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Abstract

We consider the non-parametric estimation of a function that is observed in white
noise after convolution with a boxcar, the indicator of an interval (−a, a). In a recent
paper Johnstone et al. (2004) have developed a wavelet deconvolution algorithm (called
WaveD) that can be used for “certain” boxcar kernels. For example, WaveD can be tuned
to achieve near optimal rates over Besov spaces when a is a Badly Approximable (BA)
irrational number. While the set of all BA’s contains quadratic irrationals e.g. a =

√
5

it has Lebesgue measure zero, however. In this paper we derive two tuning scenarios of
WaveD that are valid for “almost all” boxcar convolution (i.e. when a ∈ A where A is a
full Lebesgue measure set). We propose (i) a tuning inspired from Minimax theory over
Besov spaces; (ii) a tuning inspired from Maxiset theory providing similar rates as for
BA numbers. Asymptotic theory informs that (i) in the worst case scenario, departure
from the BA assumption, affects WaveD convergence rates, at most, by log factors;
(ii) the Maxiset tuning, which yields smaller thresholds, is superior to the Minimax
(conservative) tuning over a whole range of Besov sup-scales. Our asymptotic results
are illustrated in an extensive simulation of boxcar convolution observed in white noise.

1 Introduction

We observe the stochastic process

Yn(dt) = f ? b(t)dt + σn−1/2W (dt), t ∈ T = [0, 1], (1)

where b(t) = 1
2a I{|t| ≤ a}, σ is a positive constant, W (.) is a Gaussian white noise and

f ? b(t) =
1

2a

∫ a

−a
f(t− u)du . (2)

This is an important model for the problem of recovery of noisy signals (or images) in linear
motion blur, see Bertero and Boccacci (1998). Over the last decade, many wavelet methods
have been developed to recover f from indirect observations Donoho (1995); Abramovich
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and Silverman (1998); Pensky and Vidakovic (1999); Walter and Shen (1999); Johnstone
(1999); Fan and Koo (2002); Kalifa and Mallat (2003). However, the boxcar assumption (2)
escapes most of the previously cited works. More recent papers which deals specifically with
the boxcar problem includes Hall, Ruymgaart, van Gaans and van Rooij (2001),Neelamani,
Choi and Baraniuk (2004),Johnstone and Raimondo (2004), and Johnstone, Kerkyacharian,
Picard and Raimondo (2004) ([JKPR] in the sequel). The boxcar convolution has the special
feature that if the boxcar half-width is rational then, certain frequencies are lost in the
periodic model. If one changes the observation model as in Hall, Ruymgaart, van Gaans
and van Rooij (2001) the latter difficulty disappear for signals f with compact support.
Another approach to deal with the boxcar scenario is to introduce a regularisation step
in the wavelet reconstruction algorithm see Neelamani, Choi and Baraniuk (2004). In this
paper we follow the approach of [JKPR] and consider boxcar convolutions (2) where the the
boxcar half-width a is an irrational number. If a is chosen among Badly Approximable (BA)
irrational numbers (those contains quadratic irrational like

√
5) then the WaveD method

is near optimal for a wide range of target functions and error losses. In the finite sample
implementation (t1, . . . , tn) of the model (1) WaveD can recover the unknown function f
with an accuracy of order

( log n

n

)β
, where (3)

β =
sp

4 + 2s
, if s ≥ 2p

π
− 2 (4)

and

β =
(s− 1/π + 1/p)p

4 + 2(s − 1/π)
, if

1

π
≤ s <

2p

π
− 2, (5)

performance being measured in an integrated Lp-metric, for any p > 1. Here n denotes the
usual sample size and s plays the role of a smoothness index for our target function f .

In fact near optimal properties of WaveD holds for any kernel function ba(t) whose
Fourier transforms (bl(a)) satisfies a decay condition when averaged over dyadic blocks, let

τ2
j (a) = |Cj|−1

2j+r
∑

l=2j

|bl(a)|−2 (6)

then for any kernel function ba(t) such that τ2
j (a) � 23j , the rate result (3) holds.

For statistical applications, an important issue is whether the WaveD estimator is robust
against departures from the BA assumption. In this paper we combine the Maxiset theorem
of Kerkyacharian and Picard (2000) with the equidistribution lemma of Johnstone and
Raimondo (2004) to extend the results of [JKPR] outside the BA assumption. We propose
two tuning scenarios of WaveD that can be applied to “almost all” boxcar convolutions (i.e.
a ∈ A where A is a full Lebesgue measure set). In the first scenario we show that departure
from the BA assumption affects rate (3) by, at most, log factors when tuning the WaveD
algorithm over standard Besov spaces. In our second scenario we tune the WaveD algorithm
to achieve rate (3) on certain Besov sub-scales. A theoretical comparison of the two scenarios
suggests that smaller thresholds (such as arise in the second scenario) will always give better
results than larger (conservative) thresholds (such as arise in the first scenario). This is
confirmed by an extensive simulation study of boxcar convolution observed in white noise.
All figures and tables presented in this paper can be reproduced using the WaveD1.3 software
package available at http://www.usyd.edu.au:8000/u/marcr/.
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We begin in section 2 by preliminaries on WaveD estimation, Besov spaces and Maxiset
theorem. Asymptotic results are summarised in section 3 and numerical performances are
studied in Section 4. Proofs are given in Section 5.

2 Preliminaries

2.1 Wavelet Deconvolution in a periodic setting

The wavelet deconvolution (WaveD) method proposed by [JKPR] combines both Fourier
and Wavelet analysis. Let Φ,Ψ denote the (periodised) Meyer scaling and wavelet function,
see e.g. Meyer (1990), Mallat (1998). Let el(t) = e2πilt, l ∈ Z and write fl = 〈f, el〉, bl =
〈b, el〉 for the Fourier coefficients of f, b respectively where 〈f, g〉 =

∫

T f ḡ. The WaveD
estimator is based on hard thresholding of a wavelet expansion as follows : (notice that
here and in the sequel κ will denote the multiple index (j, k).

f̂n =
∑

κ∈Λn

β̂κ Ψκ I{|β̂κ| ≥ σ̂η σj cn} (7)

here and in the sequel Ψ−1 = Φ. The wavelet coefficients are computed in the Fourier
domain:

β̂κ =
∑

l∈Cj

(yl

bl

)

Ψ̄κ
l (8)

using eigen values of the boxcar function:

bl =
sinπal

πal
, l ∈ Z. (9)

Noting that for irrational number a, there are no zeros in (9), we use the fast algorithm
of Donoho and Raimondo (2004) to compute the wavelet transform (8) and its inverse (7).
This algorithm takes full advantage of the compact support of the Meyer wavelet in the
Fourier domain: Cj = {l : Ψκ

l 6= 0} ⊂ (2π/3) · [−2j+2,−2j ]
⋃

[2j , 2j+2].

The tuning parameters of WaveD are:

• The range of resolution levels (frequencies) where the approximation (7) is used:

Λn = {(j, k), −1 ≤ j ≤ j1, 0 ≤ k ≤ 2j},

here j1 determines the highest resolution level of WaveD. Theoretical properties of
j1 are given in Section 3. In software, the default value of the finest scale j1 is
determined from the data: j1 is set to be the level preceding j(100%) where j(100%)
is the smallest level where 100% of thresholding occurs.

• The threshold value has four input parameters σ̂ η σj cn

– σ̂: an estimate of the noise standard deviation, σ. If yJ,k = 〈Yn,ΨJ,k〉, denote the
finest scale wavelet coefficients of the observed data, then σ̂ = m.a.d.{yJ,k}/.6745,
where m.a.d. is median absolute deviation.

– η: a constant which depends on the tail of the Noise distribution. For Gaussian
noise, the range

√
2 ≤ η ≤

√
6 gives good result in practice. In software, the

default value is
√

6. Theoretical properties of η are given in Section 3.
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– σj: is a level-dependent scaling factor based on the convolution kernel. Theo-
retical properties of σj are given in Sections 2 and 3. In software the (standard)
default value is

σ2
j := τ2

j (a) = |Cj |−1
∑

l∈Cj

|bl(a)|−2

– cn: is a sample size-dependent scaling factor. Theoretical properties of cn are
given in Section 3. In software the default value is

cn =
( log n

n

)1/2

2.2 Besov spaces of periodic functions

Let us first introduce the standard Besov spaces of periodic functions Bs
π,r(T ), s > 0, π ≥ 1

and r ≥ 1. For this purpose, define for every measurable function f

∆εf(x) = f(x+ ε) − f(x),

then, recursively, ∆ε2f(x) = ∆ε(∆εf)(x) and similarly ∆N
ε f(x) for positive integer N . Let

ρN (t, f, π) = sup
|ε|≤t

(

∫

0
1|∆N

ε f(u)|πdu
)1/π

.

Then for N > s, we define :

Bs
π,r(T ) = {f periodic :

(

∫

0
1
( (ρN (t, f, π)

ts

)r dt

t

)1/r
<∞}.

(with the usual modifications for r or π = ∞.)
In this setting, recall that the Besov spaces are characterised by the behaviour of the

wavelet coefficients (as soon as the wavelet is periodic and has enough smoothness and
vanishing moments).

Definition 1. For f ∈ Lπ(T ),

f =
∑

j,k

βj,kΨj,k ∈ Bs
π,r(T ) ⇐⇒

∑

j≥0

2j(s+1/2−1/π)r[
∑

0≤k≤2j

|βj,k|π]r/π <∞. (10)

The Besov spaces have proved to be an interesting scale for studying the properties of
statistical procedures. The index s indicates the degree of smoothness of the function. Due
to the differential averaging effects of the integration parameters π and r, the Besov spaces
capture a variety of smoothness features in a function including spatially inhomogeneous
behaviour, see Donoho et al. (1995).

In order to fully describe asymptotic properties of WaveD for boxcar deconvolution it
is useful to introduce the following Besov sub-scales:

Definition 2. For s > 0, 1 ≤ π ≤ ∞, τ ∈ R, we define,

B̃s,τ
π,∞ = {f =

∑

j≥−1,k

βjkψjk, sup |j|τ2j(s+ 1
2
− 1

π
)‖(βjk)k‖lπ <∞} (11)

The latter range of Besov scales are embedded into standard Besov scales.

B̃s,τ
π,∞ ⊂ Bs

π,∞, ∀ τ ≥ 0
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2.3 The Maxiset-approach

The following theorem is borrowed from Kerkyacharian and Picard (2000). We refer to the
appendix for condition (52) (known as the Temlyakov property). First, we introduce some
notation: µ will denote the measure such that for j ∈ N, k ∈ N,

µ{(j, k)} = ‖σjΨj,k‖p
p = σp

j 2
j(p

2
−1)‖Ψ‖p

p (12)

lq,∞(µ) =

{

f, sup
λ>0

λqµ{(j, k)/ |βj,k| > σjλ} <∞
}

(13)

Theorem 1. Let p > 1, 0 < q < p, { ψj,k, j ≥ −1, k = 0, 1, ..., 2j} be a periodised wavelet
basis of L2(T ) and σj be a positive sequence such that the heteroscedastic basis σjψj,k

satisfies property (52). Suppose that Λn is a set of pairs (j, k) and cn is a deterministic
sequence tending to zero with

sup
n

µ{Λn} cpn <∞. (14)

If for any n and any pair κ = (j, k) ∈ Λn, we have

E|β̂κ − βκ|2p ≤ C (σj cn)2p (15)

P
(

|β̂κ − βκ| ≥ η σj cn/2
)

≤ C (c2p
n ∧ c4n) (16)

for some positive constants η and C then, the wavelet based estimator

f̂n =
∑

κ∈Λn

β̂κ ψκ I{|β̂κ| ≥ η σj cn} (17)

is such that, for all positive integers n,

E‖f̂n − f‖p
p ≤ C cp−q

n ,

if and only if :

f ∈ lq,∞(µ), and, (18)

sup
n
cq−p
n ‖ f −

∑

κ∈Λn

βκψκ‖p
p <∞. (19)

This theorem identifies the ’Maxiset’ of a general wavelet estimator of the form (17), by
conditions (18) and (19). In [JKPR] p.565, we see that estimated wavelet coefficients (β̂κ)
defined at (8) are unbiased, normally distributed with variance bounded by the quantity
τ2
j (a) defined at (6). Clearly conditions (15) and (16) heavily rely on the precise evaluation

of this quantity. In the next section we show that for almost all a, τ2
j (a) = O(23jj11(1+δ)).

Hence, for such τj, the proof arguments of [JKPR] which hold for τj � 23j no longer apply.
In fact an improvement of Theorem 1 is required to derive the asymptotic theory for almost

all a. The following corollary is an adaptation of the proof of theorem 1, Kerkyacharian
and Picard (2000)

Corollary 1. Let 0 < q < ∞, − ∞ < α < ∞. Let ξ(t) = ξ(q,α)(t) a continuous non
decreasing function, such that ξ(0) = 0 :

ξ(t) =







tq(log(1
t ))

α, t ∈ [0, κ]

(log( 1
κ))αtq t > κ

(20)
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where 0 < κ ≤ exp−α/q if α ≥ 0 ; and 0 < κ < 1 if α < 0. Under the same hypothesis
as in theorem 1 , the estimator f̂n is such that, for all positive integers n,

E‖f̂n − f‖p
p ≤ C

cpn
ξ(cn)

if and only if :

f ∈ lξ,∞(µ), and, (21)

sup
n

cpn
ξ(cn)

‖ f −
∑

κ∈Λn

βκψκ‖p
p <∞. (22)

where

lξ,∞(µ) =

{

f, sup
λ>0

ξ(λ)µ{(j, k)/ |βj,k| > σjλ} <∞
}

(23)

Remark 0. Corollary 1 offers more flexibility than Theorem 1, in particular, it allows us
to deal with scaling factor σj of the form σj � 2νjjz. While this has direct applications
in the problem at hand, we note that there are interesting applications of Corollary 1
to multichannel deconvolution Pensky and Zayed (2002), see also the discussion by De
Canditiis and Pensky in [JKPR].

2.4 Diophantine approximations

To every real number correspond a unique sequence (ak):

a = [a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+ 1

a3+...

. (24)

For rational numbers the above expansion stops a = [a0; a1, a2, . . . , ak] and ak = 0 for later
k, whereas for irrational number a the sequence of (ak), ak > 0, is infinite. The rational
numbers defined by terminating the expansion (24) at stage k:pk(a)/qk(a) = [a0, a1, . . . , ak]
are called the convergents of a. For any irrational a, the convergents have the property of
best approximation: for n ≥ 1,

inf
1≤k≤qn

||ka|| = |qna− pn| = ||qna||, (25)

where ‖x‖ denotes the distance from x ∈ R to the nearest integer. The study of such
Diophantine approximations plays a central role in our analysis of the boxcar blur, since
from (9): bl = sin(πla)/(πla) from which it follows that

2

π

‖la‖
la

≤ bl ≤
‖la‖
la

. (26)

Hence, the properties of WaveD (7) depends on the nature of the irrational number a.

Definition 3. An irrational number a is called Badly Approximable (BA) if

sup
n

qn
qn−1

<∞.
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For boxcar with BA widths, [JKPR] have shown that the WaveD estimator achieves
near optimal rates of convergence over Besov spaces. Another interesting class of irrational
numbers can be derived from the “measure theory” of continued fractions Khintchine (1963)

Definition 4. For all a ∈ Aδ, where Aδ is a full Lebesgue measure set, we have that for
all n ≥ n0,

qn
qn−1

< (log qn−1)
(1+δ). (27)

In the sequel “almost all a” means“for all a in Aδ”.

One of the main difficulties of boxcar deconvolution is that Fourier coefficients bl(a), l =
0, 1, 2 . . . vary erratically according to the approximations ‖la‖/l, l = 1, 2, . . . , see Figure 1.
This difficulty disappears when averaging over dyadic blocks, let

τ2
j (a) = |Cj |−1

∑

l∈Cj

|bl(a)|−2 (28)

where Cj = {l : Ψκ
l 6= 0} ⊂ (2π/3) · [−2j+2,−2j ]

⋃

[2j , 2j+2], then:

Proposition 1. Let (bl) be the Fourier coefficients of the boxcar kernel b(t) = 1
2aI{|t| ≤ a}.

1. For BA boxcar scale a
τ2
j (a) ≤ c1 23j . (29)

2. For each δ > 0, there is a constant c1 > 0 such that for almost all a:

τ2
j (a) ≤ c1 23j jz, z = 11(1 + δ). (30)
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−4

−3

−2

−1

0

−200 −100 0 100 200
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−6

−5

−4

−3

−2

−1

0

Figure 1: Eigen values of the boxcar function with: (left) BA scale a = 1/
√

353; (right) a randomly
chosen from a U(0.025, 075) distribution.

Remark 1. The bound (29) was derived in [JKPR] and is presented here for comparison
purposes. The novelty appears in bound (30) where we see that for almost all scale a the
scaling factor τj(a) is the same as in the BA case up-to log terms. In the next section we
study the effect of these extra log terms on the asymptotic properties of WaveD.
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3 Asymptotic results

For boxcar convolutions observed in white noise we derive tuning parameters Λn, η, σj and cn
which yield near optimal properties of WaveD for almost all a. Using the Maxiset approach
we present two possible tuning scenarios of the waved estimator. Our first scenario (section
3.1) is inspired from the Minimax theory: we fix a smoothness class (here Bs

π,r) and find a
set of tuning parameters which ensure near-optimal asymptotic properties of WaveD over
the entire smoothness class. In our second scenario (section 3.2) the primary focus is the
convergence rate rather than the smoothness class: we propose a set of tuning parameters
with which WaveD achieves the rate (3) known to be achievable for boxcar convolution with
Badly Approximable scale. Finally, we give a theoretical comparison of the two scenarios
in section 3.3.

3.1 Tuning inspired from Minimax theory

To study the properties of WaveD over standard Besov spaces one must find conditions
under which a particular Besov space Bs

π,r may be embedded in the spaces lq,∞(µ) as well
as imply the condition (19). We follow the steps of [JKPR] (Appendix B.1) taking into
account the Degree of Ill Posedness (DIP) ν = 3/2 of the Boxcar convolution Johnstone and
Raimondo (2004). Recalling that the Maxisets lq,∞(µ) are defined in terms of the measure

µ{(j, k)} = cσp
j 2

j(p
2
−1); a key condition in recovering the standard Besov spaces is to let

σ2
j =: σ2

j (1) = c1 23j (31)

Letting as usual Λn = {(j, k), −1 ≤ j ≤ j1, 0 ≤ k ≤ 2j} and z = 11(1 + δ) we compensate
for the extra log-term appearing in (30) by taking

cn =: cn(1) =

(

log n

n

)1/2

(log n)
z
2 and 2j1 = n

1
4 (log n)−

1+z
4 . (32)

These choices ensure that conditions (15) and (16) are satisfied.

Proposition 2. Suppose that we observe the random process (1) with σ = 1. Let p > 1 be
an arbitrary number. If f belongs to Bs

π,r(T ) with π ≥ 1, s ≥ 1/π and 0 < r ≤ 2p−1
2+s−1/π if

s + 2 = 2p
π , 0 < r ≤ ∞ otherwise, then, for η ≥ 2

√

8π(p ∨ 2), z = 11(1 + δ) the WaveD
estimator (7) with tuning parameters (31), (32) and σ̂ = 1, is such that, for almost all a:

E‖f̂1 − f‖p
p ≤ C[n−1(log(n))(1+z)]β, for all positive integers n, (33)

where β depends on s as shown at (4) and (5).

Remarks 2. A comparison of the rates (3) and (33) shows that, for almost all boxcar
convolutions (in the sense of definition 2), the rate properties of WaveD are, in the worst-
case-scenario, only affected up to log factors. These results are consistent with those derived
in Johnstone and Raimondo (2004) regarding the Degree of Ill Posedness of the boxcar
deconvolution.

3.2 Tuning inspired from Maxiset theory

Corollary 1 allows a certain degree of freedom in the tuning of WaveD. More specifically,
moment condition (15) and tail behavior (16) may be satisfied for a different choice of σj, cn
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than that proposed in section 3.1. For example, it is possible to fit WaveD with a slightly
smaller threshold than in proposition 2 and yet derive a consistent estimator. While this
second scenario may not ensure optimal properties over the scale standard Besov spaces, it
is interesting to note that it yields faster rate of convergence over Besov sub-scales B̃s,τ

π,r. In
fact, it is possible to tune WaveD in such a way that it achieves the rate (3) as available for
boxcar convolution with BA scales. Following [JKPR] (Appendix A.1), we start by letting:

cn =: cn(2) =

(

log n

n

)1/2

and 2j1 = n
1
4 (log n)−

1+z
4 . (34)

Now, let z = 11(1 + δ) we compensate for the extra log terms in (30) by taking

σ2
j =: σ2(2) = c1 23jjz. (35)

Proposition 3. Suppose that we observe the random process (1) with σ = 1. Let p > 1
be an arbitrary number. If f belongs to B̃s,τ

π,∞(T ) with π ≥ 1, s ≥ 1/π and with τ ≥ zs
4

if s + 2 > 2p
π , τ > 1 + zs

4 if s + 2 = 2p
π , τ ∈ R otherwise, then, for η ≥ 2

√

8π(p ∨ 2),
z = 11(1 + δ) the WaveD estimator (7) with tuning parameters (35), (34) and σ̂ = 1, is
such that, for almost all a:

E‖f̂2 − f‖p
p ≤ C[n−1 log(n)]β , for all positive integers n, (36)

where β is given at (4),(5).

Remarks 3. A quick look at Propositions 2 and 3 shows that they do not give a fair com-
parison between the two scenarios. The reason is that both the spaces and the convergence
rates with which each tuning method is prescribed are different. Since Besov sub-scales are
embedded in standard Besov spaces (B̃s,τ

π,∞ ⊂ Bs
π,∞) it is not surprising to observe better

rate performances in the second scenario. A further application of corollary 1 allows a fair
comparison of the two scenarios (next section).

3.3 Minimax versus Maxisets

The following proposition describes into details the differences between the two tuning
scenarios over Besov sub-scales in terms of their respective Maxisets.

Proposition 4. Suppose that we observe the random process (1) with σ = 1. Let p > 1 be

an arbitrary number, and q such that 0 < q < p. Let vn = (n−1 log n)
p−q
2 , j1 ≥ 0 chosen as

in (32), then for

F =
{

f : sup
n
vn‖f −

∑

κ,j≤j1

βκψκ‖p
p <∞

}

(37)

Denote f̂1 be the WaveD estimator (7) with tuning parameters (31), (32) and f̂2 the WaveD
estimator (7) with tuning parameters (35), (34). Let σ̂ = 1, then, for almost all a:

(a)
E‖f̂1 − f‖p

p ≤ Cvn, for all positive integers n,

if and only if :
f ∈MAX(1) = {f ∈ lξ

(q,
z(p−q)

2 )
,∞(µ) ∩ F}

9



for

lξ
(q,

z(p−q)
2 )

,∞(µ) =

{

f, sup
λ>0

ξ
(q,

z(p−q)
2

)
(λ) µ{(j, k) : |βj,k| > σj(1)λ} <∞

}

(38)

µ{(j, k)} = 2j(2p−1).

(b)
E‖f̂2 − f‖p

p ≤ Cvn, for all positive integers n, (39)

if and only if :
f ∈MAX(2) = {f ∈ lq,∞(µ̃) ∩ F}.

for

f ∈ lq,∞(µ̃) =

{

f, sup
λ>0

λqµ̃{(j, k) : |βj,k| > σj(2)λ} <∞
}

, (40)

µ̃{(j, k)} = 2j(2p−1)j
zp
2 .

Remarks 4. Proposition 4 shows that over Besov sub-scales both tuning scenarios yield
similar rate of convergence (3). The difference between the two methods appears in their
respective Maxisets described by conditions (38) and (40). Hence the two maxisets to be
compared are: MAX(1) for minimax-WaveD and MAX(2) for maxiset-WaveD.

Proposition 5. Under the same assumptions as in proposition 4, we have

MAX(1) ⊂MAX(2)

Remark 5. This result shows that if we compare the tuning scenarios using the maxiset
point of view, the second tuning (Maxiset) is always better than the first tuning (Minimax)
since it achieves a near optimal rate of convergence over a larger class of functions. This
suggests that the smaller threshold setting (34), (35) may give better result in practice than
the larger threshold setting (31),(32). This is confirmed by our simulation study (section
5).

4 Numerical performances

We study the finite sample properties of the WaveD algorithm (7) when applied to noisy
boxcar convolution (1). Figure 1 depicts four inhomogeneous signals borrowed from the
statistical literature Johnstone et al. (2004),Donoho and Raimondo (2004). Figure 2 depicts
the signals of Figure 1 after blurring with a boxcar kernel. In Figure 3, we added Gaussian
white noise to each signals of Figure 2 (with medium noise level). In our simulation study we
used three noise levels: low, medium and high as seen table 1. Our main results (summarised
in section 3) state that the WaveD estimator can be applied to noisy boxcar convolution
where the boxcar scale a is chosen randomly with respect to a continuous distribution.
For illustration purposes, we used the Uniform (0.025, 0.075) distribution to set the boxcar
parameter in each simulation of the model (1), as illustrated is in Figures 2 and 3. In the
table below we give Monte Carlo approximation to the Root Mean Integrated Square Error
(RMISE) of the WaveD estimator when fitted with the Minimax tuning (32), (31) and when
fitted with the Maxiset tuning (34), (35). For comparison purposes we included the results

10
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Figure 2: Four (inhomogeneous) signals, ti = i/n, n = 2048.
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Figure 3: Signals of figure 1 after boxcar blurring with a randomly chosen from a U(0.025, 075)
distribution.

of standard WaveD [JKRP] when applied to a noisy boxcar convolution when the boxcar
scale is a is a BA number (a = 1/

√
353) which in the table below is indicated by boxcar-

scale=BA. For the Minimax and Maxiset tunings we simulated noisy boxcar convolution
with a randomly chosen from a U(0.025, 075) distribution which in the table below is i

indicated by boxcar-scale=AA (’Almost All’).
Analysis of the results. Our numerical study confirms the theoretical analysis of section

3. First, we see that the WaveD estimator can be applied successfully to Almost All boxcar
convolutions. The results obtained with smaller thresholds (as with Maxiset) are better than
those obtained with larger thresholds (as with Minimax). Finally, comparing the results
obtained in the BA case with those of the AA setting we note slightly poorer performances
in the AA case, as to be expected Johnstone and Raimondo (2004). The WaveD estimator
is based on Hard Thresholding and enjoys fast computation Donoho and Raimondo (2004).
Alternative thresholding strategies such as block-wise thresholding Pensky and Vidakovic
(1999); Cavalier and Tsybakov (2002), multichannel approach Pensky and Zayed (2002)
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Figure 4: Illustration of the model (1) with signals of Figure 2, Gaussian noise with σ = 0.05.

Table 1: Monte-Carlo approximations to RMISE=

√

E‖f̂ − f‖2

2
. The results are means of 1000

independent simulations of the model (1) with n = 2048 illustrated as Figure 3.

Tuning Boxcar-scale Signal σlow = 0.005 σmed = 0.05 σhigh = 0.1

Standard BA Lidar 0.0990 0.2084 0.2744
Maxiset AA Lidar 0.1220 0.2671 0.3400
Minimax AA Lidar 0.1379 0.3274 0.3863

Standard BA Bumps 0.2042 0.4563 0.5233
Maxiset AA Bumps 0.2933 0.5103 0.5466
Minimax AA Bumps 0.3231 0.5332 0.5749

Standard BA Blocks 0.1207 0.2287 0.2676
Maxiset AA Blocks 0.1469 0.2643 0.3097
Minimax AA Blocks 0.1626 0.3044 0.3324

Standard BA Doppler 0.0601 0.1063 0.1372
Maxiset AA Doppler 0.0681 0.1346 0.1605
Minimax AA Doppler 0.0754 0.1572 0.1872

may also give good results.

5 Proofs

Proof of Proposition 1. We start by a lemma deducible from Johnstone and Raimondo
(2004).

Lemma 1. Let p/q and p′/q′ be successive principal convergents in the continued fraction
expansion of a real number a and let Aδ be a full Lebesgue measure set. Let q ≥ 4 and N
be a non-negative integer with N + q < q′. Then, for all numbers a ∈ Aδ,

N+q
∑

l=N+1

‖la‖−2 ≤ c1(a)q2 (log q)2+2δ (41)
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Figure 5: WaveD Lidar estimates in low-med-high noise level (left to right). Top plots: data drawn
from a noisy boxcar convolution with a BA scale. Bottom plots: data drawn from a noisy boxcar
convolution with a randomly chosen from a U(0.025, 075) distribution.

.

By definition of the Meyer wavelet Cj ⊂ {l : 2j ≤ |l| ≤ 2j+2}. To simplify the exposition
we will use the symmetry of x → x2 about 0, and consider that from now on that Cj ⊂
{l : 2j ≤ l ≤ 2j+2}. Let m be the smallest integer such that qm ≥ 2j . From the geometric
growth of the convergents qm+2r ≥ 2rqm, hence:

Cj ⊂ N ∩ [qm−1, qm+4).

Introducing sets Dτ = N ∩ [qm+τ−1, qm+τ ), τ = 0, 1, . . . , 4 whose union covers Cj. For all
a ∈ Aδ we have that qm+τ ≤ qm+τ−1 (log qm+τ−1)

1+δ. Hence, there are at most Kτ =
(log qm+τ−1)

1+δ blocks of length qm+τ−1 to cover Dτ ; we apply lemma 1 within each block:

∑

Dτ

‖la‖−2 =
∑

blocks

∑

l∈block

‖la‖−2 ≤ Kτ c1 (qm+τ−1)2 Kτ2 = c1 (qm+τ−1)2 Kτ3.

Taking log in (27) we see that there exists a constant c2 = C(δ, τ) such that:

Kτ ≤ c2K0, qm+τ−1 ≤ c2 qm−1K
τ
0 , τ = 1, . . . , 4 (42)

It follows that

∑

Cj

‖la‖−2 ≤
4
∑

τ=0

∑

Dτ

‖la‖−2 ≤ c1
(

q2m−1 K03+q2m K13+q2m+1 K13+q2m+2 K33+q2m+3 Kτ4
)

≤ c2K03 q
2
m−1(1 +K02 +K04 +K06 +K08) ≤ c3K

11
0 q2m−1.

By construction qm−1 ≤ 2j and so K0 = (log qm−1)
1+δ ≤ c4 j

1+δ which combined with (26)
shows that

τ2
j = |Cj |−1

∑

l∈Cj

|bl|−2 ≤ C 2j
∑

Cj

‖la‖−2 ≤ C 23j j11(1+δ)

�
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Proof of Proposition 2. We consider the WaveD estimator (7) with the Minimax tuning
(31), (32) and we apply Theorem 1. In this setting, arguments similar to those in [JKPR]
(Appendix A) are used to prove that the following claims hold (C1): Inequalities (15) and
(16) hold with η ≥ 2

√

8π(p ∨ 2). (C2): the basis (σjΨjk) satisfies condition (52). (C3):
Conditions (14)is satisfied with our choice of parameters. Hence, Theorem 1 applies to (7)
which gives the following maxisets/rate result:

E‖f̂1 − f‖p
p ≤ C cp−q

n ,

if and only if :

f ∈ lq,∞(µ) =

{

f, sup
λ>0

λqµ{(j, k) : |βj,k| > σjλ} <∞
}

, and, (43)

sup
n
cq−p
n ‖ f −

∑

κ∈Λn

βκψκ‖p
p <∞. (44)

for
µ{(j, k)} = 2j(2p−1). (45)

We take p − q = 2β and derive the rate results (33) for standard Besov spaces. Condition
(44) essentially uses the same arguments as in [JKPR] (Appendix B.1).

For condition (47), as in [JKPR], we suppose that f ∈ Bs
π,r(T ) and distinguish between

the cases s + 2 ≥ 2p
π and s + 2 < 2p

π . In the first case, we take q = 2p
s+2 and have (all the

inequalities below are true up to obvious absolute constants):

µ{(j, k) : |βjk| > 23j/2λ} =
∑

jk

2j(2p−1)I{|βjk| > 23j/2λ}

≤
∑

j

22pj ∧ 2j(2p−1)
∑

k

[
|βjk|

23j/2λ
]π

≤
∑

j

22pj ∧ [
1

λ
]π2−j(sπ+2(π−p))επj (46)

where (εj) in a sequence belonging to lr. Let J such that 2−J(s+2) ∼ λ, we get:

µ{(j, k) : |βjk| > 23j/2λ} ≤
∑

j≤J

22pj +
∑

j>J

[
1

λ
]π2−j(sπ+2(π−p)επj

≤ λ
−2p
s+2 + [

1

λ
]π[λ

π(s+2)−2p
s+2 I{s+ 2 >

2p

π
} +

∑

j

επj I{s + 2 =
2p

π
}]

Which ends the proof of this case. Now, if s+2 < 2p
π , we take q = 2p−1

2+s−1/π , and use Sobolev

embeddings: Bs
π,r(T ) ⊂ Bs′

q,r(T ) for s′ − 1/q = s− 1/π. Using (46) with q instead of π, we
get:

µ{(j, k) : |βjk| > 23j/2λ} ≤ λ−q
∑

j

2−j(s′q+2(q−p)εqj

≤ λ−q
∑

j

2
−j

2p−π(s+2)
2+s−1/π

14
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Proof of Proposition 3. We consider the WaveD estimator (7) with the Maxiset tuning (34),
(35) and apply we apply Theorem 1. In this setting, arguments similar to those in [JKPR]
(Appendix A) are used to prove that the following claims hold (C1): Inequalities (15) and
(16) hold with η ≥ 2

√

8π(p ∨ 2). (C2): the basis (σjΨjk) satisfies condition (52). (C3):
Conditions (14)is satisfied with our choice of parameters. Hence, Theorem 1 applies to (7)
which gives the following maxisets/rate result:

E‖f̂2 − f‖p
p ≤ C cp−q

n ,

if and only if :

f ∈ lq,∞(µ̃) =

{

f, sup
λ>0

λqµ̃{(j, k) : |βj,k| > σj(2)λ} <∞
}

, and,

(47)

sup
n
cq−p
n ‖ f −

∑

κ∈Λn

βκψκ‖p
p <∞.

for
µ̃{(j, k)} = 2j(2p−1)j

zp
2 . (48)

Using standard wavelet arguments, it is elementary using the definitions of j1 and cn to
see that

sup
n
cq−p
n ‖f −

∑

κ∈Λn

βκψκ‖p
p <∞ ⇐⇒ sup

n
cq−p
n

∑

j≥j1

2j(p
2
−1)
∑

k

|βjk|p <∞

And this is obviously true if f ∈ B̃
2(p−q)

p
,
z(p−q)

2p
p∞ . Now, again we take β = p − q and prove

rate result (36) over Besov sub-scales (2), using arguments quite analogous to those of

Proposition 2. First we observe that the inclusion into the space B
2(p−q)

p
,
z(p−q)

2p
p∞ is similar to

the proof given in [JKPR].
For the inclusion into lq,∞(µ̃), we have as in (46), in the case, s+ 2 ≥ 2p

π ,

µ̃{(j, k) : |βjk| > 23j/2jz/2λ} =
∑

jk

2j(2p−1)jzp/2I{|βjk| > 23j/2jz/2λ}

≤
∑

j

22pjjzp/2 ∧ 2j(2p−1)jzp/2
∑

k

[
|βjk|

23j/2jz/2λ
]π

≤
∑

j

22pjjzp/2 ∧ [
1

λ
]π2−j(sπ+2(π−p))j

z(p−π)
2

−τπ

Let J such that 2J ∼ λ
1

s+2 log 1
λ
−z/4

. We get :

µ̃{(j, k) /|βjk| > 23j/2jz/2λ} ≤
∑

j≤J

22pjjzp/2 +
∑

j>J

[
1

λ
]π2−j(sπ+2(π−p)j

z(p−π)
2

−τπ

≤ λ
−2p
s+2 + [

1

λ
]π[λ

π(s+2)−2p
s+2 log

1

λ

zsπ
4

−τπ

I{s+ 2 >
2p

π
}

+
∑

j

j
zsπ
4

−τπI{s+ 2 =
2p

π
}]
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Which ends the proof of this case. Now, again if s+ 2 < 2p
π , we take q = 2p−1

2+s−1/π and use

Sobolev embeddings and (46) with q instead of π, we get:

µ̃{(j, k) : |βjk| > 23j/2jz/2λ} ≤ λ−q
∑

j

2−j(s′q+2(q−p))j
z(p−q)

2
−τq

≤ λ−q
∑

j

2
−j

2p−π(s+2)
2+s−1/π j

z(p−q)
2

−τq

�

Proof of Proposition 4. It is a consequence of Theorem 1 and corollary 1.

Proof of proposition 5.

Lemma 2. Let 0 < q < ∞, −∞ < α < ∞. Let us define ξ(t) = ξq,α(t) a continuous non
decreasing function, such that ξ(0) = 0 :

ξ(t) =







tq(log(1
t ))

α, t ∈ [0, κ]

(log( 1
κ))αtq t > κ

where 0 < κ ≤ exp−α/q if α ≥ 0 ; and 0 < κ < 1 if α < 0. Then

∃C0, ∀λ > 0,
∑

j≥0

1

ξ(2jλ)
≤ C0

ξ(λ)
(49)

∀p > q, ∃Cp, ∀λ > 0,
∑

j≥0

1

2jpξ(2−jλ)
≤ Cp

ξ(λ)
(50)

Proof

1. Proof of (49) :

Let j0 = inf{j ∈ N, 2jλ > κ}
∑

j≥0

1

ξ(2jλ)
=
∑

j<j0

1

(2jλ)q(log 1/2jλ)α)
+
∑

j≥j0

1

(log( 1
κ))α(2jλ)q

The result is clearly obvious if j0 = 0. Now if j0 > 0, and 0 ≤ j < j0, then
λ ≤ 2jλ ≤ κ < 2j0λ < 2κ, ,

∑

j≥0

1

ξ(2jλ)
≤ 1

(log 1/λ)αλq

∑

j<j0

2−jq(
log 1/λ

log 1/2jλ
)α + cq

1

(log( 1
κ))α(2j0λ)q

But as (log 1/λ)αλq is a non decreasing function on [0, κ],

1

(log( 1
κ))α(2j0λ)q

≤ 1

(log( 1
κ))ακq

≤ 1

(log 1/λ)αλq

and , for 0 ≤ j < j0

1 ≤ log 1/λ

log 1/2jλ
=

log 1/2jλ+ j log 2

log 1/2jλ
= 1 + j

log 2

log 1/2jλ
≤ 1 + j

log 2

log 1/κ
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and if α ≥ 0,

∑

j<j0

2−jq(
log 1/λ

log 1/2jλ
)α ≤

∑

j<j0

2−jq(1 + j
log 2

log 1/κ
)α ≤ C

If α < 0
∑

j<j0

2−jq(
log 1/λ

log 1/2jλ
)α ≤

∑

j<j0

2−jq ≤ C

2. Proof of (50) : Let j0 = inf{j ∈ N, 2−jλ ≤ κ}, j0 = 0 if λ ≤ κ.

∑

j≥0

1

2jpξ(2−jλ)
=
∑

j≥j0

1

2jp(2−jλ)q(log( 1
2−jλ

))α
+

∑

0≤j<j0

1

(log( 1
κ))α2jp(2−jλ)q

=
1

(log 1/λ)αλq

∑

j≥j0

2−j(p−q)

(

log( 1
λ

log( 1
2−jλ

)α

+
1

(log( 1
κ))αλq

∑

0≤j<j0

2−j(p−q)

If λ ≤ κ we have only the first term and

if α ≥ 0, (
log( 1

λ

log( 1
2−jλ

)α ≤ 1

if α < 0, (
log( 1

λ

log( 1
2−jλ

)α ≤ (1 +
j log 2

log( 1
κ)

)|α|

and we get the result.

If now j0 <∞, for 2−j0λ ≤ κ < 2−(j0−1)λ

if α ≥ 0,
1

λq

∑

j≥j0

2−j(p−q)

(log( 1
2−jλ

))α
≤ (

1

log 1/κ
)α

2−j0(p−q)

λq

∑

j≥j0

2−(j−j0)(p−q) ≤ C

λp

if α < 0,
1

λq

∑

j≥j0

2−j(p−q)

(log( 1
2−jλ

))α
≤ 2−j0(p−q)

λq

∑

j≥j0

2−(j−j0)(p−q)

(

log(
1

2−j0λ
+ (j − j0))

)|α|

≤ C

λp

But as λ ≥ κ, 1
λp = O( 1

λq )

Corollary 2. Let I be a set, q < p, and ∀i, µ(i) ≥ 0. For all γ : I 7→ R we have the
following equivalence :

1.

∃C > 0, ∀λ > 0,
∑

{i, |γ(i)|>λ}

µ(i) ≤ C

ξ(λ)

2.

∃C ′, ∀λ > 0,
∑

{i, |γ(i)|≤λ}

|γ(i)|pµ(i) ≤ C ′ λ
p

ξ(λ)

17



Proof

1 =⇒ 2 : We use (50)

∑

{i, |γ(i)|≤λ}

|γ(i)|pµ(i) =
∑

j∈N

∑

{i, 2−j−1<|γ(i)|≤2−jλ}

|γ(i)|pµ(i) ≤

λp
∑

j∈N

2−jp
∑

{i, 2−j−1<|γ(i)|}

µ(i) ≤ λp
∑

j∈N

2−jp C

ξ(2−j−1λ)
≤ 2CCp

λp

ξ(λ)

2 =⇒ 1 : We use (49)

∑

{i, |γ(i)|>λ}

µ(i) =
∑

j∈N

∑

{i, 2j+1λ≥|γ(i)|>2jλ}

µ(i) ≤
∑

j∈N

1

2jpλp

∑

{i, 2j+1λ≥|γ(i)|}

µ(i)|γ(i)|p

≤
∑

j∈N

1

2jpλp
C ′ 2

(j+1)pλp

ξ(2j+1λ)
≤ 2pC ′C0

1

ξ(λ)

Applying the previous lemma to µ(j, k) = 2j(p/2−1)τp
j and γ(jk) =

βjk

τj
we derive the

following lemma.

Lemma 3. If τj an arbitrary positive sequence, p > q, β are positive real numbers, the
following assertions are equivalent:
1. There exists C, such that:

∀λ > 0,
∑

j≥−1,k

2j(p
2
−1)τp

j I{|
βjk

τj
| ≥ λ} ≤ C

1

ξ(q,β)(λ)

2. There exists C1, such that:

∀λ > 0,
∑

j,k

|βjk|pI{|
βjk

τj
| ≤ λ}2j(p

2
−1) ≤ Cp

λp

ξ(q,β)(λ)

To prove proposition 5, let us suppose that f ∈ MAX(1), and prove that f ∈ lq,∞(µ̃).
Let C be a generic constant which may change from line to line. Let us observe first that

∀n ∈ N, [n−1 log(n)]
q−p
2 ‖f −

∑

κ,j≤j1

βκψκ‖p
p ≤ C <∞, for 2j1 = n

1
4 (log n)−

1+z
4 ,

which implies that

∀j1 ∈ N, ‖f −
∑

κ,j≤j1

βκψκ‖p ≤ C2
−2(p−q)j1

p j
−z(p−q)

p

1 .

∀j ∈ N, (
∑

k

|βjk|p2j( 1
2
− 1

p
)
)1/p ≤ C2

−2(p−q)j
p j

−z(p−q)
p ,

and more generally

∀J > j ∈ N,
∑

j<j′<J,k

|βj′k|p2j′(p
2
−1) ≤ C2−2(p−q)jj−z(p−q). (51)
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To apply lemma 3 we have to check that

∑

jk

|βjk|p2j(p
2
−1)1

|
βjk

σj(2)
|≤λ

≤ λp−q.

Obviously, from (51) we have only to check this for λ in a neighbourhood of 0, [0, κ] say.
Now, let us introduce j0 such that j0 ∼ log 1

λ . Let us consider:

∑

jk

|βjk|p2j(p
2
−1)1

|
βjk

σj(2)
|≤λ

= [
∑

j≤j0

+
∑

j>j0

]
∑

k

|βjk|p2j(p
2
−1)1

|
βjk

σj (2)
|≤λ

≤
∑

j≤j0

∑

k

|βjk|p2j(p
2
−1)1

|
βjk

σj(1)
|≤λ(log 1

λ
)

z
2

+
∑

j>j0

∑

k

|βjk|p2j(p
2
−1)

≤ C[λ(log
1

λ
)

z
2 ]p−q(log

1

λ
)
−z(p−q)

2 + C ′2−j02(p−q) ≤ C”λp−q

The first term of the last inequality is obtained by another application of lemma 3 using
the assumption f ∈ lξ

q,
z(p−q)

2 )
,∞(µ). The second term is obtained using (51).

�

Appendix: Temlyakov inequalities. Let us recall the Temlyakov property for a basis en(x)
in Lp : there exists absolute constants c, C such that for all Λ ⊂ N,

c
∑

n∈Λ

∫

|en(x)|pdx ≤
∫

(
∑

n∈Λ

|en(x)|2)p/2dx ≤ C
∑

n∈Λ

∫

|en(x)|pdx

or, equivalently :

c′‖(
∑

n∈Λ

|en(x)|p)1/p‖p ≤ ‖(
∑

n∈Λ

|en(x)|2)1/2‖p ≤ C ′‖(
∑

n∈Λ

|en(x)|p)1/p‖p (52)
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