I (X̄

(i),N
tk

)
∣∣∣ ≥ tN

2

))1/3

× (
Eν

(‖∆I,N‖6∞
))1/3

.

Using Lemma 4.1 and (76), we obtain that:

Eν (1) ≤ C
(log N)2

N
× 1

(log N)1/3Nγ/3−1/6
× 23I1

N
≤ C

23I1(log N)5/3

N11/6+γ/3
.

Hence:

IN
1

IN
1∑

I1=−1

Eν (1) ≤ C

(log N)1/3 N1/3+γ/3
≤ C

(
log N√

N

) 4s
1+2s

, (77)

certainly if we choose γ such that 1/3 + γ/3 > 2s/(1 + 2s) i.e. γ > (4s − 1)/(1 + 2s).
This is the case if we choose γ > 7/2 as in Lemma 4.1, since ∀s > 1/2, (4s−1)/(1+2s) < 2.

Now, consider Term (2):

Eν

(
sup
I2

∣∣∣β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)
∣∣∣
2

1{|β̂(b,tk)
I (X̄

(i),N
tk

)|≥tN}1{|β̄(b,tk)
I (X̄

(i),N
tk

)|>tN /2}‖∆I,N‖2∞
)

≤
(
Eν

(
sup
I2

∣∣∣β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)
∣∣∣
6
))1/3 (

Pν

(
sup
I2

|β̄(b,tk)
I (X̄(i),N

tk
)| > tN/2

))1/3

× (
Eν

(‖∆I,N‖6∞
))1/3

≤ C
(log N)2

N
×

(
Eν

(
sup
I2

26(β̄(b,tk)
I (X̄(i),N

tk
))6

t6N

))1/3

× 23I1

N
.
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Since α 7→ ūb(tk, x, G−1(α)) is s-Hölder continuous for all x ∈ R, we can use (75). Thus,
if 1/2 < s < 1:

IN
1

IN
1∑

I1=−1

Eν(2) ≤ C
log N22IN

1 (1−s)

N
≤ C

(
log N√

N

)2s

≤ C

(
log N√

N

) 4s
1+2s

,

since 2/(1 + 2s) < 1. If s ≥ 1, we have:

IN
1

IN
1∑

I1=−1

Eν(2) ≤ C

(
log N√

N

)2

≤ C

(
log N√

N

) 4s
1+2s

,

since 2s/(1 + 2s) < 1.

Let us finally work on the expectation of term (3):

Eν

(
sup
I2

∣∣∣β̄(b,tk)
I (X̄(i),N

tk
)
∣∣∣
2

1{|β̂(b,tk)
I (X̄

(i),N
tk

)|≥tN}‖∆I,N‖2∞
)

≤ C

√
Eν

(
sup
I2

∣∣∣β̄(b,tk)
I (X̄(i),N

tk
)
∣∣∣
4
)

23I1

N

≤ 22I1(1−s)

N
.

Thus, if 1/2 < s < 1:

IN
1

∑

IN
1

Eν (3) ≤ C
log N22IN

1 (1−s)

N
≤ C

(
log N√

N

) 4s
1+2s

.

And if s ≥ 1:

IN
1

∑

IN
1

Eν (3) ≤ C

(
log N√

N

)2

≤ C

(
log N√

N

) 4s
1+2s

.

¥

4.2 Proof of Lemma 4.3

The proof of Lemma 4.3 is very similar to the usual computation of the uniform convergence
rate for wavelet regression estimators (see Donoho et al. [11]). The main difference is that
the term we upper bound is not really a convergence rate. It rather describes the difference
between the regression approximation α 7→ ûb(tk, X̄

(i),N
tk

, G−1(α)) and the function α 7→
ūb(tk, X̄

(i),N
tk

, G−1(α)), which is random (as the second argument x is taken at the random
position X̄

(i),N
tk

) and depends on N . We have:

Eν


||

IN
1∑

I1=−1

∑

I2

β̂
(b,tk)
I (X̄(i),N

tk
)1{|β̂(b,tk)

I (X̄
(i),N
tk

)|≥tN}
ψI(G(a))− ūb(tk, X̄

(i),N
tk

, a)||2∞




≤ C [(1) + (2) + (3) + (4) + (5)] ,
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where:

(1) = Eν


||

IN
1∑

I1=−1

∑

I2

1{|β̄(b,tk)
I (X̄

(i),N
tk

)|≤tN /2, |β̂(b,tk)
I (X̄

(i),N
tk

)|<tN}β̄
(b,tk)
I (X̄(i),N

tk
)ψI ||2∞




(2) = Eν


||

IN
1∑

I1=−1

∑

I2

1{|β̄(b,tk)
I (X̄

(i),N
tk

)|>tN /2, |β̂(b,tk)
I (X̄

(i),N
tk

)|<tN}β̄
(b,tk)
I (X̄(i),N

tk
)ψI ||2∞




(3) = Eν


||

IN
1∑

I1=−1

∑

I2

1{|β̄(b,tk)
I (X̄

(i),N
tk

)|≤tN /2, |β̂(b,tk)
I (X̄

(i),N
tk

)|≥tN}

(
β̂

(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)
)

ψI ||2∞




(4) = Eν


||

IN
1∑

I1=−1

∑

I2

1{|β̄(b,tk)
I (X̄

(i),N
tk

)|>tN /2, |β̂(b,tk)
I (X̄

(i),N
tk

)|≥tN}

(
β̂

(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)
)

ψI ||2∞




(5) = Eν


||

∑

I1≥IN
1

∑

I2

β̄
(b,tk)
I (X̄(i),N

tk
)ψI ||2∞


 .

Using (75) and s + 1/2 ≥ 1, we deduce that:

(5) ≤ C2−2IN
1 (s+1/2)2IN

1 ≤ C

(
log N√

N

)2s

≤ C

(
log N√

N

) 4s
1+2s

. (78)

Now, let us consider Term (1).

(1) ≤ C IN
1

IN
1∑

I1=−1

2I1 ||ψ||2∞Eν

(
sup
I2

1{|β̄(b,tk)

I (X̄
(i),N
tk

)|≤tN/2}|β̄
(b,tk)
I (X̄(i),N

tk
)|2

)
.

For 0 < r < 2, we have:

1{|β̄(b,tk)

I (X̄
(i),N
tk

)|≤tN/2}|β̄
(b,tk)
I (X̄(i),N

tk
)|2 ≤

(
tN
2

)2−r

|β̄(b,tk)
I (X̄(i),N

tk
)|r

≤ C

(
log N√

N

)2−r

2−I1r(s+1/2).

We deduce, with r = 2/(2s + 1):

(1) ≤ C IN
1

IN
1∑

I1=−1

(
log N√

N

)2−r

2−I1r(s+1/2−1/r)

≤ C(log N)2
(

log N√
N

) 2s
2s+1

.

Now turn to Term (2). Using (75) again:

(2) ≤ C IN
1

IN
1∑

I1=−1

√
Pν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)| ≥ tN

2

)

×
√
Eν

(
sup
I2

|β̄(b,tk)
I (X̄(i),N

tk
)|4

)
‖ψI‖2

∞

≤ C IN
1

1√
log NNγ/2−1/4

IN
1∑

I1=−1

2−2I1s

≤ C(log N)3/2

Nγ/2−1/4
.
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Choosing γ such that γ/2 − 1/4 > 2s/(1 + 2s), i.e. γ > (5s + 1/2)/(1 + 2s), and this is
the case with γ > 7/2, implies that this term decreases faster than the rate announced in
Lemma 4.3.

Let us consider Term (3):

(3) ≤ C IN
1

IN
1∑

I1=−1

√
Eν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)|4

)

×
√
Pν

(
sup
I2

|β̂(b,tk)
I (X̄(i),N

tk
)− β̄

(b,tk)
I (X̄(i),N

tk
)| ≥ tN/2

)
||ψI ||2∞

≤ C IN
1

(log N)2

N

1√
log N Nγ/2−1/4

2IN
1

≤ C
(log N)3/2

Nγ/2+3/4
.

Again, choosing γ > (s − 3/2)/(1 + 2s) (this is the case when we choose γ > 7/2) allows
us to neglect this term.

Let us finally consider Term (4):

(4) ≤ C IN
1

IN
1∑

I1=−1

√
Pν

(
sup
I2

|β̄(b,tk)
I (X̄(i),N

tk
)| ≥ tN/2
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√
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I (X̄(i),N

tk
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2I1‖ψ‖2

∞.

Thanks to (75), we know that all the wavelet coefficient β̄
(b,tk)
I (X̄(i),N

tk
) vanish for I1 such

that 2−I1(s+1/2) < tN/2. Thus the sum in I1 is in fact a sum from −1 to I
(4)
1 only, where

I
(4)
1 is such that 2−I

(4)
1 (s+1/2) = tN/2. Thus:
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√
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(log N)2

N

(
tN
2

)− 2
1+2s
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log N√
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5 Application to the 2d Navier-Stokes Equation

5.1 2d Vortex Equation

The statistical two-dimensional Navier-Stokes equation models the velocity v = (v1, v2) of
a viscous incompressible fluid in the plane: P (dω)− a.s., ∀x = (x1, x2) ∈ R2, ∀t ∈ [0, T ],





∂v
∂t (t, x, θ) + (v · ∇)v(t, x, θ) = (σ2/2)∆v(t, x, θ)−∇p
∇v(t, x, θ) = 0
v(0, x, θ) = v0(x, θ)
L(θ) = ν.

(79)

In the above equation, p is the pressure and σ2/2 the viscosity (σ>0), which we assume
to be constant. The random initial condition v0 is as before parameterized by a random
variable θ defined on a probability space (Ω, P ) and with values in Θ ⊂ R (possibly R
itself). Detailed studies of the probabilistic approach for the Navier-Stokes equation with
deterministic initial condition have been carried by Marchioro and Pulvirenti [6] and by
Méléard in [26, 27, 28].

The probabilistic approach relies on the vortex equation which can be deduced from
the Navier-Stokes equation by considering the curl of the velocity: w = curl(v). We
consider the following evolution problem, where G is the 2 dimensional Poisson kernel (∀r >
0, G(r) = −(ln r)/(2π)) and K is defined by K(y) = ∇⊥G(|y|) = 1/(2π|y|2)(−y2, y1):

P (dω)− a.s., ∀x = (x1, x2) ∈ R2, ∀t ∈ [0, T ],




∂w
∂t (t, x, θ) = −(K ∗ w · ∇)w(t, x, θ) + (σ2/2)∆w(t, x, θ),
w(0, x, θ) = w0(x, θ)
L(θ) = ν.

(80)

A difficulty arises since the kernel K explodes at 0. To overcome this problem, we will
consider w0(x, θ) ∈ L1 ∩ L∞, the space of integrable bounded functions (see Marchioro-
Pulvirenti [6], Méléard [28]).

The velocity v can be recovered from the vortex w by: v = K ∗w. Then, the mean ve-
locity vector field associated with the Navier-Stokes equation with random initial condition
(79) at point x ∈ R2 and time T > 0 expresses as:

∀i ∈ {1, 2},
∫

R
vi(T, x, a)ν(da) =

∫

R
〈w(T, dy, a),Ki(x− y)〉ν(da)

= 〈I(mT ),Ki(x− .)〉. (81)

Our purpose is now to adapt the results of Part 1 to the special case of the vortex
equation (80), in order to compute the mean velocity vector field (81).

5.2 Regularized Equation

The vortex equation (80) is a McKean-Vlasov equation with: ∀x, y ∈ R2, ∀a ∈ Θ,

b(x, y) = K(x− y) =
1

2π|x− y|2
(

y2 − x2

x1 − y1

)

ub(t, x, a) = K ∗ w(t, x, a)
uσ(t, x, a) = σ.

Assumptions (A1) and (A2) are not satisfied, since K explodes at 0. Following Mar-
chioro and Pulvirenti [6] we regularize the equation to overcome this problem. Take ε > 0,
and consider the cut-off equation:
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∀t ∈ [0, T ], P (dω)−a.s.,





∂wε

∂t (t, x, θ) = − ((Kε ∗ wε).∇) wε(t, x, θ) + (σ2/2)∆wε(t, x, θ)
wε(0, x, θ) = w0(x, θ)
L(θ) = ν,

(82)
where the function Kε is defined by:

Kε(x) = ∇⊥Gε(|x|) =
(

G′
ε(|x|)

x1

|x| ,−G′
ε(|x|)

x2

|x|
)

, (83)

with:

Gε(|x|) =
{

G(|x|), if |x| ≥ ε,
extended in a C∞b way on B(0, ε).

It is possible to choose Gε such that its derivatives vanish at the origin and satisfy the
following inequalities:

∀r ≥ 0, |G(k)
ε (r)| ≤ sup

u≥ε
|G(k)(u)| ≤ 1

2πεk
, k ≥ 1. (84)

In particular, Kε is bounded by 1/2πε and Lipschitz continuous with constant 1/2πε2.

5.3 Weighted and Signed Initial Measures

Another difficulty lies in the fact that the vortex initial condition w0 is not necessarily a
probability density. The function w0 may take negative values and have a L1-norm that
differs from 1. Hence, Assumption (A3) also fails. We use a trick due to Jourdain [15] to
pass from a density function p0 to any w0 ∈ L1 ∩ L∞. We assume here that:

∃A > 0, P (dω)− a.s. (||w0(., θ)||L1 + ||w0(., θ)||L∞) < A. (85)

Let us introduce the bounded random function h defined by: P (dω)− a.s., ∀x ∈ R2,

h(x, θ) =
w0(x, θ)||w0(., θ)||L1

|w0(x, θ)|
= sign(w0(x, θ))× ||w0(., θ)||L1 or 0, with the convention

0
0

= 0. (86)

Then P (dω) − a.s., ∀x ∈ R2, w0(x, θ) = h(x, θ) |w0(x,θ)|
||w0(.,θ)||L1

with |w0(x,θ)|
||w0(.,θ)||L1

a probability
density.

Let us also define, for a probability transition measure Q(dx, a) on C([0, T ],R2) mea-
surable in a ∈ R, the family (Q̃t(dx, a))t≥0 of weighted signed transition measures on R2

measurable in a by: P (dω)− a.s., ∀B Borel subset of R2, ∀t ∈ [0, T ],

Q̃t(B, θ) = 〈Q(dx, θ), 1B(x(t))h(x(0), θ)〉. (87)

The following result from Jourdain [15] can be extended to the case of statistical solu-
tions by working conditionally to θ as in the proof of Theorem 1.1.

Proposition 5.1. (Jourdain [15]) If P (dω) − a.s. the marginals Qt(dx, θ) at time t of
Q(dx, θ) are absolutely continuous with respect to the Lebesgue measure on R2, then Q̃t(dx, θ)
is also P (dω)− a.s. absolutely continuous. 2
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5.4 Existence, Uniqueness and SDE Associated with the Regularized
Equation

Part 1’s general presentation can be adapted to the case of the regularized vortex equa-
tion (82) and we can extend the results obtained for a deterministic initial condition (see
Méléard [26, 27, 28]) to the case of statistical solutions by working conditionally to θ again.

Proposition 5.2. (Méléard [26]) There exists a unique weak function-solution of (82)
in the sense of Definition 1 and Remark 2, which we denote by (wε(t, ., θ))t∈[0,T ]. This

weak solution is the density process of
(
Q̃ε

t (dx, θ)
)

t∈[0,T ]
, associated as in (87) with the

weak-solution (Qε
t (dx, θ))t∈[0,T ] of the following nonlinear SDE: P (dω)− a.s., ∀t ∈ [0, T ],





Xε
t (θ) = X0(θ) + σWt +

∫ t

0
Kε ∗ Q̃ε

s(X
ε
s (θ), θ)ds

L(θ) = ν

L(X0(θ)) = |w0(x,θ)|dx
||w0(.θ)||L1

W is a Brownian motion independent of θ and of the initial condition X0(θ)
Qε

s(dx, θ) = L(Xε
s (θ)),

Q̃ε
s(dx, θ) is associated with Qε

s(dx, θ) as in (87).

(88)

Moreover, pathwise existence and uniqueness are available for SDE (88) (for a given Brownian
motion W , a given random parameter θ and a given initial condition X0(θ)). 2

5.5 Existence and Uniqueness of the Statistical Solution

Existence and uniqueness of a weak function-solution (w(t, ., θ))t∈[0,T ] for the original equa-
tion (80) hold by adapting again the proofs with deterministic initial condition (see Méléard
[26, 27, 28]).

Proposition 5.3. (Méléard [26])
(i) For a random initial condition w0(., θ) on L1(R2)∩L∞(R2), there exists a unique weak
function-solution (w(t, ., θ))t∈[0,T ] of (80) in the sense of Definition 1 and Remark 2. This
weak solution is the density process of (Q̃t(dx, θ))t∈[0,T ], associated as in (87) with the
weak-solution of the following nonlinear SDE: P (dω)− a.s., ∀t ∈ [0, T ],





Xt(θ) = X0(θ) + σWt +
∫ t

0
K ∗ Q̃s(Xs(θ), θ)ds

L(θ) = ν

L(X0(θ)) = |w0(x,θ)|dx
||w0(.θ)||L1

W is a Brownian motion independent of θ and of the initial condition X0(θ)
Qs(dx, θ) = L(Xs(θ)),
Q̃s(dx, θ) is associated with Qs(dx, θ) as in (87).

(89)

(ii) The function-solution (w(t, ., θ))t∈[0,T ] can be viewed as a random variable parameter-
ized by θ with values in the following space:

H =
{

(qt(x))t≤0 | ∀t ∈ [0, T ], qt ∈ L1 ∩ L∞, sup
t
||qt||L1 ≤ A, sup

t
||qt||L∞ ≤ A, A given by (85)

}
,

endowed with the complete norm: |||q||| = supt∈[0,T ] |||qt|||, with |||qt||| = ||qt||L1 + ||qt||L∞ . 2

The following lemma, from Méléard [26], is also still available. It shows that we can
approximate the weak function-solution w of (80) with the weak function-solution wε of
(82):

Lemma 5.1. (Méléard [26])Take ε′ > ε > 0. We have:

P (dω)− a.s., |||wε(., ., θ)− wε′(., ., θ)||| ≤ C ε′ exp(C T ). (90)

Inequality (85) tells us that the constant C depends only on A and not on ω. 2
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Using completeness of (H, |||.|||) and Lemma 5.1, we can show by adapting the proofs
in Méléard [26], that P (dω) − a.s., w(., ., θ) is the limit in H of wε(., ., θ) when ε → 0.
Letting ε → 0 in Lemma 5.1, we deduce that:

P (dω)− a.s., |||wε(., ., θ)− w(., ., θ)||| ≤ C ε exp(C T ). (91)

5.6 Particle Approximation for 〈I(mT ), f〉
Since P (dω)− a.s., Kε ∗ Q̃ε

s(X
ε
s (θ), θ) = E (h (X0(θ), θ) Kε(x−Xε

s (θ))) |x=Xε
s (θ), SDE (88)

can be rewritten as: P (dω)− a.s., ∀t ∈ [0, T ],




Xε
t (θ) = X0(θ) + σWt +

∫ t

0
Eν (h (X0(θ), θ)Kε(x−Xε

s (θ)) | θ) |x=Xε
s (θ)ds

L(θ) = ν

L(X0(θ)) = |w0(x,θ)|dx
||w0(.,θ)||L1

,

W is a Brownian motion independent of θ and of the initial condition X0(θ).

(92)

As in Part 1, we can now build a particle system similar to (23) in order to approximate
the law of the diffusion (92). To this purpose, we replace the conditional expectation by a
regression estimator.

We simulate N realizations (θi)i∈[1,N ] of θ, rank them, and associate with each of them
a particle with initial condition X̄

(i),N,ε
0 (θ(i)) of law |w0(x, θ(i))|dx/||w0(., θ(i))||L1 . We

compute the regressions component by component: ∀i ∈ [1, N ], ∀k ∈ [0,K],

X̄
(i),N,ε
tk

= X̄
(i),N,ε
tk−1

+ σ(W i
tk
−W i

tk−1
) +


 1

N

N∑

j=1

IN
1∑

I1=−1

∑

I2

ψI

(
i

N

)
ψI

(
j

N

)
h

(
X̄

(j),N,ε
0 , θ(j)

)

×




1| 1
N

∑N
j=1 ψI( j

N )h
(

X̄
(j),N,ε
0 ,θ(j)

)
K1

ε

(
X̄

(i),N,ε
tk−1

−X̄
(j),N,ε
tk−1

)
|>tN

K1
ε

(
X̄

(i),N,ε
tk−1

− X̄
(j),N,ε
tk−1

)

1| 1
N

∑N
j=1 ψI( j

N )h
(

X̄
(j),N,ε
0 ,θ(j)

)
K2

ε

(
X̄

(i),N,ε
tk−1

−X̄
(j),N,ε
tk−1

)
|>tN

K2
ε

(
X̄

(i),N,ε
tk−1

− X̄
(j),N,ε
tk−1

)




 ∆t. (93)

where ε > 0 is fixed and K1
ε (x) and K2

ε (x) are the first and second components of Kε(x).

Theorem 5.1. Under the following assumptions:

1. The law ν of θ admits a density g with connected support on R w.r.t. the Lebesgue measure,

2. P (dω)− a.s., w0(., θ) ∈ L1 ∩ L∞,

3. P (dω)− a.s.,
∫

x2|w0(x, θ)|dx < ∞,

4. The marginal law in x of |w0(x,a)|
||w0(.,a)||L1

g(a)da dx, satisfies a Poincaré inequality with the positive
deterministic constant c0.

5. The application Φ ◦G−1 : α ∈ [0, 1] 7→ |w0(.,G
−1(α))|

||w0(.,G−1(α))||L1
is s-Hölder continuous for the norm

in L1(R), with s > 1/2, and G the distribution function of θ,

6. The father and mother wavelets φ and ψ are compactly supported, Lipschitz continuous, and
satisfy Assumptions (H) and (M),

7. We threshold the estimators with tN = κ log N√
N

where κ = κ(ε) is a positive constant that has
to be chosen (see (55) to see precisely how),

8. The resolution level IN
1 satisfies 2IN

1 ∼
√

N
log N ,
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Then,
∀ε > 0, ∀0 < η < 1, ∀ f ∈ C4+η

b (R), ∃N0, ∀N ≥ N0,

C1 = C1(f, h, ε), C2 = C2(f, h), C3 = C3(f, h) > 0,

Eν |〈I(mT ), f〉− 1
N

N∑

i=1

h
(
X̄

(i),N,ε
0 , θ(i)

)
f(X̄(i),N,ε

T )| ≤ C1 ∆t+C2 log N

(
log N√

N

) 2s
1+2s

+C3ε,

(94)
where h is defined as in (86). The constants C1(f, h, ε), C2(f, h) and C3(f, h) can be respec-
tively upper bounded by C||h||∞

(∑4
k=0 ||f (k)||∞

ε5 + 1
ε10

)
, C||h||∞ ||f ′||∞ and C||f ||∞||h||∞. 2

Proof. We have:

Eν |〈I(mT ), f〉 − 1
N

N∑

i=1

h
(
X̄

(i),N,ε
0 , θ(i)

)
f(X̄(i),N,ε

T )|

≤ Eν |〈I(mT ), f〉 − 〈Iε(mT ), f〉|+ Eν |〈Iε(mT ), f〉 − 1
N

N∑

i=1

h
(
X̄

(i),N,ε
0 , θ(i)

)
f(X̄(i),N,ε

T )|.(95)

Let us consider the first term in the right hand side of (95). If X and Xε are solutions
of the SDE (89) and (92) respectively, then:

|〈I(mT ), f〉 − 〈Iε(mT ), f〉| = |Eν (h(X0(θ), θ)f(XT (θ)))− Eν (h(X0(θ), θ)f(Xε
T (θ))) |

≤
∫

R

∫

R2
|f(x)| |w(T, x, a)− wε(T, x, a)|dx ν(da)

≤
∫

R
||f ||∞ |||w(T, ., a)− wε(T, ., a)||| ν(da)

≤ C(T,A)||f ||∞ε,

thanks to (91).

The second term in the right hand side is dealt with a result similar to Theorem 1.2.
As in the proof of Theorem 1.2, the approximation error can be decomposed in three terms
as in (29): the error due to the use of an Euler scheme, the statistical error and the term
linked to the propagation of chaos.

As in the proof of Theorem 1.2, the error linked to the use of an Euler scheme (31) is
in (C||h||∞

∑4
k=0 ||f (k)||∞)/ε5 and the statistical error (32) is in C||h||∞||f ||∞/

√
N .

The part of the error linked to the use of a particle system can be divided in two terms
as in (34). The first term, which corresponds to the term A1 in (34), can be upper bounded
with Theorem 2.1. An upper bound is then C1∆t, where the constant C1 is upper bounded
by C||h||∞||∂yK

(4)
ε ||∞||∂xK

(4)
ε ||∞ ≤ C||h||∞/ε10, using (84).

The second term, which corresponds to the term A2 in (34), can be upper bounded
with spectral gap inequalities as it was done in paragraph 3.1. The proofs extend indeed
to the case where the unknown drift:

Eν (h (X0(θ), θ) Kε(x−Xε
t (θ)) | θ) |x=Xε

t (θ),

also depends on X0(θ). To see this, we have to show that the law of (X̄(i),N,ε
0 , X̄

(i),N,ε
tk

)i∈[1,N ]

satisfies a spectral gap inequality similar to the one obtained in Corollary 3.1. This comes
from the fact that (X̄(i),N,ε

0 )i∈[1,N ] do not vary with time, and from the assumption that
their laws satisfy spectral gap inequalities with constant c0. An upper bound for the

term A2 is then C||h||∞||f ′||∞ log N
(
(log N)/

√
N

) 2s
1+2s . Notice that the constant C here

does not depend on ε, but that the constant κ, which appears in the threshold tN =
κ(log N)/

√
N and which is set by considering this part of this error, does depend on ε. ¥
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Letting N →∞ in (94) shows that for any given ε > 0, the biais of our particle method
is asymptotically of order:

∆t

ε10
+ ε.

It seems however impossible to set ε = εN and let εN → 0 when N → ∞ with our
proof (Section 3). Changing the discretization step ∆t = o(ε11

N ) allows the right hand side
of (94) to converge to 0 with N indeed, but we can not bound the threshold κ = κ(εN )
independently of N . As a matter of fact, κ (defined in (55)) depends on the Poincaré
constant Dk (defined in Corollary 3.2) which we can control independently of ∆t thanks to
arguments similar to (39) and on the Lipschitz constant of Kε, which we can not control.

5.7 Mean Velocity Vector Field

5.7.1 Particle Approximation

Recall that the mean velocity vector field associated to the statistical solution of (79) at
point x ∈ R2 and time T > 0 has been defined in (81). This computation corresponds to
the following particular choice for f in (81): ∀y ∈ R2, f(y) = K(x− y).

Since K(x− .) and its derivatives are not bounded at 0, we use a cut-off technique again
and cut-off the test function with δ > 0 as in (83). The approximation we will consider for
〈I(mT ),K(x− .)〉 is: 1

N

∑N
i=1 h

(
X̄

(i),N,ε
0 , θ(i)

)
Kδ(x− X̄

(i),N,ε
T ).

Theorem 5.2. Under the assumptions of Theorem 5.1:

∀ε, δ > 0, ∀x ∈ R2, ∃N0, ∀N ≥ N0,

∃κ = κ(ε), C1 = C1(δ, h, ε), C2 = C2(δ, h), C3 = C3(δ, h), C4 > 0,

Eν |〈I(mT ),K(x− .)〉 − 1
N

N∑

i=1

h
(
X̄

(i),N,ε
0 , θ(i)

)
Kδ(x− X̄

(i),N,ε
T )|

≤ C1 ∆t + C2 log N

(
log N√

N

) 2s
1+2s

+ C3ε + C4δ.

The constants C1, C2, C3 can be respectively upper bounded by C||h||∞
(

1
δ5ε5 + 1

ε10

)
, C||h||∞

δ2

and C||h||∞
δ . 2

Proof. We first decompose the error:

Eν |〈I(mT ),K(x− .)〉 − 1
N

N∑

i=1

h
(
X̄

(i),N,ε
0 , θ(i)

)
Kδ(x− X̄

(i),N,ε
T )|

≤ |〈I(mT ),K(x− .)〉 − 〈I(mT ),Kδ(x− .)〉|
+ Eν |〈I(mT ),Kδ(x− .)〉 − 〈Iε(mT ),Kδ(x− .)〉|

+ Eν |〈Iε(mT ),Kδ(x− .)〉 − 1
N

N∑

i=1

h
(
X̄

(i),N,ε
0 , θ(i)

)
Kδ(x− X̄

(i),N,ε
T )|. (96)

The two last terms in the right hand side of (96) can be dealt with Theorem 5.1. Let us
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now consider the first term:

|〈I(mT ),K(x− .)〉 − 〈I(mT ), Kδ(x− .)〉|
≤ |Eν (h(X0(θ), θ)K(x−XT (θ)))− Eν (h(X0(θ), θ)Kδ(x−XT (θ))) |
≤

∫

R

∫

R2

|K(x− y)−Kδ(x− y)| |w(T, y, a)|dy ν(da)

≤ 2
∫

R

∫

|x−y|≤δ
|K(x− y)||w(T, y, a)|dyν(da)

≤ 2
∫

|x−y|≤δ
|K(x− y)|dy

∫

R
|||w(T, ., a)|||ν(da)

≤ C(T, A)δ.

¥

The rate of convergence obtained in Theorem 5.3 does not depend on the point x ∈ R2

where we approximate the mean velocity vector field.
For any given ε and δ, the asymptotic biais when N →∞ is of order:

∆t

ε10
+

∆t

δ5ε5
+

ε

δ
+ δ. (97)

5.7.2 Numerical Experiments

We study the Navier-Stokes equation (80) with σ = 10−4. The initial condition is given
by: L(X0(θ)) = N (θ, 0.3), where the distribution of θ is a gaussian mixing:

θ = 1U=1θ
(1) + 1U=0θ

(2),

with U a binomial random variable that takes the value 1 with probability 0.3, and with
θ(1) and θ(2) two gaussian random variables with respective expectations 1.3 and 0, and
with standard deviation 0.2. The random variables U , θ(1) and θ(2) are independent.

We are interested in the mean velocity vector field and use formula (81), to simulate its
time evolution. We apply our particle approximations to: fδ = Kδ(x− .), with x = (x1, x2)
varying on a grid of 0.5 × 0.5 on [−3, 3] × [−3, 3] and with δ = 10−1. In our particular
example, we have h ≡ 1.

We compare the results provided by each of the three preceding methods for a given
number of 28 = 256 particles. The number of particles is a power of 2 because we use
a Mallat algorithm to handle the wavelet expansions. The drift function is cut-off as in
Paragraph 5.2, with ε = 10−2. The diffusions are simulated by using Euler Schemes with
∆t = 0.5 (the theoretical discretization step ∆t = 10−21 that we should use to be coherent
with (97) requires very powerful computational abilities).

The random numbers generator has been seeded such that in each of the three methods,
the same simulations are used for θ and for the Brownian motions underlying the particles’
diffusions.

The evolutions of the mean velocity vector fields on Figure 1 look similar in every case
of our example. This was to be expected, since the example has good regularity properties.
We can verify here that the three methods are concordant. Notice however that for this
particular example the assumptions of Proposition 1.4 do not hold. Thus, the theoretical
asymptotic convergence rate is not available for Method 2.

Notice also that the Markovian structure of the particles’ diffusions as well as the trav-
elling properties of the 2d-Brownian motion make the influence of the initial randomness
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decrease with time. Though, on our simulations, the center of the vortex evolves differently
according to the chosen method.
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Figure 1: Approximation of the mean velocity vector field given by the first particle method (left),
the second particle method with Nadaraya-Watson estimators (center) and with Kerkyacharian-
Picard estimators (right). The first line corresponds to the initialization, then the two other lines
represent the approximation of the mean velocity vector field after respectively 5 and 11 discretiza-
tion steps.

Let us now have a look at the quality of the regression estimators. In each of the plots
of Figure 2, we draw the points

(
θ(i),K

1
ε

(
X̄

(128),256,ε
t1

− X̄
(i),256,ε
t1

))
i∈[1,N ]

with bullets and

the first component of the regression estimator a 7→ ûKε(t1, X̄
(128),256,ε
t1

, a) in continuous
line. We choose the particle number 128 as it corresponds to the median realization of θ.
Results are only presented for the first components of K and ûKε(t1, X̄

(128),256,ε
t1

, .).
It seems that the wavelet estimator fits better to the data. In particular, in the gap

between the two peaks of our gaussian mixing, where fewer observations are available, the
Nadaraya-Watson estimator is not robust at all. In contrary, in the "crowded" regions,
where many realizations of θ can be found, the Nadaraya-Watson estimator seems to av-
erage more than the Kerkyacharian-Picard estimator and thus, it misses some aggregation
features. This can give an intuition to understand why the method based on wavelet regres-
sion estimators is more accurate than the method based on Nadaraya-Watson estimators,
and why it extends to less regular initial conditions.
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Figure 2: On the x-axis are the values of (θi)i∈[1,N ]. The circles correspond to the points(
θ(i), K

1
ε

(
X̄

(128),256,ε
t − X̄

(i),256,ε
t

))
i∈[1,N ]

and in continuous line is the first component of the

regression estimator a 7→ ûKε(t, X̄
(128),256,ε
t , a). Left is the Nadaraya-Watson estimator with band-

with 0.1, whereas right is the Kerkyacharian-Picard estimator with threshold 0.1 and level 4 reso-
lution. The results are presented for the first, third and fifth discretization time.

5.8 Test Case and Comparison of the Three Methods of Section 1

Finally, we end this paper with another numerical test in order to conclude the comparison
between the three particle methods introduced in Section 1.

5.8.1 Test Problem

Following Milinazzo and Saffman [24] and Bossy [5], we consider the vortex equation (80)
and focus on the following quantity:

∀t ∈ [0, T ], ∀a ∈ Θ, L(t, a) =

∫
R2 |x|2w(t, x, a)dx∫
R2 w(t, x, a)dx

,
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which satisfies the following equation:

∀t ∈ [0, T ], ∀a ∈ Θ, L(t, a) = L(0, a) + 2tσ2.

In case P (dω)− a.s., w0(., θ) is a density function, we have:

∀t ∈ [0, T ],
∫

R
L(t, a)ν(da) =

∫

R

∫

R2

|x|2w(t, x, a)dx ν(da) = 〈I(mt)(dx), |x|2〉.

The idea is then to compute the approximations of t 7→ 〈I(mt)(dx), |x|2〉 given by the
three particle methods introduced in Section 1, and to see how they fit the theoretical line
t 7→ ∫

R L(0, a)ν(da) + 2tσ2. Since the map x ∈ R2 7→ |x|2 is not bounded, we replace it
with x ∈ R2 7→ |x|21{|x|≤M}.

Let us mention the convergence theorem for the wavelet particle method:

Theorem 5.3. Under the assumptions of Theorem 5.1, and with the following additional
assumptions:

1. P (dω)− a.s., w0(., θ) is a density function,

2. P (dω)− a.s.,
∫
R2 |x|4w0(x, θ)dx < ∞,

then: ∀ε > 0, ∃N0, ∀N ≥ N0, ∃κ = κ(ε), C1 = C1(ε,M), C2, C3 = C3(M), C4 > 0, ∀t ∈ [0, T ],

Eν

∣∣∣∣∣〈I(mt)(dx), |x|2〉 − 1
N

N∑

i=1

∣∣∣X̄(i),N,ε
t

∣∣∣
2

1{|X̄(i),N,ε
t |≤M}

∣∣∣∣∣ ≤ C1 ∆t + C2 log N

(
log N√

N

) 2s
1+2s

+ C3ε +
C4

M
.

The constants C1(ε, M) and C3(M) can be respectively upper bounded by C
(

M2+1
ε5 + 1

ε10

)

and C M . 2

Proof. As previously, we decompose the error:

Eν

∣∣∣∣∣〈I(mt)(dx), |x|2〉 − 1
N

N∑

i=1

∣∣∣X̄(i),N,ε
t

∣∣∣
2

1{|X̄(i),N,ε
t |≤M}

∣∣∣∣∣ ≤ |〈I(mt)(dx), |x|2〉 − 〈I(mt)(dx), |x|21{|x|≤M}〉|

+Eν |〈I(mt)(dx), |x|21{|x|≤M}〉 − 〈Iε(mt)(dx), |x|21{|x|≤M}〉|

+Eν

∣∣∣∣∣〈I
ε(mt), |x|21{|x|≤M}〉 −

1
N

N∑

i=1

∣∣∣X̄(i),N,ε
t

∣∣∣
2

1{|X̄(i),N,ε
t |≤M}

∣∣∣∣∣ . (98)

The two last terms in the right hand side of (98) can be dealt with Theorem 5.1. Let us
now consider the first term:

|〈I(mt)(dx), |x|2〉 − 〈I(mt)(dx), |x|21{|x|≤M}〉| = |〈I(mt)(dx), |x|21{|x|>M}〉|
=

∣∣∣Eν
(
|Xt(θ)|2 1{|Xt(θ)|>M}

)∣∣∣

≤
√
Eν

(
|Xt(θ)|4

)√
Pν (|Xt(θ)| > M).

Our assumptions imply that: supt∈[0,T ] Eν
(
|Xt(θ)|4

)
< ∞ and supt∈[0,T ] Pν (|Xt(θ)| > M) ≤

supt∈[0,T ] Eν
(
|Xt(θ)|2

)
/M2, which concludes the proof. ¥
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5.8.2 Numerical Results and Conclusions

We consider the vortex equation (80) with σ = 10−3 and choose as initial condition
L(X0(θ)) = N (θ, 0.6) with a gaussian mixing of means -1 and 1.3 and of standard de-
viations 0.2 for the distribution of θ. We apply our particle approximations with the
choice of the test function: f(x) = |x|2 and compare the results provided by each of the
three preceding methods for a given number of 28 = 256 particles. The drift function is
cut-off as in Paragraph 5.2, with ε = 5.10−4. The diffusions are simulated by using Euler
Schemes with ∆t = 0.05 and T = 5.

A criterium to compare how well the particle approximations of t 7→ 〈I(mt)(dx), |x|2〉
fit to the theoretical line t 7→ ∫

R L(0, a)ν(da) + 2tσ2 is given by the relative error. If
we denote by A(t) the particle approximation of

∫
R L(t, a)ν(da), the relative error can be

defined by:

e(t) =

∣∣A(t)−A(0)− 2tσ2
∣∣

|A(t)| .
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Figure 3: Evolution of the relative error for the particle methods 1 (dotted), 2 (dashed) and 3
(plain).

In term of relative error, it clearly appears on this set of simulations that Method 1
(dotted line) gives the best performance. Our particle method with wavelets (Method 3,
in plain line) is a little less accurate, but remarkably better than Method 2 (dashed line).
In term of simulation time, Method 3 is longer than Method 2 but avoids the imbricated
simulation procedure of Method 1.
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We recall here some facts about wavelet decomposition and about the wavelet regression
in random design. For further details, there is an abundant literature on the subject (see
for instance Daubechies [9], Härdle and al. [14] or Meyer [23] for the wavelet theory,
Kerkyacharian and Picard [17], Donoho and Johnstone [10] or Donoho and al. [11] for
wavelet regression).

A Wavelet Decomposition

Notation: In this paragraph, we denote by f̂ the Fourier-transform of f ∈ L2 endowed
with its canonical euclidian structure: f̂(ω) =

∫
e−itωf(t) dt.

Take φ ∈ L2. One defines the descendants of this application by φI1I2 = 2I1/2φ(2I1a−
I2), for I1 ∈ N, I2 ∈ Z.
Assumption 3. φ is said to be a scale function if it satisfies the following properties
(HO1):

1.
∑∞

I2=−∞ |φ̂(ω + 2I2π)|2 = 1 almost everywhere. This condition is equivalent to the
orthogonality in L2 of the translated functions (φ(.− I2))I2∈Z.

2. There exists a 2π-periodic function m0 ∈ L2[0, 2π] such that: φ̂(ω) = m̂0

(
ω
2

)
φ̂

(
ω
2

)
which is equivalent to the increase in the inclusion sense of the spaces VI1 defined by:

V0 = sp{φ0I2 , I2 ∈ Z} =
{
f =

∑
I2

cI2φ0I2 |
∑ |cI2 |2 < ∞}

VI1 =
{
h(a) = f(2I1a) =

∑
I2

cI2φI1I2(a) | f ∈ V0,
∑ |cI2 |2 < ∞}

, I1 ≥ 1.

Assumption 4. We also assume that there exists a map ψ ∈ L2 which satisfies the fol-
lowing properties (HO2), where the applications (ψI1I2) are defined by the same way as the
(φI1I2) were:

1.
∑∞

I2=−∞ |ψ̂(ω + 2I2π)|2 = 1 a.e.

2. There exists a 2π-periodic function m1 ∈ L2[0, 2π] verifying: ψ̂(ω) = m̂1

(
ω
2

)
φ̂

(
ω
2

)
which means that ψ ∈ V1.

3.
∑

I2
φ̂(ω+2I2π)ψ̂(ω + 2I2π) = 0, which tells us that V0 and W0 are orthogonal, where

we have defined:

W0 =
{
f =

∑
I2

cI2ψ0,I2 |
∑ |cI2 |2 < ∞}

WI1 =
{
h(a) = f(2I1a) =

∑
I2

cI2ψI1I2(a) | f ∈ W0,
∑ |cI2 |2 < ∞}

, I1 ≥ 1.

4. m1(ω) = e−iωm0(ω + π)µ(ω), where µ is 2π-periodic with |µ(ω)| = 1 a.e. This
implies that V1 = V0 ⊕W0.

These conditions are sufficient to prove that, more generally, for a given I1 ≥ 0, the

functions (ψI1I2)I2
form an orthonormal basis of WI1, and that VI1+1 = VI1

⊥⊕ WI1.

The function φ is called father wavelet, whereas ψ is the mother wavelet.

Assumption 5. Hypothesis (HO3) : φ ∈ L1∩L2. This assumption implies the continuity

of the Fourier transform and the fact that
(⋃

I1≥0 VI1

)L2

= L2. Notice that this assumption
is implied by the concentration property (H) enounced in section 1.3.2.
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When all the previous properties are satisfied, the sequence of spaces (VI1)I1≥0 gener-
ated by φ is called MultiResolution Analysis (MRA) of L2. The sets (WI1)I1≥0 are then
the resolution levels of the MRA.

Then, a wavelet decomposition is available for every f ∈ L2:

∀f ∈ L2, ∀a ∈ R, f(a) =
∑

I2∈Z
αI2φ0I2(a) +

+∞∑

I1=0

∑

I2∈Z
βI1I2ψI1I2(a) =

+∞∑

I1=−1

∑

I2∈Z
βI1I2ψI1I2(a), (99)

where we have written φ0I2 := ψ−1I2 and β−1I2 = αI2 in order to simplify the formulas.
The coefficients of the wavelet expansion are:

β−1I2 = αI2 =
∫

f(a)φ0I2(a)da and βI1I2 =
∫

f(a)ψI1I2(a)da. (100)

Heuristically, we may consider I1 as a degree of liberty in the frequency scale. The
coefficients α thus sum up general shape of f whereas the coefficients β correspond to
"details". The index I2 corresponds to a translation parameter and can be viewed as a
degree of liberty in the time scale.

Using Expansion (99), we can approximate any f ∈ L2, by its sequence of projections
on VIN

1
:

PV
IN
1

f(a) =
IN
1∑

I1=−1

∑

I2∈Z
βIψI(a).

We can show that the projection operator PV
IN
1

on VIN
1
, for IN

1 ≥ 0 is associated with the

kernel KIN
1

(x, y) =
∑IN

1 −1
I1=−1

∑
I2∈Z ψI(x)ψI(y): ∀f ∈ L2, PV

IN
1

f(x) =
∫

KIN
1

(x, y)f(y) dy.

It can also be proved that under Assumption (H),
∫ |KIN

1
(x, y)| dy is bounded uniformly

in N by the positive constant C appearing in (H).

Finally, let us notice that when φ and ψ satisfy Assumptions (H) and (M), the wavelet
coefficients of any function f ∈ Bs,∞,∞, the Besov space of s-Hölder continuous functions,
satisfy:

∃C > 0, sup
I2

|βI1I2 | ≤ C 2−I1(s+ 1
2) (101)

In fact, this inequality characterizes the functions of the Besov space Bs,∞,∞.

B Presentation of the Warped Wavelet Regression Estimator

We now present the warped wavelet regression estimator inspired by the work of Kerky-
acharian and Picard [18]. Then, we give a theorem dealing with its L2-error.

Suppose we are trying to estimate the regression function f in:

Yi = f(θi) + εi, i ∈ [1, N ], (102)

with independent identically distributed observations (Yi, θi)i∈[1,N ] ∈ (R× R)N , with the
same law as (Y, θ), and unobserved (εi)i∈[1,N ], which are assumed to be centered and
orthogonal to the sigma-field σ(θ) generated by the (θi)i∈[1,N ].

The theoretical solution, which minimizes the variance of the residuals εi, is the con-
ditional expectation: E(Y |θ = a) = arg minf E (Y − f(θ))2.

49



In the following, we also suppose that the law L(θ) of θi has an unknown density which
we will call g. We denote by G its distribution function, by G−1 the usual generalized
inverse of G and by GN the empirical equivalent of G as we did in (17).

The supports of f and g are also assumed to be imbedded in a compact interval I.

We look for estimators f̂ for f of the form:

f̂(a) =
IN
1∑

I1=−1

∑

I2

β̂IψI(a)1|β̂I |≥tN
, (103)

where β̂I are estimators of βI appearing in (99) and where IN
1 corresponds to the trunca-

tion of the serie (99). Small terms corresponding to estimated coefficients β̂I with absolute
values under the threshold tN are eliminated.

When dealing with deterministic and equi-spaced data θi (θi = i/N), one classically
uses the following estimator for βI (see Donoho and Johnstone [10] or Donoho and al. [11]):

β̂£
I =

1
N

N∑

i=1

ψI

(
i

N

)
Yi. (104)

When the explicatives θi are random, the estimator (104) is no more valid.
Instead of looking for a complicated estimator, whose choice would be conditioned on

the chosen wavelet base, Kerkyacharian and Picard [18] tried to stay close to the statistical
data and therefore used warped wavelets to construct natural estimators. One can indeed
reduce the problem to the case of uniformly distributed data on [0, 1] since G(θi) are
uniformly distributed on [0, 1]. A natural extension of (104) is then:

β̂∗I =
1
N

N∑

i=1

ψI(G(θi))Yi. (105)

This is an unbiased estimator of the coefficient βI appearing in the following expansion
of f ◦G−1 on the wavelet base (ψI) or equivalently of the expansion of f on warped wavelets
(ψI ◦G):

f(a) =
∑

I1≥−1

∑

I2

βIψI(G(a)).

A natural estimator of f would then be:

f̂∗(a) =
IN
1∑

I1=−1

∑

I2∈Z
β̂∗I ψI(G(a))1|β̂∗I |≥tN

, (106)

with tN and IN
1 appropriately chosen.

Since this transformation relies on G, which is in fact unknown, we replace it by GN (a).
The new estimators of the coefficients are then:

β̂′I =
1
N

N∑

i=1

ψI(GN (θi))Yi =
1
N

N∑

i=1

ψI

(
i

N

)
Y(i), (107)

where the Y(i) correspond to the observations ranked by increasing values of θi. The ranking
is made here to simplify notation: we have just re-indexed the sum.
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A generalization of the estimator (106) is therefore:

f̂ ′(a) =
IN
1∑

I1=−1

∑

I2∈Z
β̂′IψI(GN (a))1|β̂′I |≥tN

, (108)

with tN and IN
1 appropriately chosen.

Notice that the expression (107) is very similar to (104), which is nice, since the com-
putation of (104) is often already implemented in statistical softwares.
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