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Abstract
We consider the convolution model Yi = Xi + εi, i = 1, . . . , n of i.i.d.

random variables Xi having common unknown density f are observed with
an additive i.i.d. noise, independent of X ′s. We assume that the density f
belongs to a smoothness class, has a characteristic function described either by
a polynomial |u|−β, β > 1/2 (Sobolev class) or by an exponential exp(−α|u|r),
α, r > 0 (called supersmooth), as |u| → ∞. The noise density is supposed
to be known and such that its characteristic function decays either as |u|−s,
s > 0 (polynomial noise) or as exp(−γ|u|s), s, γ > 0 (exponential noise), as
|u| → ∞.

We study the problems of estimating the quadratic functional
∫

f2 and
use this estimator for the goodness-of-fit test in L2 distance, from noisy ob-
servations, in all possible combinations of the previous setups.

We construct an estimator of
∫

f2 based on the deconvolution kernel.
When the unknown density is smoother enough than the noise density, we
prove that this estimator is n−1/2 consistent, asymptotically normal and effi-
cient (for the variance we compute). Otherwise, we give nonparametric min-
imax upper bounds for the same estimator. For the goodness-of-fit test, we
prove minimax upper bounds for a test statistic derived from the previous
estimator. Surprisingly, in the case of supersmooth densities and polynomial
noise we obtain parametric n−1/2 minimax rate of testing.

Finally, we give an approach unifying the proof of nonparametric minimax
lower bounds. We prove them for Sobolev densities and polynomial noise, for
Sobolev densities and exponential noise and for supersmooth densities with
exponential noise such that r < s. Note that in these last two setups we
obtain exact testing constants associated to the asymptotic minimax rates.

Mathematical Subject Classification 62F12, 62G05, 62G10, 62G20,
Keywords Asymptotic efficiency, convolution model, exact constant in nonparametric
tests, goodness-of-fit tests, infinitely differentiable functions, quadratic functional estima-
tion, minimax tests, Sobolev classes.
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1 Introduction

We consider the convolution model,

Yi = Xi + εi, i = 1, . . . , n (1)

where all observations are independent. We denote the common unknown density of
Xi, i = 1, . . . , n by f , having given smoothness. Let Φ(u) =

∫
eixuf(x)dx denote its

characteristic function. We observe only the Yi, i = 1, . . . , n. The noise is supposed
i.i.d. having known probability density g.

We consider the following nonparametric classes for the underlying density, which
is always supposed to belong to L1 ∩ L2. A Sobolev class is defined by

W (β, L) =

{
f : R → R+, Cβ, density function,

∫
|Φ (u)| |u|β du <∞,

1

2π

∫
|Φ (u)|2 |u|2β du ≤ L

}
, (2)

with the smoothness β > 1/2 and radius L > 0.
A class of supersmooth densities is defined by

S (α, r, L) =

{
f : R → R+, C∞, density function,

1

2π

∫
|Φ (u)|2 exp (2α|u|r) du ≤ L

}
,

(3)
for α, r, L positive constants.

Classes S(α, r, L) of infinitely derivable functions appeared e.g. in Lepski and
Levit [24]. Note that for r > 1 these are analytic functions, for r = 1 they are
analytic on a strip of size 2α around the real axis.

Let the noise be i.i.d. with probability density g and characteristic function Φg

and the resulting observations have common density p = f ? g and characteristic
function Φp = Φ · Φg. We also consider noise having non null Fourier transform,
Φg(u) 6= 0, ∀ u ∈ R. Typically two different behaviours are distinguished in non-
parametric estimation:

polynomially smooth (or polynomial) noise

|Φg (u)| ∼ |u|−s , |u| → ∞, s > 1; (4)

exponentially smooth (or supersmooth or exponential) noise

|Φg (u)| ∼ exp (−γ |u|s) , |u| → ∞, γ, s > 0. (5)

We consider here nonparametric minimax goodness-of-fit tests from noisy data,
that is for a given density f0 in the smoothness class W (β, L), respectively S(α, r, L),
decide whether

H0 : f = f0

H1(C, ψn) : f in the smoothness class , ‖f − f0‖2
2 ≥ Cψ2

n,

from observations Y1, . . . , Yn, for some fixed C > 0 and ψn > 0.
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Definition 1 For a given 0 < γ < 1, a test statistic ∆∗
n is said to attain the testing

rate ψn over the smoothness class if there exists C∗ > 0 such that

lim sup
n→∞

{
Pf0 [∆

∗
n = 1] + sup

f∈H1(C,ψn)

Pf [∆
∗
n = 0]

}
≤ γ, (6)

for all C > C∗. The rate ψn is called minimax rate of testing, if there exists C∗ > 0
and

lim inf
n→∞

inf
∆n

{
Pf0 [∆n = 1] + sup

f∈H1(C,ψn)

Pf [∆n = 0]

}
≥ γ, (7)

for all 0 < C < C∗, where the inf is taken over all test procedures ∆n.
Moreover, if C∗ = C∗ we call ψn exact (or sharp) minimax rate of testing.

We recall that the usual procedure is to construct the test statistic ∆∗
n such that (6)

holds, also called the upper bound of the testing rate and then prove the minimax
optimality of this procedure, i.e. the lower bounds in (7). If the test procedure does
not depend on the smoothness of the unknown functions (which may vary in some
interval), it is called adaptive to the smoothness and ψn is minimax adaptive rate.

In the convolution model (1), the problem of nonparametric estimation of de-
convolution density f was intensively studied over the past two decades. Densities
belonging to Hölder or Sobolev classes are known to be estimated at reasonably fast
rates when mixed with polynomial noise and logarithmic, slow rates when mixed
with exponential noise (see Carroll and Hall [7], Fan [11], [12] and [13], etc.).

Classes of supersmooth densities were first considered in the convolution model
by Pensky and Vidakovic [31], who computed rates of convergence, adaptive to the
smoothness, of wavelets estimators and noticed that faster rates can still be expected
in this problem. Comte and Taupin [8] used model selection for adaptive estimation
of the deconvolution density. Rate minimax optimality of a kernel estimator and
lower bounds for the pointwise risk over such classes was proven by Butucea [4] for
polynomial noise (and nearly parametric rate) and optimality in the rate and in the
constant in the case r < s, by Butucea and Tsybakov [6], for exponential noise.

In this paper, in order to surpass difficulties of estimation we address different
issues and principally the goodness-of-fit test from noisy data in L2 norm. To
our knowledge this is the first time testing was performed from data contaminated
with errors. Minimax and adaptive theory of testing was extensively developed in
density model when direct observations are available, but also for regression and
Gaussian white noise model. For nonparametric minimax rates in goodness-of-fit
testing in different setups we refer to Ingster [19] and references therein, Ermakov [9]
and [10]. Exact minimax rates were found, see e.g. Lepski and Tsybakov [26] for
regression model in pointwise and sup-norm distances. First adaptive rates were
given by Spokoiny [34]. For a complete review of the literature we refer to Ingster
and Suslina [20].
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To our knowledge, exact minimax rates of testing for supersmooth functions are
known only in the Gaussian white noise model, see Pouet [32], in the case r = 1,
with pointwise and sup-norm distances. These results are more related to pointwise
estimation of the analytic function than to our results in L2 distance and noisy
observations hereafter.

A very original approach is the problem of goodness-of-fit to a parametric com-
posite null hypothesis as in Pouet [33], Gayraud and Pouet [15]; composite null
hypothesis plus adaptation to the smoothness in Fromont and Laurent [14] and
Gayraud and Pouet [16]. Other developments concern non-asymptotic minimax
rates for the mean of a sequence of Gaussian variables by Baraud [1]. In view of nu-
merous practical applications of testing we expect the same problem in the context
of data contaminated with errors to find similar extensive use in applied problems.

Here, the goodness-of-fit problem is considered in L2 distance, that is, we reject
the null hypothesis for densities f far enough from the density f0 under H0, where
“far” is measured by ‖f − f0‖2. This distance depends on n and it corresponds to
the rate of testing. As we can expect, testing problem is easier than the estimation
problem, i.e. the testing rates are faster as they appear in Table 2. One of the most
surprising results is that minimax L2 testing can be performed at parametric rate
n−1/2 for supersmooth densities and polynomial noise (though deconvolution rate is
known to be less by a power of logarithm than n−1/2).

Another remark concerns setups where densities and noise have similar smooth-
ness properties. For Sobolev densities and polynomial noise, we have one rate of
testing, slower than n−1/2 but faster than the deconvolution estimation rate, as it
was already noticed in testing problem with direct observations. On the contrary,
for supersmooth densities and exponential noise a change in the rate is observed like
in deconvolution density estimation (see Butucea and Tsybakov [6]).

We actually give exact minimax rates of testing in setups with densities less reg-
ular than the noise: Sobolev densities and exponential noise, supersmooth densities
less smooth than the corresponding exponential noise (r < s).

The natural test statistic in this context is an estimator of
∫

(f − f0)
2, where f0

is given, from noisy data. Here we study also optimal estimators d2
n for d2 :=

∫
f 2,

where f is the deconvolution density in the model (1).

Definition 2 An estimator d2
n of d2 is said to attain the rate ϕn over the smoothness

class W (β, L), respectively S(α, r, L), if there exists a constant C > 0 such that

lim sup
n→∞

sup
f
ϕ−1
n Ef [|d2

n − d2|] ≤ C (8)

and this rate is called minimax if no other estimator attains better rates uniformly
over the class

lim inf
n→∞

inf
d̂2n

sup
f
ϕ−1
n Ef [|d̂2

n − d2|] ≥ c, (9)
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for some c > 0, depending only on fixed known parameters, where the supremum is
taken over all densities in the smoothness class and the infimum over all estimators
d̂2
n.

In the case where parametric n−1/2 rate is attained we prove the asymptotic efficiency
Cramer-Rao bound of the estimator (also called efficient estimator).

Definition 3 An estimator d2
n of d2 =

∫
f 2 is asymptotically normally distributed

with asymptotic variance W = W(f) if

√
n
(
d2
n − d2

) d→ N (0,W (f)) .

Moreover, it attains the asymptotic efficiency Cramer-Rao bound if for any f0 in the
Sobolev class W (β, L), respectively in S(α, r, L), and a family of shrinking neighbour-
hoods of f0: V(f0)

inf
V(f0)

lim inf
n→∞

sup
f∈V(f0)

nEf

[
(d̂2
n − d2)2

]
≥ W(f0),

for any other estimator d̂2
n of d2.

In direct estimation, when data X1, . . . , Xn are available, it is well established
that parametric rates could be achieved for smooth enough densities belonging e.g.
to the Hölder class. Lower bounds for slower rates were found by Bickel and Ritov [2]
for smoothnesses less than 1/4. In this context, Laurent [23] gave efficient estimation
at parametric rate, Birgé and Massart [3] proved nonparametric lower bounds for
estimating more general quadratic functionals. The study of general functionals was
completed by Kerkyacharian and Picard [21] for minimax rates and Tribouley [36]
for adaptive estimation. In the context of regression model and Gaussian sequence
model, Nemirovski [30] found necessary conditions for existence of asymptotically
efficient estimators of less smooth functionals, one or two times continuously differ-
entiable.

In the convolution model, linear functionals were estimated in a minimax setup
by Matias and Taupin [29]. Finally, the estimator d2

n of
∫
f 2 considered here was

partly studied by Butucea [5] for proving asymptotic normality of the integrated
square error (ISE) for kernel estimator in the convolution model.

In this paper, we give minimax results in the setups on the nonparametric side
(“regime”) and efficiency constant in the sense of the theory by Ibragimov and
Khas’minskii [18] and Khoshevnik and Levit [22] for asymptotically normal, n−1/2-
consistent estimator (see Table 1).

Though we deal with both testing and quadratic functional estimation prob-
lems, these are essentially different problems. Indeed, we know in the case of direct
observations that for other Lp norms (p 6= 2) the rates for minimax testing are
different from minimax rates when estimating the Lp norm of a density. Compare
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e.g. Spokoiny [35] for testing rates and Lepski, Nemirovski and Spokoiny [25] for
Lp-norm estimation.

The structure of the paper is as follows. In Section 2 we introduce the estimator
d2
n of

∫
f 2 and indicate the choice of bandwidth in order to prove either upper

bounds in the minimax sense, or its asymptotic normality and efficiency, according
to different setups. In Section 3 we deal with the goodness-of-fit testing problem
and introduce the test statistic. For each setup, we define the tuning parameters
and compute the minimax upper bounds for testing rates. Finally, in Section 4, we
describe the approach unifying the proof of minimax nonparametric lower bounds
from Sections 2 and 3 and prove them for nonparametric setups of Sobolev classes of
densities and exponential, respectively polynomial noise, and for the bias dominated
setup of supersmooth densities less smooth than the exponentially smooth noise
(r < s). Finally, some auxiliary results appear in the Appendix.

2 Estimation of
∫
f 2 in the convolution model

In the described model, we consider the problem of estimating d2 = ‖f‖2
2, from

available observations (Yi)i=1,...,n, where the density f of observations (Xi)i=1,...,n

is unknown. Let us denote the deconvolution kernel Kn defined via its Fourier
transform as

ΦKn (u) =
(
Φg
(u
h

))−1

ΦK(u), (10)

where K(x) = sin(x)/(πx) is such that ΦK(u) = I[|u|≤1] and the bandwidth h =
hn → 0, when n→∞ will be specified later.

Define d2
n a bias-reduced estimator of d2 by

d2
n =

1

n (n− 1)

n∑
k 6=j=1

∫
Kn,h (x− Yk)Kn,h (x− Yj) dx. (11)

In the sequel, we shall denote the L2 scalar product of two functions M and N
by 〈M,N〉 =

∫
M(x)N(x)dx and by M the complex conjugate of M .

Definition 4 Let d2
n in (11) be the estimator of d2, having bandwidth h > 0. We

call the bias and the variance of this estimator, respectively:

B (dn)
∆
= |Ef [d2

n]− d2| and V (dn)
∆
= Ef

[
|d2
n − Ef [d

2
n]|2
]
.

2.1 Sobolev densities and polynomial noise

We shall study in detail the case where the underlying densityf belongs to a Sobolev
class W (β, L), with β > 1/2, defined in (2) and the noise is s-polynomial as defined
in (4).
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Proposition 1 If f is a fixed density in the Sobolev class W (β, L), the estimator
d2
n in (11) with bandwidth h > 0 is such that

B (dn) ≤ Lh2β

V (dn) =
4Ω2

g(f)

n
(1 + o(1)) +

2‖p‖2
2

n2h4s+1

(1 + o(1))

π(4s+ 1)
, if β ≥ s;

V (dn) =
O(1)

nh2(s−β)
+

2‖p‖2
2

n2h4s+1

1 + o(1)

π(4s+ 1)
, if β < s.

where Ωg(f) ≥ 0 is defined later on, in (12), o(1) → 0 and h→ 0, when n→∞.

In order to define Ωg(f), let us see that for any f in the Sobolev class W (β, L)
and g a noise density satisfying (4), we have Φ/Φg a continuous function which is
absolutely and quadratically integrable (see Lemma 7). Then we can define the
function

F (y) =
1

2π

∫
e−iyu

Φ(u)

Φg(u)
du,

which is uniformly continuous function, but it is not necessarily a density function.
It is known (see Lukacs [28]) that if both characteristic functions Φ and Φg are
analytic around 0 then their quotient cannot be the characteristic function of any
distribution function. Nevertheless, this function is bounded and its L2 norm is
uniformly bounded over densities f in the Sobolev class by MF depending only on
β, L and the fixed given density g.

Define:

Ω2
g(f) =

∫
|F (y)|2p(y)dy −

(∫
f 2(x)dx

)2

= Ef [|F (Y )|2]− (Ef [F (Y )])2. (12)

Indeed, Ef [F (Y )] is a real number, since:

‖f‖2
2 =

1

2π
〈Φ,Φ〉 =

1

2π
〈Φp,

Φ

Φg
〉 = 〈p, F 〉 = Ef [F (Y )].

Remark 1 Note that (12) says that

4Ω2
g(f) = 4V (F (Y )).

This is heuristically similar to the results by Laurent [23] for direct estimation of∫
f 2 where 4V (f(X)) = 4

∫
f 3 − 4(

∫
f 2)2 appears. Moreover, Bickel and Ritov [2]

estimate with direct observation
∫

(f (s))2, where f (s) is the s-derivative of f and
s a nonnegative integer . They note that via integration by parts, we can write∫

(f (s))2 = Ef [(−1)sf (2s)(X)]. Then they get nonparametric rates as soon as the
smoothness of the density is larger than 2s+1/4 and parametric rate for smoothness
less than 2s+ 1/4 with asymptotic efficiency constant 4V (f (2s)(X)).

In Theorems 1 and 2 we describe the same change of ”regime” when β ≥ s+1/4,
respectively β < s+1/4. Similarities between deconvolution with s-polynomial noise
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and derivative of order s have been noticed before. Indeed, we actually estimate here∫
f 2 = Ef [F (Y )], where F ? g = f , whenever the function F exists and F replaces

the s-derivative of the function f .

Proof of Proposition 1. Let us note that

Ef [d
2
n] = Ef [〈Kn,h(· − Y1), Kn,h(· − Y2)〉]

= ‖Kn,h ? p‖2
2 = ‖Kh ? f‖2

2 =
1

2π

∫
ΦK(hu)|Φ(u)|2du. (13)

By Plancherel formula in equation (13):

B(d2
n) =

1

2π

∣∣∣∣∫ (ΦK(hu)− 1)|Φ(u)|2du
∣∣∣∣ ≤ 1

2π

∫
|u|>1/h

(h|u|)2β|Φ(u)|2du ≤ Lh2β.

As for the variance let us write first:

d2
n − Ef [d

2
n] =

1

n(n− 1)

n∑
k 6=j

〈Kn,h(· − Yk)−Kh ? f,Kn,h(· − Yj)−Kh ? f〉

+
2

n

n∑
k=1

〈Kn,h(· − Yk)−Kh ? f,Kh ? f〉 = S1 + S2, say.

Variables in S1 are uncorrelated to the variables in S2 and all of them are centered.
Thus, V (d2

n) = Ef [|S1|2] + Ef [|S2|2]. We have

Ef [|S1|2] =
2

n(n− 1)

(
Ef [|〈Kn,h(· − Y1)−Kh ? f,Kn,h(· − Y2)−Kh ? f〉|2]

)
=

2

n(n− 1)

(
Ef [|〈Kn,h(· − Y1), Kn,h(· − Y2)〉|2]− ‖Kh ? f‖4

2

)
=

2‖p‖2
2

π(4s+ 1)

1 + o(1)

n2h4s+1
, (14)

where indeed, ‖Kh ? f‖4
2 = ‖f‖4

2(1 + o(1)) by the bias computations and this term
is negligible with respect to the first one. Similarly to Butucea [5], we have

Ef [|〈Kn,h(· − Y1), Kn,h(· − Y2)〉|2]

=
1

h2

∫ ∫ ∣∣∣∣∫ Kn

(
x− u

h

)
Kn

(
x− v

h

)
dx

h

∣∣∣∣2 p(u)p(v)dudv
=

1

h

∫ ∫
1

h

∣∣∣∣∫ Kn

(
z +

v − u

h

)
Kn (z) dz

∣∣∣∣2 p(u)p(v)dudv
=

1

h

∫ ∫
1

h

∣∣∣∣Mn

(
v − u

h

)∣∣∣∣2 p(u)p(v)dudv = T, say,
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where Mn(x) =
∫
Kn(z+x)Kn(z)dz. Finally, use the fact that p is at least (β+ s−

1/2) - Lipschitz continuous (Lemma 6)∣∣∣∣T − 1

h
‖p‖2

2‖Mn‖2
2

∣∣∣∣
≤ 1

h

∣∣∣∣∣
∫ ∫ (

1

h

∣∣∣∣Mn

(
v − u

h

)∣∣∣∣2 p(u)− p(v)

∫
|Mn|2

)
dup(v)dv

∣∣∣∣∣
≤ 1

h

∫ ∫
|Mn(x)|2|p(v + hx)− p(v)|dxp(v)dv

≤ 1

h

∫ (∫
|hx|≤ε

|Mn(x)|2Lεβ+s−1/2dx+

∫
|x|>ε/h

2MY |Mn(x)|2dx
)
p(v)dv

≤ 1

h
o(‖Mn‖2

2),

where we chose ε→ 0 such that ε/h→∞ so that

T =
‖p‖2

2‖Mn‖2
2

h
(1 + o(1)). (15)

By Plancherel formula, ‖Mn‖2
2 =

∫
|ΦKn(u)ΦKn(−u)|2du = (π(4s + 1)h4s)−1(1 +

o(1)). Note that we should again split the integration domain and evaluate the
dominant term in the previous integral. Replace this in (15) in order to get (14).

On the other hand, let us deal now with:

Ef [|S2|2] =
4

n

(
Ef [|〈Kn,h(· − Y1), Kh ? f〉|2]− ‖Kh ? f‖4

2

)
=

4

n

(
Ef

[
1

2π

∣∣∣∣∫ eiuY1
ΦK(hu)

Φg(u)
Φ(u)du

∣∣∣∣2
]
− ‖f‖4

2(1 + o(1))

)
. (16)

Use Lemma 7 and Lebesgue convergence theorem to see that, if β ≥ s, there exists
a function

F (y) =
1

2π

∫
eiuy

Φ(u)

Φg(u)
du = lim

h→0

1

2π

∫
|u|≤1/h

eiuy
Φ(u)

Φg(u)
du,

which is uniformly continuous, bounded such that ‖F‖2
2 = ‖Φ/Φg‖2

2/(2π). Note also
that F is a limit of real-valued functions. Indeed, write

1

2π

∫
|u|≤1/h

eiuy
Φ(u)

Φg(u)
du =

1

2π

∫
eiuy

ΦK(hu)

|Φg(u)|2
Φ
p
(u)du,

and note that ΦK(hu)/|Φg(u)|2 is a symmetric integrable function and Φ
p
(u) is the

Fourier transform of p(−y). Thus the integral is the convolution of two-real valued
functions. The limit of real-valued functions, F is real-valued as well.
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Thus, we obtain in (16):

Ef [|S2|2] =
4

n
(Ef [|F (Y )|2]− ‖f‖2

2)(1 + o(1)) =
4Ω2

g(f)

n
(1 + o(1)). (17)

Together with (14) we get the variance for the case β ≥ s.
In case β < s, go back to (16):

Ef

[
1

2π

∣∣∣∣∫ eiuY1
ΦK(hu)

Φε(u)
Φ(u)du

∣∣∣∣2
]

≤ MY

2π

(∫
|u|≤1/h

∣∣∣∣ Φ(u)

Φε(u)

∣∣∣∣ du) ≤ O(1)

(∫
M≤|u|≤1/h

|u|s|Φ(u)|du
)2

≤ O(1)

(
hβ−s

∫
M≤|u|≤1/h

|u|β|Φ(u)|du
)2

≤ O(1)h2(β−s). (18)

So, from (14), (16) and (18) we get the variance for β < s.
An easy consequence of Proposition 1 is that if the underlying unknown density

is smoother enough than the noise (β > s+1/4) our parameter can be estimated at
parametric rate. We establish next asymptotic normality and a Cramer-Rao type
of asymptotic efficiency bound.

Theorem 1 If β > s+1/4, the estimator d2
n defined in (11) with bandwidth h = h∗

such that
n−

1
4s+1 � h∗ � n−

1
4β ,

is asymptotically normally distributed estimator of d2, i.e.

√
n
(
d2
n − d2

) d→ N
(
0, 4Ω2

g (f)
)
.

Moreover, it attains the asymptotic efficiency Cramer-Rao bound.

Proof. Let us decompose the risk of the estimator as follows

Ef [|d2
n − d2|] ≤ B(dn) +

√
V (dn) ≤ Lh2β +

2Ωg(f)√
n

(1 + o(1)),

and then use Proposition 1. Indeed, if β > s+1/4 and if n−1h−(4s+1) � 1 we see that
4Ω2

g(f)/n(1+o(1)) is the dominant term in the variance. Let us take h = o(n−1/(4β))
such that the bias be infinitely smaller, Lh2β � 2Ωg(f)/n. So,

√
n(d2

n − d2) =
√
n(d2

n − Ef [d
2
n]) +

√
nB(dn).

The second term of the sum in the right-hand side term tends to 0 and the asymptotic
normality of the first term can be deduced from Butucea [5]. It is in this case a
classical central limit theorem for U-statistics of order 1.
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For the Cramer-Rao bound, we follow the lines of proof in Laurent [23]. Similar
results were given by Bickel and Ritov [2] following the theory by Ibragimov and
Hasminski [18] and Khoshevnik and Levit [22]. A first step of the proof is to compute
the Fréchet derivative of the functional

∫
f 2 =

∫
F · p at likelihood p0 = f0 ? g:∫

F · p−
∫
F0 · p0 =

∫
2F0(p− p0) +

∫
(F − F0)(p− p0)

and
∫

(F −F0)(p−p0) = o(‖p−p0‖2), when ‖p−p0‖2 → 0. Next, consider the space
orthogonal to the square root of the likelihood

√
p0,

H = {k :

∫
k
√
p0 = 0}

and the projection operator unto this space:

PH(p0)(k) = k − (

∫
k
√
p0)
√
p0.

Write Kn = K = T ′(p0)
√
p0 = PH(p0)(k) as 〈g, k〉. Then the minimal variance is

given by ‖g‖2
2.

Here, T ′(p0)k =
∫

2F0k, then

K =

∫
2F0

√
p0(k − (

∫
k
√
p0)
√
p0)

=

∫
(2F0

√
p0)k −

(∫
2F0p0

)∫
√
p0k.

So, finally,

‖g‖2
2 = 4

∫
|F0|2p0 −

(∣∣∣∣∫ 2F0p0

∣∣∣∣)2

= 4Vf0(F0(Y )).

In the following theorem we compute the rate on the nonparametric side (1/2 <
β ≤ s + 1/4). We prove in Section 3 that this rate is optimal in the minimax
approach under the following additional assumption on the noise distribution.
Assumption (P) The distribution of the polynomial noise in (4) is such that Φg

is at least 3 times continuously differentiable. Moreover there exist A1, A2 > 1,
u0, u1, u2 > 0 large enough such that

|Φg(u)| ≥ u0, ∀|u| ≤ A1 and |(Φg)(k)(u)| ≤ uk
|u|s+k

, for k = 1, 2, ∀|u| ≥ A2.

Theorem 2 If 1/2 < β ≤ s + 1/4, the estimator d2
n of d2 defined in (11) with

bandwidth h∗ satisfies the upper bound (8) for the rate ϕn, where

h∗ = n−
2

4β+4s+1 , ϕn = n−
4β

4β+4s+1 .

Moreover, under Assumption (P) this rate is minimax.

11



Proof of (8). If 1/2 < β ≤ s+1/4, ‖p‖2
2/(π(4s+1)n2h4s+1

∗ ) is the dominant term
in the variance no matter whether β ≥ s or β < s. The bandwidth h∗ minimizes
the bias plus the variance. The upper bound of the normalized mean error is less
than C = max{L,

√
2Mp/(π(4s+ 1)}, see Lemma 6.

Remark 2 In view of Butucea [5], we get asymptotic normality of the estimator d2
n

defined in (11) in the case 1/2 < β < s+ 1/4, for h such that

h = o(1)n−
1

4s+1 and h = o(1)n−
2

4β+4s+1

(i.e. the variance tends to 0 and the bias is infinitely smaller than the variance,
when n→∞),

nh2s+1/2
(
d2
n(h)− d2

) d→ N

(
0,

2‖p‖2
2

π(4s+ 1)

)
.

We will actually use the following type of result for the testing problem

nh2s+1/2
∗

(
d2
n − Ef [d

2
n]
) d→ N

(
0,

2‖p‖2
2

π(4s+ 1)

)
,

for the optimal bandwidth h∗ defined in Theorem 2.

2.2 Supersmooth densities and polynomial noise

In the case of supersmooth densities, always smoother than the polynomial noise,
we can always define the function F as the inverse Fourier transform of Φ/Φg. Next
Theorem gives us the right choice of the bandwidth so that d2

n be an asymptotically
normal and efficient estimator.

Theorem 3 The estimator d2
n defined in (11) with bandwidth h∗ such that

h∗ �
(

log n

4α

)−1/r

is asymptotically normally distributed and it attains the asymptotic efficiency Cramer-
Rao bound 4Ω2

g, (see Definition 3).

Proof. In this case, the bias changes,

B(dn) ≤ L exp

(
−2α

hr

)
.

The variance is strongly dependent on the noise distribution, so very little is changed.
In this case, the underlying density is always much more regular than the noise, so
the function F always exists in this setup. So, we can put together (14) and (17)

V (dn) =
4Ω2

g(f)

n
(1 + o(1)) +

2‖p‖2
2

n2h4s+1

(1 + o(1))

π(4s+ 1)
.

It is obvious that we need to choose h∗ = o(1)(log n/(4α))−1/r, in order to have the
squared bias infinitely smaller than the dominant term of the variance 1/n.
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2.3 Sobolev densities and exponential noise

In this setup the noise is much smoother so estimation is always difficult, i.e. at
nonparametric slower rates. We prove the lower bounds (9), under the following
additional assumption, which is not very restrictive.
Assumption (E) The exponential noise distribution in (5) has a continuously dif-
ferentiable Fourier transform such that

|(Φg)′(u)| ≤ O(1)|u|A exp(−γ|u|s),

for large enough |u| and some fixed constant A ∈ R.

Theorem 4 The estimator d2
n of d2 defined in (11) with bandwidth h∗ satisfies the

upper bound (8) for the rate ϕn, where

h∗ =

(
log n

2γ
− 2β + 1

2γs
log

log n

2γ

)−1/s

, ϕn = L

(
log n

2γ

)− 2β
s

.

Moreover, under Assumption (E) this rate is minimax.

Proof of (8). In this case, the bias is the same as in Proposition 1, B(dn) ≤ Lh2β.
As for the variance, we can still write V (dn) = Ef [|S1|2] +Ef [|S2|2], but both terms
are different now, since they are highly dependent on the noise distribution. We still
have,

Ef [|S1|2] =
2 + o(1)

n(n− 1)

‖p‖2
2

h
‖Mn‖2

2,

see (15). Now,

‖Mn‖2
2 =

h

2π

∫
|h|≤1/h

e4γ|u|
s

du =
hs

4πγs
e

4γ
hs (1 + o(1)),

as h→ 0, and then

Ef [|S1|2] =
(2 + o(1))‖p‖2

2

4πγs

hs−1

n2
e

4γ
hs . (19)

The other term, can never be of parametric order anymore, the function F never
exists in this setup. Indeed, recall that

Ef [|S2|2] ≤ c1
n
Ef

[∣∣∣∣∫ eiuY1
ΦK(hu)

Φg(u)
Φ(u)du

∣∣∣∣2
]

(20)

≤ c1
n

(∫ ∣∣∣∣ΦK(hu)

Φg(u)
Φ(u)

∣∣∣∣ du)2

13



and this integral does not check the Lebesgue convergence theorem anymore. We
can compute the rate of divergence, giving a loss in the rate, via Cauchy-Schwarz(∫ ∣∣∣∣ΦK(hu)

Φg(u)
Φ(u)

∣∣∣∣ du)2

≤
∫
|Φ(u)|2|u|2βdu

∫
|u|≤1/h

|u|−2βe2γ|u|
s

du ≤ c2h
2β+s−1e

2γ
hs .

(21)
From (19), (20) and (21), we get

V (d2
n) ≤ C1

hs−1

n2
e

4γ
hs (1 + o(1)) + C2

h2β+s−1

n
e

2γ
hs , (22)

where c1, c2, C1, C2 > 0 are some constants.
As in Theorem 2 we actually select the bandwidth by minimizing an upper bound

of the error:

Ef [|d2
n − d2|] ≤

(
Ef [|d2

n − d2|2]
)1/2 ≤ (B2(dn) + Vf [dn]

)1/2
.

The optimality of this upper bound is proven by the corresponding lower bounds.
Now, we consider

h∗ = arg inf
h>0

(
L2h4β + c2

h2β+s−1

n
exp

(
2γ

hs

))
then h∗ is a solution of the equation

h2β+1
∗ =

c

n
exp

(
2γ

hs∗

)
(1 + o(1)). (23)

This proves that the bias is infinitely larger than the variance and gives announced
h∗ and rate of order of the bias ϕn. (If we suppose that the first term on the
right-hand side of (22) is dominant, we get a contradiction).

2.4 Supersmooth densities and exponential noise

In this setup unknown densities and noise densities are both exponentially smooth.
Note that minimax rates in the nonparametric ”regime” are faster than any loga-
rithm but slower than any polynomial of n.

Theorem 5 If r > s or, if r = s and α > γ, the estimator d2
n defined in (11) with

bandwidth h∗ such that

h∗ �
(

log n

4α

)−1/r

is asymptotically normally distributed and it attains the asymptotic efficiency Cramer-
Rao bound 4Ω2

g.
If r < s the same estimator d2

n of d2 with bandwidth h∗ satisfies the upper bounds
(8) for the rate ϕn, where

h∗ solution of hr−1−(r−1)+/2
∗ exp

(
2α

hr∗
+

2γ

hs∗

)
= cn(1 + o(1)), ϕn = L exp

(
−2α

hr∗

)
.

Moreover, unde Assumption (E) this rate is minimax.
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Proof. We skip the proof of asymptotic efficiency. If r < s, we know the bias is
B(d2

n) ≤ L exp (−2α/hr) and the variance writes also Vf [d
2
n] = Ef [|S1|2] +Ef [|S2|2].

Furthermore, Ef [|S1|2] is the same as in (19).
As in (20), we need to study∣∣∣∣∫

|u|≤1/h

eiuY1
Φ(u)

Φg(u)
du

∣∣∣∣2 .
If r > s or, if r = s and α > γ, this integral is bounded by a constant depending
only on α, r, L and the noise density g. So, the variance

Vf [T
∗2
n ] = Ef [|S2|2](1 + o(1)) =

4Ω2
g(f)

n
(1 + o(1)),

as soon as hs−1n−1 exp(4γ/hs) = o(1). For the bandwidth we chose in the theorem,
this holds and proves this case.

If r < s,∣∣∣∣∫
|u|≤1/h

eiuY1
Φ(u)

Φg(u)
du

∣∣∣∣2 ≤
∫
e2α|u|

r |Φ(u)|2du
∫
|u|≤1/h

e−2α|u|re2γ|u|
s

du

≤ c1h
s−1 exp

(
2γ

hs
− 2α

hr

)
.

Thus,

Vf [d
2
n] ≤ c1

hs−1

n
exp

(
2γ

hs
− 2α

hr

)
+ c2

hs−1

n2
exp

(
4γ

hs

)
,

where c1, c2, . . . are some positive constants. As in Theorems 2 and 4 we find the
optimal bandwidth by minimizing an upper bound of the error

h∗ = arg inf
h>0

(
L2 exp

(
−4α

hr

)
+ c1

hs−1

n
exp

(
2γ

hs
− 2α

hr

)
+ c2

hs−1

n2
exp

(
4γ

hs

))
.

When we minimize the sum of the bias and of the first term in the variance, we find
that h∗ is solution of the equation

hr−1
∗ exp

(
2α

hr∗
+

2γ

hs∗

)
= cn(1 + o(1)).

It implies that the first term in the variance is dominant over the second, if r < 1,
meaning, moreover that

L2 exp

(
−4α

hr∗

)
= hr−s∗ c2

hs−1
∗
n

exp

(
2γ

hs∗
− 2α

hr∗

)
i.e. the bias is infinitely larger than the variance for r < s for the optimal h∗.
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If we minimize the sum of the bias and the second term in the variance, we find
that optimal bandwidth h∗ verifies

h(r−1)/2
∗ exp

(
2α

hr∗
+

2γ

hs∗

)
= cn(1 + o(1)).

The second term of the variance is dominant if r ≥ 1 and in this case also the bias
is dominant over the variance for r < s and the optimal h∗, respectively, the bias is
of the same order as the dominant term in the variance, if r = s and α < γ. This
finishes the proof of the Theorem.
Remark 3: More upper bounds Let us add upper bounds of the estimation risk
in cases not included in the Theorem. We put them aside since we do not provide
corresponding lower bounds in these cases.

In the case r = s and α < γ, the same choice of the bandwidth holds as in the
case r < s of the preceding Theorem. The bias is in this case of the same order as
the dominant term in the variance (not larger than the variance).

If r = s and α = γ,

Vf [d
2
n] ≤

c1
nh

+ c2
hs−1

n2
exp

(
4γ

hs

)
.

In this case, the first term in the upper bound of the variance is always dominating
over the second and when we minimize the sum of this term and of the bias we get
an optimal h∗ solution of

hr−1
∗ exp

(
4α

hr∗

)
= cn(1 + o(1)),

giving a fast rate of convergence of the order of the variance:

ϕ2
n = c3

(log n)r

n
.

3 Goodness-of-fit tests

Let us construct a test statistic from noisy data. It is natural to suggest as a test
statistic T ∗n , the square root of the optimal estimator of the quadratic functional
‖f − f0‖2

2:

T ∗2n =
1

n(n− 1)

∑
k 6=j

〈Kn,h(· − Yk)− f0, Kn,h(· − Yj)− f0〉,

where h > 0, h→ 0 and Kn,h = 1/hKn(·/h), for the same Kn defined in (10).
Define the test procedure

∆∗
n =

{
1 T ∗2n > C∗t2n
0 T ∗2n ≤ C∗t2n

(24)

for a constant C∗ > 0 and some threshold tn > 0 depending on the setup.
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Density \ Noise Polynomial: |u|−s Exponential: exp(−γ|u|s)

f ∈ W (β, L)
β > 1/2

β < s+ 1/4 : O(1)n−
4β

4β+4s+1

β ≥ s+ 1/4 : 2Ωgn
− 1

2

O(1) (log n/(2γ))−
2β
s

f ∈ S(α, r, L) 2Ωgn
− 1

2

r < s : O(1) exp (−2α/hr∗)
(r > s)

or 2Ωgn
− 1

2

(r = s, α > γ)

where h∗ is solution of h
r−1−(r−1)+/2
∗ exp

(
2α
hr
∗

+ 2γ
hs
∗

)
= n(1 + o(1)).

Table 1: Estimation rates of d2 from noisy data

3.1 Sobolev densities and polynomial noise

Though two rates were attainable in the same setup for estimating d2, only one
minimax rate of testing is possible. This phenomenon is similar to the case of
testing with direct observations.

Theorem 6 The test procedure ∆∗
n defined in (24) for the threshold tn attains the

rate ψn and, under Assumption (P), ψn is a minimax rate of testing over the class
W (β, L), where

h = h∗ = n−
2

4β+4s+1 , tn = ψn = n−
2β

4β+4s+1 .

Proof of upper bounds (6). Let us bound from above successively the first and
second type error. Note that, for a fixed density f0 ∈ W (β, L):

Ef0 [T
∗2
n ] = ‖Kh ? f0 − f0‖2

2 = Lh2βo(1),

similarly to the proof of Proposition 1. In order to compute the variance let us write
as follows

T ∗2n − Ef0 [T
∗2
n ] =

1

n(n− 1)

∑
k 6=j

〈Kn,h(· − Yk)− f0, Kn,h(· − Yj)− f0〉 − ‖Kh ? f0 − f0‖2
2

=
1

n(n− 1)

∑
k 6=j

〈Kn,h(· − Yk)−Kh ? f0, Kn,h(· − Yj)−Kh ? f0〉

+
2

n

n∑
k=1

〈Kn,h(· − Yk)−Kh ? f0, Kh ? f0 − f0〉.
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Note that, for all k = 1, . . . , n,

〈Kn,h(· − Yk)−Kh ? f0, Kh ? f0 − f0〉

=
1

2π

∫ (
ΦKn(hu)eiuYk − ΦK(hu)Φ0(u)

) (
ΦK(hu)− 1

)
Φ0(u)du

=
1

2π

∫
ΦK(hu)

(
ΦK(hu)− 1

) (
eiuYk/Φg(hu)− Φ0(u)

)
Φ0(u)du = 0,

due to the support of ΦK . Finally,

Vf0 [T
∗2
n ] = Ef0 [|S1|2] =

S‖p0‖2
2

n2h4s+1
(1 + o(1)),

where S = 2/(π(4s+ 1)). So the first type error can be written as follows

Pf0 [T
∗2
n ≥ C∗t2n] = Pf0 [T

∗2
n − Ef0 [T

∗2
n ] ≥ C∗t2n − c1h

2β]

= O(1)
n−2h−(4s+1)

(C∗t2n − c1h2β)2
≤ α

2

since, for h = h∗
1

nh2s+1/2
≤ O(1) max{t2n, h2β}. (25)

For the second type error, consider a density f in H1(C, ψn). Then, Ef [T
∗2
n ] =

‖Kh ? f − f0‖2
2. The bias can be bounded from above as follows

B[T ∗2n ] = |‖Kh ? f − f0‖2
2 − ‖f − f0‖2

2|
= |‖Kh ? f‖2

2 − ‖f‖2
2 − 2〈Kh ? f − f, f0〉|

≤ 1

2π

∫
|u|>1/h

|Φ(u)|2du+
2

2π

∫
|u|>1/h

|Φ(u)| · |Φ0(u)|du

≤ Lh2β(1 + o(1)),

since
∫
|u|>1/h

|u|2β|Φ0(u)|2du = o(1), for the fixed density f0. In order to evaluate

the variance, let us decompose as follows

T ∗2n − Ef [T
∗2
n ] =

1

n(n− 1)

∑
k 6=j

〈Kn,h(· − Yk)− f0, Kn,h(· − Yj)− f0〉 − ‖Kh ? f − f0‖2
2

=
1

n(n− 1)

∑
k 6=j

〈Kn,h(· − Yk)−Kh ? f,Kn,h(· − Yj)−Kh ? f〉

+
2

n

n∑
k=1

〈Kn,h(· − Yk)−Kh ? f, f − f0〉

= S1(f) + S2(f − f0), say.

18



As in Proposition 1, the last two terms are uncorrelated, so Vf [T
∗2
n ] = Ef [|S1(f)|2]+

Ef [|S2(f − f0)|2]. Similar computation lead to

Vf [T
∗2
n ] ≤ C1

n2h4s+1
+

(4 + o(1))Ω2
g(f − f0)

n
I(β > s) +

C3

nh2(s−β)
I(β ≤ s)

≤ C1

n2h4s+1
+
C2‖f − f0‖2

2

n
I(β > s) =Def v2

n.

Indeed, let us see that whenever β > s, we find M > 0 large enough such that

Ω2
g(f − f0) ≤

∫
(F (y)− F0(y))

2p(y)dy ≤ ‖F − f0‖2
∞ ≤ 1

4π2

∫ ∣∣∣∣Φ(u)− Φ0(u)

Φg(u)

∣∣∣∣2 du
≤

∫
|u|≤M

c1M
2s|Φ(u)− Φ0(u)|2du+

∫
|u|>M

c2|u|2s|Φ(u)− Φ0(u)|2du

≤ c3‖f − f0‖2
2 +

c2
M2(β−s)

∫
|u|>M

|u|2β|Φ(u)|2du ≤ C‖f − f0‖2
2, (26)

where, C is a constant depending only on β, L and of the fixed noise probability
density g. We also use the fact that for h = h∗,

1

nh2(s−β)
/

(
1

n2h4s+1

)
= n−

1
4β+4s+1 = o(1).

So, the second type error can be bounded as follows

Pf [T
∗2
n < C∗t2n] = Pf [T

∗2
n − Ef [T

∗
n ] < C∗t2n − Ef [T

∗
n ] + ‖f − f0‖2

2 − ‖f − f0‖2
2]

≤ Pf [T
∗2
n − Ef [T

∗
n ] < −‖f − f0‖2

2 + C∗t2n +B[T ∗2n ]]

≤ Pf

[
T ∗2n − Ef [T

∗
n ]√

Vf [T ∗2n ]
≤ −‖f − f0‖2

2 + C∗t2n +B[T ∗2n ]

vn

]
, (27)

for n large enough. From Butucea [5] we deduce easily the asymptotic normality of
center and reduced T ∗2n . The proof is based on a result by Hall [17] for U-statistics
of order 2 adapted for the case of noisy observations.

So the last probability in (27) is smaller than α/2 + o(1) if

−‖f − f0‖2
2 + C∗t2n +B[T ∗2n ](

C1

n2h4s+1 +
C2‖f−f0‖22

n
I(β ≥ s)

)1/2
≤ −z1−α/2, (28)

where zp denotes the p-quantile of the standard gaussian law N(0, 1). So, either
β ≤ s, then

−‖f − f0‖2
2 + C∗t2n +B[T ∗2n ](

C1

n2h4s+1 +
C2‖f−f0‖22

n
I(β > s)

)1/2
≤ −C∗ψ2

n + C∗t2n +B[T ∗2n ]

n−1h−(2s+1/2)
,
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which is smaller than −z1−α/2 for ψn = tn verifying (25). Or, β > s, then we can
solve

−‖f − f0‖2
2 + C∗t2n +B[T ∗2n ]

C4‖f − f0‖2/
√
n

≤ −z1−α/2

and (use also (25)) find

‖f − f0‖2 ≥
C4z1−α/2

2
√
n

+
1

2

√
C2

4z
2
1−α/2

n
+ 4(C∗t2n +B[T ∗2n ])

≥ max

{
C5√
n
,C6

(
C7

n2h4s+1
+ Lh2β

)1/2
}
≥ C1/2ψn,

for C∗ large enough, since h = h∗ minimizes the risk C7n
−2h−(4s+1) + Lh2β. The

upper bounds in (6) are proven. For the lower bounds in (7) see Section 3.

3.2 Supersmooth densities and polynomial noise

Very surprisingly, in this setup, we can estimate d2 at parametric rate, moreover we
can also provide minimax testing at parametric n−1/2 rate.

Theorem 7 The test procedure ∆∗
n defined in (24) for the threshold tn attains the

rate ψn and ψn is a minimax rate of testing over the class S(α, r, L), where

h = h∗ �
(

log n

4α

)−1/r

, tn = ψn = n−
1
2 .

Proof. We follow the lines of proof in Theorem 6, using computation from the proof
of Theorem 3 in this setup. For the first type error see that

Ef0 [T
∗2
n ] = o(1)Le−2α/hr

and Vf0 [T
∗2
n ] =

S‖p0‖2
2

n2h4s+1
(1 + o(1)),

where p0 = f0 ∗ g. Using Markov’s inequality

Pf0 [T
∗2
n ≥ C∗t2n] ≤

Cn−2h−(4s+1)

(C∗t2n − o(1) exp(−2α/hr))2
= o(1),

since max{n−2h−(4s+1), exp(−2α/hr)} = o(t2n).
For an arbitrary density f ∈ H1(C, ψn),

B[T ∗2n ] = |‖Kh ? f − f0‖2
2 − ‖f − f0‖2

2| ≤ L exp(−2α/hr)(1 + o(1))

and Vf [T
∗2
n ] ≤ C1‖f − f0‖2

2/n =Def vn. Indeed, similarly to the proof in (26), we
have for some M > 0 large enough

Ω2
g(f − f0) ≤ c1‖f − f0‖2

2 + c2e
−2αMr

∫
|u|>M

e2α|u|
r |Φ(u)|2du ≤ C1‖f − f0‖2

2,
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where C1 > 0 depends only on α, r, L and the noise fixed probability density g.
Using the asymptotic normality of this U-statistic of order 2, we get

Pf [T
∗2
n < C∗t2n] ≤ Pf

[
T ∗2n − Ef [T

∗2
n ]√

Vf [T ∗2n ]
≤ −‖f − f0‖2

2 + C∗t2n +B[T ∗2n ]

C
1/2
1 ‖f − f0‖2/

√
n

]
≤ α

2
+ o(1),

if
−C−1/2

1 ‖f − f0‖2

√
n+ C

−1/2
1

√
n(C∗t2n +B[T ∗2n ]) ≤ −z1−α/2.

We actually have

−C−1/2
1 ‖f − f0‖2

√
n+ C

−1/2
1

√
n(C∗t2n +B[T ∗2n ]) ≤ −(C/C1)

1/2 + o(1)

which is less than the needed quantile for C > C∗ large enough.

3.3 Sobolev densities and exponential noise

Theorem 8 The test procedure ∆∗
n defined in (24), for the threshold tn and for the

constant C∗ = 1, attains the rate ψn and, under Assumption (E), ψn is an exact
minimax rate of testing over the class W (β, L), where

h = h∗ =

(
log n

2γ
− 2β + 1

2γs
log

log n

2γ

)−1/s

, tn = ψn =
√
L

(
log n

2γ

)−β/s
.

Proof. Again, under the null hypothesis and h = h∗

Ef0 [T
∗2
n ] = Lh2βo(1), Vf0 [T

∗2
n ] = Ef0 [|S1|2] ≤ c1

hs−1

n2
exp

(
4γ

hs

)
.

The first type error can be bounded then:

Pf0 [T
∗2
n ≥ C∗t2n] ≤

c1h
s−1n−2 exp(4γ/hs)

(C∗t2n − Lh2β)2
≤ c2h

s+1
∗ = o(1),

where we used the facts that C∗ = 1, that t2n ≤ Lh2β and that h = h∗ is solution of
(23), i.e. n−2 exp(4γ/hs) = c−2h−4β−2. Under the alternative, if f ∈ H1(C, ψn):

Bf [T
∗2
n ] ≤ Lh2β(1 + o(1)), Vf [T

∗2
n ] ≤ c3

h2β+s−1

n
exp

(
2γ

hs

)
= c4h

4β+s,

where we used again (23). Then for C = C∗(1 + δ) > C∗, δ > 0, we have

Pf [T
∗
n < C∗t2n] ≤ Pf

[
Ef [T

∗2
n ]− T ∗2n√
Vf [T ∗2n ]

≥ −C∗t2n −Bf [T
∗2
n ] + ‖f − f0‖2

2
√
c4h

2β+s/2
∗

]

≤ Pf

[
Ef [T

∗2
n ]− T ∗2n√
Vf [T ∗2n ]

≥ C∗δψ2
n − Lh2β

∗ (1 + o(1))
√
c4h

2β+s/2
∗

]
≤ c5h

s
∗ = o(1),

for c5 > 0 depending on δ and where we used Markov’s inequality.
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3.4 Supersmooth densities and exponential noise

Unknown densities and noise densities are both supersmooth. Nevertheless, there is
an essential difference with the case of Sobolev densities and polynomial noise from
Subsection 3.1. Nonparametric minimax rates of testing are faster when r > s than
in the case r < s.

3.4.1 Case r < s

Theorem 9 The test procedure ∆∗
n defined in (24), for the threshold tn and for the

constant C∗ = 1, attains the rate ψn and, under Assumption (E), ψn is an exact
minimax rate of testing over the class S(α, r, L), where

h = h∗ = is a solution of hr−1−(r−1)+/2
∗ exp

(
2α

hr∗
+

2γ

hs∗

)
= n(1 + o(1)), (29)

tn = ψn =
√
L exp

(
− α

hr∗

)
.

Proof. Under the null hypothesis and for h = h∗

Ef0 [T
∗2
n ] = o(1)Le−2α/hr

, Vf0 [T
∗2
n ] ≤ c1

hs−1

n2
exp

(
4γ

hs

)
. (30)

Then the first type error is bounded by

Pf0 [T
∗2
n ≥ C∗t2n] ≤

c1h
s−1n−2 exp(4γ/hs)

(C∗t2n − L exp(−2α/hr))2
≤ c3h

2−2r−(r−1)++s−1 = o(1),

where we used the facts that h = h∗ is defined by (29) and that r < s. Under the
alternative, use Theorem 7

Bf [T
∗2
n ] ≤ Le−2α/hr

(1+o(1)), Vf [T
∗2
n ] ≤ c1

hs−1

n
exp

(
2γ

hs
− 2α

hr

)
+c2

hs−1

n2
exp

(
4γ

hs

)
.

For C = C∗(1 + δ) > C∗, δ > 0, use Theorem 5 saying that, for h = h∗ defined in
(29), ψ2

n = t2n are of the same order as exp(−4α/hr) which is infinitely larger than√
Vf [T ∗2n ] to get

Pf [T
∗2
n < C∗t2n] ≤ Pf

[
Ef [T

∗2
n ]− T ∗2n√
Vf [T ∗2n ]

≥ −C∗t2n −Bf [T
∗2
n ] + ‖f − f0‖2

2√
Vf [T ∗2n ]

]

≤ Pf

[
Ef [T

∗2
n ]− T ∗2n√
Vf [T ∗2n ]

≥ C∗δψ2
n − L exp(−4α/hr)(1 + o(1))√

Vf [T ∗2n ]

]

≤ Vf [T
∗2
n ]

c4 exp(−4α/hr)
= o(1),

by Markov’s inequality.
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3.4.2 Case r > s

Note that no lower bounds are provided for this setup. Nevertheless, we expect the
rates to be optimal in the minimax sense.

Theorem 10 The test procedure ∆∗
n defined in (24) for the threshold tn is a test

procedure attaining the rate ψn over the class S(α, r, L), (see (6)), where

h = h∗ = is a solution of h(r−1)/2
∗ exp

(
2α

hr∗
+

2γ

hs∗

)
= n(1 + o(1)), (31)

tn = ψn =
h

(s−1)/2
∗

n
exp

(
2γ

hs∗

)
.

Proof. Under the null hypothesis, (30) still holds. For h = h∗ defined in (31), tn is
of the order of h(s−1)/2n−1 exp(2γ/hs) and the bias exp(−2α/hr) = c2h

r−stn = o(tn).
Thus, the first type error is smaller than α/2 for some C∗ large enough.

Under the alternative,

Bf [T
∗2
n ] ≤ Le−2α/hr

(1 + o(1)), Vf [T
∗2
n ] ≤ 4Ωg(f − f0)

n
+ c2

hs−1

n2
exp

(
4γ

hs

)
and we can prove as in Theorems 6 and 7 that 4Ωg(f − f0) ≤ C1‖f − f0‖2

2. Then
the second type error is bounded by α/2 + o(1) as soon as

−‖f − f0‖2
2 + C∗t2n + L exp(−2α/hr)

(C1‖f − f0‖2
2/n+ c2hs−1n−2 exp(4γ/hs))1/2

≤ −z1−α/2.

This is equivalent to

‖f − f0‖2 ≥ max

{
1√
n
,
h(s−1)/2

n
e2γ/h

s

+ Le−2α/hr

}
,

since h = h∗ defined by (31) minimizes the sum on the right-hand side of the previous
inequality. As a result

ψn = c3
h(s−1)/2

n
e2γ/h

s

= h(s−r)/2e−2α/hr

which is infinitely smaller than the bias. Note that, the rate is indeed slower than
any polynomial n−a, a > 0 but faster than any logarithmic rate.

4 Lower bounds

We show in a first part that proofs for minimax lower bounds for the estimation
problem of d2 and for the testing problem in L2 come down to the same choice of
hypotheses and checking similar conditions.
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Density \ Noise Polynomial: |u|−s Exponential: exp(−γ|u|s)

f ∈ W (β, L), β > 1/2 O(1)n−
2β

4β+4s+1

√
L (log n/(2γ))−

β
s

f ∈ S(α, r, L) O(1)n−
1
2

r < s :
√
L exp (−α/hr∗)

r > s : O(1)h
(s−1)/2
∗
n

exp
(

2γ
hs
∗

)
where h∗ is defined in (29) or (31) if r < s or r > s, respectively.

Table 2: Testing rates in L2-norm from noisy data

Let us define

Rest := inf
d̂2n

sup
f∈W (β,L)

ϕ−1
n Ef [|d̂2

n − d2|]

Rtest := inf
∆n

sup
f∈W (β,L)

(
PH0(∆n = 1) + PH1(C,ψn)(∆n = 0)

)
.

Lemma 1 Let f0 and f1 be two probability densities in the class W (β, L), depending
on n, and denote by P Y

0 , E0 and P Y
1 , E1 the probability measures of our data and

the expected value when the true underlying parameters are f0 and f1, respectively.
If

a) estimation problem densities are such that |‖f1‖2
2 − ‖f0‖2

2| ≥ 2ϕn, for some
ϕn > 0,

a′) test problem densities are such that ‖f1 − f0‖2 ≥ Cψn, for some ψn > 0,

b) P1 � P0 and there exists 0 < γ < 1 such that

χ2(P0, P1) :=Def

∫ (
dP1

dP0

− 1

)2

dP0 ≤ γ2

then

Rest ≥ (1− γ)(1−√
γ) (32)

Rtest ≥ (1− γ)(1−√
γ). (33)

Proof. For the estimation problem we reduce the risk to two hypothesis:

Rest ≥ inf
d̂2n

max
i=0,1

ϕ−1
n Efi

[|d̂2
n − d2

i |],

and then use directly Lemma 4 from Butucea and Tsybakov [6], adapted from
Tsybakov [37].

24



For the testing problem, we choose two hypotheses f0 the density under H0 and
another density f1 under H1 (which implies that ‖f1−f0‖2 ≥ Cψn, for some ψn > 0).
Then the risk for the test problem becomes

Rtest ≥ inf
∆n

(
P0(∆n = 1) + (1−√

γ)P0

(
∆n = 0,

dP Y
1

dP Y
0

≥ 1−√
γ

))
≥ (1−√

γ)P0

(
dP Y

1

dP Y
0

≥ 1−√
γ

)
≥ (1−√

γ)

(
1− 1

γ
E0

[(
dP Y

1

dP Y
0

− 1

)2
])

≥ (1− γ)(1−√
γ),

if Assumption b) holds.
We shall use in the proofs the following construction and Lemma 2. Let 0 < δ < 1

be small through the remaining proofs of lower bounds. Let f0 be a density function
in the Sobolev class W (β, a(δ)L), respectively, S(α, r, a(δ)L), where 0 < a(δ) < 1 is
a constant depending on δ defined for each setup, such that

f0(x) ≥
c0

1 + |x|2
, ∀x ∈ R. (34)

Moreover we want the Fourier transform Φ0 to have compact support included in
(−2δ, 2δ).

Let us note immediately that we have a similar property for fY0 = f0 ∗g. Indeed,

let A > 1 large enough be such that
∫ A
−A g(x)dx > 1/2, then

fY0 (x) ≥
∫ A

−A
f0(x− y)g(y)dy ≥ cY0 min

{
1

A2
,

1

|x|2

}
,∀x ∈ R, (35)

where cY0 > 0.

Lemma 2 (Lemma 1 in Butucea and Tsybakov [6]) For any δ > 0 and any
D > 4δ there exists a function ΦG : R→ [0, 1] such that

(i) ΦG is 3 times continuously differentiable on R and its first 3 derivatives are
uniformly bounded on R,

(ii) ΦG is compactly supported on (δ,D − δ) and

I(2δ,D−2δ)(u) ≤ ΦG(u) ≤ I(δ,D−δ)(u),

for all u ∈ R, where IA(u) denotes the indicator function of the interval A.

Proof of the lower bounds in Theorems 4 and 8. Here we check the assump-
tions in Lemma 1 and then (32) and (33) imply the needed results. Let us consider
the density function f0 in the class W (β, a(δ)L) for some small 0 < δ < 1 such that
(34) holds.
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Let ΦG be defined by Lemma 2 with D = 1 and the perturbation function H be
defined via its Fourier transform

ΦH(u, h) =
√
πLh−β

ΦG(|u| − 1/h)

1 + |u|2β
,

where β > 1/2 and h→ 0 as n→∞.
Then the second hypothesis function f1 is defined as follows

f1(x) = f0(x) +H(x, h), for h =

(
log n

2γ
− B

2γs
log

log n

2γ

)−1/s

,

for some constant B ∈ R fixed later on. Note that the characteristic functions verify
Φ1(u) = Φ0(u) + ΦH(u, h).

Let us see first that f1 is a probability density function. Indeed, since ΦH(·, h)
is 3 times continuously differentiable, then via integration by parts we get

|H(x, h)| =
∣∣∣∣− 1

2πix3

∫
e−iux(ΦH)′′′(u)du

∣∣∣∣ ≤ CH
1 + |x|3

, (36)

for all x ∈ R, for some constant CH > 0. Note also that

‖H(·, h)‖∞ ≤ 1

2π

∫
|ΦH(u, h)|du ≤

√
L

π

h−β

2

∫
δ≤|u|−1/h≤1−δ

du

1 + |u|2β

≤
√
L

π
h−β

∫ 1/h+1

1/h

du

1 + u2β
≤ chβ, (37)

which is o(1) for β > 1/2 and h→ 0. Since f0 is such that (34) holds, (36) and (37)
show that f1 is a non negative function.

Moreover,
∫
f1(x)dx = Φ1(0) = 1 and f1 is a probability density function.

Let us check now that it belongs to the class W (β, L). Indeed,

1

2π

∫
|ΦH(u, h)|2|u|2βdu ≤ L

2
h−2β

∫
δ≤|u|−1/h≤1−δ

|u|2βdu
(1 + |u|2β)2

≤ Lh−2β

∫ 1/h+1−δ

1/h+δ

du

u2β

≤ L

2β − 1
h−2β

[(
1

h
+ δ

)−2β+1

−
(

1

h
+ 1− δ

)−2β+1
]

≤ L(1− 2δ)(1 + o(1)) ≤ L(1− δ),

for n large enough. So, H belongs to W (β, L(1− δ)), implying that∥∥∥∥ 1

2π

∫
|Φ1|2| · |2β

∥∥∥∥
2

≤
∥∥∥∥ 1

2π

∫
|Φ0|2| · |2β

∥∥∥∥
2

+

∥∥∥∥ 1

2π

∫
|ΦH(·, h)|2| · |2β

∥∥∥∥
2

≤
√
L,
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for a(δ) = (1−
√

1− δ)2. Then f1 ∈ W (β, L).

Let us check a), respectively a’) in Lemma 1. Note that Φ0 and ΦH(·, h) have
disjoint supports for all h > 0 and then by Plancherel formula∣∣‖f1‖2

2 − ‖f0‖2
2

∣∣ = ‖f1 − f0‖2
2 =

1

2π

∫
|ΦH(u, h)|2du.

Thus, it is enough to deal with

‖f1 − f0‖2
2 =

1

2π
πLh−2β

∫
|ΦG(|u| − 1/h)|2

(1 + |u|2β)2
du

≥ L

2
h−2β

∫
1/h+2δ≤|u|≤1/h+1−2δ

du

(1 + |u|2β)2

≥ Lh−2β

∫ 1/h+1−2δ

1/h+2δ

du

(1 + u2β)2

≥ Lh−2β (1− 4δ)(1 + o(1))

(1 + (1/h)2β)2
≥ Lh2β,

for small 0 < δ < 1 and large enough n. Note that this construction provides the
right constant for testing, but not for the estimation of d2.

Let us check b) of Lemma 1. Note first that χ2(P0, P1) ≤ Cnχ2(fY0 , f
Y
1 ), for

some constant C > 0, if nχ2(fY0 , f
Y
1 ) is small. We use again the property (35) of

fY0 :

nχ2(fY0 , f
Y
1 ) = n

∫
(fY1 − fY0 )2(y)

fY0 (y)
dy

≤ n

cY0

(
A2

∫
|y|≤A

(H(·, h) ? g)2(y)dy +

∫
|y|>A

y2(H(·, h) ? g)2(y)dy

)
≤ n

cY0
A2‖H(·, h) ? g‖2

2 +
n

cY0

∫ ∣∣(ΦH(u, h)Φg(u))′
∣∣2 du. (38)

On the one hand, let

T1 := n‖H(·, h) ? g‖2
2 =

n

2π

∫
|ΦH(u, h)Φg(u)|2du

≤ O(1)nh−2β

∫
1/h+δ≤|u|≤1/h+1−δ

exp(−2γ|u|s)
(1 + |u|2β)2

du

≤ O(1)nh−2β

∫ ∞

1/h

exp(−2γus)

(1 + u2β)2
du

≤ O(1)nh2β+s−1 exp

(
−2γ

hs

)
, (39)

27



for h > 0 small enough. On the other hand, under the additional Assumption (E)

T2 := n

∫ ∣∣(ΦH(u, h)Φg(u))′
∣∣2 du

≤ O(1)nh−2β

∫ ∞

1/h

|u|2Ae−2γ|u|sdu

≤ O(1)nh−2β−2A+s−1 exp

(
−2γ

hs

)
, (40)

for some fixed A ∈ R. If we choose some B < min{2β + s− 1,−2β − 2A + s− 1},
we conclude from (38), (39) and (40) that

nχ2(fY0 , f
Y
1 ) ≤ o(1)nhB exp

(
−2γ

hs

)
= o(1),

by the choice of h.
Proof of the lower bounds in Theorems 5 and 9. The proof in this case
is very similar to the previous one and it can be easily adapted from Butucea and
Tsybakov [6] (L2 case). Let us choose f0 such that (34) holds and such that the
support of Φ0 be included in (−2δ, 2δ). For ΦG defined in Lemma 2, let H be defined
via its Fourier transform

ΦH(u, h) =
√

2παrL(d− 1)h(1−r)/2e(d−1)α/hr

exp(−αd|u|r)ΦG(|u|r − 1/hr),

where d = δ−1/2 and D = D(δ) →∞ as δ → 0, such that Dδ → 0. We know then,
that f1 = f0 +H(·, h) belongs to S(α, r, L) as soon as a(δ) < (1− e−α(d−1)δ)2.

We can actually consider h solution of the equation

n exp

(
−2α

hr
− 2γ

hs

)
= exp(−(log log n)2).

Then,

∣∣‖f1‖2
2 − ‖f0‖2

2

∣∣ = ‖f1−f0‖2
2 ≥ L exp

(
−2α

hr

)
(1−

√
δ)[e−4α

√
δ−e−2α(D−2δ)/

√
δ](1+o(1)),

as n→∞. It is easy to prove that L exp(−2α/hr) = L exp(−2α/hr∗)(1+o(1)), where
h∗ is defined in (29). This means we checked a) and a’) in Lemma 1. Following
the same ideas as in the previous proof, under the additional Assumption (E), there
exists some B ∈ R fixed such that b) of Lemma 1:

nχ2(fY0 , f
Y
1 ) ≤ o(1)nhB exp

(
−2α

hr
− 2γ

hs

)
≤ o(1)

by the choice of h. Again, this proof gives exact minimax testing rates.
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Proof of the lower bounds in Theorems 2 and 6. This proof is based on
a large family of hypotheses. A similar reasoning proves that the same construc-
tion is valid for proving lower bounds for both quadratic functional estimation and
nonparametric testing in L2.

Note that this setup includes Theorem 2 for β < s + 1/4. This is not a contra-
diction, since the lower bounds here are much slower than the parametric n−1/2 rate
that the estimator attained, see Theorem 1.

Let θj, j = 1, . . . ,M , be independent Bernoulli random variables and let Π be
the probability measure associated to them. For h > 0 small as n → ∞ and for a
function H to be defined later, let

fθ(x) = f0(x) +
M∑
j=1

θjh
β+s+1Hh(x− xj), (41)

where Hh(·) = 1/hH(·/h), xj = jh and M is an integer such that M/h = 1− o(1),
as n→∞ and h small. Note that observations Yi, i = 1, . . . , n, when the underlying
density is fθ, have density

fYθ (x) = fY0 (x) +
M∑
j=1

θjh
β+s+1Gh(x− xj), (42)

where the function G is defined in Lemma 3 and H is such that

ΦG(u) = ΦH(u)Φg
(u
h

)
. (43)

Indeed,

(Hh(· − xj) ∗ g) (x) = Hh ∗ g(x− xj) = Gh(x− xj).

Using Lemmas 4 and 5, we see that the hypotheses fit into the model, i.e. fθ are
density functions for all θ, belonging to the Sobolev class W (β, L) and such that

Π
[
‖fθ − f0‖2

2 ≥ Cn−4β/(4β+4s+1)
]
→ 1,

as n→∞, for fixed C > 0.

Lemma 3 Let the function G : [−1, 0] → R be defined by

G(x) = exp

(
− 1

1− (4x+ 3)2

)
I(−1 ≤ x ≤ −1/2)−exp

(
− 1

1− (4x+ 1)2

)
I(−1/2 < x ≤ 0).

Then G is an infinitely differentiable function, such that
∫
G(x)dx = 0 and having

all polynomial moments finite. Its Fourier transform is such that

|ΦG(u)| ≤ CG exp(−a
√
|u|), as |u| → ∞,

for some positive constants CG, a > 0. Moreover ΦG is an infinitely differentiable,
bounded function.
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This construction is based on the function fa in Lepski and Levit [24], p. 133 and
the asymptotic behaviour of its Fourier transform follows from the reference therein.
All other statements have classical proofs for Fourier and inverse Fourier transforms
of functions in L1 and L2.

We stress the fact that in this setup, hypotheses functions fθ belong to H1(C, ψn)
with probability which tends to 1 when n→∞. In order to bound from below the
risk, very small modification is needed in the proof of Lemma 1 that we do not
discuss in detail here. The last thing to check is that the distance between resulting
models is finite:

∆2 := Ef0

[(∫ ∏n
i=1 f

Y
θ (Yi)π(dθ)−

∏n
i=1 f

Y
0 (Yi)∏n

i=1 f
Y
0 (Yi)

)2
]

= Ef0

(∫ n∏
i=1

fYθ
fY0

(Yi)π(dθ)

)2
− 1

= Ef0

(∫ n∏
i=1

(
1 +

M∑
j=1

θjh
β+s+1Gh(Yi − xj)

fY0 (Yi)

)
π(dθj)

)2
− 1.

Now, call Yi,j those observations Yi belonging to the support of Gh(· −xj) and since
those intervals are disjoint we write

∆2 = Ef0

(∫ n∏
i=1

M∏
j=1

(
1 + θjh

β+s+1Gh(Yi,j − xj)

fY0 (Yi,j)

)
π(dθj)

)2
− 1

=
M∏
j=1

Ef0

(∫ n∏
i=1

(
1 + θjh

β+s+1Gh(Yi,j − xj)

fY0 (Yi,j)

)
π(dθj)

)2
− 1

≤
M∏
j=1

{
1

2

(
1 + h2β+2s+2E

[(
Gh(Y1,j − xj)

fY0 (Y1,j)

)2
])n

+
1

2

(
1− h2β+2s+2E

[(
Gh(Y1,j − xj)

fY0 (Y1,j)

)2
])n}

− 1,

where we used the facts that (a+ b)2 ≤ 2a2 + 2b2 and that
∫
G = 0 giving

E

[
Gh(Y1,j − xj)

fY0 (Y1,j)

]
= 0.

Use Lemma 5 and expressions of M and h in n to get

∆2 ≤

1 + c3n
2

(
h2β+2s+2E

[(
Gh(Y1,j − xj)

fY0 (Y1,j)

)2
])2

M

− 1

≤ c4Mn2h4β+4s+2 ≤ c5.
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Lemma 4 For all θ ∈ {−1, 1}M and for h > 0 which tends to 0 as defined Theo-
rems 2 and 6, then

1. the functions fYθ given by (42), with G defined in Lemma 3 are probability
density functions, i.e. non-negative functions of integral equal to 1,

2. the functions fθ given by (41), with H defined by (43) and Lemma 3 are prob-
ability density functions, given Assumption (P) and that Φg(u) 6= 0 for all
u ∈ R.

Proof. 1. It is easy to see that
∫
fYθ (x)dx = 1, since

∫
G(x)dx = 0 and fY0 is

a probability density function, positive on R. We have to check that fYθ is non-
negative on [0, 1]. For all j = 1, . . . ,M and for x in the support of the function
Gh(· − xj) we have fYθ (x) = fY0 (x) + θjh

β+s+1Gh(x− xj). Then

fYθ (x) ≥ inf
0≤x≤1

fY0 (x)− hβ+s sup
x
|G((x− xj)/h)| ≥ cY − o(1) > 0,

for n large enough.
2. Let us note first that ΦH(0) = ΦG(0)/Φg(0) = 0, implying that

∫
H(x)dx = 0.

Moreover, ΦH is in L1 and L2, uniformly continuous function. Then
∫
fθ(x)dx = 1.

In order to study its positivity, we use two methods. First, for x small enough we
use

hβ+s+1|Hh(x)| ≤ hβ+s+1 1

2π

∫ ∣∣∣∣ΦG(hu)

Φg(u)

∣∣∣∣ du
≤ hβ+s+1 1

2π

(∫
|u|≤A

u−1
0 |ΦG(hu)|du+

∫
|u|>A

c3|u|s|ΦG(hu)|du
)

≤ c4h
β+s

∫
|v|≤Ah

|ΦG(v)|dv + c5h
β

∫
|v|>Ah

|v|s|ΦG(v)|du ≤ c6h
β,(44)

for A > max{A1, A2} large enough (see Assumption (P)). For x large, we need a
sharper bound that we get using derivability and boundedness properties of ΦG

hβ+s+1|Hh(x)| = hβ+s+1 1

2π

∣∣∣∣∫ e−ixu
ΦG(hu)

Φg(u)
du

∣∣∣∣
= hβ+s+1

∣∣∣∣[exp(−ixu)
−2πix

ΦG(hu)

Φg(u)

]∞
−∞

+
1

2πix

∫
e−ixu

∂

∂u

ΦG(hu)

Φg(u)
du

∣∣∣∣
≤ hβ+s+1

2π|x|

(∫
h

∣∣∣∣(ΦG)′(hu)

Φg(u)

∣∣∣∣ du+

∫ ∣∣∣∣ΦG(hu)(Φg(u))′

(Φg(u))2

∣∣∣∣ du) .
We split both integrals as above and obtain

h

∫ ∣∣∣∣(ΦG)′(hu)

Φg(u)

∣∣∣∣ du ≤ h

∫
|u|≤A

u−1
0 |(ΦG)′(hu)|du+ h

∫
|u|>A

c7|u|s|ΦG(hu)|du

≤ c8 + c9h
−s ≤ c10h

−s,
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respectively, under Assumption (P),∫ ∣∣∣∣ΦG(hu)(Φg(u))′

(Φg(u))2

∣∣∣∣ du ≤
∫
|u|≤A

c11|ΦG(hu)|du+

∫
|u|>A

c12|u|s−1|ΦG(hu)|du

≤ c13h
−1 + c14h

−s ≤ c15h
−s.

So, for x not equal to 0 we have hβ+s+1|Hh(x)| ≤ (2π|x|)−1hβ+1(c10 + c15).
This bound is not sufficient, so we repeat integration by parts and, under As-

sumption (P), we get

hβ+s+1|Hh(x)| ≤ c16
hβ+2

|x|2
. (45)

Let us go back to fθ. Whenever x is in [(j − 1)/h, j/h] for some j = 1, . . . ,M ,
we apply (44) on the interval and on small neighbouring intervals, respectively (45)
for x far enough from xj. Then

|fθ(x)| ≥ |f0(x)| −
∑

k∈{j,j±1}

hβ+s+1|Hh(x− xk)| −
M∑

k=1,|k−j|>1

hβ+s+1|Hh(x− xk)|

≥ cY0 − 3c6h
β −

M∑
k=1,|k−j|>1

c16h
β+2

|k − j|2h2

≥ cY0 − c6h
β − c17h

β

M∑
k=1

1

k2
> 0

for n large enough, since the last sum is finite. For x < 0 we use |x − xj| ≥ |x| for
all j = 1, . . . ,M and

|fθ(x)| ≥ |f0(x)| − c16h
β+2 M

|x|2
≥ |f0(x)| −

c18h
β+1

|x|2
> 0,

for x in a compact set. For large |x|, we apply (35) and integration by parts up to
3rd derivatives of ΦH using Assumption (P), then

|fθ(x)| ≥
c0

1 + |x|2
− c19
|x|3

> 0.

For x > 1 we use |x− xj| ≥ |x− 1| and a similar reasoning.

Lemma 5 1. The density functions fθ given by (41), with H defined by (43) and
Lemma 3 are in the Sobolev class for any n large enough;

2. The density functions fθ are such that

Π
(
‖fθ − f0‖2

2 ≥ Cn−
4β

4β+4s+1

)
→ 1, as n→∞.
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3. The function G defined in Lemma 4 is such that for all j = 1, . . . ,M

h2β+2s+2E

[(
Gh(Y1 − xj)

fY0 (Y1)

)2
]
≤ O(1)h2β+2s+1 = o(1), as n→∞.

Proof. 1. Let us see that

‖f (β)
θ − f

(β)
0 ‖2 =

M∑
j,k=1

θjθkh
2β+2s+2

∫
H

(β)
h (x− xj)H

(β)
h (x− xk)dx

=
1

2π

M∑
j=1

h2β+2s+2

∫
ΦH(hu)Φ

H
(hu)|u|2βdu

+
1

2π

M∑
j 6=k

θjθkh
2β+2s+2

∫
ΦH(hu)Φ

H
(hu)|u|2βeiu(xj−xk)du.(46)

We prove that the terms in the last sum are bounded by a constant. Indeed,

1

2π

M∑
j=1

h2β+2s+2

∫
ΦH(hu)Φ

H
(hu)|u|2βdu

≤ c1h
2β+2s+1

∫
|u|2β|ΦG(hu)|2

|Φg(u)|2
du

≤ c2h
2β+2s+1

∫
|u|≤A

|u|2β|ΦG(hu)|2du+ c3h
2β+2s+1

∫
|u|>A

|u|2β+2s|ΦG(hu)|2du

≤ c4

∫
|u|2β+2s|ΦG(u)|2du(1 + c5h

2s) ≤ C

where A > A1,2 in Assumption (P) and this is strictly smaller than L if we multiply
ΦG with a constant. Note that ΦG multiplied by any polynomial is still integrable,
which is equivalent to saying that G is an infinitely differentiable function. Moreover,
ΦG and therefore |ΦG|2 = ΦGΦG are infinitely differentiable functions.

In the second term of (46), we use derivability of order 2 of Φg and Assump-
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tion (P) as in the proof of Lemma 4, 2.,∣∣∣∣∣
M∑
j 6=k

θjθkh
2β+2s+2

∫
ΦH(hu)Φ

H
(hu)|u|2βeiu(xj−xk)du

∣∣∣∣∣
≤

M∑
j,k,j 6=k

h2β+2s+2

∣∣∣∣[ eiu(xj−xk)

i(xj − xk)
|ΦH(hu)|2|u|2β

]∞
−∞

+
1

i(xj − xk)

∫
eiu(xj−xk) ∂

∂u

|u|2β|ΦG(hu)|2

|Φg(u)|2
du

∣∣∣∣
≤

M∑
j,k,j 6=k

h2β+2s+2

|xj − xk|2

∫
∂2

∂u2

|u|2β|ΦG(hu)|2

|Φg(u)|2
du

≤ O(1)h
M∑

j,k,j 6=k

1

|j − k|2
= c6h · 2

M∑
k=1

M − k

k2
≤ C

and we conclude that fθ belongs to the class W (β, L).
2. Similarly to the above calculations, we write

‖fθ − f0‖2
2 =

1

2π

M∑
j=1

h2β+2s+2

∫
|ΦH(hu)|2du

+
1

2π

M∑
j,k,j 6=k

h2β+2s+2θjθk

∫
|ΦH(hu)|2eiu(xj−xk)du.

Note that EΠ[‖fθ − f0‖2
2] = (2π)−1

∑M
j=1 h

2β+2s+2
∫
|ΦH(hu)|2du.

Using the same splitting technique, (4) and Assumption (P)

1

2π

M∑
j=1

h2β+2s+2

∫
|ΦH(hu)|2du

≥ c1Mh2β+2s+2

(∫
|u|>A

|u|2s|ΦG(hu)|2du+

∫
|u|≤A

|ΦG(u)|2du
)

≥ c2Mh2β+1

(∫
|u|2s|ΦG(u)|2du+

∫
|ΦG(u)|2du

)
≥ cn−

4β
4β+4s+1 .

Now, by Chebychev inequality, for C = c(1− en) and for en = (log n)−1 = o(1), we
have

Π
(
‖fθ − f0‖2

2 ≥ Cψ2
n

)
≥ Π

(∣∣∣∣∣
M∑

j,k,j 6=k

θjθkh
2β+2s+2

∫
|ΦH(hu)|2eiu(xj−xk)du

∣∣∣∣∣ ≤ cenψ
2
n

)

≥ 1− 1

c2e2nψ
4
n

EΠ

(∣∣∣∣∣
M∑

j,k,j 6=k

θjθkh
2β+2s+2

∫
|ΦH(hu)|2eiu(xj−xk)du

∣∣∣∣∣
)2
 (47)
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At last, using again derivatives of order 2 and Assumption (P)

EΠ

(∣∣∣∣∣
M∑

j,k,j 6=k

θjθkh
2β+2s+2

∫
|ΦH(hu)|2eiu(xj−xk)du

∣∣∣∣∣
)2


≤
M∑

j,k,j 6=k

h4β+4s+4 c23
|xj − xk|4

(∫
∂2

∂u2

∣∣ΦH(hu)
∣∣2 du)2

≤
M∑

j,k,j 6=k

h4β+4s c23
|j − k|4

(∫
∂2

∂u2

∣∣ΦG(hu)
∣∣2

|Φg(u)|2
du

)2

≤ c4h
4β+2

M∑
k=1

M − k

k4
≤ c5h

4β+1.

This last term is an o(e2nψ
4
n) and together with (47) it finishes the proof.

3. Use positivity and continuity of fY0 to get inf−1≤x≤2 f
Y
0 (x) = cY1 > 0 and

obtain

h2β+2s+2E

[(
Gh(Y1 − xj)

fY0 (Y1)

)2
]

= h2β+2s+1

∫ 0

−1

G2(z)dz

fY0 (xj + hz)
dx

≤ (cY1 )−1h2β+2s+1

∫
G2(z)dz.

5 Appendix

Lemma 6 For all f ∈ W (β, L), β > 1/2, L > 0, respectively f ∈ S(α, r, L),
α, r, L > 0, there exists a constant M f > 0 depending only on the parameters of
the smoothness class such that ‖f‖2

2 ≤ M f . Moreover, if g is the density of either
polynomial or exponential noise, there exists a constant Mp > 0 depending only on
the parameters of the class and on s such that

‖p‖2
2 ≤Mp,

and p is at least (β + s− 1/2)-Lipschitz continuous.

Proof. It is easy to use |Φ| ≤ 1 and write, e.g. for f ∈ W (β, L) and some M > 0
large enough

‖f‖2
2 =

1

2π

∫
{|u|≤M}∪{|u|>M}

|Φ(u)|2du ≤ 2M

2π
+

1

2πM2β

∫
|u|>M

|Φ(u)|2|u|2βdu ≤M f ,

where M f = M/π + LM−2β. Similar reasoning works for all other setups. It is
proven in Butucea [5] that p is at least (β + s− 1/2)-Lipschitz.
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Lemma 7 If Φ, Φg are the characteristic functions of random variables X1, . . . , Xn

and of the noise, respectively, such that Φg(u) 6= 0, ∀u ∈ R, then Φ/Φg is a contin-
uous function. Moreover, Φ/Φg is in L1 and its L2 norm is uniformly bounded in
f , in the following setups:

1. if f is in W (β, L), see (2) and the noise is s-polynomial, as defined in (4), with
β ≥ s;

2. if f is in S(α, r, L), see (3) and the noise is s-polynomial, as defined in (4);

3. if f is in S(α, r, L), see (3) and the noise is exponential as defined in (5), with
r > s.

Proof. Since characteristic functions are uniformly continuous (see Lukacs [28])
and Φg is non nul, then Φ/Φg is continuous and integrable on any finite compact set
[−M,M ], M large. On the other hand, e.g. in the first setup:∫

|u|≥M

∣∣∣∣ Φ(u)

Φg(u)

∣∣∣∣ du ≤ c

∫
|u|>M

|u|s|Φ(u)|du

and this is finite as soon as f belongs to W (β, L) and β ≥ s.
Moreover, Φ/Φg is in L2 and its L2 norm is uniformly bounded:

‖Φ/Φg‖2
2 ≤ C1

∫
|u|≤M

|Φ(u)|2du+ C2

∫
|u|>M

|u|2s|Φ(u)|2du

≤ C1(β, L, g) + C2M
2(s−β)

∫
|u|>M

|u|2β|Φ(u)|2du

≤ C1(β, L, g) +
C2

M2(β−s) 2πL = C(β, L, g)

and this constant depends only on β, L and the fixed noise density g.
The same can be deduced in a similar way for the remaining setups.
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