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Abstract

We consider an interacting particle Markov process for Darwinian evo-
lution in an asexual population, involving a linear birth rate, a density-
dependent logistic death rate, and a probability µ of mutation at each
birth event. We introduce a renormalization parameter K scaling the
size of the population, which leads, when K → +∞ and µ ≡ 0, to
a deterministic dynamics for the density of individuals holding a given
trait. By combining in a non-standard way the limits of large population
(K → +∞) and of small mutations (µ → 0), we prove that a time scale
separation between the birth and death events and the mutation events
occurs and that the interacting particle microscopic process converges for
finite dimensional distributions to the biological model of evolution known
as the “monomorphic trait substitution sequence” model of adaptive dy-
namics [14, 4], which describes the Darwinian evolution in an asexual
population as a Markov jump process in the trait space.

Keywords: measure-valued process; interacting particle system; adaptive
dynamics; finite dimensional distributions convergence; time scale separation;
stochastic domination; branching processes; large deviations.

1 Introduction

We will study in this article the link between two biological models of Darwinian
evolution in an asexual population. The first one is a system of interacting par-
ticles modeling evolution at the individual level, referred below as the micro-
scopic model, and which has been already studied in Dieckmann [3], Fournier
and Méléard [8] and Ferrière et al [7]. The second one models the evolution at
the population level as a jump Markov process in the space of traits character-
izing individuals, called “trait substitution sequence”, and referred below as the
TSS model. The TSS model belongs to the recent biological theory of evolution
called adaptive dynamics (Hofbauer and Sigmund [10], Marrow et al. [12] and
Metz et al. [13]), and has been introduced in 1996 by Metz et al. [14] and Dieck-
mann and Law [4], and mathematically studied in Champagnat [2]. This model
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and its generalizations have revealed a powerful tool for understanding various
evolutionary phenomena, such as polymorphism (stable coexistence of different
traits) or evolutionary branching (evolution of a monomorphic population to a
polymorphic one). The heuristic leading to the TSS model [14, 4] is actually
based on the biological assumptions of large population and rare mutations, and
on another assumption stating that no two different types of individuals can co-
exist on a long time scale: the competition eliminates one of them. We propose
to prove in this article a convergence result of the microscopic model to this
TSS model when the parameters are normalized in a non-standard way, leading
to a time scale separation. This limit combines a large population asymptotic
with a rare mutations asymptotic. Such a result will provide a mathematical
justification of the TSS model and of the biological heuristic on which it is based.

Let us describe the microscopic model: in a population, Darwinian evolution
acts on a set of phenotypes, or traits, characterizing each individual’s ability to
survive and reproduce (e.g. body size, rate of food intake, age at maturity).
We will consider a finite number of quantitative traits in an asexual population
(clonal reproduction), and we will assume that the trait space X is a compact
subset of Rl (l ≥ 1).

The microscopic model involves the three basic mechanisms of Darwinian
evolution: heredity, which transmits traits to new offsprings, mutation, driving
a variation in the trait values in the population, and selection between these
different trait values, caused by the competition for limited resources or area.

For any x, y ∈ X , we introduce the following biological parameters

b(x) ∈ R∗
+ is the rate of birth from an individual holding trait x.

d(x) ∈ R∗
+ is the rate of “natural” death for an individual holding trait x.

α(x, y) ∈ R∗
+ is competition kernel representing the pressure felt by an individ-

ual holding trait x from an individual holding trait y.

µ(x) ∈ [0, 1] is the probability that a mutation occurs in a birth from an indi-
vidual with trait x.

m(x, dh) is the law of h = y − x, where the mutant trait y is born from an
individual with trait x. It is a probability measure on Rl, and since y
must belong to the trait space X , the support of m(x, ·) is a subset of

X − x = {y − x : y ∈ X}.

K ∈ N is a parameter rescaling the competition kernel α(·, ·). Biologically, K
may be linked to the ressources or area available, and is related to the
biological concept of “carrying capacity”. As will appear later, this pa-
rameter is linked to the size of the population: large K means a large
population (provided that the initial condition is proportional to K).

uK ∈ [0, 1] is a parameter depending on K rescaling the probability of mutation
µ(·). Small uK means rare mutations.

Let us also introduce the following notations, used throughout this paper :

n̄x =
b(x)− d(x)
α(x, x)

, (1)

β(x) = µ(x)b(x)n̄x (2)
and f(y, x) = b(y)− d(y)− α(y, x)n̄x. (3)
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We consider, at any time t ≥ 0, a finite number Nt of individuals, each of
them holding a trait value in X . Let us denote by x1, . . . , xNt the trait values
of these individuals. The state of the population, rescaled by K, at time t ≥ 0
can be represented by the finite point measure on X

νKt =
1
K

Nt∑
i=1

δxi
,

where δx is the Dirac measure at x. Let MF denote the set of finite nonnegative
measures on X , and define

MK =

{
1
K

n∑
i=1

δxi
: n ≥ 0, x1, . . . , xn ∈ X

}
,

An individual holding trait x in the population νKt gives birth to another
individual with rate b(x) and dies with rate d(x) +

∫
α(x, y)νKt (dy) = d(x) +

(
∑Nt

i=1 α(x, xi))/K.
A newborn holds the same trait value as its progenitor’s with probability

1− uKµ(x), and with probability uKµ(x), the newborn is a mutant which trait
value y is chosen according to y = x+h, where h is a random variable with law
m(x, dh).

In other words, the process (νKt , t ≥ 0) is a MK-valued Markov process
with infinitesimal generator defined for any bounded measurable functions φ
from MK to R by

LKφ(ν) =
∫
X

(
φ

(
ν +

δx
K

)
− φ(ν)

)
(1− uKµ(x))b(x)Kν(dx)

+
∫
X

∫
Rl

(
φ

(
ν +

δx+h
K

)
− φ(ν)

)
uKµ(x)b(x)m(x, dh)Kν(dx)

+
∫
X

(
φ

(
ν − δx

K

)
− φ(ν)

)(
d(x) +

∫
X
α(x, y)ν(dy)

)
Kν(dx). (4)

The first term (linear) describes the births without mutation, the second term
(linear) describes the births with mutation, and the third term (non-linear)
describes the deaths by oldness or competition. This logistic density-dependence
models the competition in the population, and hence drives the selection process.

Let us denote by (A) the following three assumptions

(A1) b, d and α are measurable functions, and there exists b̄, d̄, ᾱ < +∞ such
that

b(·) ≤ b̄, d(·) ≤ d̄ and α(·, ·) ≤ ᾱ.

(A2) m(x, dh) is absolutely continuous with respect to the Lebesgue measure
on Rl with density m(x, h), and there exists a function m : Rl → R+ such
that m(x, h) ≤ m(h) for any x ∈ X and h ∈ Rl, and

∫
m(h)dh <∞.

(A3) µ(x) > 0 and b(x)− d(x) > 0 for any x ∈ X , and there exists α > 0 such
that

α ≤ α(·, ·).
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For fixedK, under (A1) and (A2) and assuming that E(〈νK0 ,1〉) <∞ (where
〈ν, f〉 denotes the integral of the measurable function f with respect to the
measure ν), the existence and uniqueness in law of a process with infinitesimal
generator LK has been proved by Fournier and Méléard [8].

In this model, the biological assumption of large population corresponds to
the limit K → +∞, and the assumption of rare mutations to uK → 0. In order
to give a precise formulation of the biological assumption on the impossibility
of coexistence of two different traits, let us define:

Definition 1
(a) For any K ≥ 1, b, d, c ≥ 0 and for any N/K-valued random variable z,

we will denote by PK(b, d, c, z) the law of the N/K-valued Markov jump
process with initial state z and with transition rates

ib from i/K to (i+ 1)/K,
i(d+ ci/K) from i/K to (i− 1)/K.

(b) For any K ≥ 1, bk, dk, ckl ≥ 0 with k, l ∈ {1, 2}, and for any N/K-valued
random variables z1 and z2, we will denote by

QK(b1, b2, d1, d2, c11, c12, c21, c22, z1, z2)

the law of the (N/K)2-valued Markov jump process with initial state
(z1, z2) and with transition rates

ib1 from (i/K, j/K) to ((i+ 1)/K, j/K),
jb2 from (i/K, j/K) to (i/K, (j + 1)/K),
i(d1 + c11i/K + c12j/K) from (i/K, j/K) to ((i− 1)/K, j/K),
j(d2 + c21i/K + c22j/K) from (i/K, j/K) to (i/K, (j − 1)/K).

Fix x and y in X . The proof of the following two results can be found in
chap. 11 of Ethier and Kurtz [6].

Proposition 1
(a) Assume µ ≡ 0 and νK0 = NK

x (0)δx. Then, for any t ≥ 0, νKt = NK
x (t)δx,

where NK
x has the law PK(b(x), d(x), α(x, x), NK

x (0)). Assume NK
x (0) →

nx(0) in probability when K → +∞. Then, the sequence (NK
x ) converges

in probability on [0, T ] for the uniform norm to the deterministic function
nx with initial condition nx(0) solution to

ṅx = (b(x)− d(x)− α(x, x)nx)nx. (5)

(b) Assume µ ≡ 0 and νK0 = NK
x (0)δx + NK

y (0)δy. Then, for any t ≥ 0,

νKt = NK
x (t)δx +NK

y (t)δy, where (NK
x , N

K
y ) has the law

QK(b(x), b(y), d(x), d(y), α(x, x), α(x, y), α(y, x), α(y, y), NK
x (0), NK

y (0)).

Assume NK
x (0) → nx(0) and NK

y (0) → ny(0) in probability when K →
+∞. Then, (NK

x , N
K
y ) converges in probability when K → +∞ on [0, T ]

for the uniform norm to the deterministic function (nx, ny) with initial
condition (nx(0), ny(0)) solution to{

ṅx = (b(x)− d(x)− α(x, x)nx − α(x, y)ny)nx
ṅy = (b(y)− d(y)− α(y, x)nx − α(y, y)ny)ny.

(6)
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Note that (5) has two steady states, 0, unstable, and n̄x, defined in (1),
stable. System (6) has at least three steady states, (0, 0), unstable, (n̄x, 0) and
(0, n̄y).

Let us introduce the following assumption :

(B) Given any x ∈ X , Lebesgue almost any y ∈ X satisfies one of the two
following conditions:

either (b(y)− d(y))α(x, x)− (b(x)− d(x))α(y, x) < 0, (7)

or
{

(b(y)− d(y))α(x, x)− (b(x)− d(x))α(y, x) > 0,
(b(x)− d(x))α(y, y)− (b(y)− d(y))α(x, y) < 0. (8)

Assumption (B) is the mathematical formulation of the impossibility of co-
existence of two different traits. Actually, an elementary analysis of system (6)
shows that (cf. e.g. Istas [11] p. 25–27) :

Proposition 2 If x and y satisfy (7), then (n̄x, 0) is a stable steady state of (6).
If x and y satisfy (8), then (n̄x, 0) is an unstable steady state of (6), (0, n̄y) is
stable, and any solution to (6) with initial state in (R∗

+)2 converges to (0, n̄y)
when t→ +∞.

The TSS model is a Markov jump process in X with infinitesimal generator
given, for any bounded measurable function ϕ from X to R, by

Aϕ(x) =
∫

Rl

(ϕ(x+ h)− ϕ(x))β(x)
[f(x+ h, x)]+
b(x+ h)

m(x, h)dh, (9)

where [a]+ denotes the positive part of a ∈ R, and where β(x) and f(y, x)
are defined in (2) and (3). The existence and uniqueness in law of a process
generated by A holds as soon as β(x)[f(y, x)]+/b(y) is bounded (see e.g. Ethier
and Kurtz [6]), which is true under assumption (A) ([f(y, x)]+/b(y) ≤ 1).

Our main result writes:

Theorem 1 Assume (A) and (B). Fix a sequence (uK)K∈N in [0, 1]N such that

∀V > 0, exp(−V K) � uK � 1
K logK

(10)

(where f(K) � g(K) means that f(K)/g(K) → 0 when K → ∞). Fix also
x ∈ X , γ > 0 and a sequence of N-valued random variables bounded in L1,
(γK)K∈N, such that γK/K converges in law to γ. Consider the process (νKt , t ≥
0) generated by (4) with initial state γK

K δx. Then, for any n ≥ 1, ε > 0 and
0 < t1 < t2 < . . . < tn <∞, and for any measurable subsets Γ1, . . . ,Γn of X ,

lim
K→+∞

P
(
∀i ∈ {1, . . . , n}, Supp(νKti/KuK

) is a singleton {xi}, xi ∈ Γi

and |〈νKti/KuK
,1〉 − n̄xi

| < ε
)

= P(∀i ∈ {1, . . . , n}, Xti ∈ Γi) (11)

where for any ν ∈ MF , Supp(ν) is the support of ν and (Xt, t ≥ 0) is the TSS
process generated by (9) with initial state x.
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Corollary 1 With the same notations and assumptions than in Theorem 1,
when K → +∞, the process (νKt/KuK

, t ≥ 0) converges in the sense of the finite
dimensional distributions, for the topology on MF induced by the functions
ν 7→ 〈ν, f〉 with f bounded and measurable on X , to the process (Yt, t ≥ 0)
defined by

Yt =
{
γδx if t = 0
n̄Xt

δXt
if t > 0.

Proof of Corollary 1 Let Γ be a measurable subset of X . Let us prove that

lim
K→+∞

E(〈νKt/KuK
,1Γ〉) = E(n̄Xt

1Xt∈Γ). (12)

Fix ε > 0, and observe that n̄x ∈ [0, b̄/α]. Write [0, b̄/α] ⊂ ∪pi=1Ii, where p is
the integer part of b̄/εα, and Ii = [(i − 1)ε, iε[. Define Γi = {x ∈ X : n̄x ∈ Ii}
for 1 ≤ i ≤ p, and apply (11) to the sets Γ ∩ Γ1, . . . ,Γ ∩ Γp with n = 1, t1 = t
and the constant ε above. Then, for sufficiently large K,

lim sup
K→+∞

E(〈νKt/KuK
,1Γ〉) ≤

p∑
i=1

lim sup
K→+∞

E(〈νKt/KuK
,1Γ∩Γi

〉)

≤
p∑
i=1

(i+ 1)εP(Xt ∈ Γ ∩ Γi)

≤
p∑
i=1

(
E(n̄Xt

1Xt∈Γ∩Γi
) + 2εP(Xt ∈ Γi)

)
≤ E(n̄Xt

1Xt∈Γ) + 2ε.

A similar estimate for the lim inf ends the proof of (12), which implies the
convergence of one-dimensional laws for the required topology.

The same method gives easily the required limit when we consider a finite
number of times t1, . . . , tn. �

Remarks 1
• The time scale 1/KuK of Theorem 1 is the time scale of the mutation

events for the process νK . Assumption (10) is the condition leading to
the time scales separation between the mutation events and the birth and
death events. The limit (11) means that, when this time scales separation
occurs, the population is monomorphic at any time ( i.e. composed of indi-
viduals holding the same trait value) with high probability, and that the
transition periods from a resident trait to a mutant one are infinitesimal
on this mutation time scale.

• It is not possible to obtain the convergence in law for the Skorohod topol-
ogy on D([0, T ],MF ) because of the right discontinuity of the process Y
at time 0+.

This result is different from usual time scale separation results (averaging
principle, cf. Freidlin and Wentzell [9] and Skorohod et al. [16]), because no
assumption of ergodicity has been made, and because we have to combine two
limits simultaneously. Original methods are necessary to prove Theorem 1.

Our proof is based on two ingredients : first, when µ ≡ 0 and νK0 is mo-
nomorphic with trait x, we have seen in Proposition 1 (a) the convergence of
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νK to n(t)δx, where n(t) is solution to (5). Any solution to this equation with
positive initial condition converges for large time to n̄x. The large deviations
estimates for this convergence will allow us to show that the time during which
the stochastic process stays in a neighborhood of its limit (problem of exit from
domain [9]) is of the order of exp(KV ) with V > 0.

Now, when uK is small, the process νK with a monomorphic initial condition
with trait x is near to the same process with µ ≡ 0, as long as no mutation
occurs. Therefore, the left inequality of (10) will allow us to prove that, with
high probability, νK is near to n̄xδx when the first mutation occurs.

The second ingredient of our proof is the study of the invasion of a mutant
trait y that has just appeared in a monomorphic population with trait x. This
invasion can be divided in three steps :

• Firstly, as long as the mutant population size 〈νKt ,1{y}〉 (initially equal
to 1/K) is smaller than a fixed small ε > 0, the resident dynamics is
very close to what it was before the mutation, so 〈νKt ,1{x}〉 stays close to
n̄x. Then, the death rate of a mutant individual is close to the constant
d(y) + α(y, x)n̄x. Since its birth rate is constant, equal to b(y), we can
approximate the mutant dynamics by a binary branching process. There-
fore, the probability that 〈νKt ,1{y}〉 reaches ε is approximately equal to
the probability that this branching process reaches εK, which converges
when K → +∞ to its probability of non-extinction [f(y, x)]+/b(y).

• Secondly, once 〈νKt ,1{y}〉 has reached ε, by Proposition 1 (b), for large
K, νK is close to the solution to (6) with initial state (n̄x, ε) with high
probability. We will show that Proposition 2 implies that this solution
reaches the ε-neighborhood of (0, n̄y) in finite time.

• Finally, once 〈νKt ,1{y}〉 is close to n̄y and 〈νKt ,1{x}〉 is small, K〈νKt ,1{x}〉
can be approximated, in a similar way than in the first step, by a binary
branching process, which is subcritical and hence gets extinct a.s. in finite
time.

We will see in sections 2.2 and 2.3 that the time needed to complete the first
and third steps is proportional to logK, whereas the time needed for the second
step is bounded. Therefore, since the time between two mutations is of the order
of 1/KuK , the right inequality in (10) will allow us to prove that, with high
probability, the three steps above are completed before a new mutation occurs.

Section 2 will provide the large deviations and branching process results
needed to make formal the preceding heuristics. We will also prove several
comparison results between 〈νKt ,1〉 and the birth and death processes of Defi-
nition 1. In section 3, the proof of Theorem 1 is achieved by computing, for any
t, the limit law of νKt/KuK

according to the random number of mutations having
occured between 0 and t/KuK .

Notations

• dae denotes the first integer greater or equal to a, and bac denotes the
integer part of a.

• For any K ≥ 1 and ν ∈MK , we will denote by PK
ν the law of the process

νK generated by (4) with initial state ν, and by EKν the expectation with
respect to PK

ν .
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• The convergence in probability of finite dimensional random variables will
be denoted by P→.

• We will denote by L(Z) the law of the stochastic process (Zt, t ≥ 0).

• We will denote by � the following stochastic domination relation: if Q1

and Q2 are the laws of R-valued processes, we will write Q1 � Q2 if we can
construct on the same probability space (Ω,F ,P) two processes X1 and
X2 such that L(Xi) = Qi (i = 1, 2) and ∀t ≥ 0, ∀ω ∈ Ω, X1

t (ω) ≤ X2
t (ω).

• Finally, if X1 and X2 are two random processes and T is a stopping
time for X1, we will write X1 � X2 for t ≤ T if we can construct a
process X̂2 on the probability space on which X1 is constructed, such
that L(X̂2) = L(X2) and ∀t ≤ T , ∀ω ∈ Ω, X1

t (ω) ≤ X̂2
t (ω).

2 Birth and death processes

We will collect in this section various results about the birth and death processes
that appeared in Definition 1.

2.1 Comparison results

The following theorem gives various stochastic domination results.

Theorem 2
(a) Assume (A). For any K ≥ 1 and any L1 initial condition νK0 of the process

νK ,
L(〈νK ,1〉) � PK(2b̄, 0, α, 〈νK0 ,1〉).

(b) With the same assumptions than in (a), let AKt denote the number of mu-
tations occuring in νK between times 0 and t, and let a, a1, a2 ≥ 0. Then,
for t ≤ inf{s ≥ 0 : 〈νKs ,1〉 ≥ a},

AK � BK ,

where BK is a Poisson process with parameter KuKab̄.

If moreover νK0 = 〈νK0 ,1〉δx, define τ1 = inf{t ≥ 0 : AKt = 1} (the first
mutation time). Then, for t ≤ τ1 ∧ inf{s ≥ 0 : 〈νKs ,1〉 6∈ [a1, a2]},

BK � AK � CK ,

where BK and CK are Poisson process with parameter, respectively,
KuKa1µ(x)b(x) and KuKa2µ(x)b(x).

(c) Fix K ≥ 1 and take b, d, c, z as in Definition 1 (a). Then, for any ε1, ε2, ε3 ≥
0 and any N/K-valued random variable ε4,

PK(b, d+ ε2, c+ ε3, z) � PK(b+ ε1, d, c, z + ε4).

(d) Let (Z1, Z2) be a stochastic process with law

QK(b1, b2, d1, d2, c11, c12, c21, c22, z1, z2)
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where the parameters are as in Definition 1 (b). Fix a > 0 and define
T = inf{t ≥ 0, Z2 ≥ a}. Then, there exists two processes M1 and M2

such that, for t ≤ T ,

M1 � Z1 �M2,

where L(M1) = PK(b1, d1 + ac12, c11, z1)

and L(M2) = PK(b1, d1, c11, z1).

(e) Take (Z1, Z2) as above, fix 0 ≤ a1 < a2 and a > 0, and define T = inf{t ≥
0, Z1 6∈ [a1, a2] or Z2 ≥ a}. Then, there exists M1 and M2 such that, for
t ≤ T ,

M1 � Z2 �M2,

where L(M1) = PK(b2, d2 + a2c21 + ac22, 0, z2)

and L(M2) = PK(b2, d2 + a1c21, 0, z2).

Remark 2 Point (a) explains why it is necessary to combine simultaneously
the limits K → +∞ and uK → 0 in order to obtain the TSS process in Theo-
rem 1. The limit K → +∞ taken alone leads to a deterministic dynamics (cf.
Fournier and Méléard [8]), so making the rare mutations limit afterwards can-
not lead to a stochastic process. Conversely, taking the limit of rare mutations
without making the population larger would lead to an immediate extinction of
the population in the mutations time scale, because the stochastic domination of
Theorem 2 (a) is independent of uK and µ(·), and because a process Z with law
PK(2b̄, 0, α, γK/K) gets a.s. extinct in finite time for any K ≥ 1.

Proof of (a) We will use the construction of the process νK given by Fournier
and Méléard [8]: let (Ω,F ,P) be a sufficiently large probability space, and
consider on this space the following five independent random objects:

(i) a MK-valued random variable νK0 (the initial distribution),

(ii) a Poisson point measure N1(ds, di, dv) on [0,∞[×N × [0, 1] with intensity
measure q1(ds, di, dv) = b̄ds

∑
k≥1 δk(di)dv (the birth without mutation

Poisson point measure),

(iii) a Poisson point measure N2(ds, di, dh, dv) on [0,∞[×N × Rl × [0, 1] with
intensity measure q2(ds, di, dh, dv) = b̄ds

∑
k≥1 δk(di)m(h)dhdv (the birth

with mutation Poisson point measure),

(iv) a Poisson point measure N3(ds, di, dv) on [0,∞[×N × [0, 1] with intensity
measure q3(ds, di, dv) = d̄ds

∑
k≥1 δk(di)dv (the natural death Poisson

point measure),

(v) a Poisson point measure N4(ds, di, dj, dv) on [0,∞[×N× N× [0, 1] with in-
tensity measure q4(ds, di, dj, dv) = (ᾱ/K)ds

∑
k≥1 δk(di)

∑
m≥1 δm(dj)dv

(the competition death Poisson point measure).

We will also need the following function, solving the purely notational problem
of associating a number to each individual in the population: for any K ≥ 1,
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let H = (H1, . . . ,Hk, . . .) be the map from MK into (Rl)N defined by

H

(
1
K

n∑
i=1

δxi

)
= (xσ(1), . . . , xσ(n), 0, . . . , 0, . . .),

where xσ(1) 2 . . . 2 xσ(n) for the lexicographic order 2 on Rd. For convenience,
we have omitted in our notation the dependence of H and Hi on K.

Then a process νK with generator LK and initial state νK0 can be constructed
as follows: for any t ≥ 0,

νKt = νK0 +
∫ T

0

∫
N

∫ 1

0

1{i≤K〈νK
s−,1〉}

δHi(νK
s−)

K

1{
v≤

[1−uK µ(Hi(νK
s−))]b(Hi(νK

s−))

b̄

}N1(ds, di, dv)

+
∫ T

0

∫
N

∫
Rl

∫ 1

0

1{i≤K〈νK
s−,1〉}

δHi(νK
s−)+h

K

1{
v≤

uK µ(Hi(νK
s−))b(Hi(νK

s−))

b̄

m(Hi(νK
s−),h)

m(h)

}N2(ds, di, dh, dv)

−
∫ T

0

∫
N

∫ 1

0

1{i≤K〈νK
s−,1〉}

δHi(νK
s−)

K
1{

v≤
d(Hi(νK

s−))

d̄

}N3(ds, di, dv)

−
∫ T

0

∫
N

∫
N

∫ 1

0

1{i≤K〈νK
s−,1〉}1{j≤K〈νK

s−,1〉}
δHi(νK

s−)

K

1{
v≤

α(Hi(νK
s−),Hj(νK

s−))

ᾱ

}N4(ds, di, dj, dv). (13)

Although this formula is quite complicated, the principle is very simple: for
each type of event, the corresponding Poisson point process jumps faster than
νK has to. We decide whether a jump of the process νK occurs by comparing v
to a quantity related to the rates of the various events. The indicator functions
involving i and j simply ensures that the ith and jth individuals are alive in the
population (since K〈νKt ,1〉 is the number of individuals in the population at
time t).

Under (A1), (A2) and the assumption that E(〈νK0 ,1〉) < ∞, Fournier and
Méléard [8] prove the existence and uniqueness of the solution to (13), and that
this solution is a Markov process with infinitesimal generator (4).

Then, the N/K-valued Markov process ZK defined by

ZKt = 〈νK0 ,1〉+
1
K

∫ t

0

∫
N
1{i≤KZK

s−}

(∫ 1

0

N1(ds, di, dv)

+
∫

Rl

∫ 1

0

N2(ds, di, dh, dv)−
∫

N

∫ 1

0

1{j≤KZK
s−, v≤α/ᾱ}N4(ds, di, dj, dv)

)
(14)

can be easily proved to satisfy L(ZK) = PK(2b̄, 0, α, 〈νK0 ,1〉). Moreover, if for
some ω ∈ Ω, and for some t ≥ 0, ZKt (ω) = 〈νKt (ω),1〉, let

TK = inf{s ≥ t, ZKs (ω) 6= 〈νKs (ω),1〉}.

Then, the comparison of (13) and (14) yields that, on the time interval [t, TK ],
any birth time (with or without mutation) for νK is also a birth time for ZK ,
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and any death time for ZK is also a death time for νK . Consequently, ZKTK (ω)
is necessarily greater than 〈νKTK (ω),1〉, which implies the required domination
result. �

Proof of (b) With the same notations as above,

AKt :=
∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤K〈νK
s−,1〉}×

× 1{
v≤

uK µ(Hi(νK
s−))b(Hi(νK

s−))

b̄

m(Hi(νK
s−),h)

m(h)

}N2(ds, di, dh, dv).

Therefore, for t ≤ inf{s ≥ 0 : 〈νKs ,1〉 ≥ a},

AKt ≤
∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤Ka}1{v≤uK}N2(ds, di, dh, dv). (15)

Since the intensity measure of N2 is

q2(ds, di, dh, dv) = b̄ds
∑
k≥1

δk(di)m(h)dhdv, (16)

the right-hand side of (15) is a Poisson process with parameter KuKab̄.
In the case where νK0 = 〈νK0 ,1〉δx, as long as t < τ1, νKt = 〈νKt ,1〉δx,

therefore, for t ≤ τ1 ∧ inf{s ≥ 0 : 〈νKs ,1〉 6∈ [a1, a2]},∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤Ka1}1{
v≤uK µ(x)b(x)

b̄

m(x,h)
m(h)

}N2(ds, di, dh, dv) ≤ AKt

≤
∫ t

0

∫
N

∫
Rl

∫ 1

0

1{i≤Ka2}1{
v≤uK µ(x)b(x)

b̄

m(x,h)
m(h)

}N2(ds, di, dh, dv).

By (16), the left-hand side and the right-hand side of this inequality is are
Poisson processes with parameters KuKa1µ(x)b(x) and KuKa2µ(x)b(x), re-
spectively. �

Proof of (c) (d) and (e) The proofs of (c), (d) and (e) are very similar. We
will only prove in detail (e).

Consider, on a sufficiently rich probability space (Ω,F ,P) the random vari-
ables z1 and z2 as in the statement of Theorem 2, and the following independent
random objects:

(i) two Poisson point measures N̂k
1 (ds, di, dv) (k = 1, 2) on [0,∞[×N × [0, 1]

with intensity measures qk1 (ds, di, dv) = bkds
∑
n≥1 δn(di)dv (k = 1, 2),

(ii) two Poisson point measures N̂k
2 (ds, di, dv) (k = 1, 2) on [0,∞[×N × [0, 1]

with intensity measures qk2 (ds, di, dv) = dkds
∑
n≥1 δn(di)dv (k = 1, 2),

(iii) two Poisson point measures N̂k
3 (ds, di, dj, dv) (k = 1, 2) on [0,∞[×N×N×

[0, 1] with intensity measures

qk3 (ds, di, dj, dv) = (ck1/K)ds
∑
n≥1

δn(di)
∑
m≥1

δm(dj)dv (k = 1, 2).
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(iv) two Poisson point measures N̂k
4 (ds, di, dj, dv) (k = 1, 2) on [0,∞[×N×N×

[0, 1] with intensity measures

qk4 (ds, di, dj, dv) = (ck2/K)ds
∑
n≥1

δn(di)
∑
m≥1

δm(dj)dv (k = 1, 2).

The processes Z1 and Z2 can be constructed on Ω as follows: for any t ≥ 0, and
for k = 1, 2,

Zkt = zk +
1
K

∫ t

0

∫
N
1{i≤KZk

s−}

(∫ 1

0

N̂k
1 (ds, di, dv)−

∫ 1

0

N̂k
2 (ds, di, dh, dv)

−
∫

N

∫ 1

0

(
1{j≤KZ1

s−}N̂
k
3 (ds, di, dj, dv) + 1{j≤KZ2

s−}N̂
k
4 (ds, di, dj, dv)

))
.

Then, we can define on Ω the processes M1 and M2 by, for any t ≥ 0,

M1
t = z2 +

1
K

∫ t

0

∫
N
1{i≤KM1

s−}

(∫ 1

0

N̂2
1 (ds, di, dv)−

∫ 1

0

N̂2
2 (ds, di, dh, dv)

−
∫

N

∫ 1

0

(
1{j≤Ka2}N̂

2
3 (ds, di, dj, dv) + 1{j≤Ka}N̂2

4 (ds, di, dj, dv)
))

and

M2
t = z2 +

1
K

∫ t

0

∫
N
1{i≤KM2

s−}

(∫ 1

0

N̂2
1 (ds, di, dv)−

∫ 1

0

N̂2
2 (ds, di, dh, dv)

−
∫

N

∫ 1

0

1{j≤Ka1}N̂
2
3 (ds, di, dj, dv)

)
.

A comparison between the birth and death events of Z2, M1 and M2 in a
similar way than in the proof of (a) proves that M1

t (ω) ≤ Z2
t (ω) ≤ M2

t (ω) for
any t ≤ inf{t ≥ 0, Z1 6∈ [a1, a2] or Z2 ≥ a} and for any ω ∈ Ω. �

2.2 Problem of exit from a domain

Let us give some results on PK(b, d, c, z) when c > 0. Points (a) and (b) of the
following theorem strengthen Proposition 1, and point (c) studies the problem
of exit from a domain.

Theorem 3
(a) Let c, T > 0 and b, d ≥ 0, let C be a compact subset of R∗

+, and write

PK
z = PK(b, d, c, z) for z ∈ N/K. Let φz denote the solution to

φ̇ = (b− d− cφ)φ (17)

with initial condition φz(0) = z. Then

r := inf
z∈C

inf
0≤t≤T

|φz(t)| > 0 (18)

and
R := sup

z∈C
sup

0≤t≤T
|φz(t)| < +∞. (19)
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Then, for any δ < r, (with the convention sup ∅ = 0)

lim
K→+∞

sup
z∈C

PK
z

(
sup

0≤t≤T
|wt − φz(t)| ≥ δ

)
= 0, (20)

where wt is the canonical process on D(R+,R).

(b) Let T, cij > 0 and bi, di ≥ 0 (i, j ∈ {1, 2}), let C be a compact subset of
(R∗

+)2, and write QK
z1,z2 = QK(b1, b2, d1, d2, c11, c12, c21, c22, z1, z2) for z1

and z2 in N/K. Let φz1,z2 = (φ1
z1,z2 , φ

2
z1,z2) denote the solution to

φ̇1 = (b1 − d1 − c11φ
1 − c12φ

2)φ1

φ̇2 = (b2 − d2 − c21φ
1 − c22φ

2)φ2

with initial conditions φ1
z1,z2(0) = z1 and φ2

z1,z2(0) = z2. Then

r := inf
z∈C

inf
0≤t≤T

‖φz1,z2(t)‖ > 0 (21)

and
sup
z∈C

sup
0≤t≤T

‖φz1,z2(t)‖ < +∞.

Then, for any δ < r,

lim
K→+∞

sup
z∈C

QK
z1,z2( sup

0≤t≤T
‖ŵt − φz1,z2(t)‖ ≥ δ) = 0,

where ŵt = (ŵ1
t , ŵ

2
t ) is the canonical process on D(R+,R2).

(c) Let b, c > 0 and 0 ≤ d < b. Observe that (b − d)/c is the unique stable
steady state of (17). Fix 0 < η1 < (b − d)/c and η2 > 0, and define on
D(R+,R)

TK = inf
{
t ≥ 0 : wt 6∈

[
b− d

c
− η1,

b− d

c
+ η2

]}
.

Then, there exists V > 0 such that, for any compact subset C of ](b −
d)/c− η1, (b− d)/c+ η2[,

lim
K→+∞

sup
z∈C

PK
z (TK < eKV ) = 0. (22)

Proof of (a) and (b) Observe that any solution to (17) with positive initial
condition is bounded, since φ̇ < 0 as soon as φ > (b − d)/c. This implies
easily (19).

Moreover, since a solution to (17) can be written as

φ(t) = φ(0) exp
(∫ t

0

(b− d− cφ(s))ds
)
,

it cannot reach 0 in finite time if φ(0) > 0. Therefore, (18) follows from the
continuity of the flow, which is a classical consequence of the fact that z 7→
(b − d − cz)z is locally Lipschitz and of Gronwall’s Lemma (cf. e.g. Queffélec
and Zuily [15] p. 356).
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Finally, (20) is a consequence of large deviations estimates for the sequence
of laws (PK

z )K≥1. As can be seen in Theorem 10.2.6 in chapter 10 of Dupuis
and Ellis [5], a large deviations principle on [0, T ] with a good rate function IT
holds for Z/K-valued Markov jump processes with transition rates

Kp(i/K) from i/K to (i+ 1)/K,
Kq(i/K) from i/K to (i− 1)/K,

where p and q are functions defined on R and with positive values, bounded,
Lipschitz and uniformly bounded away from 0. The rate function IT writes

IT (φ) =


∫ T

0

L(φ(t), φ̇(t))dt if φ is absol. cont. on [0, T ]

+∞ otherwise,
(23)

where L(y, z) = 0 if z = p(y) − q(y) and L(y, z) > 0 otherwise. Therefore,
IT (φ) = 0 if and only if φ is absolutely continuous and

φ̇ = p(φ)− q(φ). (24)

Moreover, this large deviation is uniform with respect to the initial condition.
This means that, if RK

z denotes the law of this process with initial condition
z, for any compact set C ⊂ R, for any closed set F and any open set G of
D([0, T ],R),

lim inf
K→+∞

1
K

log inf
z∈C

RK
z (G) ≥ − sup

z∈C
inf

ψ∈G, ψ(0)=z
IT (ψ) (25)

and lim sup
K→+∞

1
K

log sup
z∈C

RK
z (F ) ≤ − inf

ψ∈F, ψ(0)∈C
IT (ψ). (26)

Our birth and death process does not satisfy these asumptions. However, if
we define

p(z) = bχ(z) and q(z) = dχ(z) + cχ(z)2,
where χ(z) = z if z ∈ [r − δ,R+ δ]; r − δ if z < r − δ; R+ δ if z > R+ δ,

then RK
z = PK

z on the time interval [0, τ ], where τ = inf{t ≥ 0, wt 6∈ [r− δ,R+
δ]}, and p and q satisfy the assumptions above. Therefore, by (26),

lim sup
K→+∞

1
K

log sup
z∈C

PK
z

(
sup

0≤t≤T
|wt − φz(t)| ≥ δ

)
≤ − inf

ψ∈F δ
IT (ψ), where

F δ :=
{
ψ ∈ D([0, T ],R) : ψ(0) ∈ C and ∃t ∈ [0, T ], |ψ(t)− φψ(0)(t)| ≥ δ

}
By the continuity of the flow of (24), the set F δ is closed. Since IT is a good rate
function, the infimum of IT over this set is attained at some function belonging
to F δ, which cannot be a solution to (24), and thus non-zero. This ends the
proof of (20).

The proof of (b) can be made in a very similar way, using the large deviations
estimates for two-dimensional jump processes of Theorem 10.2.6 in chapter 10
of Dupuis and Ellis [5]. �
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Proof of (c) Define the function χ on R by χ(z) = z if z ∈ [(b−d)/c−η1, (b−
d)/c+ η2], χ(z) = (b− d)/c− η1 for z < (b− d)/c− η1 and χ(z) = (b− d)/c+ η2
for z > (b − d)/c − η2. As in the proof of (a), we can construct from the
functions p(z) = bχ(z) and q(z) = dχ(z) + cχ(z)2 a family of laws (RK

z ) such
that RK

z = PK
z on the time interval [0, TK ], and such that (25) and (26) hold

for the good rate function IT defined in (23).
Observe that any solution to (24) are monotonic and converge to (b − d)/c

when t → +∞. Therefore, the following estimates for the time of exit from
an attracting domain are classical (cf. Freidlin and Wentzell [9], chapter 5,
section 4): there exists V̄ ≥ 0 such that, for any δ > 0,

lim
K→+∞

inf
z∈C

RK
z

(
eK(V̄−δ) < TK < eK(V̄+δ)

)
= 1,

which implies (22) if we can prove that V̄ > 0.
The constant V̄ is obtained as follows (see [9] pp. 108–109): for any y, z ∈ R,

define
V (y, z) := inf

t>0, ϕ(0)=y, ϕ(t)=z
It(ϕ).

Then

V̄ := V

(
b− d

c
,
b− d

c
− η1

)
∧ V

(
b− d

c
,
b− d

c
+ η2

)
.

Now, Theorem 5.4.3. of [9] states that, for any y, z ∈ R, the infimum defining
V (y, z) is attained at some function φ linking y to z, in the sense that, either
there exists an absolutely continuous function φ defined on [0, T ] for some T > 0
such that φ(0) = y, φ(T ) = z and V (y, z) = IT (φ) =

∫ T
0
L(φ(t), φ̇(t))dt, or there

exists an absolutely continuous function φ defined on ]−∞, T ] for some T > −∞
such that limt→−∞ φ(t) = y, φ(T ) = z and V (y, z) =

∫ T
−∞ L(φ(t), φ̇(t))dt.

Since any solution to (24) is decreasing as long as it stays in [(b−d)/c,+∞[,
a function φ defined on [0, T ] or ] − ∞, T ] linking (b − d)/c to (b − d)/c + η2
cannot be a solution to (24), and thus V ((b−d)/c, (b−d)/c+η2) > 0. Similarly,
V ((b − d)/c, (b − d)/c − η1) > 0, and so V̄ > 0, which concludes the proof of
Theorem 3. �

2.3 Some results on branching processes

Observe that, when c = 0, PK(b, d, 0, z) is the law of a binary branching process
divided by K. Let us give some results on these processes.

Theorem 4 Let b, d > 0. As in Theorem 3, define, for any K ≥ 1 and any
z ∈ N/K, PK

z = PK(b, d, 0, z). Define also, for any z ∈ R, on D(R+,R), the
stopping time

Tz = inf{t ≥ 0 : wt = z}.

Finally, let (tK)K≥1 be a sequence of positive numbers such that logK � tK .

(a) If b < d (sub-critical case), for any ε > 0,

lim
K→+∞

PK
1/K(T0 ≤ tK ∧ TdεKe/K) = 1, (27)

and lim
K→+∞

PK
bεKc/K(T0 ≤ tK) = 1. (28)
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Moreover, for any K ≥ 1, k ≥ 1 and n ≥ 1,

PK
n/K(Tkn/K ≤ T0) ≤

1
k
. (29)

(b) If b > d (super-critical case), for any ε > 0,

lim
K→+∞

PK
1/K(T0 ≤ tK ∧ TdεKe/K) =

d

b
(30)

and lim
K→+∞

PK
1/K(TdεKe/K ≤ tK) = 1− d

b
. (31)

Proof Let us denote by Qn the law of the binary branching process with
initial state n ∈ N, with individual birth rate b and individual death rate d.
Then (27), (28), (29), (30) and (31) rewrite respectively

lim
K→+∞

Q1(T0 ≤ tK ∧ TdεKe) = 1, (32)

lim
K→+∞

QbεKc(T0 ≤ tK) = 1, (33)

Qn(Tkn ≤ T0) ≤
1
k
, (34)

lim
K→+∞

Q1(T0 ≤ tK ∧ TdεKe) =
d

b
(35)

and lim
K→+∞

Q1(TdεKe ≤ tK) = 1− d

b
. (36)

The limit (33) follows easily from the distribution of the extinction time for
binary branching processes when b 6= d (cf. Athreya and Ney [1] p. 109): for
any t ≥ 0 and n ∈ N,

Qn(T0 ≤ t) =

(
d
(
1− e−(b−d)t)
b− de−(b−d)t

)n
. (37)

It is known that there is no accumulation of jumps for branching pro-
cesses. Therefore, under Q1, when K → +∞, TdεKe → +∞ a.s. , and thus
Q1(T0 ≤ TdεKe, T0 < ∞) → Q1(T0 < ∞). Therefore, (32) and (35) follow
easily from (37).

The inequality (34) follows from the fact that, if (Zt, t ≥ 0) is a process with
law Qn, (Zt exp(−(b− d)t), t ≥ 0) is a martingale (cf. [1] p. 111). Then, Doob’s
stopping theorem applied to the stopping time T0 ∧ Tkn yields,

En(kne(d−b)Tkn1{Tkn<T0}) = n,

where En is the expectation with respect to Qn. Therefore, when b < d,
knQn(Tkn < T0) ≤ n, and the proof of (34) is completed.

The limit (36) follows from the fact that, if (Zt, t ≥ 0) is a process with law
Q1, the martingale (Zt exp(−(b− d)t), t ≥ 0) converges a.s. when t→ +∞ to a
random variable W , where W = 0 on the event {T0 < ∞} and W > 0 on the
event {T0 = ∞} (cf. [1] p. 112). Hence, on the event {T0 = ∞}, when b > d,

logZt/t→ b− d > 0,
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and so, for almost any ω ∈ {T0 = ∞}, there exists S(ω) <∞ such that for any
t ≥ S(ω),

Zt ≥ exp((b− d)t/2).

Therefore, since logK � tK , for any ε > 0, Q1(T0 = ∞, TdεKe ≥ tK) → 0
when K → +∞. Then, (36) follows from the fact that Q1(T0 = ∞) = 1− d/b,
which is an immediate consequence of (37). �

3 Proof of Theorem 1

Let us assume, without loss of generality, that νK is constructed by (13) on a
sufficiently rich probability space (Ω,F ,P).

Let us introduce the following sequences of stopping times: for all n ≥ 1,
let τn be the first mutation time after time τn−1, with τ0 = 0 (i.e. τn is the
nth mutation time), and for any n ≥ 0, let θn be the first time after τn when
the population gets monomorphic. Observe that θ0 = 0 if the initial population
is monomorphic. For any n ≥ 1, define the random variable Un as the new
trait value appearing at the mutation time τn, and, when θn <∞, define Vn by
Supp(νKθn

) = {Vn}. When θn = +∞, define Vn = +∞.
Our proof of Theorem 1 is based on the following two lemmas. The first

lemma proves that there is no accumulation of mutations on the time scale of
Theorem 1, and studies the asymptotic behavior of τ1 starting from a mono-
morphic population, when K → +∞.

Lemma 1
(a) Assume that the initial condition of νK satisfies supK E(〈νK0 ,1〉) < +∞.

Then, for any η > 0, there exists ε > 0 such that, for any t > 0,

lim sup
K→+∞

PK
νK
0

(
∃n ≥ 0 :

t

KuK
≤ τn ≤

t+ ε

KuK

)
< η. (38)

Let x ∈ X and let (zK)K≥1 be a sequence of integers such that zK/K → z > 0.

(b) For any ε > 0,

lim
K→+∞

PK
zK
K δx

(
τ1 > logK, sup

t∈[logK,τ1]

|〈νKt ,1〉 − n̄x| > ε

)
= 0. (39)

Observe that, by (a) with t = 0, since logK � 1/KuK ,

lim
K→+∞

PK
zK
K δx

(τ1 < logK) = 0.

In particular, under PK
zK
K δx

, νKlogK
P→ n̄xδx and νKτ1−

P→ n̄xδx.

If, moreover, z = n̄x, then, for any ε > 0,

lim
K→+∞

PK
zK
K δx

(
sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| > ε

)
= 0. (40)

(c) For any t > 0,

lim
K→+∞

PK
zK
K δx

(
τ1 >

t

KuK

)
= exp(−β(x)t),

where β(·) has been defined in (2).
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The second lemma studies the asymptotic behavior of θ0 and V0 starting from
a dimorphic population, when K → +∞.

Lemma 2 Fix x, y ∈ X satisfying (7) or (8), and let (zK)K≥1 be a sequence of
integers such that zK/K → n̄x. Then,

lim
K→+∞

PK
zK
K δx+ 1

K δy
(V0 = y) =

[f(y, x)]+
b(y)

, (41)

lim
K→+∞

PK
zK
K δx+ 1

K δy
(V0 = x) = 1− [f(y, x)]+

b(y)
, (42)

∀η > 0, lim
K→+∞

PK
zK
K δx+ 1

K δy

(
θ0 >

η

KuK
∧ τ1

)
= 0 (43)

and ∀ε > 0, lim
K→+∞

PK
zK
K δx+ 1

K δy

(
|〈νKθ0 ,1〉 − n̄V0 | < ε

)
= 1, (44)

where f(y, x) has been defined in (3).

Observe that (43) implies in particular that

lim
K→+∞

PK
zK
K δx+ 1

K δy
(θ0 < τ1) = 1.

The proofs of these lemmas are postponed at the end of this section.

Proof of Theorem 1 Observe that the generator A, defined in (9), of the
TSS process (Xt, t ≥ 0) of Theorem 1 can be written as

Aϕ(x) =
∫

Rl

(ϕ(x+ h)− ϕ(x))β(x)κ(x, dh), (45)

where the probability measure κ(x, dh) is defined by

κ(x, dh) =
(

1−
∫

Rl

[f(x+ v, x)]+
b(x+ v)

m(x, v)dv
)
δ0(dh)

+
[f(x+ h, x)]+
b(x+ h)

m(x, h)dh. (46)

This means that the TSS model X with initial state x can be constructed as
follows: let (Z(k), k = 0, 1, 2, . . .) be a Markov chain in X with initial state x
and with transition kernel κ(x, dh), and let (N(t), t ≥ 0) be and independent
standard Poisson process. Let also (Tn)n≥1 denote the sequence of jump times
of the Poisson process N . Then, the process (Xt, t ≥ 0) defined by

Xt := Z

(
N

(∫ t

0

β(Xs)ds
))

is a Markov process with infinitesimal generator (45) (cf. [6] chapter 6).
Let Px denote its law, and define (Sn)n≥1 by Tn =

∫ Sn

0
β(Xs)ds. By (A1)

and (A3), β(·) > 0, and so Sn is finite for any n ≥ 1. Observe that any jump
of the process X occurs at some time Sn, but that all Sn may not be effective
jump times for X, because of the Dirac mass at 0 appearing in (46).

Fix t > 0, x ∈ X and a measurable subset Γ of X . Under Px, S1 and XS1 are
independent, S1 is an exponential random variable with parameter β(x), and
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XS1 − x has law κ(x, ·). Therefore, for any n ≥ 1, the strong Markov property
applied to X at time S1 yields

Px(Sn ≤ t < Sn+1, Xt ∈ Γ)

=
∫ t

0

β(x)e−β(x)s

∫
Rl

Px+h(Sn−1 ≤ t− s < Sn, Xt−s ∈ Γ)κ(x, dh)ds. (47)

Moreover,
Px(0 ≤ t < S1, Xt ∈ Γ) = 1{x∈Γ}e

−β(x)t. (48)

The idea of our proof of Theorem 1 is to show that the same relations hold
when we replace Sn by τn and Xt by the support of νKt/KuK

(when it is a
singleton) and when K → +∞.

More precisely, fix x ∈ X , t > 0 and a measurable subset Γ of X , and observe
that{

Supp(νKt/KuK
) is a singleton {y}, y ∈ Γ and |〈νKt/KuK

,1〉 − n̄y| < ε
}

=
⋃
n≥0

AKn (t,Γ, ε), (49)

where

AKn (t,Γ, ε) :=
{
θn ≤

t

KuK
< τn+1, Vn ∈ Γ, |〈νKt/KuK

,1〉 − n̄Vn | < ε

}
.

Let us define, for any z ∈ N and n ≥ 0,

pKn (t, x,Γ, ε, z) := PK
z
K δx

(
θn ≤

t

KuK
< τn+1, Vn ∈ Γ

and sup
s∈[θn,τn+1]

|〈νKs ,1〉 − n̄Vn | < ε

)
,

and define also,

qK0 (t, x,Γ, ε, z) := PK
z
K δx

(
t

KuK
< τ1, V0 ∈ Γ, sup

s∈[logK,τ1]

|〈νKs ,1〉 − n̄V0 | < ε

)

= 1{x∈Γ}PK
z
K δx

(
t

KuK
< τ1, sup

s∈[logK,τ1]

|〈νKs ,1〉 − n̄x| < ε

)
.

Let us also extend these definitions to ε = ∞ by suppressing the condition
involving the supremum of |〈νK ,1〉 − n̄Vn

|.
Then

Lemma 3
(a) For any x ∈ X , n ≥ 1, t > 0, ε ∈]0,∞] and for any sequence of integers

(zK) such that zK/K → z > 0, pn(t, x,Γ) := limK→+∞ pKn (t, x,Γ, ε, zK)
exists, and is independent of (zK), z > 0 and ε.

Similarly, p0(t, x,Γ) := limK→+∞ qK0 (t, x,Γ, ε, zK) exists, and is indepen-
dent of (zK), z > 0 and ε, and, if z = n̄x, limK→+∞ pK0 (t, x,Γ, ε, zK)
exists and is also equal to p0(t, x,Γ).
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Finally, if we assume that (zK) is a sequence of N-valued random variables
such that zK/K converge in probability to a deterministic z > 0, then the
limits above hold in probability (with the same restriction that z has to
be equal to n̄x for pK0 ).

(b) The functions pn(t, x,Γ) are continuous with respect to t and measurable
with respect to x, and satisfy

p0(t, x,Γ) = 1{x∈Γ}e
−β(x)t and ∀n ≥ 0,

pn+1(t, x,Γ) =
∫ t

0

β(x)e−β(x)s

∫
Rl

pn(t− s, x+ h,Γ)κ(x, dh)ds.

Let us postpone the proof of this lemma after the proof of Theorem 1.
Observe that, because of (47) and (48), Lemma 3 (b) implies that Px(Sn ≤

t < Sn+1, Xt ∈ Γ) = pn(t, x,Γ).
Now, let P̃K

ν denote the law of the process νK with random initial state ν.
Since νK is Markov, P̃K

γK/Kδx
= E[PK

γK(ω)/Kδx
]. By (49),

P̃K
γK
K δx

(
Supp(νKt/KuK

) is a singleton {y}, y ∈ Γ

and |〈νKt/KuK
,1〉 − n̄y| < ε

)
=
∑
n≥0

P̃K
γK
K δx

(AKn (t,Γ, ε)),

where (γK) is the sequence of N-valued random variables of Theorem 1.
For any K ≥ 1 and n ≥ 1,

pKn (t, x,Γ, ε, γK) ≤ PK
γK
K δx

(AKn (t,Γ, ε)) ≤ pKn (t, x,Γ,∞, γK),

and qK0 (t, x,Γ, ε, γK) ≤ PK
γK
K δx

(AKn (t,Γ, ε)) ≤ pKn (t, x,Γ,∞, γK),

so, by Lemma 3 (a), for any n ≥ 0, PK
γK/Kδx

(AKn (t,Γ, ε)) P→ pn(t, x,Γ), and

therefore, limK→+∞ P̃K
γK/Kδx

(AKn (t,Γ, ε)) = pn(t, x,Γ).
Now, by (49), for any K ≥ 1,

+∞∑
n=0

P̃K
γK
K δx

(AKn (t,Γ, ε)) ≤ 1,

so, by the dominated convergence theorem,

lim
K→+∞

P̃K
γK
K δx

(
Supp(νKt/KuK

) is a singleton {y}, y ∈ Γ

and |〈νKt/KuK
,1〉 − n̄y| < ε

)
=
∑
n≥0

pn(t, x,Γ) = Px(Xt ∈ Γ),

which is (11) in the case of a single time t.
In order to complete the proof of Theorem 1, we have to generalize this limit

to any sequence of times 0 < t1 < . . . < tn.
We will specify the method only in the case of two times 0 < t1 < t2. It can

be easily generalized to a sequence of n times. We introduce for any integers
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0 ≤ n1 ≤ n2 the probabilities

pKn1,n2
(t1, t2, x,Γ1,Γ2, ε, z)

:= PK
z
K δx

(
θn1 ≤

t1
KuK

< τn1+1, Vn1 ∈ Γ1, sup
s∈[θn1 ,τn1+1]

|〈νKs ,1〉 − n̄Vn1
| < ε,

θn2 ≤
t2

KuK
< τn2+1, Vn2 ∈ Γ2 and sup

s∈[θn2 ,τn2+1]

|〈νKs ,1〉 − n̄Vn2
| < ε

)
,

and

qK0,n2
(t1, t2, x,Γ1,Γ2, ε, z)

:= 1{x∈Γ1}P
K
z
K δx

(
t1

KuK
< τ1, sup

s∈[logK,τ1]

|〈νKs ,1〉 − n̄x| < ε,

θn2 ≤
t2

KuK
< τn2+1, Vn2 ∈ Γ2 and sup

s∈[θn2 ,τn2+1]

|〈νKs ,1〉 − n̄Vn2
| < ε

)
.

Then, we can use a calculation very similar to the proof of Lemma 3 to
prove that, as K → +∞, pKn1,n2

(t1, t2, x,Γ1,Γ2, ε, zK) converges to a limit
pn1,n2(t1, t2, x,Γ1,Γ2) independent of ε ∈]0,∞], zK and the limit z > 0 of
zK/K (with the restriction that z has to be equal to n̄x if n1 = 0), and that
lim qK0,n2

(t1, t2, x,Γ1,Γ2, ε, z) = p0,n2(t1, t2, x,Γ1,Γ2), where
p0,n2(t1, t2, x,Γ1,Γ2) = 1{x∈Γ1}e

−β(x)t1pn2(t2 − t1, x,Γ2);

pn1+1,n2+1(t1, t2, x,Γ1,Γ2)

=
∫ t1

0

β(x)e−β(x)s

∫
Rl

pn1,n2(t1 − s, t2 − s, x+ h,Γ1,Γ2)κ(x, dh)ds.

As above, we obtain equation (11) for n = 2 by observing that the same relation
holds for the TSS process X.

This completes the proof of Theorem 1. �

Proof of Lemma 3 First, let us prove that the convergence property of
pKn (t, x,Γ, ε, zK) when zK ∈ N in Lemma 3 (a) implies the convergence in prob-
ability of these quantities when zK are random variables. Actually, if (zK) is
a sequence of random variables such that zK/K

P→ z, by Skorohod’s Theorem,
we can construct on an auxiliary probability space Ω̂ a sequence of random
variables (ẑK) such that L(ẑK) = L(zK) and ẑK(ω̂)/K → z for any ω̂ ∈ Ω̂.
Then, lim pKn (t, x,Γ, ε, ẑK(ω̂)) = pn(t, x,Γ) for any ω̂ ∈ Ω̂, which implies that
pKn (t, x,Γ, ε, zK) P→ pn(t, x,Γ). The same method applies to qK0 (t, x,Γ, ε, zk).

We will prove Lemma 3 (a) and (b) by induction over n ≥ 0.
First, when t > 0, it follows from the fact that t/KuK > logK for sufficiently

large K, and from Lemma 1 (b) and (c), that

lim
K→+∞

qK0 (t, x,Γ, ε, zK) = 1{x∈Γ}e
−β(x)t,

and that, if z = n̄x,

lim
K→+∞

pK0 (t, x,Γ, ε, zK) = 1{x∈Γ}e
−β(x)t.
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Then, fix n ≥ 0 and assume that Lemma 3 (a) holds for n. We intend to
prove the convergence of pKn+1(t, x,Γ, ε, zK) to pn+1(t, x,Γ) such that

pn+1(t, x,Γ) =
∫ t

0

β(x)e−β(x)s

∫
Rl

pn(t− s, x+ h,Γ)κ(x, dh)ds,

by applying the strong Markov property at time τ1, in a similar way than when
we obtained (47). However, the convergence of pKn (t, x,Γ, ε, zK) to pn(t, x,Γ)
only holds for non-random t. Therefore, we will divide the time interval [0, t]
in a finite number of small intervals and use the Markov property at time τ1
when τ1 is in each of these intervals. Moreover, we will also use the Markov
property at time θ1 and, in order to be able to apply Lemma 2 (which holds
for a non-random mutant trait y) after this time, we will use the fact that U1

is independent of τ1 and νKτ1− and that U1 − x is a random variable with law
m(x, h)dh.

Following this program, we can bound pKn+1(t, x,Γ, ε, zK) from above as fol-
lows: fix η > 0; using Lemma 1 (a) in the first inequality, for sufficiently large
k ≥ 0 and K ≥ 1,

pKn+1(t, x,Γ, ε, zK) ≤ PK
zK
K δx

(
θn+1 ≤

t

KuK
, τn+2 >

t+ 2/2k

KuK
, Vn+1 ∈ Γ

)
+ η

≤
dt2ke−1∑
i=0

PK
zK
K δx

(
i

2kKuK
≤ τ1 ≤

i+ 1
2kKuK

, θn+1 ≤
t

KuK
,

τn+2 >
t+ 2/2k

KuK
and Vn+1 ∈ Γ

)
+ η

≤
dt2ke−1∑
i=0

EKzK
K δx

[
1{

i

2kKuK
≤τ1≤ i+1

2kKuK

}PK
νK

τ1−
+ 1

K δU1

(
θn ≤

t− i/2k

KuK
,

τn+1 >
t− (i− 1)/2k

KuK
and Vn ∈ Γ

)]
+ η

≤
dt2ke−1∑
i=0

EKzK
K δx

[
1{

i

2kKuK
≤τ1≤ i+1

2kKuK

} ∫
Rl

EKνK
τ1−

+ 1
K δx+h

(
1{

θ0≥ 1
2kKuK

∧τ1
}

+ 1{
θ0<

1
2kKuK

∧τ1
}PK

νK
θ0

(
θn ≤

t− i/2k

KuK
< τn+1, Vn ∈ Γ

))
m(x, h)dh

]
+ η.

≤
dt2ke−1∑
i=0

EKzK
K δx

[
1{

i

2kKuK
≤τ1≤ i+1

2kKuK

} ∫
Rl

EKνK
τ1−

+ 1
K δx+h

(
1{

θ0≥ 1
2kKuK

∧τ1
}

+ 1{
θ0<

1
2kKuK

∧τ1
}pKn (t− i/2k, V0,Γ,∞,K〈νKθ0 ,1〉)

)
m(x, h)dh

]
+ η. (50)

Now, since νKτ1− = 〈νKτ1−,1〉δx, under PK
νK

τ1−
+ 1

K δx+h
, on the event {θ0 < τ1},

pKn (t− i/2k, V0,Γ,∞,K〈νKθ0 ,1〉) = 1{V0=x}p
K
n (t− i/2k, x,Γ,∞,K〈νKθ0 ,1〉)

+ 1{V0=x+h}p
K
n (t− i/2k, x+ h,Γ,∞,K〈νKθ0 ,1〉). (51)
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By Lemma 1 (b), νKτ1−
P→ n̄xδx under P zK

K δx
, so we can use Skorohod’s

Theorem to construct random variables N̂K on an auxiliary probability space
Ω̂ with the same law that 〈νKτ1−,1〉 and converging to n̄x for any ω̂ ∈ Ω̂.

Fix ω̂ ∈ Ω̂. Under PK
N̂K(ω̂)δx+ 1

K δx+h
, define

ZK1 = 〈νKθ0 ,1〉1{V0=x, θ0<τ1} +
dKn̄xe
K

1{V0 6=x}∪{θ0≥τ1}.

It follows from Lemma 2 (43) and (44), and from assumption (B) that, for
Lebesgue almost every h, ZK1

P→ n̄x, so the induction assumption yields that,
under PK

N̂K(ω̂)δx+ 1
K δx+h

, when K → +∞,

pKn (t− i/2k, x,Γ,∞,KZK1 ) P→ pn(t− i/2k, x,Γ).

Now, given two sequences of uniformly bounded random variables (XK)K≥1

and (YK)K≥0 such that XK and YK are defined on the same probability space
for any K ≥ 1, and such that, when K → +∞, XK converges in probability to
a constant C and limK E(YK) exists, it is easy to prove that

lim
K→+∞

E(XKYK) = C lim
K→+∞

E(YK). (52)

Applying this withXK = pKn (t−i/2k, x,Γ,∞,KZK1 ) and YK = 1{V0=x, θ0<τ1},
by Lemma 2 (42) and (43) and assumption (B), for Lebesgue almost any h, and
for any ω̂ ∈ Ω̂,

lim
K→+∞

EK
N̂K(ω̂)δx+ 1

K δx+h

(
1{V0=x, θ0<τ1}p

K
n (t− i/2k, x,Γ,∞,K〈νKθ0 ,1〉)

)
=
(

1− [f(x+ h, x)]+
b(x+ h)

)
pn(t− i/2k, x,Γ).

Finally, we obtain that, for Lebesgue almost any h, under PK
zK
K δx

,

EKνK
τ1−

+ 1
K δx+h

(
1{V0=x, θ0<τ1}p

K
n (t− i/2k, x,Γ,∞,K〈νKθ0 ,1〉)

)
P→
(

1− [f(x+ h, x)]+
b(x+ h)

)
pn(t− i/2k, x,Γ). (53)

Similarly, we can use Lemma 2 (41) and the random variable

ZK2 = 〈νKθ0 ,1〉1{V0=x+h, θ0<τ1} + n̄x+h1{V0 6=x+h}∪{θ0≥τ1}

to prove that, for Lebesgue almost any h, under PK
zK
K δx

,

EKνK
τ1−

+ 1
K δx+h

(
1{V0=x+h, θ0<τ1}p

K
n (t− i/2k, x+ h,Γ,∞,K〈νKθ0 ,1〉)

)
P→ [f(x+ h, x)]+

b(x+ h)
pn(t− i/2k, x+ h,Γ). (54)

Moreover, by Lemma 2 (43), for Lebesgue almost any h, under PK
(zK/K)δx

,

PK
νK

τ1−
+ 1

K δx+h

(
θ0 ≥

1
2kKuK

∧ τ1
)

P→ 0. (55)
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Collecting these results together, applying (52) again, it follows from Lem-
ma 1 (c) and (51) that, for Lebesgue almost any h,

lim
K→+∞

EKzK
K δx

[
1{

i

2kKuK
≤τ1≤ i+1

2kKuK

}EKνK
τ1−

+ 1
K δx+h

(
1{

θ0≥ 1
2kKuK

∧τ1
}

+ 1{
θ0<

1
2kKuK

∧τ1
}pKn (t− i/2k, V0,Γ,∞,K〈νKθ0 ,1〉)

)]
=
(
e−β(x) i

2k − e−β(x) i+1
2k

)[ [f(x+ h, x)]+
b(x+ h)

pn(t− i/2k, x+ h,Γ)

+
(

1− [f(x+ h, x)]+
b(x+ h)

)
pn(t− i/2k, x,Γ)

]
.

Finally, taking the integral of both sides with respect to m(x, h)dh, the
dominated convergence theorem and (50) yield

lim sup
K→+∞

pKn+1(x, t,Γ, ε, zK)

≤
dt2ke−1∑
i=0

(
e−β(x) i

2k − e−β(x) i+1
2k

)∫
Rl

pn(t− i/2k, x+ h,Γ)κ(x, dh) + η.

Taking the limit k → +∞ first and then η → 0, it follows from the fact that

e−β(x)i/2k

− e−β(x)(i+1)/2k

= e−β(x)i/2k

(β(x)/2k +O(1/22k))

and from the convergence of Riemann sums that

lim sup
K→+∞

pKn+1(x, t,Γ, ε, zK) ≤
∫ t

0

β(x)e−β(x)s

∫
Rl

pn(t− s, x+ h,Γ)κ(x, dh)ds.

Using the same method than for (50), we can give a lower bound for pKn as
follows: for any η > 0, for sufficiently large k ≥ 0 and K ≥ 1,

pKn+1(t, x,Γ, ε, zK) ≥ PK
zK
K δx

(
θn+1 ≤

t

KuK
, τn+2 >

t− 2/2k

KuK
, Vn+1 ∈ Γ

and sup
s∈[θn+1,τn+2]

|〈νKs ,1〉 − n̄Vn+1 | < ε

)
− η

≥
bt2kc−3∑
i=0

EKzK
K δx

[
1{

i

2kKuK
≤τ1≤ i+1

2kKuK

}PK
νK

τ1−
+ 1

K δU1

(
θn ≤

t− (i+ 1)/2k

KuK
,

τn+1 >
t− (i+ 2)/2k

KuK
, Vn ∈ Γ and sup

s∈[θn,τn+1]

|〈νKs ,1〉 − n̄Vn
| < ε

)]
− η

≥
bt2kc−3∑
i=0

EKzK
K δx

[
1{

i

2kKuK
≤τ1≤ i+1

2kKuK

} ∫
Rl

EKνK
τ1−

+ 1
K δx+h

(
1{

θ0<
1

2kKuK
∧τ1

}

pKn (t− (i+ 2)/2k, V0,Γ, ε,K〈νKθ0 ,1〉)
)
m(x, h)dh

]
− η.
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Then, using the same method as above, letting K → +∞, then k → +∞
and finally η → 0,

lim inf
K→+∞

pKn+1(x, t,Γ, ε, zK) ≥
∫ t

0

β(x)e−β(x)s

∫
Rl

pn(t− s, x+ h,Γ)κ(x, dh)ds,

which completes the proof of Lemma 3 by induction. �

Proof of Lemma 1 (a) Fix η > 0. By Theorem 2 (a) and (c), for any K ≥ 1,

〈νK ,1〉 � ZK ,

where L(ZK) = PK(2b̄, 0, α, 〈νK0 ,1〉+ 1).

Since supK E(〈νK0 ,1〉) < +∞, we can choose M < +∞ such that

sup
K≥1

P(〈νK0 ,1〉+ 1 > M) < η/3.

Then, apply Theorem 3 (c) to PK(2b̄, 0, α, 〈νK0 ,1〉 + 1) with C = [1,M ],
η2 = M and η1 such that 0 < 2b̄/α− η1 < 1/2: there exists V > 0 such that

lim sup
K→+∞

P(TK < eKV ) < η/3, (56)

where TK = inf{t ≥ 0, ZKt 6∈ [1/2,M + 2b̄/α]}.

Fix t, ε > 0. Since, for s ≤ TK , 〈νKs ,1〉 ≤ M + 2b̄/α, if we apply The-
orem 2 (b) to the process (νKs+(t/KuK) − νKt/KuK

, s ≥ 0), we obtain, for s ≤
TK − t/KuK ,

AKt/KuK+s −AKt/KuK
� BKs ,

whereAKs is the number of mutations occuring between 0 and s, and whereBK is
a Poisson process with parameter KuK b̄(M +2b̄/α). Therefore, combining (56)
with the fact that 1/KuK � eKV for sufficiently large K, we obtain that, for
sufficiently large K

P(AK(t+ε)/KuK
−AKt/KuK

≥ 1) ≤ P(BKε/KuK
≥ 1) + 2η/3

= 1− exp(−b̄(M + 2b̄/α)ε) + 2η/3,

which can be made smaller than η if ε is sufficiently small. This ends the proof
of (38). �

Proof of Lemma 1 (b) Fix ε > 0. It follows from the formula (13) for νK

that, for t < τ1, under PK
zK
K δx

,

νKt = ZKt δx,

where L(ZK) = PK((1− uKµ(x))b(x), d(x), α(x, x), zK/K).

Therefore, by Theorem 2 (c), for sufficiently large K such that uK < ε and for
t ≤ τ1,

ZK,1 � 〈νK ,1〉 � ZK,2, (57)

where L(ZK,1) = PK((1− ε)b(x), d(x), α(x, x), zK/K)

and L(ZK,2) = PK(b(x), d(x), α(x, x), zK/K).
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Now, let φ1
y, resp. φ2

y, be the solution to

φ̇ = ((1− ε)b(x)− d(x)− α(x, x)φ)φ,

resp. φ̇ = (b(x)− d(x)− α(x, x)φ)φ,

with initial state y, and observe that, for any y > 0, when t → +∞, φ1
y(t) →

e1 := n̄x − εb(x)/α(x, x) and φ2
y(t) → e2 := n̄x.

Define, for any y > 0, ti,yε the first time such that ∀s ≥ ti,yε , φiy(s) ∈ [ei −
ε, ei+ε] (i = 1, 2). Because of the continuity of the flow of these ODEs (see [15]
p. 356),

tiε := sup
y∈[z/2,2z]

ti,yε < +∞.

Let us apply Theorem 3 (a) to ZK,1 and ZK,2 on [0, tε], where tε = t1ε ∨ t2ε:
since zK/K → z, for sufficiently small δ > 0, and for i = 1, 2,

lim
K→+∞

P
(

sup
0≤t≤tε

|ZK,it − φizK/K
(t)| > δ

)
= 0.

If we choose δ < ε, we obtain, for i = 1, 2,

lim
K→+∞

P(|ZK,itε − ei| < 2ε) = 1,

and so, because of the expression of ei, for i = 1, 2,

lim
K→+∞

P(|ZK,itε − n̄x| < Mε) = 1, (58)

where M = 2 + b(x)/α(x, x).
Now, assuming ε sufficiently small for (M + 1)ε < n̄x, define the stopping

times
TK,iε = inf{t ≥ tε : |ZK,it − n̄x| > (M + 1)ε}

for i = 1, 2, and TKε = TK,1ε ∧ TK,2ε .
For any z ∈ N/K, define also

PK,1
z := PK((1− ε)b(x), d(x), α(x, x), z).

Then, applying Theorem 3 (c) to PK,1
z with C = [n̄x −Mε, n̄x +Mε], η1 = 3ε

and η2 = (2M − 1)ε, there exists V1 > 0 such that

lim
K→+∞

inf
z∈C

PK,1
z (T̂ε > eKV1) = 1, (59)

where T̂ε = inf{t ≥ 0 : |wt − n̄x| > (M + 1)ε}.

Since, by the Markov property, for any K ≥ 1,

P(TK,1ε > eKV1 + tε) = E
(
PK,1

ZK,1
tε

(T̂ε > eKV1)
)
,

it follows from (58) that

lim
K→+∞

P(TK,1ε > eKV1 + tε) = 1.
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Similarly, applying Theorem 3 (c) to PK(b(x), d(x), α(x, x), y) with C =
[n̄x −Mε, n̄x +Mε] and η1 = η2 = (M + 1)ε, there exists V2 > 0 such that

lim
K→+∞

P(TK,2ε > eKV2 + tε) = 1

for i = 1, 2, and for some constants V1, V2 > 0.
Therefore,

lim
K→+∞

P(TKε > eKV ) = 1 (60)

where V := V1 ∧ V2.
Now, because of (57),

∀t ∈ [tε, TKε ∧ τ1], |〈νKs ,1〉 − n̄x| < (M + 1)ε. (61)

Therefore, since logK > tε for sufficiently large K, in order to complete the
proof of (39), it suffices to show that

lim
K→+∞

P(τ1 < TKε ) = 1. (62)

If we denote by AKt the number of mutations occuring between tε and t+ tε,
by Theorem 2 (b), for t such that tε + t ≤ TKε ∧ τ1,

BK � AK ,

where BK is a Poisson process with parameter KuK(n̄x − (M + 1)ε)µ(x)b(x).
Therefore, if we denote by SK the first time when BKt = 1, on the event

{tε + SK < TKε },
τ1 ≤ tε + SK .

Since exp(−KV ) � KuK , limK P(tε + SK < eKV ) = 1, and hence, by (60),

lim
K→+∞

P(tε + SK < TKε ) = 1,

which implies (62).
In the case where zK/K → n̄x, using (59) as above, we obtain easily

lim
K→+∞

P(SKε > eKV ) = 1,

where SKε = inf{t ≥ 0 : |ZK,it − n̄x| > (M + 1)ε, i = 1, 2}.

Then, the proof of (40) can be completed using a method similar to the one we
used above. �

Proof of Lemma 1 (c) Fix t > 0 and ε > 0. Take K large enough for
logK < t/KuK . The Markov property at time logK for νK yields

PK
zK
K δx

(
τ1 >

t

KuK
, sup
t∈[logK,τ1]

|〈νKt ,1〉 − n̄x| < ε

)
= EKzK

K δx

[
1{τ1>logK}PK

νK
log K

(
τ1 >

t

KuK
− logK,

sup
t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)]
. (63)
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For any initial condition νK0 = 〈νK0 ,1〉δx of νK , by Theorem 2 (b), the
number AKt of mutations of νK between 0 and t satisfies, for any t ≤ τ1 such
that sups∈[0,t] |〈νKs ,1〉 − n̄x| < ε,

BK � AK � CK ,

where BKt and CKt are Poisson processes with respective parameters KuK(n̄x−
ε)µ(x)b(x) and KuK(n̄x + ε)µ(x)b(x).

Therefore, on the event {sups∈[0,τ1] |〈ν
K
s ,1〉 − n̄x| < ε}, SK ≤ τ1 ≤ TK ,

where TK is the first time when BKt = 1, and SK the first time when CKt = 1.
Now, by Lemma 1 (b), under PK

(zK/K)δx
, νKlogK

P→ n̄xδx, so, by Skorohod’s

Theorem, we can construct N̂K with the same law as 〈νKlogK ,1〉 on an auxiliary
probability space Ω̂ such that N̂K(ω̂) → n̄x for any ω̂ ∈ Ω̂. Fix ω̂ ∈ Ω̂. Then,
by Lemma 1 (b),

lim
K→+∞

PK
N̂(ω̂)δx

(
sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)
= 1,

and so,

lim sup
K→+∞

PK
N̂(ω̂)δx

(
τ1 >

t

KuK
− logK, sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)
≤ lim sup

K→+∞
PK
N̂(ω̂)δx

(
TK >

t

KuK
− logK

)
= exp(−t(n̄x − ε)µ(x)b(x)).

Therefore, under PK
(zK/K)δx

,

lim sup
K→+∞

PK
νK
log K

(
τ1 >

t

KuK
− logK, sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)
≤ exp(−t(n̄x − ε)µ(x)b(x))

in probability (where lim supXn ≤ a in probability means that, for any η > 0,
P(Xn > a+ η) → 0).

Similarly, under PK
(zK/K)δx

,

lim inf
K→+∞

PK
νK
log K

(
τ1 >

t

KuK
− logK, sup

t∈[0,τ1]

|〈νKt ,1〉 − n̄x| < ε

)
≥ exp(−t(n̄x + ε)µ(x)b(x))

in probability.
Now, by Lemma 1 (a) and (b),

lim
K→+∞

PK
zK
K δx

(τ1 > logK) = 1

and lim
K→+∞

PK
zK
K δx

(
sup

t∈[logK,τ1]

|〈νKt ,1〉 − n̄x| < ε

)
= 1.

So, using results similar to (52), it follows from (63) that

lim sup
K→+∞

PK
zK
K δx

(
τ1 >

t

KuK

)
≤ exp(−t(n̄x − ε)µ(x)b(x))

and lim inf
K→+∞

PK
zK
K δx

(
τ1 >

t

KuK

)
≥ exp(−t(n̄x + ε)µ(x)b(x)).
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Since this holds for any ε > 0, we have completed the proof of Lemma 1 (c). �

Proof of Lemma 2 The proof of this lemma follows the three steps of the
invasion of a mutant described at the end of the introduction.

Fix η > 0, ε0 > 0 and 0 < ε < ε0. By Lemma 1 (a), there exists a constant
ρ > 0 that we can assume smaller than η, such that, for sufficiently large K,

PK
zK
K δx+ 1

K δy

(
τ1 <

ρ

KuK

)
< ε. (64)

Observe that, under PK
zK
K δx+ 1

K δy
, for t ≤ τ1,

L((〈νK ,1{x}〉, 〈νK ,1{y}〉)) = QK((1− uKµ(x))b(x), (1− uKµ(y))b(y),
d(x), d(y), α(x, x), α(x, y), α(y, x), α(y, y), zK/K, 1/K).

Fix K large enough for uK < ε. Define

SKε := inf{s ≥ 0 : 〈νKs ,1{y}〉 ≥ ε}

By Theorem 2 (c) and (d), for t < τ1 ∧ SKε ,

ZK,1 � 〈νK ,1{x}〉 � ZK,2, (65)

where L(ZK,1) = PK((1− ε)b(x), d(x) + εα(x, y), α(x, x), zK/K)

and L(ZK,2) = PK(b(x), d(x), α(x, x), zK/K).

Using exactly the same method than led us to (60), we can deduce from
Theorem 3 (c) that there exists V > 0 such that

lim
K→+∞

P(RKε > eKV ) = 1, (66)

where RKε = inf{t ≥ 0 : |ZK,it − n̄x| > Mε, i = 1, 2},

with M = 3 + (b(x) + α(x, y))/α(x, x).
Now, observe that, by (65),

∀t ≤ τ1 ∧ SKε ∧RKε , 〈νKt ,1{x}〉 ∈ [n̄x −Mε, n̄x +Mε].

Therefore, by Theorem 2 (b) and (d), for t ≤ τ1 ∧ SKε ∧RKε

ZK,3t � 〈νKt ,1{y}〉 � ZK,4t , where (67)

L(ZK,3) = PK((1− ε)b(y), d(y) + (n̄x +Mε)α(y, x) + εα(y, y), 0, 1/K)

and L(ZK,4) = PK(b(y), d(y) + (n̄x −Mε)α(y, x), 0, 1/K).

Define, for any K ≥ 1, n ∈ N and i ∈ {3, 4}, the stopping time

TK,in/K = inf{t ≥ 0 : ZK,it = n/K}.

Observe that, if SKε < τ1 ∧RKε ,

TK,4dεKe/K ≤ SKε ≤ TK,3dεKe/K (68)
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and that, if TK,40 < TK,4dεKe/K ∧ τ1 ∧RKε ,

θ0 ≤ TK,40 .

If ZK,4 is sub-critical, apply Theorem 4 (27), and if ZK,4 is super-critical,
apply Theorem 4 (30) (the critical case can be excluded by slightly changing
the value of ε). Since logK � 1/KuK , we obtain

lim
K→+∞

P
(
TK,40 ≤ ρ

KuK
∧ TK,4dεKe/K

)
=
d(y) + (n̄x −Mε)α(y, x)

b(y)
∧ 1 ≥ 1− [f(y, x)]+

b(y)
− α(y, x)

b(y)
Mε. (69)

Combining (64), (66), (67) and (69), and using the facts that ρ < η, ε < ε0
and exp(KV ) > ρ/KuK for sufficiently large K, we obtain, taking K larger if
necessary,

P
(
θ0 < τ1∧

η

KuK
, V0 = x and |〈νKθ0 ,1〉 − n̄x| < Mε0

)
≥ P

(
θ0 < τ1 ∧ SKε ∧RKε ∧ ρ

KuK
and V0 = x

)
≥ P

(
TK,40 < τ1 ∧ TK,4dεKe/K ∧RKε ∧ ρ

KuK

)
≥ 1− [f(y, x)]+

b(y)
−
(
α(y, x)
b(y)

M + 3
)
ε. (70)

This ends the proof of Lemma 2 in the case where f(y, x) ≤ 0.
Let us assume that f(y, x) > 0, i.e. that b(y)− d(y)− n̄xα(y, x) > 0. If we

choose ε > 0 sufficiently small, then ZK,3 is super-critical. By Theorem 4 (31),

lim
K→+∞

P
(
TK,3dεKe/K <

ρ

3KuK

)
=

(1− ε)b(y)− d(y)− (n̄x +Mε)α(y, x)− εα(y, y)
(1− ε)b(y)

≥ f(y, x)
(1− ε)b(y)

− ε
b(y) +Mα(y, x) + α(y, y)

(1− ε)b(y)
.

Therefore, by (66) and (64), assuming (without loss of generality) that ε < 1/2,
for sufficiently large K,

P
(
TK,3dεKe/K < τ1 ∧RKε ∧ ρ

3KuK

)
≥ f(y, x)

(1− ε)b(y)
−M ′ε,

where M ′ := 2(b(y) +Mα(y, x) + α(y, y))/b(y) + 3. Then, it follows from (68)
that

P
(
SKε < τ1 ∧RKε ∧ ρ

3KuK

)
≥ f(y, x)

(1− ε)b(y)
−M ′ε. (71)

Observe that, on the event {SKε < τ1 ∧RKε ∧ (ρ/3KuK)},

〈νKSK
ε
,1{y}〉 = dεKe/K and |〈νKSK

ε
,1{x}〉 − n̄x| < Mε. (72)
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Now, since we have assumed f(y, x) > 0, x and y satisfy (8) and, by
Proposition 2, any solution to (6) with initial state in the compact set [n̄x −
Mε, n̄x + Mε] × [ε/2, 2ε] converges to (0, n̄y) when t → +∞. As in the proof
of Lemma 1 (b), because of the continuity of the flow of system (6), we can
find tε < +∞ large enough such that any of these solutions do not leave the set
[0, ε2/2]× [n̄y − ε/2, n̄y + ε/2] after time tε.

Apply Theorem 3 (b) on [0, tε], with C = [n̄x−Mε, n̄x+Mε]× [ε/2, 2ε] and
with a constant δ < ε2/2 ∧ r, where r is defined in (21) (with T = tε). Then,
with the notations of Theorem 3 (b), because of (71) and (72), the Markov
property at time SKε yields

lim inf
K→+∞

P
(
SKε < τ1 ∧RKε ∧ ρ

3KuK
,

sup
SK

ε ≤s≤SK
ε +tε

∥∥(〈νKs ,1{x}〉, 〈νKs ,1{y}〉)− φ〈νK
SK

ε
,1{x}〉,〈νK

SK
ε
,1{y}〉(s)

∥∥ ≤ δ

)
≥ f(y, x)

(1− ε)b(y)
−M ′ε. (73)

Now, observe that, since δ < r, on the event{
SKε < τ1 ∧RKε ,

sup
SK

ε ≤s≤SK
ε +tε

∥∥(〈νKs ,1{x}〉, 〈νKs ,1{y}〉)− φ〈νK

SK
ε
,1{x}〉,〈νK

SK
ε
,1{y}〉(s)

∥∥ ≤ δ

}
,

for any t ∈ [SKε , S
K
ε + tε], 〈νKt ,1{x}〉 ≥ r − δ > 0 and 〈νKt ,1{y}〉 ≥ r − δ > 0,

and thus
θ0 > SKε + tε.

Therefore, since δ < ε2/2 < ε/2, by (64) and (73), for sufficiently large K,

P
(
SKε < RKε ∧ ρ

3KuK
, τ1 >

ρ

3KuK
+ tε, θ0 > SKε + tε,

〈νKSK
ε +tε

,1{x}〉 < ε2 and 〈νKSK
ε +tε

,1{y}〉 ∈ [n̄y − ε, n̄y + ε]
)

≥ f(y, x)
(1− ε)b(y)

− (M ′ + 2)ε. (74)

Now, we will compare 〈νK ,1{x}〉 with a branching process after time SKε +tε
in order to prove that trait x gets extinct with a very high probability. We will
use a method very similar to the one we used in the beginning of the proof of
Lemma 2. First, on the event inside the probability in (74), 〈νKSK

ε +tε
,1{x}〉 < ε2.

In order to prove that the population with trait x stays small after SKε + tε,
since ε2 < ε (ε < 1/2), let us define the stopping time

ŜKε = inf{t ≥ SKε + tε : 〈νKt ,1{x}〉 > ε}.

Using Theorem 2 (c) and (d) again, we see that, on the event

FK,ε :=
{
〈νKSK

ε +tε
,1{x}〉 < ε2, 〈νKSK

ε +tε
,1{y}〉 ∈ [n̄y − ε, n̄y + ε]

}
,
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for any t ≥ 0 such that SKε + tε + t ≤ ŜKε ∧ τ1,

ZK,5t � 〈νKSK
ε +tε+t,1{y}〉 � ZK,6t ,

where L(ZK,5) = PK((1− ε)b(y), d(y) + εα(y, x), α(y, y), b(n̄y − ε)Kc/K)

and L(ZK,6) = PK(b(y), d(y), α(y, y), d(n̄y + ε)Ke/K).

We can apply Theorem 3 (c) to ZK,5 and ZK,6 as above to obtain a constant
V ′ > 0 such that

lim
K→+∞

P(R̂Kε > eKV
′
) = 1, (75)

where R̂Kε = inf{t ≥ 0 : |ZK,it − n̄y| > M ′′ε, i = 5, 6},

with M ′′ = 3 + (b(y) + α(y, x))/α(y, y).
Observe that, on the event FK,ε, for any t ≤ R̂Kε such that SKε + tε + t ≤

ŜKε ∧ τ1,
|〈νKSK

ε +tε+t,1{y}〉 − n̄y| ≤M ′′ε,

and so, by Theorem 2 (c) and (e), on FK,ε and for t as above,

〈νKSK
ε +tε+t,1{x}〉 � ZK,7t

where L(ZK,7) = PK(b(x), d(x) + (n̄y −M ′′ε)α(x, y), 0, dε2Ke/K).

Now, since x and y satisfy (8), b(x)− d(x)− n̄yα(x, y) < 0, and thus ZK,7 is
sub-critical for sufficiently small ε. Fix such an ε > 0 and define for any n ≥ 0

T̂Kn/K = inf{t ≥ 0 : ZK,7t = n/K}.

If T̂KdεKe/K ≤ R̂Kε and SKε + tε + T̂KdεKe/K ≤ τ1, then

ŜKε ≥ SKε + tε + T̂KdεKe/K

and if T̂K0 ≤ R̂Kε and SKε + tε + T̂K0 ≤ ŜKε ∧ τ1, then

θ0 ≤ T̂K0 .

Moreover, by Theorem 4 (28) and (29), for sufficiently large K,

P
(
T̂K0 ≤ ρ

3KuK

)
≥ 1− ε

and P(T̂KdKεe/K ≤ T̂K0 ) ≤ 2ε.

Combining the last two inequalities with (64), (74) and (75), and reminding
that ρ < η and ε < ε0, we finally obtain, for sufficiently large K,

P
(
θ0 < τ1 ∧

η

KuK
, V0 = y and |〈νKθ0 ,1〉 − n̄y| < M ′′ε0

)
≥ P

(
SKε < RKε ∧ ρ

3KuK
, θ0 > SKε + tε, τ1 >

2ρ
3KuK

+ tε, 〈νKSK
ε +tε

,1{x}〉 < ε2,

〈νKSK
ε +tε

,1{y}〉 ∈ [n̄y − ε, n̄y + ε], T̂K0 <
ρ

3KuK
∧ T̂KdKεe/K and R̂Kε >

ρ

KuK

)
≥ f(y, x)

(1− ε)b(y)
− (M ′ + 7)ε.
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Adding this inequality with (70), we obtain

P
(
θ0 < τ1 ∧

η

KuK

)
≥ 1− ε

1− ε

f(y, x)
b(y)

−
(
M
α(y, x)
b(y)

+M ′ + 10
)
ε ≥ 1−M ′′′ε,

where M ′′′ = 2f(y, x)/b(y) +Mα(y, x)/b(y) +M ′ + 10 (remind that ε < 1/2),
which implies (43), and

P
(
|〈νKθ0 ,1〉 − n̄V0 | < (M ∨M ′′)ε0

)
≥ 1−M ′′′ε,

which implies (44).
Therefore,

P(V0 = x) ≥ 1− f(y, x)
b(y)

− 2M ′′′ε and P(V0 = y) ≥ f(y, x)
(1− ε)b(y)

− 2M ′′′ε.

Since P(V0 = x) ≤ 1−P(V0 = y), we finally obtain (41) and (42). �
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