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Abstract

We develop a probabilistic interpretation of local mild solutions of the three di-
mensional Navier-Stokes equation in the Lp spaces, when the initial vorticity field is
integrable. This is done by associating a generalized nonlinear diffusion of the McKean-
Vlasov type with the solution of the corresponding vortex equation. We then construct
trajectorial (chaotic) stochastic particle approximations of this nonlinear process. These
results provide the first complete proof of convergence of a stochastic vortex method for
the Navier-Stokes equation in three dimensions, and rectify the algorithm conjectured
by Esposito and Pulvirenti in 1989. Our techniques rely on a fine regularity study of
the vortex equation in the supercritical Lp spaces, and on an extension of the classic
McKean-Vlasov model, which incorporates the derivative of the stochastic flow of the
nonlinear process to explain the vortex stretching phenomenon proper to dimension
three.

1 Introduction

The Navier-Stokes equation for an homogeneous and incompressible fluid in the whole space
or plane, is given by

∂u
∂t + (u · ∇)u = ν∆u−∇p;

div u(t, x) = 0; u(t, x) → 0 as |x| → ∞,

(1)

where u is the velocity field, p is the pressure function and ν > 0 is the viscosity coefficient
assumed to be constant.
In this work we develop a probabilistic interpretation of the Navier-Stokes equation (1)
in three dimensions. More precisely, we will consider the vortex equation satisfied by the
vorticity field curl u, and we will show in a general functional framework that it can
be viewed as a generalized McKean-Vlasov equation associated with a nonlinear diffusion
process. As a consequence, we will construct and prove the convergence of a stochastic
particle method for the solution of (1) in that functional setting.
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Thirty years ago, Chorin [9] proposed an heuristical probabilistic algorithm to numerically
simulate the solution of the Navier Stokes equation in two dimensions, by approximating
the (scalar) vorticity function by random interacting “point vortices”. The convergence of
Chorin’s vortex method was first mathematically proved in 1982 by Marchioro and Pul-
virenti [21], who interpreted the vortex equation in two dimensions with bounded and
integrable initial condition as a generalized McKean-Vlasov equation (with a singular in-
teracting kernel) associated with a nonlinear diffusion. (For general expositions on the
McKean-Vlasov model and nonlinear processes, we refer the reader to Sznitman [31] or
Méléard [23].) Following the pioneering ideas of McKean [20], Marchioro and Pulvirenti
defined then some stochastic systems of particles interacting weakly through cutoffed ker-
nels, and for which the empirical measure converges at each time (when the number of
particles tends to ∞) to the solution of the vortex equation. The results of [21] were im-
proved by Méléard [24], [25], who showed the convergence in the path space of the empirical
measures of the interacting particle systems or, equivalently, the propagation of chaos for
the system of particles. (Propagation of chaos for a system of particles without cutoff was
proved by Osada [27], but only for large viscosities and initial conditions is a bounded
probability density).
A rigorous probabilistic interpretation and a stochastic vortex method for the Navier-Stokes
equation in three dimensions have been open problems since the paper [21] appeared. An
attempt to extend those results to the three dimensional case was done by Esposito and
Pulvirenti [12], but this authors did not furnish rigorous mathematical proofs of crucial
facts.

In three dimensions, the vorticity field w = curl u is a solution of the nonlinear equation

∂w
∂t + (u · ∇)w = (w · ∇)u + ν∆w,

div w0 = 0,

(2)

where, thanks to the condition of incompressibility, div u = 0, and by the Biot-Savart law,
the velocity field u is equal to

u(t, x) = − 1
4π

∫

R3

x− y

|x− y|3 ∧w(t, y)dy. (3)

Here, ∧ stands for the vectorial product in R3 and, with the notation K(x) := − 1
4π

x
|x|3 ,

the vectorial kernel K(x) ∧ · is the so-called Biot-Savart kernel in three dimensions. See
for instance Chorin and Marsden [10] Ch. 1, Chorin [9] Ch.1 and Marchioro and Pulvirenti
[22] for this facts and for background on vorticity.
The vectorial equation (2) is not conservative due to the vortex stretching term (w · ∇)u =∑

j wj
∂u
∂xj

. In fact, vortex stretching lies in the heart of complex three dimensional phe-
nomena such as transfer of energy and turbulence (see [9] Ch. 5), and is also related to the
emergence of singularities (see Beale, Kato, Majda [1]).

In this work, we consider the vortex equation (2) with initial condition w0 in Lp
3 (see the

notation below). By adapting to the vortex equation the techniques for equation (1) in the
so-called supercritical spaces (see e.g. Cannone [7] Ch.1), we shall first of all provide a local
existence and global uniqueness result for the mild version of equation (2) in suitable Lp

3

spaces. These will be, when 3
2 < p < 3.
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Then, we will assume that w0 also belongs to L1
3, and we will consider a probability density

ρ0 on R3 and a vectorial “weight function” h0 : R3 → R3, respectively given by

ρ0(x) =
|w0(x)|
‖w0‖1

, and h0(x) =
w0

ρ0
(x).

Denote by M3×3 the space of real 3×3 matrices and let Id ∈M3×3 be the identity matrix.
Write also CT for the space of continuous trajectories CT := C([0, T ],R3×M3×3). Our goal
is to study the following nonlinear stochastic differential equation with values in R3×M3×3:

Xt = X0 +
√

2νBt +
∫ t

0

∫

CT

[K(Xs − x(s)) ∧ φsh0(x(0))]P (dx, dφ)ds

Φt = Id +
∫ t

0

∫

CT

[∇K(Xs − x(s)) ∧ φsh0(x(0))]P (dx, dφ)Φs ds

t ∈ [0, T ],

under the condition
law(X, Φ) = P and law(X0) = ρ0(x)dx.

(4)

(we are using here the notation ∇K(y) ∧ z = ∇y(K(y) ∧ z) for y, z ∈ R3, y 6= 0.)
We shall prove uniqueness in law for (4) in certain class of probability measures P on
C([0, T ],R3 ×M3×3), and establish an equivalence between weak solutions of (4) on [0, T ]
in that class, and mild solutions w of (2) in L∞([0, T ], Lp

3) satisfying w0 ∈ L1
3. This

correspondence will be given by the relation
∫

R3

f(y)w(t, y)dy = EP (f(Xt)Φth0(X0)) (5)

for functions f : R3 → R3. In particular, we will obtain local existence (in time) for (4).

By the Biot-Savart law (3) and by (5), the (nonlinear) drift terms in (4) are indeed equal
to u(s,Xs) and to ∇u(s,Xs)Φs. The study of the nonlinear process (4) will thus require
precise regularity estimates for the velocity field u(t) associated to w(t). To that end, we will
follow a similar strategy as in [13], by proving suitable Sobolev regularity for w and using
then some continuity properties of the Biot-Savart operator (3) and classic embeddings of
Sobolev spaces. Under the assumption that w0 ∈ Lp

3 ∩ L1
3, the functions u(t) and ∇u(t)

turn out to be continuous and bounded for each t ∈]0, T ], but with singularities at t = 0.
Thus, we will also need to use and extend the techniques of [25] and [13] for singular drift
terms to study the martingale problem associated with (4). Here, it will be crucial that the
“vortex stretching process”, Φt, associated with a mild solution w in L∞([0, T ], Lp

3) (with
3
2 < p < 3) is a priori bounded independently of the randomness.
Our second goal is to construct stochastic particle approximations of w and u. We will
follow a trajectorial approach in the same line of Bossy and Talay [3], Méléard [24] and
[25], or Fontbona [13]. Namely, we will prove a propagation of chaos result for a system
of particles (Xi,n,ε,R, Φi,n,ε,R)n

i=1, n ∈ N, where ε is a mollifying parameter of the kernel
K and R is a cutoff threshold of the approximating vortex stretching processes Φi,n,ε,R.
Then, we will assume that the conditions ensuring existence of a local solution w of (2)
hold, and we will prove that for suitable sequences εn → 0 and R > 0 large enough the
system (Xi,n,εn,R,Φi,n,εn,R) is chaotic with limiting law P given by (4). From this, we will
deduce the convergence to w of some “weighted” empirical process of the system (with
time dependent vectorial weights), and the convergence of an “approximate velocity field”
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to u = K(w). This result is the first complete mathematical proof of convergence of a
stochastic vortex method for the Navier-Stokes equation in three dimensions, and rectifies
the method conjectured by Esposito and Pulvirenti in [12].
We are not able to provide an explicit convergence rate here, mainly due to the loss of
regularity of u at t = 0. Such result could be obtained under additional regularity assump-
tions on the initial condition (as it is done by Méléard [24] in two dimensions). However,
the convergence rate one can expect to obtain by this approach is far from being optimal.
(This problem remains untreated even for the two-dimensional vortex method.)
We also point out that under the assumption that w0 ∈ Lp

3 with 3
2 < p < 3, the SDE

ξt(x) = x +
√

2νBt +
∫ t

0
u(t, ξs(x))ds (6)

(with u given by (3)) will define a C1 stochastic flow ξ : [0, T ] × R3 → R3, and the
identity (X, Φ) = (ξ(X0),∇xξ(X0)) will hold in a trajectorial sense. Thus, formula (5)
is the fact that the vorticity is transported by the stochastic flow and stretched by its
gradient, and generalizes the representation of the vorticity field in the inviscid case ν = 0,
in terms of the (deterministic) flow of the solution of the Euler equation (see [10] Ch. 1).
A representation formula equivalent to (5) was partially established in [12], under the more
restrictive assumption that w0 and its Fourier transform are in L1

3. Our interpretation of
the vorticity in terms of the weight function h0 is simpler than the one in [12]. We are
inspired here in the approach of Méléard [24] and [25] in two dimensions, where vorticity
was represented using a scalar weight, that is simply “transported” by a nonlinear diffusion
process. We are also extending in this way the techniques of Jourdain [16] for dealing
with signed measures in the McKean-Vlasov context. A representation formula in terms of
stochastic flow was also proved in Esposito, Marra, Pulvirenti and Sciaretta [11], but these
authors needed to restrict themselves to the equation (1) on the torus in order to define
the underlying probability space.

A probabilistic interpretation of the three dimensional Navier-Stokes equation is also de-
veloped in Giet [15], in the case of a bounded domain and non-slip boundary condition.
This author extends the ideas of Benachour, Roynette and Vallois [2] in two dimensions,
by using a diffusion process with jumps to interpret the coupled system (2) with zero-order
term, and a branching process to treat the boundary condition. At an advanced stage of
this work, we also became aware of the work of Busnello, Frandoli and Romito [6], who also
interpret the vorticity in terms of a stochastic flow and its gradient. These authors use a
Bismut-Elworthy formula to recover the velocity field (extending the approach of Busnello
in two dimensions [5]) and provide a local existence statement. In these works, the ap-
proaches are in some sense “dual” to ours: they are based on Feynman-Kac type formulae
for the vorticity (in terms of the linear SDE (6) reversed in time) and aim to represent
classical solutions of (2) by means of probabilistic objects. Due to this fact, they need to
assume more regularity of the initial conditions. Furthermore, non of the aforementioned
works [11], [6] or [15] relate the nonlinearity to a mean field interaction limit, and they do
not lead to stochastic approximations of the solutions of the Navier-Stokes or the vortex
equation.

1.1 Notation

- By MesT we denote the space of measurable real valued functions on [0, T ]× R3.
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- C1,2 is the set of real valued functions on [0, T ]×R3 with continuous derivatives up to
the first order in t ∈ [0, T ] and up to the second order in x ∈ R. C1,2

b is the subspace
of bounded functions in C1,2 with bounded derivatives.

- S is the Schwartz space of infinitely differentiable functions on R3 all of whose deriva-
tives remain bounded when multiplied by polynomials. D is the subspace of functions
with compact support.

- For all 1 ≤ p ≤ ∞ we denote by Lp the space Lp(R3) of real valued functions on R3.
By ‖ · ‖p we denote the corresponding norm and p∗ stands for the Hölder conjugate
of p. We write W i,p = W i,p(R3) for the Sobolev space of functions in Lp with partial
derivatives up to the i-th order in Lp.

- If E is a space of real valued functions (defined on R3 or on [0, T ] × R3), then the
notation E3 is used for the space of R3-valued functions whose scalar components
belong to E. If E is has a norm, then the norm on E3 is denoted in the same way.

- For simplicity, if f : R3 → R3 is a vector field and Z : R3 → M3×3 is a matrix
function, we will write fZ for the product vector (f tZ)i =

∑3
j=1 fjZj,i. By ∇f we

denote the gradient of f , that is the matrix (∇f)i,j = ∂fi
∂xj

.

- F(g) denotes the Fourier transform of g : R3 → R, that is F(g)(ξ) =
∫
R3 e−2πiξ·xg(x)dx.

- C and C(T ) are finite positive constants that may change from line to line.

2 Preliminaries

Throughout this work, we assume that

• w0 is a function w0 : R3 → R3 and a distribution in D′3.
Let G be the fundamental solution of the Laplace operator on R3. We will denote by K
the kernel K(x) = ∇G(x), that is, the singular kernel given by

K(x) := − 1
4π

x

|x|3 for all x ∈ R3\{0}.

For functions w : R3 → R3, the Biot-Savart operator K is formally given by

w(x) 7→ K(w)(x) :=
∫

R3

K(x− y) ∧ w(y)dy = − 1
4π

∫

R3

(x− y)
|x− y|3 ∧ w(y)dy. (7)

Recall that a function w ∈ D′3 is said to have null divergence if
∫

R3

∇f(x)w(x)dx = 0 for

all f ∈ D, and this is written div w = 0.

Remark 2.1 For all w : R3 → R3 that belongs to D′3, one has div K(w) = 0.
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2.1 Mild and weak forms of the 3-dimensional vortex equation

We introduce the notation Gν : R+ × R3 → R, for the heat kernel

Gν
t (x) = (4πνt)−

3
2 exp

(
−|x|

2

4νt

)
, (8)

where ν > 0 is a fixed but arbitrary constant.

We will next define the two different notions of solution of the vortex equation (2) we shall
work with. Here we denote by DT the set of real functions of class C∞ on [0, T ]×R3 having
compact support.

Definition 2.1 We say that w ∈ MesT
3 is a mild solution of the vortex equation with

initial condition w0 (or “mild solution” for short), if the following conditions are satisfied:

mildV0: div w0 = 0.

mildV1: For each j = 1, 2, 3 and t ∈ [0, T ]×R3, the distribution K(w)j(t, x) := K(w(t, ·))j(x)
belongs to L1

loc(dx).

mildV2: For all i, j = 1, 2, 3, and every function f ∈ DT

∫ T

0

∫

R3

|K(w)j(s, x)||wi(s, x)||f(s, x)|dx ds < ∞. (9)

mildV3: For almost every (t, x) in [0, T ]× R3, one has

w(t, x) = Gν
t ∗ w0(x) +

∫ t

0
∇Gν

t−s ∗ [K(w)⊗w −w ⊗K(w)] (s, x)ds,

and the r.h.s. converges absolutely and belongs to L1
loc(dx).

Explicitly, mildV3 is written as

w(t, x) =
∫

R3

Gν
t (x− y)w0(y)dy

+
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y) [K(w)j(s, y)w(s, y)−wj(s, y)K(w)(s, y)] dy ds.

(10)

It is implicitly assumed that a mild solution w(t) has null divergence for every t (as can be
seen from the right hand side of (10)). We shall deal with this form for analytical purposes.
In turn, the following form of the equation will appear more naturally in a probabilistic
framework:

Definition 2.2 A function w ∈MesT
3 is a weak solution of the vortex equation with initial

condition w0 (or “weak solution”), if the following conditions hold:

weakV0: div w0 = 0.
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weakV1: The integral K(w)(t, x) := K(w(t, ·))(x) exists dxdt−a.e on [0, T ]×R3, and K(w)(t, ·)
and its gradient ∇K(w)(t, ·) are distributions with components in L1

loc(dx).

weakV2: For all f ∈ DT and i, j = 1, 2, 3 and all t ∈ [0, T ] on has
∫ T

0

∫

R3

|f(s, x)|
[
|K(w)j(s, x)|+

∣∣∣∣
∂K(w)j

∂xk
(s, x)

∣∣∣∣
]
|wi(s, x)|dx ds < ∞. (11)

weakV3: For all f ∈ DT
3 , we have

∫

R3

f(t, y)w(t, y)dy =
∫

R3

f(0, y)w0(y)dy +
∫ t

0

∫

R3

[
∂f
∂s

(s, y) + ν4f(s, y)

+ K(w)(s, y)∇f(s, y) + f(s, y)∇K(w)(s, y)
]
w(s, y) dy ds.

(12)

We will refer to (10) (resp. (12)) as the mild equation (resp. the weak equation). These two
forms are not equivalent in general. By the moment, we can assert that under additional
integrability assumptions, a weak solution satisfies an “intermediate mild form”:

Lemma 2.1 Assume that w ∈MesT
3 is a weak solution, and that

∫ t

0

∫

(R3)2

3∑

i,j=1

∣∣∣∣
∂Gν

t−s

∂yj
(x− y)

∣∣∣∣ |K(w)j(s, y)||ψi(x)||wi(s, y)|dx dy ds

and ∫ t

0

∫

(R3)2

3∑

i,j=1

|Gν
t−s(x− y)|

∣∣∣∣
∂K(w)i

∂yj
(s, y)

∣∣∣∣ |ψi(x)||wj(s, y)|dx dy ds

are finite for all i, j = 1, 2, 3 and ψ ∈ D3. Then, w satisfies

w(t, x) = Gν
t ∗ w0(x) +

∫ t

0

3∑

j=1

∫

R3

[
∂Gν

t−s

∂yj
(x− y)[K(w)j(s, y)w(s, y)]

+ Gν
t−s(x− y)[wj(s, y)

∂K(w)
∂yj

(s, y)]
]
dy ds.

(13)

Proof: Take fixed ψ ∈ D3 and t ∈ [0, T ] and define ft : [0, t] × R3 → R3 by ft(s, y) =
Gν

t−s ∗ ψ(y); this function is of class (C1,2
b )3 and solves the backward heat equation on

[0, t]×R3 with final condition f(t, y) = ψ(y). If w is a solution of the weak vortex equation
satisfying the hypothesis of the Lemma, by a density argument it also satisfies the weak
equation weakV3 with the function ft(s, y) just defined. By Fubini’s theorem, we deduce
that (13) holds since ψ ∈ D3 is arbitrary.

Remark 2.2 Formally, by integrating by parts the last term in the l.h.s. of (13), one can
check that a weak solution w(s) as in the previous lemma is also a mild solution if its
divergence is null for all s. Of course, to make this reasoning rigorous we must ensure that
w and K(w) belong to suitable functional spaces . The passage from weak to mild solutions
will be important to establish an equivalence between probabilistic and analytic objects.
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2.2 Continuity of the Biot-Savart operator

In order to study the vortex equation in some Lebesgue and Sobolev spaces, we will state
here some fundamental continuity results for the operators K and ∇K acting is this type
of spaces. These results will also be used to deduce from the properties of the vorticity field
some regularity properties of the velocity field. The proofs are given in Section 3.3.

Lemma 2.2 Let 1 < p < 3 and 1
q = 1

p − 1
3 .

i) For every w ∈ Lp
3, the integral (7) is absolutely convergent for almost every x and one

has K(w) ∈ Lq
3. There exists further a positive constant C̃p,q such that

‖K(w)‖q ≤ C̃p,q‖w‖p (14)

for all w ∈ Lp
3.

ii) If moreover w ∈ W 1,p, then we have K(w) ∈ W 1,q
3 , with ∂

∂xk
K(w) = K

(
∂w
∂xk

)
, and

∥∥∥∥
∂K(w)

∂xk

∥∥∥∥
q

≤ C̃p,q

∥∥∥∥
∂w

∂xk

∥∥∥∥
p

(15)

for all k = 1, 2, 3.

The proof of Lemma 2.2 will use some elements from Riesz potentials. Intuitively, part ii)
results from taking the derivatives of w when differentiating the convolution K(w). It will
ensure that the velocity field at time t, given by K(w)(t), belongs to W 1,q

3 (with q = 3p
3−p) if

w(t) ∈ W 1,p
3 and p ∈]1, 3[. It is however natural to expect the gradient of the velocity field

to have the same regularity as the vorticity field. This fact will follow from next lemma,
which states the continuity in W 1,p

3 of the operator w 7→ ∇K(w) = ∇(K(w)):

Lemma 2.3 Let 1 < p < ∞. If w ∈ Lp
3, then each component of the derivative (in

distribution sense) ∂
∂xk

K(w) is a linear combination of singular integrals of the components
of w (in the precise sense given in Theorem 3.4 of Section 3.3). We deduce the following
continuity estimates:

i) For all w ∈ Lp
3, we have ∂

∂xk
K(w) ∈ Lp

3 for k = 1, 2, 3. There exists further a positive

constant C̃p depending only on p such that
∥∥∥∥
∂K(w)j

∂xk

∥∥∥∥
p

≤ C̃p‖w‖p (16)

for all j = 1, 2, 3, where K(w)j is the j-th component of K(w).

ii) If moreover w ∈ W 1,p
3 , then we have ∂

∂xk
K(w) ∈ W 1,p

3 , and
∥∥∥∥
∂2K(w)j

∂xl∂xk

∥∥∥∥
p

≤ C̃p

∥∥∥∥
∂w

∂xl

∥∥∥∥
p

(17)

for all l = 1, 2, 3.

Roughly, here we shall use the facts that one can take also derivatives to K, when differ-
entiating K(w), and that the singular kernel ∇K has the properties required to define a
singular integral operator by (principal value) convolution.
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3 The vortex equation in the supercritical Lp spaces

We will now establish a general functional framework to study the vortex equation and
prove all analytic results we need later on for probabilistic purposes. We assume in the
sequel that

• the initial condition w0 belongs to Lp
3 for some p ∈ [1,∞].

First, we will prove local existence and global uniqueness for the mild vortex equation
(10), by adapting to the vortex setting general techniques for the usual (velocity field)
Navier-Stokes equation in the so-called super-critical spaces (see Cannone [7], Ch.1). These
particular results could be deduced from the analogous statements in [7]; our aim however
is to establish precise regularity estimates of the velocity field and its gradient (in Hölder
and L∞ norms), in connection with properties of the vorticity field. This type of result is
easier to obtain by studying directly the vortex equation. Furthermore, our probabilistic
statements (in particular the construction of stochastic particle approximations) will require
that existence and regularity statements hold simultaneously for the vortex equation (10)
and for a family of approximating equations involving mollified kernels Kε. We thus need
to make explicit the role played by K.

We start with the following well known estimates:

Lemma 3.1 Let Gν be the heat kernel defined in (8) and m ∈ [1,∞]. There exist two
positive constants c(m) and c′(m) such that for all t > 0,

‖Gν
t ‖m ≤ c(m)(νt)−

3
2
+ 3

2m and (18)

‖∇Gν
t ‖m ≤ c′(m)(νt)−2+ 3

2m . (19)

We shall also need the general version of Young’s inequality: if f ∈ Lm and g ∈ Lk, with
1 ≤ m, k ≤ ∞, and 1

r = 1
m + 1

k − 1 ≥ 0, then,

f ∗ g ∈ Lr and ‖f ∗ g‖r ≤ ‖f‖m‖g‖k. (20)

We easily deduce the following

Lemma 3.2 Let p ∈ [1,∞], r ≥ p and w0 ∈ Lp
3. There exist positive constants C0(p), C1(p),

C0(p; r) and C1(p; r) such that for all t > 0,

i) ‖Gν
t ∗ w0‖p ≤ C0(p)‖w0‖p, ii) ‖∇Gν

t ∗ w0‖p ≤ C1(p)t−
1
2 ‖w0‖p,

iii) ‖Gν
t ∗w0‖r ≤ C0(p; r)t−

3
2
( 1

p
− 1

r
)‖w0‖p, iv) ‖∇Gν

t ∗w0‖r ≤ C1(p; r)t−
1
2
− 3

2
( 1

p
− 1

r
)‖w0‖p.

According to Lemma 3.2, we define for w ∈MesT
3 and p ∈ [1,∞] the norms:

• |||w|||0,p,T = sup
0≤t≤T

‖w(t)‖p,

• |||w|||1,p,T = sup
0≤t≤T

{
‖w(t)‖p + t

1
2

3∑

k=1

∥∥∥∥
∂w(t)
∂xk

∥∥∥∥
p

}
,

9



and, for r ≥ p,

• |||w|||0,r,(T ;p) = sup
0≤t≤T

t
3
2
( 1

p
− 1

r
)‖w(t)‖r,

• |||w|||1,r,(T ;p) = sup
0≤t≤T

{
t

3
2
( 1

p
− 1

r
)‖w(t)‖r + t

1
2
+ 3

2
( 1

p
− 1

r
)

3∑

k=1

∥∥∥∥
∂w(t)
∂xk

∥∥∥∥
r

}
.

The following is the notation for associated Banach spaces:

• F0,p,T = {w ∈MesT
3 : |||w|||0,p,T < ∞},

• F1,p,T = {w ∈MesT
3 : |||w|||1,p,T < ∞},

• F0,r,(T ;p) = {w ∈MesT
3 : |||w|||0,r,(T ;p) < ∞} and

• F1,r,(T ;p) = {w ∈MesT
3 : |||w|||1,r,(T ;p) < ∞}

Observe that by Lemma 2.2 i) and Lemma 2.3 i), a function w ∈ F0,p,T satisfies conditions
mildV1 and weakV1 if p ∈]1, 3[, and condition mildV2 if p ∈ [32 , 3[.
It is worth noting also that the Lp

3−spaces, with p ∈]32 , 3[, are in correspondence via the
operator K with the supercritical Lq-spaces for the velocity field, that is, the Lq

3−spaces
with q = 3p

3−p ∈]3,∞[. We shall prove existence and uniqueness results for the mild equation
in F0,p,T for these values of p. Then we will show that the solution belongs to F1,r,(T ;p) for all
r ∈ [p,∞[. Finer regularity results for K(w) will follow as a consequence of the continuity
properties of K and ∇K stated in Section 2.2, and of classic Sobolev embbedings.

A key point to establish these facts is the continuity property of the bilinear term in (10), as
an operator acting in some of the spaces previously defined. More precisely, given functions
w,v ∈MesT

3 , consider a function B(w,v) : [0, T ]× R3 → R3 formally defined by

B(w,v)(t, x) =
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y) [K(w)j(s, y)v(s, y)− vj(s, y)K(w)(s, y)] dy ds.

(21)

Proposition 3.1 Let p, p′ ∈ [1,∞]. Then, B : F2 → F′ is well defined and continuous
whenever

i) 3
2 ≤ p < 3, 3p

6−p ≤ p′ < 3p
6−2p , F = F0,p,T and F′ = F0,p′,T .

ii) 3
2 ≤ p < 3, p ≤ l < 3, 3l

6−l ≤ l′ < 3l
6−2l , F = F0,l,(T ;p) and F′ = F0,l′,(T ;p).

iii) 3
2 ≤ p < 3, 3p

6−p ≤ p′ < 3p
6−2p , F = F1,p,T and F′ = F1,p′,T .

iv) 3
2 ≤ p < 3, p ≤ l < 3, 3l

6−l ≤ l′ < 3l
6−2l , F = F1,l,(T ;p) and F′ = F1,l′,(T ;p).

Proof: The following formula will be useful: if β(ε, θ) =
∫ 1
0 xε−1(1 − x)θ−1dx is the Beta

function of real parameters ε, θ > 0, then
∫ t

0
sε−1(t− s)θ−1 ds = tε+θ−1β(ε, θ), ∀t > 0. (22)

10



i) Let w,v ∈ F0,p,T with 3
2 ≤ p < 3. We take the Lp′ norm to the i−th component of (21),

and apply Young’s inequality (20), with r = p′, m = (4
3 + 1

p′ − 2
p)−1 and k = 3p

6−p (notice
that the constraint on p and p′ ensures that 1 ≤ m < 3

2). This yields

‖B(w,v)i(t)‖p′ ≤ C

3∑

j=1

∫ t

0
‖∇Gν

t−s‖m (‖vj(s) K(w)i(s)‖k + ‖vi(s) K(w)j(s)‖k) ds

≤ C

∫ t

0
(t− s)

3
2m
−2‖w(s)‖p ‖v(s)‖p ds

by using also estimate (19), Hölder’s inequality, and inequality (14) for the Biot-Savart
operator. Therefore,

‖B(w,v)i(t)‖p′ ≤ Ct
1−3( 1

p
− 1

2p′ )|||w|||0,p,T |||v|||0,p,T , ∀t ∈ [0, T ], (23)

and we conclude that

|||B(w,v)|||0,p′,T ≤ C0(p, p′)T 1−3( 1
p
− 1

2p′ )|||w|||0,p,T |||v|||0,p,T , ∀w,v ∈ F0,p,T ,

with C0(p, p′) > 0 a constant independent of T and 1− 3(1
p − 1

2p′ ) > 0.

ii) We proceed as in i), taking now in Young’s inequality (20) r = l′, m = (4
3 + 1

l′ − 2
l )
−1

and k = 3l
6−l . By similar steps we obtain

‖B(w,v)i(t)‖l′ ≤ C

∫ t

0
(t− s)

3
2l′−

3
l ‖w(s)‖l ‖v(s)‖l ds

≤ C

∫ t

0
(t− s)

3
2l′−

3
l s

3
l
− 3

p ds|||w|||0,l,(T ;p)|||v|||0,l,(T ;p)

≤ Ct
1+ 3

2l′−
3
p |||w|||0,l,(T ;p)|||v|||0,l,(T ;p).

(24)

The relation between p, l and l′ ensured us that m, k ∈ [1,∞[, and allowed us to use formula
(22) here. We conclude as in i).

iii) Assume now w,v ∈ F1,p,T . We have 3p
6−p ∈]1,∞[ and K(w)j(t)v(t)i ∈ W

1, 3p
6−p . Since

also Gν
t ∈ W

1, 3p
4p−6 , we can integrate by parts for each t ∈]0, T ] and obtain

B(w,v)(t, x)

= −
3∑

j=1

∫ t

0

∫

R3

Gν
t−s(x− y)

∂

∂yj
[K(w)j(s, y)v(s, y)− vj(s, y)K(w)(s, y)] dy ds

.

Take f ∈ D and write

Bf
i (w,v)(t) :=

∫ t

0

∫ ∫
Gν

t−s(x− y)|f(x)|
∣∣∣∣

∂

∂yj
[K(w)j(s, y)vi(s, y)]

∣∣∣∣ dx dy ds.
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By Hölder’s and Young’s inequalities applied as in i), we deduce, with 1
q = 1

p − 1
3 , that

Bf
i (w,v)(t) ≤C‖f‖(p′)∗

3∑

j=1

∫ t

0
(t− s)

3
2m
− 3

2

[∥∥∥∥
∂K(w)j(s)

∂yj

∥∥∥∥
q

‖vi(s)‖p +
∥∥∥∥
∂vi(s)
∂yj

∥∥∥∥
p

‖K(w)j‖q

]
ds

≤C‖f‖(p′)∗

∫ t

0
(t− s)

3
2m
− 3

2 s−
1
2 ds|||w|||1,p,T |||v|||1,p,T

≤C‖f‖(p′)∗T
1−3( 1

p
− 1

2p′ )|||w|||1,p,T |||v|||1,p,T < ∞.

(25)

We have used here (18), (14), the definition of ||| · |||1,p,T and formula (22). A similar estimate
as (25) holds for the term involving the product vj(s)Ki(w)(s). Therefore, we can apply
Fubini’s theorem and integrate by parts to deduce that

∫

R3

B(w,v)i(t, x)
∂f(x)
∂xk

dx =

3∑

j=1

∫ t

0

∫

R3

(∫

R3

∂Gν
t−s

∂xk
(x− y)f(x)dx

)
∂

∂yj
[K(w)j(s, y)vi(s, y)− vj(s, y)K(w)i(s, y)] dy ds

(26)

for all f ∈ D. Proceeding as before in (25), we deduce now from (26) that

∣∣∣∣
∫

R3

B(w,v)i(t, x)
∂f(x)
∂xk

dx

∣∣∣∣ ≤C‖f‖(p′)∗

3∑

j=1

∫ t

0
(t− s)

3
2m
−2s−

1
2 ds|||w|||1,p,T |||v|||1,p,T

≤C‖f‖(p′)∗t
1
2
−3( 1

p
− 1

2p′ )|||w|||1,p,T |||v|||1,p,T < ∞.

From this and (23), we conclude that |||B(w,v)|||1,p′,T ≤ C1(p, p′)T 1−3( 1
p
− 1

2p′ )|||w|||1,p,T |||v|||1,p,T ,
where C1(p, p′) > 0 does not depend on T .

iv) By similar arguments as in iii) (and Young’s inequality as in ii)) we get similar estimates
as (24) for the derivatives, with t

1
2
+ 3

2l′−
3
p on the right hand side. The statement follows.

Let us write
w0(t, x) := Gν

t ∗ w0(x).

Remark 3.1 If p ∈]32 , 3[ then we have 3p
6−p < p < 3p

6−2p .

Thus, Lemma 3.2 and Proposition 3.1 i) and iii) give sense to the abstract equation

w = w0 + B(w,w), w ∈ F, (27)

in the spaces F = F0,p,T and F = F1,p,T when 3
2 < p < 3 and w0 ∈ Lp

3. Hence, the mild
equation (10) and equation (27) are equivalent in these spaces.
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3.1 Local existence and global uniqueness

We assume from now on that

• w0 is in Lp
3 and 3

2 < p < 3.

Theorem 3.1 Let 3
2 < p < 3 and w0 ∈ Lp

3 be given. We have

a) For all T > 0, equation (10) has at most one solution in F0,p,T .

b) There is a positive constant Γ0(p) such that equation (10) has a solution in F0,p,T ,
for all T > 0 and w0 ∈ Lp

3 satisfying

T
1− 3

2p ‖w0‖p <
1

Γ0(p)
.

To prove global uniqueness, we shall proceed in a similar way as in [13] using next lemma.

Lemma 3.3 Let g : [0, T ] →]0,∞[ be a bounded measurable function, and suppose there
exist constants C ≥ 0 and θ > 0 such that g(t) ≤ C

∫ t
0 (t − s)θ−1g(s) ds for all t ∈ [0, T ].

Then,

g(t) ≤ C2β(θ, θ)
∫ t

0
(t− s)2θ−1g(s) ds.

The proof of local existence will rely on a standard contraction argument for the abstract
equation (27), based on Banach’s fixed point theorem (see for instance Cannone [7]):

Lemma 3.4 Let (F, ||| · |||) be a Banach space, B : F × F :→ F a bilinear application and
y ∈ F. Suppose there exists a positive constant Λ such that

|||B(x1,x2)||| ≤ Λ|||x1||| |||x2|||
for all x1,x2 ∈ F . If 4Λ|||y||| < 1, then for all γ ∈ [|||y|||, 1

4Λ [ there exists a unique solution of

x = y + B(x,x)

in the ball BRγ = {x ∈ F : |||x||| ≤ Rγ}, Rγ = 1−√1−4Λγ
2Λ . The solution x satisfies |||x||| ≤ 2γ.

Proof of Theorem 3.1: a) Let w and v be two solutions in F0,p,T . Proceeding as in
Proposition 3.1i) (with r = p) we obtain

‖w(t)− v(t)‖p ≤C

∫ t

0
(t− s)−

3
2p ‖w(s)‖p ‖w(s)− v(s)‖p ds

+ C

∫ t

0
(t− s)−

3
2p ‖v(s)‖p ‖w(s)− v(s)‖p ds

≤C (|||w|||0,p,T + |||v|||0,p,T )
∫ t

0
(t− s)−

3
2p ‖w(s)− v(s)‖p ds.

Let θN := 2N (1 − 3
2p) > 0 and N(p) be the first integer for which θN − 1 > 0. Then, by

applying N(p) times Lemma 3.3 , it follows that

‖w(t)− v(t)‖p ≤ C(T ) (|||w|||0,p,T + |||v|||0,p,T )
∫ t

0
‖w(s)− v(s)‖p ds,

13



for some C(T ) > 0. We conclude by Gronwall’s lemma.

b) From Proposition 3.1 i), one has for all T > 0 and w,v ∈ F0,p,T that

|||B(w,v)|||0,p,T ≤ C0(p, p)T 1− 3
2p |||w|||0,p,T |||v|||0,p,T (28)

where C0(p, p) > 0 does not depend on T . On the other hand, Lemma 3.2 i) provides a
positive constant C0(p) such that |||w0|||0,p,T ≤ C0(p)‖w0‖p. Therefore, by Lemma 3.4, a
solution w ∈ F0,p,T to the abstract equation (27) exists if

4C0(p, p)T 1− 3
2p C0(p)‖w0‖p < 1. (29)

The conclusion follows taking Γ0(p) = 4C0(p) · C0(p, p).

3.2 Integrable solutions, Sobolev regularity and continuity in time

The probabilistic interpretation of the vortex equation we will develop requires the existence
of integrable solutions. However, the non-continuity of K in L1

3 prevents us from using a
contraction argument in that space. In turn, as a consequence of Proposition 3.1, a solution
in F0,p,T (with p as before) will also belong to F0,1,T , as soon as the natural probabilistic
condition w0 ∈ L1

3 is added.

Lemma 3.5 Assume that w0 ∈ Lp ∩ Lp′, with 3
2 < p < 3 and 3p

6−p ≤ p′ < 3p
6−2p .

i) If w ∈ F0,p,T is a solution of (27), then w ∈ F0,r,T for all r ∈ [min{p, p′},max{p, p′}].
ii) We deduce that if w0 ∈ L1

3 ∩ Lp
3, then w ∈ F0,r,T for all r ∈ [1, p].

Proof: Recall that if 1 ≤ r1 ≤ r ≤ r2 < ∞, then Lr1 ∩ Lr2 ⊆ Lr with

‖f‖r
r ≤ ‖f‖r1

r1
+ ‖f‖r2

r2
, ∀f ∈ Lr1 ∩ Lr2 . (30)

i) Let w ∈ F0,p,T be a solution of (27). Since 3p
6−p ≤ p < 3p

6−2p , we have from Proposition
3.1i) that B(w,w) ∈ F0,r,T for all r ∈ [min{p, p′},max{p, p′}]. Thanks to (30), one has
also w0 ∈ Lr

3 and by the Lemma 3.2, w0 ∈ F0,r,T . We conclude that w ∈ F0,r,T .
ii) Assume that w0 ∈ L1

3 ∩ Lp
3 and that r ∈ [1, p[. The sequence defined by r0 = r,

rn+1 = 6rn
3+rn

is increasing and converges to 3. Let N ∈ N be such that rN < p ≤ rN+1.
The function s 7→ 3s

6−s is strictly increasing on [0, 6], so we have 3p
6−p ≤

3rN+1

6−rN+1
= rN . As w0

belongs to Lp
3 ∩ LrN

3 thanks to (30), we deduce from i) (with p′ = rN ) that w ∈ F0,rN ,T .
Now, (30) also implies that w0 ∈ LrN

3 ∩ L
rN−1

3 . By applying i) with p replaced by rN and
p′ = 3rN

6−rN
= rN−1 we obtain that w ∈ F0,rN−1,T . We conclude by repeating N − 1 times

this argument.

To prove Sobolev regularity of the solution, we need some simple technical facts:

Lemma 3.6 Let w ∈ F0,p,T be a solution of (27) with 3
2 < p < 3. If for each τ ∈]0, T ] we

write
w0,τ (t) := Gν

t ∗w(τ), and wτ (t) := w(τ + t),

then the function wτ is a solution in F0,p,T−τ of the equation

v(t, x) = w0,τ (t, x) + B(v,v)(t, x). (31)
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Proof: The proof follows from the semigroup property of Gν and Fubini’s theorem, using
estimates (18) and (19) and similar arguments as in the proof of Proposition 3.1.

Remark 3.2 If p ≤ r1 ≤ r ≤ r2 < ∞, then we have Fi,(p;r1),T ∩ Fi,(p;r2),T ⊆ Fi,(p;r),T for
i = 0, 1, and

|||v|||ri,(p;r),T ≤ |||v|||r1

i,(p;r1),T + |||v|||r2

i,(p;r2),T , for all v ∈ Fi,(p;r1),T ∩ Fi,(p;r2),T . (32)

For i = 0 (resp. i = 1) this follows by taking in (30) the function t
3
2p v(t) (resp. t

1
2
+ 3

2p
∂v(t)
∂xk

),

and then multiplying by t−
3
2 .

We are now ready to prove the regularity properties of w we need in the sequel:

Theorem 3.2 Let p ∈]32 , 3[ and w ∈ F0,p,T be a solution of (10).

i) One has w ∈ F1,p,T , and |||w|||1,p,T ≤ C(T, p)|||w|||0,p,T , with C(T, p) a constant not
depending on w.

ii) For all p ≤ r < ∞ one has w ∈ F1,r,(T ;p). Further, if A > 0 is an upper bound for
|||w|||0,p,T , there exists a finite constant C(T, p, r, A) depending on w only through w0

and A, such that
|||w|||1,r,(T ;p) ≤ C(T, p, r, A).

iii) If w0 ∈ Lp′
3 with p′ ∈ [1, p], then the function w : [0, T ] → Lp′

3 is continuous.

Proof : i) The proof is exactly the same as in Lemma 4.4 in [13]. We will repeat it here
since it is an important point for the sequel. Notice that all results for (27) obtained so far
apply also to equations (31) with the same constants for all ε ≥ 0. From Lemma 3.2 one
has |||w0,τ |||1,p,T ′∧(T−τ) ≤ C1(p)|||w|||0,p,T for all 0 < T ′ < T . If we choose T ′ small enough so
that

(T ′)1−
3
2p |||w|||0,p,T <

1
Γ1(p)

,

where Γ1(p) = 4C1(p) ·C1(p, p) and C1(p, p) given in the proof of Proposition 3.1 iii), then

|||w0,τ |||1,p,T ′∧(T−τ) ≤ C1(p)|||w|||0,p,T <
1

4(T ′)1−
3
2p C1(p, p)

for all τ ∈ [0, T ]. Thus, from Lemma 3.4 we deduce for each τ ∈ [0, T ] that (31) has a
solution in F1,p,T ′ (in the ball of radius Rγ defined in Lemma 3.4, with γ = C1(p)|||w|||0,p,T ).
Define τk := k T ′

2 for k = 0 . . . N := [2T
T ′ ]. Uniqueness for (31) in the space F0,p,T ′∧(T−τN ),

for each τ = τk, implies that the functions w(τk) := w(τk + ·) belong to F1,p,T ′∧(T−τN )

for all k = 0, . . . , N . But one has w(τk)(t) = w(τk−1)(T ′
2 + t) for all t ∈ [0, T ′

2 ∧ T ] and

k = 1, . . . , N , so we conclude that w(τk),
∂w(τk)

∂xj
∈ F0,p,T ′∧(T−τN ) for k = 1, . . . , N , implying

that w ∈ F1,p,T .
The estimate for the norm follows from the fact that for all t ∈ [0, T ′

2 ∧ T ] and k = 1...N ,

one has (τk + t)
1
2 ‖∂w(τk+t)

∂xj
‖p ≤ C(T ′)(τk + t)

1
2 (t + T ′

2 )
1
2 ‖∂wτk−1

(t+T ′
2

)

∂xj
‖p ≤ C(T )|||w|||0,p,T .

ii) First we notice that w0 ∈ F1,r,(T ;p) for all r ≥ p, and that w ∈ F1,p,T by i).
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Consider the function g(s) := 3s
6−2s defined on the interval ]32 , 3[ and define a sequence ln by

l0 = p, ln+1 = g(ln). Since g′(s) > 2, for all 3
2 < s < t < 3 one has g(t)−g(s) > 2(t−s) and

consequently there exists N ∈ N such that lN < 3 and lN+1 ≥ 3 (e.g. N = 0 if p ∈ [2, 3[).
Observe that for all n = 0, . . . , N − 1, we have g([ln, ln+1[) = [ln+1, ln+2[⊆ [ 3ln

6−ln
, 3ln

6−2ln
[.

We can therefore apply Proposition 3.1 iv) with l = l0 = p and l′ = l0+l1
2 and deduce that

w ∈ F
1,

l0+l1
2

,(T ;p)
. Taking then l = l0+l1

2 and l′ = l1 we deduce that w ∈ F1,l1,(T ;p). We apply
the previous two-step argument starting now from l1 and we deduce that w ∈ F1,l2,(T ;p).
Iterating this two-step procedure N times we conclude that w ∈ F1,lN ,(T ;p), and taking
then l = lN and l′ = 3 we establish that w ∈ F1,3,(T ;p).
Let us point out that by Remark 3.2 and the latter we have w ∈ F1,r,(T ;p) for all r ∈ [p, 3].
On the other hand, at each time we apply Proposition 3.1 iv) we can obtain an estimate
for the norm of |||w|||1,l′,(T ;p) in terms of |||w|||1,l,(T ;p), of w0, and of a fixed upper bound for
the norm of the operator B : (F1,l,(T ;p))2 → F1,l′,(T ;p).
Therefore, we can exhibit an upper bound for |||w|||1,(p;3),T in terms of T ,‖w0‖p, |||w0|||0,p,T

and of the norm of the operators B : (F1,l,(T ;p))2 → F1,l′,(T ;p), with indexes l ∈ [p, 3[ and
l′ ∈ [l, 3l

6−l [ chosen among a fixed finite subset of [p, 3]. Thanks now to Remark 3.2, for
every r ∈ [p, 3] we can obtain an upper bound for the norm |||w|||1,r,(T ;p) in terms of the
same (fixed) data about B.
To obtain the result for r ∈]3,∞[, we take l := g−1(2r) (which belongs to [2, 3[), and l′ = r
and conclude as before with Proposition 3.1 iv), with an upper for the norm |||w|||1,r,(T ;p)

obtained in a similar way as before.

iii) We will check that the operator B : C([0, T ], Lp
3)

2 → C([0, T ], Lp′
3 ) is continuous when

p and p′ are chosen as in Proposition 3.1 i). Indeed, if tn is a sequence in [0, T ] converging
to t∗, then for all v,v′ ∈ C([0, T ], Lp

3) one has

‖B(v,v′)(tn)−B(v,v′)(t∗)‖p′ ≤
∫ T

0
s

3
p
− 3

2p′
[
‖v(tn − s)− v(t∗ − s)‖p‖v′(tn − s)‖p1s≤tn

+ ‖v′(tn − s)− v′(t∗ − s)‖p‖v(t∗ − s)‖p1s≤t∗

]
ds

and therefore B(v,v′)(tn) → B(v,v′)(t∗) in Lp′
3 . Since clearly w0 ∈ C([0, T ], Lp

3), we have
a local existence result in that space for equation (27). Together with uniqueness in F0,p,T ,
this shows that any mild solution w in that space is continuous in t. The rest of the proof
is achieved by the same arguments of Lemma 3.5, using the continuity property of B we
have just established.

Denote by Cα the space of functions R3 → R3 that are Hölder continuous of index α ∈]0, 1[.
We recall the following standard embbeding of Sobolev spaces (see e.g. [4]):

Lemma 3.7 For all m > 3, the space W 1,m
3 is continuously embedded into L∞3 ∩ C1− 3

m .

From this and Theorem 3.2 we deduce

Corollary 3.1 Let p ∈]32 , 3[ and w ∈ F0,p,T be a solution of the mild equation (10). Write
u(s, x) := K(w)(s, x). Then, the following hold:
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i)
sup

t∈[0,T ]
t

1
2

{
‖u(t)‖∞ + ‖u(t)‖

C
2p−3

p

}
< Ĉ(T, p)|||w|||0,p,T (33)

for a constant Ĉ(T, p) > 0 not depending on w.

ii) For all r ∈]3,∞[, i = 1, 2, 3, and any upper bound A ∈ R of |||w|||0,p,T

sup
t∈[0,T ]

t
1
2
+ 3

2
( 1

p
− 1

r
)
{∥∥∥∥

∂u(t)
∂xi

∥∥∥∥
∞

+
∥∥∥∥
∂u(t)
∂xi

∥∥∥∥
C1− 3

r

}
< Ĉ(T, p, r, A) (34)

with Ĉ(T, p, r, A) > 0 a constant depending on w only through w0 and A.

iii) By taking in ii) r ∈]3, 3p
3−p [, we deduce that

∫ T
0

[‖u(t)‖∞ +
∑3

i=1 ‖∂u(t)
∂xi

‖∞
]
dt < ∞.

Proof: By Lemma 2.2, one has u ∈ F1,q,T , with q = 3p
3−p , and by Lemma 3.7, we deduce

that for t ∈ [0, min{T, 1}]

t
1
2

(
‖u(t)‖∞ + ‖u(t)‖

C
2p−3

p

)
≤ Ct

1
2 ‖u(t)‖1,q ≤ C‖u(t)‖q + t

1
2 ‖∇u(t)‖q.

On the other hand, if t ∈ [min{T, 1}, T ], one has

t
1
2

(
‖u(t)‖∞ + ‖u(t)‖

C
2p−3

p

)
≤ Ct

1
2 ‖u(t)‖1,q ≤ CT

1
2

(
‖u(t)‖q + t

1
2 ‖∇u(t)‖q

)
.

Since ‖u(t)‖q + t
1
2 ‖∇u(t)‖q ≤ C|||w(t)|||1,p,T for all t ∈ [0, T ], the statement i) follows from

Theorem 3.2 i). Statement ii) is proved in a similarly way, noting that ∂u
∂xi

∈ F1,r,(T ;p) by
Lemma 2.3 and using Theorem 3.2 ii). Part iii) is immediate.

3.3 Proofs of the continuity properties of K and ∇K

We first recall some basic facts about Riesz potentials. Let 0 < α < 3 and f : R3 → R be
a measurable function. If well defined, the function Iα(f) given by

Iα(f)(x) =
∫

R3

f(y)
|x− y|3−α

dy, (35)

is called the Riesz potential of f (we omit the multiplicative constant usually appearing in
the definition of Iα).

Theorem 3.3 Let p ∈ [1, 3
α [ and 1

q = 1
p − α

3 . For every f ∈ Lp(R3), the integral (35)
converges absolutely for almost every x.
If further p ∈]1, 3

α [, then Iα(f) ∈ Lq(R3), and there exists a positive constant Cp,q such that

‖Iα(f)‖q ≤ Cp,q‖f‖p

for all f ∈ Lp(R3).

The proof can be found in Stein [29], Ch. 5. The same reference contains the proof of
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Lemma 3.8 Let γ(α) be the constant γ(α) := π
3
2 2αΓ(α

2 )
/
Γ(3−α

2 ). The following identities
hold in the distribution sense:

F(|x|−3+α)(ξ) = γ(α)(2π|ξ|)−α, (36)

and
F(Iα(g))(ξ) = γ(α)(2π|ξ|)−αF(g)(ξ), (37)

where F is the Fourier transform as defined in 1.1.

Proof of Lemma 2.2: Denote by Kj(x) the j-th component of the vector K(x), and
consider the operator

f 7→ Kj(f) =
∫

R3

Kj(· − y)f(y)dy (38)

acting on real valued functions f . Let i’) (resp. ii’)) be the analogous statement of i) (resp.
ii)) in the space Lp(R3) (resp. W 1,p(R3)) for the operator Kj instead of K. Clearly, it is
enough to prove i’) and ii’).
The proof of the statement i’) follows readily from Theorem 3.3 with α = 1. We now prove
ii’). By using i’), we just need to check that for all f ∈ W 1,p(R) the identity

∂

∂xk
Kj(f) = Kj

(
∂f

∂xk

)
(39)

holds in the distribution sense. Let us take f ∈ S. Since Kj(x) = − 1
4π

∂
∂xj

(
1
|x|

)
, it follows

from (37) with α = 2 that

F(Kj(f))(ξ) = c(2)F(f)(ξ)
ξj

|ξ|2 ∈ L2, F(Kj(
∂f

∂xk
))(ξ) = c(2)F(f)(ξ)

iξjξk

|ξ|2 ∈ L2,

for all k = 1, 2, 3 and a constant c(2) that can be explicited. On the other hand, one has
|F(Kj(f))(ξ)||ξ| ≤ C|F(f)(ξ)| ∈ L2, and then ∂

∂xk
Kj(f) is also in L2. Thus,

F
(

∂

∂xk
Kj(f)

)
(ξ) = iξkc(2)F(f)(ξ)

ξj

|ξ|2 ,

and we obtain the identity (39) in L2 for all f ∈ S. Now, from this and an integration by
parts in W 1,2, we conclude that

∫

R3

K
(

∂f

∂xk

)
(x)g(x)dx = −

∫

R3

K(f)(x)
∂g

∂xk
(x)dx

for all g ∈ S. By the continuity of Kj : Lp → Lq and the density of S in W 1,p, the previous
identity holds for arbitrary f ∈ W 1,p. This completes the proof.

To prove Lemma 2.3 we will use a result on singular integrals (proved in [29], Ch. 2.):

Theorem 3.4 Let κ : R3 → R be an homogeneous function of degree 0 such that

•
∫

S2

κ(x)dγ = 0, where γ is the Euclidean measure on the sphere S2, and

•
∫ 1

0

1
δ

sup
|x−y|≤δ
|x|=|y|=1

{|κ(x)− κ(y)|}dδ < ∞.
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Let p ∈]1,∞[ and f ∈ Lp, and consider for each x ∈ R3 the singular integral

H(f)(x) := lim
ε→0

∫

|x−y|>ε

κ(x− y)
|x− y|3 f(y)dy.

Then, the limit H(f) exists in Lp norm. Further, there exists a real positive constant Cp

depending only on p, such that
‖H(f)‖p ≤ Cp‖f‖p (40)

for all f ∈ Lp. Finally, if p = 2 one has the relation F(H(f))(ξ) = m(ξ)F(f)(ξ), where
m : R3 → R is a homogeneous function of degree 0.

Proof of Lemma 2.3: Notice that

∂Kj(x)
∂xj

=
κj(x)
|x|3 , and

∂Kj(x)
∂xk

=
κk,j(x)
|x|3 ,

where the functions κj(x) = − 1
4π

(
1− 3x2

j

|x|2

)
and κk,j(x) = 3xkxj

4π|x|2 satisfy the conditions of

Theorem 3.4 (cf.:
∑3

j=1 κj(x) = 0 and κk,j(x) is odd in each component of x). Thus, the
singular integrals

Hj(f)(x) = lim
ε→0

∫

|x−y|>ε

∂Kj(x− y)
∂xj

f(y)dy and Hk,j(f)(x) = lim
ε→0

∫

|x−y|>ε

∂Kj(x− y)
∂xk

f(y)dy

of real valued functions f define continuous linear operators Lp → Lp for 1 < p < ∞. If
f ∈ S, it follows as in the proof of Lemma 2.2 that

F(Hk,j(f))(ξ) = c(2)
iξjξk

|ξ|2 F(f)(ξ)

in L2, and then

Hk,j(f) =
∂

∂xk
Kj(f).

Using integration by parts, density, and the continuity of Hk,j we conclude that this holds
for all f ∈ Lp. The result for Hj is proved in exactly the same way.
The continuity estimate i) is now immediate thanks to Theorem 3.4. The estimate ii) is
proved in a similar way as Lemma 2.2 ii) by considering Fourier transforms (see also Lemma
2.2 in [13]).

4 The nonlinear martingale problem

We consider now a fixed time 0 < T < ∞ and we make the following assumption:

• w0 is a function in L1
3 ∩ Lp

3 for some 3
2 < p < 3.

In this section, we will identify the solution w of the mild vortex equation in F0,p,T , with a
flow of R3-valued vector measures associated with a generalized nonlinear diffusion of the
McKean-Vlasov type. Let us establish some notation required in the sequel:
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- We denote by P(CT ) the space of probability measures on CT = C([0, T ],R3×M3×3).

- For any element P ∈ P(CT ), we will write P ◦ for the first marginal P ◦ = P |C([0,T ],R3),
and P ′ for the second marginal P ′ = P |C([0,T ],M3×3).

- The canonical process in C([0, T ],R3 ×M3×3) will be denoted by (X, Φ).

- We use the notation Pb(CT ) for the subspace of P(CT ) of probability measures Q such
that the support of Q′ is bounded. (Equivalently, under each law Q ∈ Pb(CT ), the
process Φ is bounded independently of t and of the randomness.)

- By F0,p,T , F1,p,T , F0,r,(T ;p) and F1,r,(T ;p) we denote the subspaces of MT that are the
real-valued analogous of the spaces F defined in Section 3. We use the same notation
as therein for the norms.

We define now a “vectorial weight function” in terms of the initial condition w0, by setting

h0(x) := w0(x)
‖w0‖1

|w0(x)| (41)

(with the convention “0
0 = 0”). Observe that h0 takes values in the sphere ‖w0‖1 · S2 or 0.

With each Q ∈ Pb(CT ) we can associate a family of R3-valued vector measures (Q̃t)t∈[0,T ]

on R3, defined by
Q̃t(f) = EQ(f(Xt)Φth0(X0)), (42)

for all f ∈ D3. Since Φ is bounded, the vector measure Q̃t is absolutely continuous with
respect to Q◦

t , with density given by

hQ
t (x) :=

dQ̃t

dQ◦
t

(x) = EQ(Φth0(X0)|Xt = x), (43)

and its total mass is bounded by ‖w0‖1( sup
φ∈supp(Q′)

sup
t∈[0,T ]

|φt|).

Notice that (t, x) 7→ hQ
t (x) is measurable. With the notation (43), we can rewrite (42) as

Q̃t(f) = EQ(f(Xt)h
Q
t (Xt)). (44)

Thus, we can think of hQ
t (x) as a bounded vectorial weight found at position x at time t.

If now P ∈ Pb(CT ) is such that for each t the probability measure P ◦
t is absolutely continuous

with respect to Lebesgue’s measure, then the same holds for the vector measure P̃t. In
that case, and if ρ : [0, T ] × R3 → R is the family of densities of P ◦

t , we will denote by
ρ̃ : [0, T ] × R3 → R3 the family of densities of P̃t (taking always bi-measurable versions of
both of them if they exist). We stress the fact that ρ̃t is defined in terms of the joint law
of (X0, Xt,Φt).

We will study the following nonlinear martingale problem: to find P ∈ Pb(CT ) such that

• P ◦|t=0(dx) = |w0(x)|
‖w0‖1 dx and for all 0 ≤ t ≤ T, P ◦

t (dx) = ρt(x)dx and P̃t(dx) = ρ̃t(x)dx.

• f(t,Xt)− f(0, X0)−
∫ t
0

[
∂f
∂s (s,Xs) + ν4f(s, Xs)ds + K(ρ̃)(s, Xs)∇f(s,Xs)

]
ds,

0 ≤ t ≤ T, is a continuous P ◦-martingale for all f ∈ C1,2
b ;

• Φt = Id3×3 +
∫ t
0 ∇K(ρ̃)(s,Xs)Φs ds, for all 0 ≤ t ≤ T, P almost surely.

(45)
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To state our the main result on the probabilistic interpretation of the vortex equation, we
need

Definition 4.1 We define PT
3
2
,b,0

as the space of probability measures P ∈ Pb(CT ) satisfying
the following conditions:

• For each t ∈ [0, T ], the time marginal P ◦
t is absolutely continuous with respect to

the Lebesgue measure, with a bi-measurable family of densities (t, x) 7→ ρ(t, x) that
belongs to the space F0,p,T for some 3

2 < p < 3.

• For all t ∈ [0, T ], the condition div ρ̃t = 0 holds.

Theorem 4.1 Assume that w0 ∈ L1
3∩Lp

3 for some p ∈]32 , 3[. For every T > 0, the nonlinear
martingale problem (45) has at most one solution P in the class PT

3
2
,b,0

.

Further, there exists a solution P in PT
3
2
,b,0

such that P ◦ has a density family ρ ∈ F0,p,T , if

and only if there exists in F0,p,T a solution w of the mild equation (10) with initial condition
w0. In that case, for all t ∈ [0, T ] one has the relations

w(t, x) = ρ̃(t, x), ρ(t, x)
∣∣∣∣EP (Φth0(X0)|Xt = x)

∣∣∣∣ = |w(t, x)|,

and for all 1 ≤ r ≤ p and p ≤ r′ < ∞, it holds that ρ ∈ F0,r,T ∩ F1,r′,(T ;p).

If Γ0(p) is the constant of Theorem 3.1, we immediately deduce

Corollary 4.1 If w0 ∈ L1
3 ∩ Lp

3 for some p ∈]32 , 3[ and T
1− 3

2p ‖w0‖p < 1
Γ0(p) , then the

problem (45) has a unique solution in PT
3
2
,b,0

.

The proof of Theorem 4.1 will be done in several steps. First of all, we shall dwell upon
the properties of the evolution equation satisfied by the densities ρ of the marginal P ◦ of a
given solution P . The study of this equation will provide a priori regularity estimates for
the drift term K(ρ̃) in (45).

4.1 A nonlinear Fokker-Planck equation associated with the vortex equa-
tion

Assume for a while that (45) has a solution P ∈ Pb(CT ) with densities ρ ∈MesT . Assume
furthermore that ∫ T

0

∫

R3

|K(ρ̃)(t, x)|ρ(t, x) dxdt < ∞ (46)

(which is a minimal condition ensuring that
∫ t
0 K(ρ̃)(s,Xs)ds has finite variation). Then, by

applying Itô’s formula to f(t,Xt) for an arbitrary function f ∈ C1,2
b and taking expectations,

we deduce that the couple (ρ, ρ̃) satisfies the weak evolution equation:

∫

R3

f(t, y)ρ(t, y)dy =
∫

R3

f(0, y)ρ0(y)dy

+
∫ t

0

∫

R3

[
∂f

∂s
(s, y) + ν4f(s, y) + K(ρ̃)(s, y)∇f(s, y)

]
ρ(s, y) dy ds, (47)
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where ρ0(x) = |w0(x)|
‖w0‖1 dx. Observe that by (44), one has

ρ̃t(x) = hP
t (x)ρt(x).

If P is fixed, the function hP is also fixed, and (47) is a nonlinear Fokker-Planck equation
for the unknown ρ, which can be treated to a large extent as a scalar of analog vortex
equation. To obtain its mild form, we fix ψ ∈ D and t ∈ [0, T ] and take in (47) the function
ft : [0, t] × R3 → R3 given by ft(s, y) = Gν

t−s ∗ ψ(y), which is of class C1,2
b , and solves the

backward heat equation on [0, t] × R3 with final condition f(t, y) = ψ(y). By Lemma 3.1
and condition (46), it is easily checked that

∫ t

0

∫

(R3)2

3∑

j=1

∣∣∣∣
∂Gν

t−s

∂yj
(x− y)

∣∣∣∣ |K(ρ̃)j(s, y)||ψ(x)|ρ(s, y)dx dy ds < ∞,

and by Fubini’s theorem we deduce that

ρ(t, x) = Gν
t ∗ ρ0(x) +

∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)K(hρ)j(s, y)ρ(s, y) dy ds (48)

for all t ∈ [0, T ], where h = hP and hρ stands for the function hρ(t, x) = ht(x)ρt(x).

We will now study some of the analytical properties of equation (48) in a more general
situation. Namely, we assume that h : [0, T ]×R3 → R3 is a fixed but arbitrary function of
class L∞([0, T ], L∞3 ), and define for ρ, η ∈MesT a function bh(ρ, η) : [0, T ]× R3 → R3 by

bh(ρ, η)(t, x) =
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)K(hη)j(s, y)ρ(s, y)dy ds.

The next observation will be important:

Remark 4.1 For each p ∈ [1,∞] (resp. each p ∈ [1,∞] and r ≥ p), the mapping η 7→ hη
is continuous from F0,p,T to F0,p,T (resp. from F0,r,(T ;p) to F0,r,(T ;p)).

Thus, the following continuity properties of bh can be proved in exactly the same way as
Proposition 3.1 i) and ii):

Lemma 4.1 Let p, p′ ∈ [1,∞]. Then, bh : (F, ||| · |||)2 → (F ′, ||| · |||′) is well defined and
continuous whenever

i) 3
2 ≤ p < 3, 3p

6−p ≤ p′ < 3p
6−2p , F = F0,p,T and F ′ = F0,p′,T .

ii) 3
2 ≤ p < 3, p ≤ r < 3, 3r

6−r ≤ r′ < 3r
6−2r , F = F0,r,(T ;p) and F ′ = F0,r′,(T ;p).

Write now
γ0(t, x) := Gν

t ∗ ρ0(x) = Gν
t ∗

|w0|
‖w0‖1

(x). (49)

Since w0 ∈ Lp
3, Lemma 3.1 and Young’s inequality imply that γ0 ∈ F0,r,(T ;p) for all r ≥ p.

This and the previous lemma give sense to the abstract equation

ρ = γ0 + bh(ρ, ρ) (50)

in F0,p,T if 3
2 < p < 3, and (48) is equivalent to (50) in that space.

As we did before in the case of the vortex equation (10), we deduce now some additional
properties for (48):
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Lemma 4.2 Assume that w0 ∈ Lp
3, with 3

2 < p < 3.

i) For all T > 0 and every fixed h ∈ L∞([0, T ], L∞3 ) the nonlinear Fokker-Planck equa-
tion (48) has at most one solution ρ in F0,p,T .

ii) If ρ ∈ F0,p,T is a solution of (48), then ρ ∈ F0,r,(T ;p) and |||ρ|||0,r,(T ;p) ≤ C(T, p, r, |||ρ|||0,p,T )
for all p ≤ r < ∞.

iii) We deduce that ρ̃ = hρ satisfies ρ̃ ∈ F0,r,(T ;p) and |||ρ̃|||0,r,(T ;p) ≤ C̃(T, h, p, r, |||ρ̃|||0,p,T )
for all p ≤ r < ∞.

Proof: i) is proved in the same way as Theorem 3.1 a). The proof of ii) can be adapted
from the proof of Theorem 3.2 ii), reasoning in the spaces F0,r;(T,p) instead of the spaces
F1,r,(T ;p), and using Lemma 4.1 and Remark 4.1. Part iii) is clear from ii) and Remark 4.1.

We can now prove a priori regularity estimates for ρ, ρ̃ and the drift term K(ρ̃) of (45):

Proposition 4.1 Assume that P is a solution of (45) in the class PT
3
2
,b,0

with densities

ρ ∈ F0,p,T and 3
2 < p < 3, and write 1

q = 1
p − 1

3 . Then, the following hold:

i) ρ̃ ∈ F0,r,(T ;p) for all r ∈ [p,∞[ and K(ρ̃) ∈ F1,l,(T ;q) for all l ∈ [q,∞[.

ii) ρ ∈ F1,r,(T ;p) for all r ∈ [p,∞[.

Proof : i) First notice that ρ belongs to F0, 3
2
,T by inequality (30) since ρ ∈ F0,1,T ∩F0,p,T .

Thus, (46) holds by Remark 4.1 and Lemma 2.2 i). We deduce that ρ ∈ F0,p,T solves the
mild Fokker-Planck equation (48).
If we take l ≥ q and define r := (1

l + 1
3)−1, then one has r ≥ p, and so Lemma 4.2 iii) and

Lemma 2.2 i) imply that
sup

t∈[0,T ]
t

3
2
( 1

p
− 1

r
)‖K(ρ̃(t))‖l < ∞.

As 1
p − 1

r = 1
q − 1

l , this means that K(ρ̃) ∈ F0,l,(T ;q).
We next check that K(ρ̃) ∈ F1,l,(T ;q). From the fact that ρ̃ ∈ F0,l,(T ;p) holds in particular
for all l ≥ q, we get from Lemma 2.3 i) that ∂K(ρ̃)

∂xk
∈ F0,l,(T ;p) for all k = 1, 2, 3. Therefore

sup
t∈[0,T ]

t
3
2
( 1

p
− 1

l
)

∥∥∥∥
∂K(ρ̃)
∂xk

∥∥∥∥
l

< ∞.

Since 3
2(1

p − 1
l ) = 1

2 + 3
2(1

q − 1
l ), we conclude that K(ρ̃) ∈ F1,l,(T ;q).

ii) We claim that for each p ≤ r < ∞, the linear operator (with ρ fixed) defined by

η(t, x) 7→ bh(η, ρ)(t, x) =
∫ t

0

3∑

j=1

∫

R3

∂Gt−s

∂yj
(x− y)K(ρ̃)j(s, y)η(s, y)dy ds.

is continuous from F1,r,(T ;p) to F1,r′,(T ;p), where r and r′ satisfy the same constraints as
in Lemma 4.1. The proof of this fact is similar as in Lemma 4.1, taking therein p = p′
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and leaving one of the arguments in the bilinear function bh fixed and equal to ρ. (More
precisely, the norm |||bh(ρ, η)|||1,(p;r′),T can be bounded by certain constant times the product
|||η|||1,r,(T ;p)|||K(ρ̃)|||1,l,(T ;q), with l satisfying 1

l − 1
r = 1

q − 1
p = −1

3 .)
Notice that the norm of bh(ρ, ·) : F1,r,(T ;p) → F1,r′,(T ;p) has the same dependence on T as
the functional B has in Proposition 3.1 i) and ii). Thus, by Banach’s fixed point theorem
applied to η 7→ γ0 + bh(ρ, η), we have a local existence result in F1,r,(T ′;p) for some positive
T ′ (possibly smaller than T ) for the linear equation

η = γ0 + bh(ρ, η). (51)

Using this and uniqueness for (51) in F0,p,T , together with the fact that u ∈ F1,q,T , we
can adapt the arguments of Theorem 3.2 i) to the linear equation (51) to show that any
solution η ∈ F0,p,T belongs to F1,p,T . By following then the proof of Theorem 3.2 ii), we
prove that η ∈ F1,r,(T ;p) for all r ∈ [p,∞[. Since η = ρ is a solution of (51), the statement
follows.

A straightforward consequence is the regularity of the process Φ in (45):

Corollary 4.2 Assume that P is a solution of (45) in the class PT
3
2
,b,0

. Then, under P , the
process Φ is continuous and with finite variation. We deduce that the associated function
ρ̃ is a weak solution of the vortex equation with initial condition w0.

Proof: Since condition (46) holds, the process f(t,Xt) is a semi-martingale under P for
any f ∈ C1,2

b,3 . On the other hand, from Lemma 4.2 iii) with r = 3 and Lemma 2.3 i) we
get that ∫ T

0

∫

R3

|∇K(ρ̃)(t, x)|ρ(t, x) dxdt < ∞. (52)

As the process Φ is bounded under P , the equation verified by Φ in (45), together with
(52) imply that t 7→ Φt has finite variation.
We can thus apply Itô’s formula to the product f(t,Xt)Φt and see that

f(t, Xt)Φt − f(0, X0)−
∫ t

0

[
∂f
∂s

(s,Xs) + ν4f(s, Xs)+

K(ρ̃)(s,Xs)∇f(s,Xs) + f(s,Xs)∇K(ρ̃)(s,Xs)
]
Φs ds

is a martingale for all f ∈ C1,2
b,3 . By multiplying the previous equation by h0(X0) and taking

expectations, we conclude from the definition of P̃s and Fubini’s theorem (thanks also to
(46) and (52)), that ρ̃ is a solution of the weak vortex equation (12).

Remark 4.2 We have not used the fact that ∇ρ̃t = 0 to establish any of the previous
results. This condition will allow us to conclude that ρ̃ is a mild solution of the vortex
equation, and this will provide the additional regularity for the function ∇K(ρ̃) required to
prove that (45) is well posed.
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4.2 Existence

In this section we will assume that

• p ∈]32 , 3[ and w ∈ F0,p,T is a given solution of the mild equation (10) defined in some
time interval [0, T ].

• w(0) = w0 ∈ L1
3.

We will associate with w a solution P of the martingale problem (45) in the class PT
3
2
,b,0

,

and such that the corresponding flow ρ̃ of vector measures defined as in (42) satisfies ρ̃ = w.

By Corollary 3.1, the drift term K(w)(t) and its gradient ∇K(w)(t) are continuous and
bounded functions on x for each t ∈]0, T ], and with singularities in L∞ and Hölder norm
at time t = 0. To construct the probability measure P , we will follow a similar strategy as
in [13] by an approximation argument by suitable processes involving regularized kernels
instead of K. The additional difficulty here is that we have to approximate simultaneously
both processes X and Φ, and therefore to take care of both drift terms K(w)(s,Xs) and
∇K(w)(s,Xs)Φs.

Consider ϕε : R3 → R a regular approximation of the Dirac mass, that is, ϕε(x) = 1
ε3 ϕ(x

ε )
for all x and ε > 0, with ϕ : R3 → R a positive function in S such that

∫
R3 ϕ(x)dx = 1. We

define regularized kernels Kε = ϕε ∗K, and associated mollified operators Kε by

Kε(w)(x) :=
∫

R3

Kε(x− y) ∧ w(y)dy

The following are key remarks:

Remark 4.3 If w ∈ Lr
3 for some r ∈]1, 3[, then

Kε(w) = K(ϕε ∗ w).

This is easily seen first for w ∈ D3 by taking Fourier transforms, and then for general
w ∈ Lr

3 by density and Lemma 2.2 i). By similar reasons (using Lemma 2.3 i)), one has
for all r ∈]1,∞[ and w ∈ Lr

3 that

∇Kε(w) = ∇K(ϕε ∗ w).

In particular, the continuity estimates of Lemmas 2.2 and 2.3 hold true (with the same
constants as therein) for each of the operators Kε.

Remark 4.4 We also deduce that Kε(w) converges in Ll
3 to K(w), for all r ∈]1, 3[ and

1
l = 1

r − 1
3 , and that ∂Kε(w)

∂xk
converges in Lr

3 to ∂K(w)
∂xk

for all r ∈]1,∞[ and k = 1, 2, 3.

Let (εn) be a sequence converging to 0, and take in a fixed probability space a standard
three dimensional Brownian motion B, and a R3-valued r.v. X0 independent of B with law

ρ0(x)dx :=
|w0(x)|
‖w0‖1

dx.

Consider moreover the following family of linear stochastic differential equations:

ξ
(n)
t (x) = x +

√
2νBt +

∫ t

0
Kεn(w)(s, ξ(n)

t (x))ds, t ∈ [0, T ]. (53)

We have
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Lemma 4.3 The function (s, y) 7→ Kε(w)(s, y) is bounded and continuous on [0, T ]×R3,
and infinitely many times differentiable on y ∈ R3, with uniformly bounded and continuous
derivatives on [0, T ]× R3.

Proof: The kernel Kε belongs to S, and t ∈ [0, T ] 7→ w(t) ∈ L1
3 is continuous by Theorem

3.2 iii). We have

|Kε(w)(t, x)−Kε(w)(s, y)| ≤ |Kε(w)(t, y)−Kε(w)(t, z)| ≤ C̃(w, ε)|y − z|
+

∫

R3

|w(t, z)−w(s, z)||Kε(z − y)|dz,

for constant C̃(w, ε) a depending on |||w|||0,1,T and on Kε. The continuity of Kε(w) follows
from these considerations, and for the derivatives the proof is similar using the derivatives
of Kε.

Therefore, equation (53) has a unique trajectorial solution for each x, and we can further
take a version of the process (t, x) 7→ ξ

(n)
t (x) that is continuously differentiable in x for all t,

and with continuous derivative ∇ξ
(n)
t (x) (see Kunita [19] Ch.2). For each x, t 7→ ∇ξ

(n)
t (x)

is the solution of the ordinary differential equation in M3×3

∇ξ
(n)
t (x) = Id +

∫ t

0
∇Kεn(w)(s, ξ(n)

s (x))∇ξ(n)
s (x)ds, t ∈ [0, T ].

We will denote by (X(n),Φ(n)) the couple of processes defined on [0, T ] by

X
(n)
t := ξ

(n)
t (X0), and Φ(n)

t = ∇ξ
(n)
t (X0),

so that

X
(n)
t = X0 +

√
2νBt +

∫ t

0
Kεn(w)(s, X(n)

s )ds

Φ(n)
t = Id +

∫ t

0
∇Kεn(w)(s,X(n)

s )Φ(n)
s ds

(54)

The law of (X(n),Φ(n)) clearly belongs to Pb(CT ) and will be denoted by Q(n). Moreover,
since the drift term in the first equation in (54) is bounded, (Q(n))◦t has a density with
respect to Lebesgue’s measure. For each n ∈ N, there exists a bi-measurable version of
(t, x) 7→ ρ(n)(t, x) of the densities of (Q(n))◦t (see [26], p. 194), and thus, a bi-measurable
version (t, x) 7→ ρ̃(n)(t, x) of the densities of Q̃

(n)
t .

In what follows, we will prove that the sequence Q(n) is uniformly tight and that its accu-
mulation points are solutions of (45). A first step is to prove the convergence, in a strong
enough sense, of the one dimensional time marginals. We need an auxiliary regularity re-
sult, that will allow us to identify weak and mild solutions of the linear equation satisfied
by ρ̃(n). This result is proved in Section 4.5.

Lemma 4.4 Consider τ > 0, and let v : [0, τ ]×R3 → R3 be a bounded continuous function,
with bounded continuous derivatives up to the third order in the space variable x ∈ R3, which
are Hölder continuous in x, uniformly in (t, x) ∈ [0, τ ]× R3.
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Let φ ∈ D. Then, the unique solution g of the backward Cauchy problem

∂
∂sg(s, y) + ν∆g(s, y) + v(s, y)∇g(s, y) = 0, (s, y) ∈ [0, τ ]× R3,

g(τ, y) = φ(y).
(55)

is of class C1,3
b on [0, τ ]× R3.

Lemma 4.5 For all t ∈ [0, T ] and n ∈ N, we have ρ̃(n)(t) ∈ Lp
3, ρ(n)(t) ∈ Lp , and

sup
n∈N

|||ρ̃(n)|||0,p,T < ∞, sup
n∈N

|||ρ(n)|||0,p,T < ∞. (56)

Moreover, ρ̃(n)(t) converges to w(t) in Lp
3 for each t ∈ [0, T ], and in L1([0, T ], Lp

3). Sim-
ilarly, ρ(n)(t) converges to ρ(t) in Lp for each t ∈ [0, T ], and in L1([0, T ], Lp), ρ being a
solution of the linear equation

ρ(t, x) = Gν
t ∗ ρ0(x) +

∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)K(w)j(s, y)ρ(s, y) dy ds (57)

for all t ∈ [0, T ].

Proof : By writing Itô’s formula for the product f(t,X(n)
t )Φ(n)

t for an arbitrary function
f ∈ (C1,2

b )3([0, T ],R3), and taking expectations after multiplying by h0(X0), we see that
ρ̃(n)(t) is a solution of the following weak equation
∫

R3

f(t, y)ρ̃(n)(t, y)dy =
∫

R3

f(0, y)w0(y)dy +
∫ t

0

∫

R3

[
∂f
∂s

(s, y) + ν4f(s, y)

+ Kεn(w)(s, y)∇f(s, y) + f(s, y)∇Kεn(w)(s, y)
]
ρ̃(n)(s, y) dy ds.

(58)

Hence, by similar arguments as in Lemma 2.1, the function ρ̃(n) solves the linear equation

ρ̃(n)(t, x) = Gν
t ∗ w0(x) +

∫ t

0

3∑

j=1

∫

R3

[
∂Gν

t−s

∂yj
(x− y)[Kεn(w)j(s, y)ρ̃(n)(s, y)]

+ Gν
t−s(x− y)[ρ̃(n)

j (s, y)
∂Kεn(w)

∂yj
(s, y)]

]
dy ds.

(59)

We will prove that ρ̃(n) also solves the linear mild equation

ρ̃(n)(t, x) =
∫

R3

Gν
t (x− y)w0(y)dy

+
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)

[
Kεn(w)j(s, y)ρ̃(n)(s, y)− ρ̃

(n)
j (s, y)Kεn(w)(s, y)

]
dy ds.

(60)
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To that end, we first check that ρ̃(n)(s) has null divergence in the distribution sense. By
Lemma 4.3 and Lemma 4.4, for each φ ∈ D and t ∈]0, T [, the backward Cauchy problem

∂
∂sg(s, y) + ν∆g(s, y) + Kεn(w)(s, y)∇g(s, y) = 0, (s, y) ∈ [0, t[×R3,

g(t, y) = φ(y),
(61)

has a unique solution g which is of class C1,3
b on [0, t]× R3.

We can therefore plug the function f = ∇g in (58), and after simple computations obtain
∫

R3

∇φ(y)ρ̃(n)(t, y)dy =
∫ t

0

∫

R3

∇
[
∂g

∂s
(s, y) + ν4g(s, y) + Kεn(w)(s, y)∇g(s, y)

]
ρ̃(n)(s, y) dy ds

= 0
(62)

for all φ ∈ D and t ∈ [0, T ]. Thus, div ρ̃(n) = 0.

Next, we claim that ρ̃(n)(t) belongs to Lp
3 for all t ∈ [0, T ]. To verify this, notice that

the integral in the l.h.s of (59) belongs to F0,r′,T if ρ̃(n) ∈ F0,r,T and r′ ∈ [r, 3r
3−r [ for given

r ∈ [1, 3
2 [. This is seen by using Young’s inequality, and the facts that ‖Gν

t−s‖m, ‖∇Gν
t−s‖m ∈

L1([0, t], ds) for m ∈ [1, 3
2 [, and that Kεn(w) and its gradient are bounded functions.

Then, using moreover the fact that w0 ∈ F0,r,T for all r ∈ [1, p] we state inductively that
ρ̃(n) ∈ F0,rk,T for a finite sequence rk, k = 0, · · · , N , such that r0 = 1, rk+1 ∈ [rk,

3rk
3−rk

[ and
rN = p, and our claim is proved.
From the latter and (62) we deduce that

∫
R3 ∇φ(y)ρ̃(n)(t, y)dy = 0 for all φ ∈ W 1,p∗ , and

from (59) and the fact Gν
t−s(x− ·)Kεn(w)(s, ·) ∈ W 1,p∗

3 , we conclude that ρ̃(n) solves (60).

We will now derive an upper bound for |||ρ̃(n)|||0,p,T independent of n.
Let us take Lp

3 norm in (60). By standard arguments (as in Proposition 3.1 i)), and using
Lemma 2.2 and Remark 4.3, it follows that

‖ρ̃(n)(t)‖p ≤ |||w0|||0,p,T + C|||w|||0,p,T

∫ t

0
(t− s)−

3
2p ‖ρ̃(n)(s)‖p ds.

Iterating this inequality N(p) times, with N(p) the first integer for which 2N (1− 3
2p) > 0,

we deduce that

‖ρ̃(n)(t)‖p ≤ C + C ′
∫ t

0
‖ρ̃(n)(s)‖p ds,

with constants independent of n, and we conclude by Gronwall’s lemma.
The same arguments establish the corresponding results for the functions ρ(n), starting this
time from the fact that ρ(n) solves the linear equation

ρ(n)(t, x) = Gν
t ∗ ρ0(x) +

∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)Kεn(w)j(s, y)ρ(n)(s, y) dy ds, (63)

which is seen by similar arguments as in Section 4.1.
Now we prove the asserted convergence for ρ̃(n). By taking the Lp

3 norm to the difference
w(t)− ρ̃(n)(t) and proceeding as above, it is seen that

‖ρ̃(n)(t)−w(t)‖p ≤C

∫ t

0
(t− s)−

3
2p ‖Kεn(w)(s)−K(w)(s)‖q ds

+ C

∫ t

0
(t− s)−

3
2p ‖ρ̃(n)(s)−w(s)‖p ds.
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We have also used here the estimates (56). Writing θ0 = 1− 3
2p and using induction, we get

‖ρ̃(n)(t)−w(t)‖p ≤C

∫ t

0

N∑

k=1

(t− s)kθ0−1 ‖Kεn(w)(s)−K(w)(s)‖q ds

+ C

∫ t

0
(t− s)Nθ0−1 ‖ρ̃(n)(s)−w(s)‖p ds.

The identity
∫ t
0 (t − s)θ−1

∫ s
0 (s − r)ε−1dr ds = β(θ, ε)

∫ t
0 (t − s)θ+ε−1ds for all θ, ε > 0 has

also been used. Thus, taking a fixed N = Ñ(p) such that = Ñ(p) > θ−1
0 , yields

‖ρ̃(n)(t)−w(t)‖p ≤C

∫ t

0
α(t− s) ‖Kεn(w)(s)−K(w)(s)‖q ds

+ C(T )
∫ t

0
‖ρ̃(n)(s)−w(s)‖p ds,

(64)

with α(s) =
∑Ñ(p)

k=1 skθ0−1. Integrating now between 0 and τ ∈ [0, T ] gives

∫ τ

0
‖ρ̃(n)(t)−w(t)‖pdt ≤C

∫ T

0

∫ t

0
α(t− s) ‖Kεn(w)(s)−K(w)(s)‖q ds dt

+ C

∫ τ

0

∫ t

0
‖ρ̃(n)(s)−w(s)‖p ds dt,

and by Gronwall’s lemma,
∫ τ

0
‖ρ̃(n)(t)−w(t)‖pdt ≤ C

∫ T

0

∫ t

0
α(t− s) ‖Kεn(w)(s)−K(w)(s)‖q ds dt.

Thanks to the Remark 4.4, the right hand side converges to 0 by a double application of
Lebesgue’s theorem. Taking τ = T gives us the convergence in L1([0, T ], Lp

3), and point-wise
convergence in Lp

3 on [0, T ] follows then from (64).

Repeating this reasoning with the difference ρ(m)(t)− ρ(n)(t), n,m ∈ N, shows that ρ(n) is
Cauchy in L1([0, T ], Lp), and that ρ(n)(t) is also Cauchy in Lp, ∀t ∈ [0, T ]. Consequently,
there is point-wise convergence of ρ(n) in Lp on the interval [0, T ] to a limit ρ ∈ L1([0, T ], Lp).
Estimate (56) implies that ρ ∈ F0,p,T , and using the fact that

∥∥∥∥∥∥

∫ t

0

3∑

j=1

∫
∂Gν

t−s

∂yj
(x− y)

(
ρ(n)(s, y) Kεn(w)(s, y)− ρ(s, y) K(w)(s, y)

)
dy ds

∥∥∥∥∥∥
p

is bounded above by C
∫ t
0 (t−s)−

3
2p

[‖ρ(n)(s)− ρ(s)‖p + ‖Kεn(w)(s)−K(w)(s)‖q

]
ds (which

goes to 0 as n →∞), we pass to the limit on n in equation (63) to conclude that ρ solves
(57). This completes the proof of the lemma.

Next step is to prove tightness of the sequence Q(n). We will use the following version of
Gronwall’s lemma:
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Lemma 4.6 Let g : [0, T ] →]0,∞[ be a bounded function satisfying

g(t) ≤ C +
∫ t

0
g(s)k(s)ds

for all t ∈ [0, T ], where k : [0, T ] →]0,∞[ is a positive function such that
∫ T
0 k(s)ds < ∞.

Then, for all t ∈ [0, T ],

g(t) ≤ C exp
∫ T

0
k(s)ds.

Lemma 4.7 The sequence (Q(n), n ∈ N) is tight.

Proof: It is enough to prove that each of the two sequences of process X(n) and Φ(n) have
laws that are uniformly tight in n. We will use Aldous’ criterion for both of them.
Let Rn, Sn be stopping times in the filtration of (X(n), Φ(n)) such that 0 ≤ Rn ≤ Sn ≤ T
and Sn−Rn ≤ ∆. Thanks to Remark 4.3, Lemma 2.2 ii), Lemma 3.7 i), and the arguments
of Corollary 3.1, we have
∫ Sn

Rn

|K(εn)(w)(t,X(n)
t )|dt ≤ C

∫ Sn

Rn

t−
1
2 |||K(εn)(w)|||1,q,T dt ≤ C

(
S

1
2
n −R

1
2
n

)
|||w|||1,p,T ≤ C∆

1
2 ,

and the criterion applies.
Consider now the processes Φ(n). Since Kεn(w)(t) is bounded, each process Φ(n) is bounded
on [0, T ]. On the other hand, by Remark 4.3, Lemmas 2.3 ii) and Lemma 3.7 ii), we have

∥∥∥∥∥
∂K(εn)(w)(t)

∂xk

∥∥∥∥∥
∞
≤ Ct

− 1
2
− 3

2
( 1

p
− 1

r
)|||w|||1,r,(T ;p) (65)

for all r ∈]3, 3p
3−p [ and k = 1, 2, 3. From this and Lemma 4.6 we deduce that

|Φ(n)
t | ≤ exp

(
CT

1
2
− 3

2
( 1

p
− 1

r
)|||w|||1,r,(T ;p)

)
(66)

for all t ∈ [0, T ] and a constant C > 0 which does not depend on n. Let now Rn, Sn be
stopping times as before, and fix r ∈]3, 3p

3−p [. By using (65) and (66) we establish that

∫ Sn

Rn

|∇K(εn)(w)(t,X(n)
t )||Φ(n)

t |dt ≤ C(R
1
2
− 3

2
( 1

p
− 1

r
)

n − S
1
2
− 3

2
( 1

p
− 1

r
)

n ) ≤ C∆
1
2
− 3

2
( 1

p
− 1

r
)

for a constant C > 0 not depending on n, and the result follows since 1
2 − 3

2(1
p − 1

r ) > 0.

We can now prove

Proposition 4.2 Every accumulation point of the sequence Q(n) is a solution of the mar-
tingale problem (45) in the class PT

3
2
,b,0

.

Proof : Denote by P the limit of a convergent subsequence renamed Q(n). From the
weak convergence (Q(n))◦t → P ◦

t and Lemma 4.5, we deduce that P ◦
t (dx) = ρ(t, x)dx for all

t ∈ [0, T ], with ρ ∈ F0,p,T the unique solution of (57).
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Now we take f ∈ C1,2
b , 0 ≤ s1 ≤ · · · ≤ sm ≤ s < t ≤ T and λ : Rm → R a continuous

bounded function. We will first show that

EP

[(∫ t

s

{
∂f

∂τ
(τ, Xτ ) + ν∆f(τ, Xτ ) + K(w)(τ, Xτ )∇f(τ, Xτ )

}
dτ + f(t,Xt)− f(s, Xs)

)

× λ(Xs1 , . . . , Xsm)
]

= 0, (67)

and that

EP

[∣∣∣∣Φt − Id−
∫ t

0
∇K(w)(τ,Xτ )Φτdτ

∣∣∣∣
]

= 0, (68)

with (X, Φ) the canonical process and w ∈ F0,p,T the solution of (10) we are given. Notice
that the result will follow from (67) and (68) by proving that the density family ρ̃ of P̃ is
equal to w.
Define a function κ : C([0, T ],R) → R by

κ(ξ) =
( ∫ t

s

{
∂f

∂τ
(τ, ξ(τ)) + ν∆f(τ, ξ(τ)) + K(w)(τ, ξ(τ))∇f(τ, ξ(τ))

}
dτ

+ f(t, ξ(t))− f(s, ξ(s))
)
× λ(ξ(s1), . . . , ξ(sm)) (69)

We now check that it is continuous and bounded. From Corollary 3.1 i) we see that
∫ t

s
|K(w)(τ, ξ(τ))∇f(τ, ξ(τ))| dτ ≤ C(T )‖∇f‖∞|||w|||0,p,T and

|K(w)(τ, x)−K(w)(τ, y)| ≤ Cτ−
1
2 |x− y| 2p−3

p |||w|||0,p,T , ∀x, y ∈ R3.

Thus,
∫ t

s
|K(w)(τ, ξ1(τ))∇f(τ, ξ1(τ))−K(w)(τ, ξ2(τ))∇f(τ, ξ2(τ))| dτ

≤ C(T )‖∇f‖∞‖ξ1 − ξ2‖
2p−3

p∞ |||w|||0,p,T + C ′(T )‖∆f‖∞‖ξ1 − ξ2‖∞|||w|||0,p,T ,

for all ξ1, ξ2 ∈ C([0, T ],R). It follows that the mapping ξ 7→ ∫ t
s K(w)(τ, ξ(τ))∇f(τ, ξ(τ)) dτ

is continuous and bounded on C([0, T ],R), and then the same holds for κ.
Therefore, we have EQ(n)

(κ(X)) → EP (κ(X)) as n →∞. Now, from (54) and the definition
of Q(n), it follows that

EQ(n)

[(∫ t

s

{
∂f

∂τ
(τ, Xτ )+ν∆f(τ, Xτ )+Kεn(w)(τ, Xτ )∇f(τ, Xτ )

}
dτ+f(t, Xt)−f(s,Xs)

)

× λ(Xs1 , . . . , Xsm)
]

= 0,

and then

EQ(n)
(κ(X)) = EQ(n)

[ ∫ t

s

(
K(w)(τ, Xτ )∇f(τ, Xτ )−K(εn)(w)(τ, Xτ )∇f(τ, Xτ )

)
dτ

× λ(Xs1 , . . . , Xsm)
]
.
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As ρ(n)(t) is a probability density and q∗ = 3p
4p−3 < 3

2 < p, we have

sup
k∈N

|||ρ(k)|||0,q∗,T < ∞

thanks to the estimate (56) for ρ(n). It follows that

∣∣∣EQ(n)
(κ(X))

∣∣∣ ≤ CEQ(n)

[ ∫ t

s

∣∣∣K(εn)(w)(τ,Xτ )−K(w)(τ,Xτ )
∣∣∣ dτ

]

≤ C sup
k∈N

|||ρ(k)|||0,q∗,T
∫ T

0

∥∥∥K(εn)(w)(τ)−K(w)(τ)
∥∥∥

q
dτ,

and by Remark 4.4, we conclude that EQ(n)
(κ(X)) → 0. This proves (67).

We next prove (68). Consider an arbitrary continuous truncation function on matrices
χR : M3×3 →M3×3, with R > 0, such that |χR(z)| ≤ R for all z ∈M3×3.
By (66) there exists a constant R = Rw independent of n such that supt∈[0,T ] |Φ(n)| ≤ Rw

for all n ∈ N. We will check that the function ζ : C([0, T ],R3)×C([0, T ],M3×3) → R given
by

ζ(ξ, z) :=
∣∣∣∣χRw(zt)− Id−

∫ t

0
∇K(w)(τ, ξ(τ))χRw(zτ )dτ

∣∣∣∣ (70)

is bounded and continuous. To that end, it is enough to state that the mapping (ξ, z) 7→∫ t
0 ∇K(w)(τ, ξ(τ))χRw(z(τ))dτ is bounded and continuous. The first fact is consequence

of (65). The continuity follows easily from the estimate

|∇K(w)(τ, x)−∇K(w)(τ, y)| ≤ C|||w|||1,r,(T ;p)τ
− 1

2
− 3

2
( 1

p
− 1

r
)|x− y|1− 3

r , ∀x, y ∈ R3.

for any fixed r ∈]3, 3p
3−p [, given by Lemma 3.7. Thus, proving (68) amounts to check that

EQ(n)
(ζ(ξ, z)) → 0 (71)

when n →∞. Since

EQ(n)

∣∣∣∣χRw(zt)− Id−
∫ t

0
∇Kεn(w)(τ, ξ(τ))χRw(zτ )dτ

∣∣∣∣ = 0

by (54), we have

EQ(n)
(ζ(X, Φ)) ≤ RwEQ(n)

[ ∫ t

s

∣∣∣∇K(εn)(w)(τ, Xτ )−∇K(w)(τ, Xτ )
∣∣∣ dτ

]
. (72)

If p ≥ 2, the r.h.s. of (72) is bounded above by

C sup
k∈N

|||ρ(k)|||0,p∗,T
∫ T

0

∥∥∥∇K(εn)(w)(τ)−∇K(w)(τ)
∥∥∥

p
dτ.

The fact that the supremum is finite is immediate from (56) since p∗ ≤ 2, and (71) follows
then from Remark 4.4.
If p < 2 we bound the r.h.s. of (72) above by

C sup
k∈N

|||ρ(k)|||0,p∗,(T ;p)

∫ T

0
t
− 3

2
( 1

p
− 1

p∗ )
∥∥∥∇K(εn)(w)(τ)−∇K(w)(τ)

∥∥∥
p

dτ.
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To conclude (71) we just have to stablish that

sup
k∈N

|||ρ(k)|||0,p∗,(T ;p) < ∞. (73)

This follows by our usual iterative argument applied to the equation (63), that is, using
repeatedly the fact that solution of the equation (63) in F0,r,(T ;p) belongs to F0,r′,(T ;p) for
p ≤ r < 3 and r ≤ r′ ≤ 3r

6−2r . The key point here is that, thanks to Lemma 2.2 and Remark
4.3, the norm of the linear functional

η(t, x) 7→
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)Kεn(w)j(s, y)η(s, y) dy ds,

defined from F0,r,(T ;p) to F0,r′,(T ;p), can be estimated in terms of |||Kεn(w)|||0,l,(T ;q) (where
l = 3r

3−r ) and therefore in terms of |||w|||0,r,(T ;p) only, thanks to Lemma 2.2 and Remark 4.3.
Therefore, the norm |||ρ̃(n)|||0,r′,(T ;p) is bounded independently of n ∈ N, and the rest of the
argument follows in a standard way. Thus, (71) being proved in all cases, we conclude (68).

To finish the proof, we just have to check that for each t ∈ [0, T ], the function ρ̃(t) given by
∫

R3

f(x)ρ̃(t, x)dx := EP (f(Xt)Φth0(X0)),

for all f ∈ D, is equal to w(t). Thanks to the convergence ρ̃(n) → w stated in Lemma 4.5,
this will hold as soon as the convergence

EQ(n)
(f(Xt)Φth0(X0)) → EP (f(Xt)Φth0(X0))

is proved. Here we must be careful because the function h0 is not necessarily continuous.
We will use fact (proved in [16]) that for every k ∈ N, one can find a continuous bounded
function hk

0 such that |w0|
‖w0‖1 ({hk

0 6= h0}) ≤ 1
k , and |hk

0| ≤ |h0|. We also notice that under P ,

the process Φ is bounded by the same constant Rw as it is under each law Q(n).
Hence, for any k ∈ N we have

|EQ(n)
(f(Xt)Φth0(X0))−EP (f(Xt)Φth0(X0))|

≤ C(EQ(n) |hk
0(X0)− h0(X0)|+ EP |hk

0(X0)− h0(X0)|)
+ |EQ(n)

(f(Xt)χRw(Φt)h0(X0))− EP (f(Xt)χRw(Φt)h0(X0))|.

We conclude by taking lim sup as n →∞ and then limit as k →∞.

4.3 Uniqueness

Proposition 4.3 i) If P ∈ PT
3
2
,b,0

is a solution of (45) with ρ ∈ F0,p,T and p ∈]32 , 3[,

then w := ρ̃ is a solution of the mild vortex equation (10) in the space F0,p,T .

ii) We deduce that uniqueness holds for (45) in the class PT
3
2
,b,0

.
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Proof: i) Let P ∈ PT
3
2
,b,0

be a solution of (45). By Proposition 4.1 and Corollary 4.2, ρ̃

is a weak solution in the spaces F0,p,T ∩ F0,r,(T ;p) for all r ∈ [p,∞[. As in Corollary 4.2,
conditions (46) and (52) can be seen to hold, and then it is not hard to check that ρ̃ satisfies
the assumptions of Lemma 2.1. Thus, it solves the intermediate mild equation (13). To
conclude it is enough to verify that

3∑

j=1

∫

R3

Gν
t−s(x− y)[ρ̃j(s, y)

∂K(ρ̃)
∂yj

(s, y)] +
∂Gν

t−s

∂yj
(x− y)[ρ̃j(s, y)K(ρ̃)(s, y)]dy = 0 (74)

for all s ∈ [0, T ]. Since 1 < q∗ < 3
2 (where q = 3p

3−p), the function ρ̃ = hP ρ belongs to
F0,q∗,T . This and the fact that div ρ̃(s) = 0 in the distribution sense yield (74), because
Gν

t−s(x− ·)K(ρ̃)(s, ·) ∈ W 1,q
3 thanks to Proposition 4.1 i).

ii) Assume that P 1 and P 2 are two solutions of (45) in PT
3
2
,b,0

, with density families ρ1 ∈
F0,p1,T and ρ2 ∈ F0,p2,T respectively. Then, we have ρ̃1, ρ̃2 ∈ F0,p,T , and from i) and the
uniqueness statement for the mild vortex equation (10) in F0,p,T (Theorem 3.1 a)), we
deduce that ρ̃1 = ρ̃2.

On the other hand, by the arguments in the proof of Proposition 4.1, ρ1 and ρ2 solve
equation (48) with h = hP 1

and h = hP 2
respectively. Since by i) and Theorem 3.1 i), the

function hP 1
ρ1 = hP 2

ρ2 = w ∈ F0,p,T is uniquely determined, it follows that ρ1 and ρ2 are
solutions of the linear equation

ρ(t, x) = Gν
t ∗ ρ0(x) +

∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)K(w)j(s, y)ρ(s, y) dy ds, (75)

and thus they equal the unique solution of (75) in F0,p,T , that we denote by ρ.

Thus, we have established that P 1 and P 2 solve the linear martingale problem in PT
3
2
,b,0

:

• Q◦|t=0(dx) = |w0(x)|
‖w0‖1 dx and for all 0 ≤ t ≤ T and Q◦

t (dx) = ρt(x)dx which is fixed.

• f(t,Xt)− f(0, X0)−
∫ t
0

[
∂f
∂s (s,Xs) + ν4f(s, Xs)ds + K(w)(s,Xs)∇f(s,Xs)

]
ds,

0 ≤ t ≤ T, is a continuous Q◦-martingale for all f ∈ C1,2
b ;

• Φt = Id +
∫ t
0 ∇K(w)(s,Xs)Φs ds, for all 0 ≤ t ≤ T, Q almost surely.

(76)

We can now follow the arguments of [25] or [13] to prove the fact that (P 1)◦ = (P 2)◦. Indeed,
by Corollary 3.1 i), the coefficient K(w) in (76) satisfies |K(w)(t)| ≤ Ct−

1
2 . Consequently,

if Q is a solution of (76), and if Dn with n ∈ N denotes the shift operator on C([0, T ],R3)
defined by Dn(ξ) = ξ( 1

n + ·), then the probability measure Q◦ ◦ D−1
n solves a martingale

problem with bounded coefficients, and with a fixed initial law given by ρ( 1
n , x)dx. By

classic results of Stroock and Varadhan [30], Q◦ ◦ D−1
n is uniquely determined, and thus

(P 1)◦◦D−1
n = (P 2)◦◦D−1

n for all n ∈ N. By letting n →∞ we conclude that (P 1)◦ = (P 2)◦

It remains us to prove the identity (P 1)′ = (P 2)′. In virtue of the estimate in L∞-norm in
Corollary 3.1 iii), it is an elementary fact that for each ξ ∈ C([0, T ],R3) the O.D.E.

z(t) = Id +
∫ t

0
∇K(w)(s, ξ(s))z(s)ds
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has a unique continuous solution t ∈ [0, T ] 7→ z(t) ∈ M3×3. Further, using the estimate in
Hölder norm of Corollary 3.1 iii), and Gronwall’s lemma, it is easily seen that the mapping
ξ 7→ z is continuous. This clearly implies that (P 1)′ = (P 2)′, and the proof is finished.

4.4 Proof of Lemma 4.4

Under the assumptions on the function v in Lemma 4.4, standard results (see e.g. [14])
provide existence of a unique solution g : [0, τ ] × R3 → R3 of (55), which is continuous,
bounded and of class C1,2

b on each domain [0, θ]×R3 with 0 < θ < τ . We could try to adapt
available analytical results to prove that g ∈ C1,3

b ([0, τ ] × R3), but this is rather tedious.
(Indeed, standard statements require Hölder continuity in time of the coefficients, and do
not provide the complete regularity result we need here up to the final time τ .) We will
thus give a direct proof of Lemma 4.4 by a probabilistic argument, inspired from Theorem
7.1, Ch. 3 in Kunita’s course [19].

Proof of Lemma 4.4: Consider a three dimensional Brownian motion B on a filtered
probability space. By the assumptions on v and the results in [19], there exists on that
space a continuous three parameter process ξs,t(x) defined for all 0 ≤ s ≤ t ≤ τ and x ∈ R3,
such that for each (s, x),

ξs,t(x) = x +
√

2ν(Bt −Bs) +
∫ t

s
v(θ, ξs,θ(x))dθ, for all t ∈ [s, τ ]

almost surely. Further, the function ξs,t : R3 → R3 is a diffeomorphism of class C3. Since

∇ξs,t(x) = Id +
∫ t

s
∇v(θ, ξs,θ(x))∇ξs,θ(x)dθ,

it follows that ∇ξs,t(x) is bounded and then ∇ξs,t(x) → Id when s → t− for each t ∈ [0, τ ].
Considering the equations satisfied by the higher order derivatives, one can also conclude
that Dαξs,t is bounded, and that Dαξs,t(x) → Dαx when s → t−, for any multi-index
|α| ≤ 3. It follows that the function f(s, x) := E(φ(ξs,τ (x)) has derivatives in x up to the
third order, and f and its derivatives are bounded and continuous on [0, τ ]× R3.

We will show that f = g, which achieves the proof. Write Lθφ(x) := ν∆φ(x)+v(θ, x)∇φ(x).
By the backward Itô formula (Theorem 1.1 in [19], Ch. 3), one has

φ(ξs,t(x)) = φ(x) +
√

2ν

∫ t

s
∇(φ ◦ ξθ,t)(x)d̂Bθ +

∫ t

s
Lθ(φ ◦ ξθ,t)(x)dθ (77)

where
∫ t
s · d̂Bθ is the backward stochastic integral with respect to B on [s, t] (i.e. the

stochastic integral with respect to the standard Brownian motion (B̂t
s = Bt−s−Bt, s ∈ [0, t])

and its natural filtration). Using (77), we check that

Lθφ(y) = lim
θ′→θ−

1
θ − θ′

[
E(φ ◦ ξθ′,θ(y))− φ(y)

]
,

and then the commutation relation E[Lθ(φ◦ξθ,t)(x)] = LθE[(φ◦ξθ,t)(x)] is obtained, thanks
also to the independence of ξs′,s(x) and ξs,t(y) for s′ < s < t. It follows then from (77) that

f(s, x)− f(s′, x) = −
∫ s

s′
Lθf(θ, x)dθ

for all s, s′ ∈ [0, τ ]. Whence, f and g are equal.
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4.5 Strong statements and stochastic flow

Corollary 4.3 Let w ∈ F0,p,T be a solution of the mild equation (10) with w0 ∈ L1
3.

a) There is strong existence and uniqueness for the linear stochastic differential equation

Xt = X0 +
√

2νBt +
∫ t

0
K(w)(s,Xs)ds

Φt = Id +
∫ t

0
∇K(w)(s,Xs)Φsds

t ∈ [0, T ]

law(X0) =
|w0(x)|
‖w0‖1

dx,

(78)

and one has
law((X, Φ)) = P,

the unique solution in PT
3
2
,b,0

of the nonlinear martingale problem (45) such that ρ̃ = w.

b) The family of SDE’s

ξs,t(x) = x +
√

2νBt +
∫ t

s
K(w)(t, ξs,r(x))dr, t ∈ [s, T ] (79)

with x ∈ R3 and s ∈ [0, T ], defines a C1−stochastic flow ξ, and one has

(X, Φ) = (ξ0,·(X0),∇ξ0,·(X0)).

Proof: a) By Theorem 4.1 and Proposition 5.4.11 in [18], there exists a weak solution
(X, Φ) of the SDE (78) in some probability space. If now (X, Φ) and (Y ,Ψ) are two
solutions of (78) in the same given probability space, then

|Xt − Y t| ≤ C

∫ t

0
s
−1
2 |Xs − Y s|ds

by Corollary 3.1 i) for all t ∈ [0, T ], and we conclude that X = Y by Lemma 4.6. The fact
that Φ = Ψ follows as in the last part of Proposition 4.3. Thus, trajectorial uniqueness
holds for (78) which yields the result.
b) By Corollary 3.1 and the results in [19], the stochastic flow (79) is well defined for
s ∈ [0, T ] and of class C1 in x for all s, t ∈]0, T ], s < t. We just have to check that
ξ0,t : R3 → R3 is also C1. By Lemma 4.6 and similar arguments as in a), the function ξ0,t

is globally Lipschitz continuous (independently of the randomness and of t ∈ [0, T ]), and
the quotients δt(x, y) := 1

|x−y| |ξ0,t(x)− ξ0,t(y)| are bounded. With this and the relation

ξ0,t(y)− ξ0,t(x) =y − x +
∫ t

0

∫ 1

0

[
∇u

(
s, ξ0,s(x) + θ(ξ0,s(y)− ξ0,s(x))

)−∇u
(
s, ξ0,s(x)

)]
dθ

· (ξ0,s(y)− ξ0,s(x)
)
ds

+
∫ t

0
∇u

(
s, ξ0,s(x)

)(
ξ0,s(y)− ξ0,s(x)

)
ds

we deduce for a fixed r ∈]3, 3p
3−p [ that

|δt(x, y)− δt(x, y′)| ≤ C

∫ t

0
s
− 1

2
− 3

2
( 1

p
− 1

r
)
[
|y − y′|1− 3

r + |δs(x, y)− δs(x, y′)|
]
ds
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for all x, y, y′ ∈ R3 thanks also to Corollary 3.1 ii). By Lemma 4.6,

|δt(x, y)− δt(x, y′)| ≤ C(T )|y − y′|1− 3
r

for an absolute constant C(T ) > 0, and therefore

|δt(x, y)− δt(x′, y′)| ≤ C
[
|x− x′|1− 3

r + |y − y′|1− 3
r

]

for all x, x′, y, y′, which easily yields the conclusion.

5 A cutoffed and mollified mean field model for the vortex
equation

This section provides the theoretical framework to construct stochastic approximations of
the vortex equation (2).

5.1 A generalized McKean-Vlasov equation

Consider a filtered probability space endowed with an adapted standard 3-dimensional
Brownian motion B and with a R3-valued random variable X0 independent of B. Let
χR : M3×3 →M3×3 be a Lipschitz continuous truncation function such that |χR(φ)| ≤ R.
We will study the following system of nonlinear stochastic differential equations of the
McKean-Vlasov type:

Xt = X0 +
√

2νBt +
∫ t

0
uε,R(s, Xs)ds

Φt = Id +
∫ t

0
∇uε,R(s,Xs)χR(Φs)ds

(80)

with
uε,R(s, x) = E [Kε(x−Xs) ∧ χR(Φs)h0(X0)] (81)

Theorem 5.1 There is existence and uniqueness (trajectorial and in law) for (80), (81).

Proof: The proof is adapted from Theorem 1.1 in [31], so we will skip details. Consider the
closed subspace P(C0

T ) of P(CT ) of probability measures Q such that Q|t=0 = law(X0)⊗δId.
We define a mapping Ξ : P(C0

T ) → P(C0
T ) associating to Q the law Ξ(Q) of the solution of

XQ
t = X0 +

√
2νBt +

∫ t
0 uQ(s,XQ

s )ds

ΦQ
t = Id +

∫ t
0 ∇uQ(s, XQ

s )χR(ΦQ
s )ds,

(82)

where
uQ(s, x) =

∫

CT
[Kε(x− y(s)) ∧ χR(Ψ(s))h0(y(0))]Q(dy, dψ). (83)

The coefficients in equation (82) are Lipschitz continuous and bounded functions, and so
Ξ is well defined (path-wise). Also by Lipschitz continuity, we just have to prove existence
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and uniqueness in law for (80), (81), which is equivalent to existence of a unique fixed point
for Ξ. The Kantorovitch-Rubinstein (or Vaserstein) distance

DT (Q1, Q2) := inf
{∫

C2
T

sup
0≤t≤T

[
min{|x(t)−y(t)|, 1}+min{|φ(t)−ψ(t)|, 1}] Π(dx, dφ, dy, dψ),

Π has marginals Q1 and Q2

}
, (84)

induces on P(C0
T ) the usual weak topology. The required fixed point result can be deduced

in a standard way from the following inequality: for all t ≤ T and Q1, Q2 ∈ P(C0
T ),

Dt(Ξ(Q1),Ξ(Q2)) ≤ CT

∫ t

0
Ds(Q1, Q2)ds, (85)

with CT a positive constant, and Dt(Q1, Q2) the distance between the projections of Q1

and Q2 on C([0, t],R3×M3×3). To prove (85), consider for each i = 1, 2 processes (Xi, Φi)
defined in terms of Qi as in (82),(83). Take on a different probability space (Ω′, P ′) a
coupling (Y i, Ψi)i=1,2 of two processes such that law(Y i, Ψi) = Qi. Then,

|X1
t −X2

t | ≤
∫ t

0
|uQ1(s, X1

s )− uQ1(s,X2
s )|+ |uQ1(s,X2

s )− uQ2(s,X2
s )|ds

≤
∫ t

0

∣∣E′ [(Kε(X1
s − Y 1

s )−Kε(X2
s − Y 1

s )
) ∧ χR(Ψ1

s)h0(X0)
]∣∣ ds

+
∫ t

0

∣∣E′ [Kε(X2
s − Y 1

s ) ∧ (
χR(Ψ1

s)− χR(Ψ2
s)

)
h0(X0)

]∣∣ ds

+
∫ t

0

∣∣E′ [(Kε(X2
s − Y 1

s )−Kε(X2
s − Y 2

s )
) ∧ χR(Ψ2

s)h0(X0)
]∣∣ ds

≤C

∫ t

0
min{|X1

s −X2
s |, 1}ds + C

∫ t

0
E′ [min{|Y 1

s − Y 2
s |, 1}+ min{∣∣Ψ1

s −Ψ2
s

∣∣ , 1}] ds.

On the other hand, the processes Φi, with i = 1, 2, are bounded on [0, T ]:

sup
t∈[0,T ]

∣∣Φi
t

∣∣ ≤ 1 + LεR‖h0‖∞T, (86)

with Lε a Lipschitz constant of Kε. Thus,

∣∣Φ1
t − Φ2

t

∣∣ ≤
∫ t

0

∣∣(∇uQ1(s,X1
s )−∇uQ1(s, X2

s )
)
Φ1

s

∣∣ +
∣∣∇uQ2(s,X2

s )
(
Φ1

s − Φ2
s

)∣∣ ds

≤C

[∫ t

0

∣∣∇uQ1(s, X
1
s )−∇uQ1(s,X

2
s )

∣∣ ds +
∫ t

0
min{∣∣Φ1

s − Φ2
s

∣∣ , 1}ds

]

≤C

[ ∫ t

0
min{|X1

s −X2
s |, 1}+ min{∣∣Φ1

s − Φ2
s

∣∣ , 1}ds

+
∫ t

0
E′ [min{|Y 1

s − Y 2
s |, 1}+ min{∣∣Ψ1

s −Ψ2
s

∣∣ , 1}] ds

]
.

The conclusion follows with help of Gronwall’s lemma.
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5.2 Propagation of chaos

Consider now a probability space endowed with a sequence (Bi)i∈N of independent 3-
dimensional Brownian motions, and a sequence of independent random variables (Xi

0)i∈N
with same law as X0 and independent of the Brownian motions. For each n ∈ N and
R, ε > 0, we define the following system of interacting particles:

Xi,n,ε,R
t = Xi

0 +
√

2νBi
t +

∫ t

0

1
n

∑

j 6=i

Kε(Xi,n,ε,R
s −Xj,n,ε,R

s ) ∧ χR(Φj,n,ε,R
s )h0(X

j
0)ds

Φi,n,ε,R
t = Id +

∫ t

0

1
n

∑

j 6=i

[
∇Kε(Xi,n,ε,R

s −Xj,n,ε,R
s ) ∧ χR(Φj,n,ε,R

s )h0(X
j
0)

]
χR(Φi,n,ε,R

s )ds,

(87)
for i = 1 . . . n, and with ∇K(y) ∧ z = ∇y(K(y) ∧ z) for y, z ∈ R3, y 6= 0. Notice that the
coefficients in the system of SDE’s (87) are globally Lipschitz continuous and bounded, so
that there is a unique strong solution. We also consider in the same probability space the
sequence

Xi,ε,R
t = Xi

0 +
√

2νBi
t +

∫ t

0
uε,R(s, Xi,ε,R

s )ds

Φi,ε,R
t = Id +

∫ t

0
∇uε,R(s,Xi,ε,R

s )χR(Φi,ε,R
s )ds

, i ∈ N (88)

of independent copies of (80). Their common law is denoted by P ε,R, and h̄,Mε, Lε, Jε, R
and LR are positive constants such that for all x, y ∈ R,

• |h0(x)| ≤ h̄, and

• |Kε(x)| ≤ Mε, |Kε(x)−Kε(y)| ≤ Lε|x− y|, |∇Kε(x)−∇Kε(y)| ≤ Jε|x− y|.
Recall that |χR(φ)| ≤ R for all φ ∈ M3×3, and that χR is Lipschitz continuous function.
Moreover, we will assume for simplicity that its Lipschitz constant is equal to 1:

|χR(φ)− χR(ψ)| ≤ |φ− ψ| for all φ, ψ ∈M3×3.

Theorem 5.2 For ε > 0 sufficiently small and all R > 0, we have

E

[
sup

t∈[0,T ]

{
|Xi,ε,R,n

t −Xi,ε,R
t |+ |Φi,ε,R,n

t − Φi,ε,R
t |

}]
≤ 1√

n
C(ε,R, h̄, T ) (89)

for all i ≤ n, where

C(ε,R, h̄, T ) = C1ε(1 + Rh̄T )(Rh̄T ) exp{C2ε
−9h̄T (R + 1)(h̄ + RT )}

for some positive constants C1, C2 independent of R, ε,T and h̄. We deduce that the system
(87) is chaotic with limiting law P ε,R ∈ P(CT ). That is, for all k ∈ N,

law
(
(X1,ε,R,n, Φ1,ε,R,n), (X2,ε,R,n, Φ2,ε,R,n), . . . , (Xk,ε,R,n,Φk,ε,R,n)

)
=⇒ (P ε,R)⊗k (90)

when n →∞ in the space P((CT )k).
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Proof: The convergence (90) is a simple consequence of (89), which we now prove. Since
they are fixed, we will drop the superscripts ε and R of all processes. The proof is an
extension of the arguments of Theorem 1.4 in [31], but we we shall make the computations
explicit in order to keep track of the constants. We have

|Xi,n
t −Xi

t | ≤
∫ t

0

∣∣ 1
n

n∑

j=1

(
Kε(Xi,n

s −Xj,n
s )−Kε(Xi

s −Xj,n
s )

) ∧ χR(Φj,n
s )h0(X

j
0)

∣∣ds

+
∫ t

0

∣∣ 1
n

n∑

j=1

(
Kε(Xi

s −Xj,n)−Kε(Xi
s −Xj

s )
) ∧ χR(Φj,n

s )h0(X
j
0)

∣∣ds

+
∫ t

0

∣∣ 1
n

n∑

j=1

Kε(Xi
s −Xj

s ) ∧ (
χR(Φj,n

s )− χR(Φj
s)

)
h0(X

j
0)

∣∣ds

+
∫ t

0

∣∣ 1
n

n∑

j=1

Kε(Xi
s −Xj

s ) ∧ χR(Φj
s)h0(X

j
0)

−
∫

Kε(Xi
s − x(s)) ∧ χR(φ(s))h0(x(0))P ε,R(dx, dφ)

∣∣ds

Hence,

|Xi,n
t −Xi

t | ≤LεRh̄

∫ t

0

{|Xi,n
s −Xi

s|+
1
n

n∑

j=1

|Xj,n
s −Xj

s |
}
ds

+ LRMεh̄

∫ t

0

1
n

n∑

j=1

|Φj,n
s − Φj

s|ds +
∫ t

0
I(n,R, ε, s)ds,

where

I(n,R, ε, s) =
∣∣ 1
n

n∑

j=1

[
Kε(Xi

s −Xj
s ) ∧ χR(Φj

s)h0(X
j
0)

−
∫

Kε(Xi
s − x(s)) ∧ χR(φ(s))h0(x(0))P (dx, dφ)

]∣∣.

Thanks to the exchangeability of the system (87), we obtain

E{sup
r≤t

|Xi,n
r −Xi

r|} ≤2LεRh̄

∫ t

0
E{sup

r≤s
|Xi,n

r −Xi
r|}ds + LRMεh̄

∫ t

0
E{sup

r≤s
|Φi,n

r − Φi
r|}ds

+
∫ t

0
E(I(n,R, ε, s))ds.

Now, each of the n squared terms in the sum I(n,R, ε, s)2 is bounded by 1
n2 (2MεRh̄)2, and

by using the independence of the sequence (Xi,Φi)i∈N, all the “crossed terms” are seen to
have null expectation. We conclude that

E(I(n,R, ε, s)2) ≤ 1
n

(2MεRh̄)2.
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Then,

E{sup
r≤t

|Xi,n
r −Xi

r|} ≤2LεRh̄

∫ t

0
E{sup

r≤s
|Xi,n

r −Xi
r|}ds + LRMεh̄

∫ t

0
E{sup

r≤s
|Φi,n

r − Φi
r|}ds

+
1√
n

(2MεRh̄)t.

(91)

On the other hand, we have

|Φi,n
t − Φi

t| ≤
∫ t

0

∣∣[ 1
n

n∑

j=1

(∇Kε(Xi,n
s −Xj,n

s )−∇Kε(Xi
s −Xj,n

s )
) ∧ χR(Φj,n

s )h0(X
j
0)

]
χR(Φi,n

s )
∣∣ds

+
∫ t

0

∣∣[ 1
n

n∑

j=1

(∇Kε(Xi
s −Xj,n)−∇Kε(Xi

s −Xj
s )

) ∧ χR(Φj,n
s )h0(X

j
0)

]
χR(Φi,n

s )
∣∣ds

+
∫ t

0

∣∣[ 1
n

n∑

j=1

∇Kε(Xi
s −Xj

s ) ∧ (
χR(Φj,n

s )− χR(Φj
s)

)
h0(X

j
0)

]
χR(Φi,n

s )
∣∣ds

+
∫ t

0

∣∣[ 1
n

n∑

j=1

∇Kε(Xi
s −Xj

s ) ∧ χR(Φj
s)h0(X

j
0)

](
χR(Φi,n

s )− χR(Φi
s)

)∣∣ds

+
∫ t

0

∣∣[ 1
n

n∑

j=1

∇Kε(Xi
s −Xj

s ) ∧ χR(Φj
s)h0(X

j
0)

]
χR(Φi

s)

− [ ∫
∇Kε(Xi

s − x(s)) ∧ χR(φ(s))h0(x(0))P ε,R(dx, dφ)
]
χR(Φi

s)
∣∣ds.

Notice that
sup

t∈[0,T ]
|Φi,n

t |, sup
t∈[0,T ]

|Φi
t| ≤ Cε,R,T := (1 + LεRh̄T ) (92)

for all n ∈ N. Thus,

|Φi,n
t − Φi

t| ≤JεRh̄Cε,R,T

∫ t

0

{|Xi,n
s −Xi

s|+
1
n

n∑

j=1

|Xj,n
s −Xj

s |
}
ds

+ LεLRh̄Cε,R,T

∫ t

0

1
n

n∑

j=1

|Φj,n
s − Φj

s| ds

+ LεRh̄

∫ t

0
|Φi,n

s − Φi
s| ds +

∫ t

0
I ′(n, R, ε, s) ds,

with

I ′(n,R, ε, s) =
∣∣∣∣
1
n

n∑

j=1

[(∇Kε(Xi
s −Xj

s ) ∧ χR(Φj
s)h0(X

j
0)

)
χR(Φi,n

s )

−
∫
∇Kε(Xi

s − x(s)) ∧ χR(φ(s))h0(x(0))P ε,R(dx, dφ)χR(Φi
s)

]∣∣∣∣.
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We conclude in a similar way as before that

E{sup
r≤t

|Φi,n
r − Φi

r|} ≤2JεRh̄Cε,R,T

∫ t

0
E{sup

r≤s
|Xi,n

r −Xi
r|ds

+
(
LεLRh̄Cε,R,T + LεRh̄

) ∫ t

0
E{sup

r≤s
|Φi,n

r − Φi
r|} ds

+
1√
n

(2LεRh̄Cε,R,T )t.

(93)

Putting together (91) and (93), we get

E{sup
r≤t

|Xi,n
r −Xi

r|+ |Φi,n
t − Φi

t|} ≤2Rh̄ (Lε + JεCε,R,T )
∫ t

0
E{sup

r≤s
|Xi,n

s −Xi
s|}ds

+ h̄ (LRMε + LεLRCε,R,T + LεR)
∫ t

0
E{sup

r≤s
|Φi,n

r − Φi
r|}ds

+
2Rh̄√

n
(MεCε,R,T + Lε)t.

(94)

Finally, we notice that

|K ∗ ϕε(x)| ≤ C sup
z∈R3

{ϕε(z)}
∫

|x−y|≤1
|x− y|−2dy + C

∫

|x−y|≥1
ϕε(y)dy ≤ C

ε3
+ C

and then, Mε ≤ Cε−3 for all ε small enough. We deduce in a similar way that Lε ≤ Cε−4

and Jε ≤ Cε−5 (since for functions ϕ ∈ S, convoluting with K commutes with derivation).
As observed in Jourdain and Méléard [17], if g : R+ → R+ is a bounded function such that
g(t) ≤ c1

∫ t
0 g(s)ds + c2t for all t ∈ [0, T ], then g(t) ≤ c2

c1
exp(c1T ). This and (94) provide

an upper bound for the r.h.s. of (89) by the constant c2
c1

exp(c1T ), where

c1 = 2Rh̄
(
Lε + Jε(1 + RLεh̄T )

)
+ h̄(Mε + Lε(1 + RLεh̄T ) + LεR)

and c2 = 2Rh̄√
n

(Mε(1 + RLεh̄T ) + Lε). The statement follows by noting the existence of
universal positive constants C,C′,C′′ and ε0 (in particular independent of R, h̄ and T )
such that

CJεLε(Rh̄)2T ≤ c1 ≤ C′JεLεh̄(R + 1)(h̄ + RT )

and for all ε ∈]0, ε0[

c2 ≤ C′′ L
2
ε√
n

Rh̄(1 + Rh̄T ).

We can take for instance χR defined by

χR(φ) =

{
φ if |φ| ≤ R,
R
|φ| φ if |φ| ≥ R.

(which is the truncation function proposed in [12]).
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Remark 5.1 In [12], Esposito and Pulvirenti claimed (without proving) the existence of a
nonlinear process satisfying analogous conditions as (80),(81), but without the truncation
χR on the process Φ inside the expectation that we imposed in (81). Indeed, truncating “out-
side the expectation” in (80) is not strictly necessary: the two previous theorems can also be
proved in that case, by bounding |Φ| and |Φi| above by exp{LεRh̄T} (thanks to Gronwall’s
lemma), instead of the bounds (86) and (92). In turn, it seems not possible to obtain these
results in the way conjectured in [12] (truncating Φ only outside the expectation). In fact,
one cannot provide in that case a bound like (86) for the process Φ by absolute constants,
which is crucial for estimate (85) to hold (or for an analogous to it with a different metric),
and therefore to ensure that an iteration (fixed point) procedure will converge.

6 The 3 dimensional stochastic vortex method

We will now state and prove our main result. We assume the following:

• w0 ∈ Lp
3 ∩ L1

3 with p ∈]32 , 3[ and 0 < T < ∞.

• T
1− 3

2p ‖w0‖p < 1
Γ0(p) , where Γ0(p) is the constant given by Theorem 3.1.

• w ∈ F0,p,T is the solution of the mild vortex equation (10) given by Theorem 3.1

Let us write
u(t, x) = K(w)(t, x)

for all (t, x) ∈ [0, T ]× R3, and fix a real number

r◦ ∈]3,
3p

3− p
[.

By the proof of Theorem 3.1, one has |||w|||0,p,T ≤ 2C0(p)‖w0‖p, where C0(p) is the constant
given in Lemma 3.2 i). Thus, we can make the following

Remark 6.1 By taking in Corollary 3.1 ii) A = 2C0(p)‖w0‖p and r = r◦ , we deduce the
existence of a constant Ĉ(‖w0‖p, T, p), depending on w only through the norm ‖w0‖p, such
that

‖∇u(t)‖∞ ≤ t
− 1

2
− 3

2
( 1

p
− 1

r◦ )
Ĉ(‖w0‖p, T, p) for all t ∈ [0, T ].

Define now a positive constant R(w0, T ) by

R(w0, T ) := exp
{

Ĉ(‖w0‖p, T, p)
∫ T

0
t
− 1

2
− 3

2
( 1

p
− 1

r◦ )
dt

}
, (95)

and recall that C2 is a universal constant provided by Theorem 5.2.

Theorem 6.1 Assume that w0 ∈ Lp
3 ∩ L1

3 with p ∈]32 , 3[, and that T
1− 3

2p ‖w0‖p < 1
Γ0(p)

holds, with Γ0(p) the constant of Theorem 3.1. Let (εn) be a sequence converging to 0 in
such way that

1√
n

exp
{
C2ε

−9
n ‖w0‖1T (R(w0, T ) + 1) (‖w0‖1 + TR(w0, T ))

} → 0.
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Furthermore, define for each n ∈ N a system of interacting particles on R3 ×M3×3 by

Zi,n := (Xi,εn,R,n,Φi,εn,R,n),

and let P be the unique solution in PT
3
2
,b,0

of the nonlinear martingale problem (45). Then,
for all k ∈ N, when n →∞,

law(Z1,n, Z2,n, ..., Zk,n) =⇒ P⊗k

in the space P(Ck
T ).

Remark 6.2 Theorem 6.1 will hold if for instance εn = (c ln n)−9, with

0 < c < C−1
2 ((R(w0, T ) + 1)(‖w0‖1 + 1)(T + 1))−2 .

The proof of Theorem 6.1 will mainly use similar techniques as those in [25] or [13] for
the equations considered therein. First we will prove that under the conditions ensuring
existence of the solution w, P can be approximated by a family of solutions P εn of some
nonlinear martingale problems with regular interactions. Each P εn is associated with the
solution wεn ∈ F0,p,T of a mollified vortex equation involving a smooth kernel Kεn .

6.1 The mollified equations

Consider the operator Kε defined as in Section 4.3, and for each ε > 0 define

Bε(v′,v)(t, x) =
∫ t

0

3∑

j=1

∫

R3

∂Gt−s

∂yj
(x−y)

[
Kε(v′)j(s, y)v(s, y)− vj(s, y)Kε(v′)(s, y)

]
dy ds.

(96)

Remark 6.3 In virtue of Remark 4.3, the functional Bε : F2 → F′ satisfies the same
continuity properties as the functional B in the spaces F,F′ considered in Proposition 3.1.
Moreover, in such spaces the norm of Bε is smaller or equal than the norm of B.

Therefore, the same existence and regularity results of Theorem 3.1 and Theorem 3.2 hold
true with the same constants for the family of mollified equations

v(t, x) =
∫

R3

Gν
t (x− y)w0(y)dy

+
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y) [Kε(v)j(s, y)v(s, y)− vj(s, y)Kε(v)(s, y)] dy ds.

(97)

Theorem 6.2 Assume that w0 ∈ Lp
3∩L1

3 with p ∈]32 , 3[, and that T
1− 3

2p ‖w0‖p < 1
Γ0(p) holds,

with Γ0(p) the constant of Theorem 3.1. There exists a unique solution wε of equation (97)
in F0,p,T . The solution satisfies |||wε|||0,p,T ≤ 2C0(p)‖w0‖p, with C0(p) the constant in
Lemma 3.2 i), and w ∈ F1,r,(T ;p) for all r ∈ [p,∞[. Moreover, if A is an upper bound for
|||wε|||0,p,T , and if C(T, p) and C(T, p, r, A) are the constants in Theorem 3.2 ii) and iii)
respectively, then one has

|||wε|||1,p,T ≤ C(T, p)|||wε|||0,p,T ,
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and
|||wε|||1,r,(T,p) ≤ C(T, p, r, A).

Finally, wε belongs to F0,1,T and the function t ∈ [0, T ] 7→ wε(t, ·) ∈ L1
3 is continuous.

Hence, as in Section 4.3, for each ε > 0 the stochastic differential equations

ξε
t (x) = x +

√
2νBt +

∫ t

0
Kε(wε)(s, ξε

s(x))ds, t ∈ [0, T ], x ∈ R3,

define a process (t, x) 7→ ξε
t (x) which is continuously differentiable on x for all t.

Let (εn) be a sequence converging to 0 and denote by (Xn, Φn) the couple of processes

Xn
t := ξεn

t (X0), and Φn
t = ∇ξεn

t (X0) with t ∈ [0, T ].

The law of (Xn, Φn) is denoted by Pn, and we write

ρn(t, x) and ρ̃n(t, x)

for bi-measurable versions of the densities of (Pn)◦t and P̃n
t respectively. By similar argu-

ments as in the proof of Lemma 4.5, it is seen that ρ̃n ∈ F0,p,T and it satisfies the linear
mild equation

ρ̃n(t, x) =
∫

R3

Gν
t (x− y)w0(y)dy

+
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)

[
Kεn(wεn)j(s, y)ρ̃n(s, y)− ρ̃n

j (s, y)Kεn(wεn)(s, y)
]
dy ds.

(98)

Since uniqueness holds in F0,p,T for (98), we deduce that

ρ̃n = wεn (99)

for all n ∈ N. Thus, (Xn,Φn) solves the nonlinear stochastic differential equation

Xn
t = X0 +

√
2νBt +

∫ t

0
uεn(s,Xn

s )ds

Φn
t = Id +

∫ t

0
∇uεn(s,Xn

s )Φn
s ds

(100)

with
uεn(s, x) = E [Kεn(x−Xn

s ) ∧ Φn
s h0(X0)] . (101)

(The reader should compare this process without truncation the with the process (80),(81).)

Proposition 6.1

i) For all t ∈ [0, T ] and n ∈ N, one has ρ̃n(t) ∈ Lp
3, ρn(t) ∈ Lp , and

sup
n∈N

|||ρ̃n|||0,p,T < ∞, sup
n∈N

|||ρn|||0,p,T < ∞. (102)

Moreover, ρ̃n(t) converges to w(t) in Lp
3 for each t ∈ [0, T ], and in L1([0, T ], Lp

3).
Similarly, ρn(t) converges to ρ(t) in Lp for each t ∈ [0, T ], and in L1([0, T ], Lp), with
ρ the solution of the linear equation (57).
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ii) The sequence (Pn, n ∈ N) is uniformly tight.

iii) When n →∞, one has Pn =⇒ P .

Proof: i) The uniform bound for |||ρ̃n|||0,p,T is clear from (99) and Theorem 6.2, and the
bound for |||ρn|||0,p,T follows as in Lemma 4.5. The proof of the convergence ρ̃n → w is also
similar as therein. Indeed, one has

‖ρ̃n(t)−w(t)‖p ≤C

∫ t

0
(t− s)−

3
2p [‖Kεn(ρ̃n)(s)−Kεn(w)(s)‖q + ‖Kεn(w)(s)−K(w)(s)‖q] ds

+ C

∫ t

0
(t− s)−

3
2p ‖ρ̃n(s)−w(s)‖p ds

≤C

∫ t

0
(t− s)−

3
2p ‖Kεn(w)(s)−K(w)(s)‖q ds

+ C

∫ t

0
(t− s)−

3
2p ‖ρ̃n(s)−w(s)‖p ds

thanks to Remark 4.3, and then one can follow the same arguments of Lemma 4.5. The
convergence of ρn is obtained in a similar way.
ii) In virtue of the uniform estimates for |||wεn |||1,p,T and |||wεn |||1,r,(T ;p) in Theorem 6.2, the
proof is done exactly in the same way as Lemma 4.7.

iii) We just have to identify the limiting points in a similar way as in Proposition 4.2.
If Q is the limit of a convergent subsequence renamed Pn, we only need to check that
EQ(κ(X)) = 0 and EQ(ζ(X, Φ)) = 0, where κ : C([0, T ],R3) → R and ζ : C([0, T ],R3) ×
C([0, T ],M3×3) → R are the functions defined in (69) and (70). We know that

EP n

[(∫ t

s

{
∂f

∂τ
(τ, Xτ ) + ν∆f(τ, Xτ ) + Kεn(wεn)(τ, Xτ )∇f(τ, Xτ )

}
dτ

+ f(t,Xt)− f(s,Xs)
)
× λ(Xs1 , . . . , Xsm)

]
= 0,

and therefore

EP n
(κ(X)) = EP n

[ ∫ t

s

(
K(w)(τ,Xτ )∇f(τ,Xτ )−K(εn)(w(εn))(τ,Xτ )∇f(τ, Xτ )

)
dτ

× λ(Xs1 , . . . , Xsm)
]
.

We deduce that

∣∣EP n
(κ(X))

∣∣ ≤ C sup
k∈N

|||ρk|||0,q∗,T
∫ T

0
‖Kεn(wεn)(τ)−K(w)(τ)‖q dτ

≤ C

∫ T

0

( ‖wεn(τ)−w(τ)‖p + ‖Kεn(w)(τ)−K(w)(τ)‖q

)
dτ

thanks to Remark 4.3 (and with C a finite constant), and we conclude with Remark 4.4
that EQ(κ(X)) = 0.
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In a similar way, one can adapt the arguments of Proposition 4.2 to prove that EQ(ζ(X, Φ)) =
0. The only point that needs special attention is to establish the uniform bound

sup
k∈N

|||ρk|||0,p∗,(T ;p) < ∞,

when p < 2. This can be justified by similar arguments as in Proposition 4.2 using the fact
that the norm of the linear functional

η(t, x) 7→
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂yj
(x− y)Kεn(wεn)j(s, y)η(s, y) dy ds,

defined from F0,r,(T ;p) to F0,r′,(T ;p), can be estimated in terms of |||wεn |||0,r,(T ;p) by Remark
4.3, and the last is bounded independently of n as asserted in Theorem 6.2.

6.2 Convergence of the particle approximations

We consider now a sequence (εn) as in Theorem 6.1. To prove the theorem, we will combine
the convergence result we have just obtained with the propagation of chaos result obtained
for fixed R and ε in Section 5.
Clearly, by (101), (99) and the definition of ρ̃n, the drift term uεn of the nonlinear process
(Xn, Φn) satisfies

uεn(t, x) = Kεn(wεn)(t, x).

We deduce the following crucial remark (which is analogous to the one pointed out in
Esposito and Pulvirenti [12] in a more restrictive functional setting):

Remark 6.4 Since |||wε|||0,p,T ≤ 2C0(p)‖w0‖p holds, we have

‖∇uεn(t)‖∞ ≤ t
− 1

2
− 3

2
( 1

p
− 1

r
)
Ĉ(‖w0‖p, T, p)

for all t ∈ [0, T ], n ∈ N, and Ĉ(‖w0‖p, T, p) the same constant of Remark 6.1. Thus, it
follows from (100) and Lemma 4.6 that for all n ∈ N, almost surely

sup
t∈[0,T ]

|Φn
t | ≤ R(w0, T ). (103)

Consequently, if R ≥ R(w0, T ), the nonlinear process (Xn, Φn) defined by (100) and (101)
is a weak solution of the nonlinear McKean-Vlasov equation (80),(81). Since uniqueness in
law holds for the latter, this proves

Proposition 6.2 Let the pairs (Xεn,R, Φεn,R) and (Xn, Φn) be respectively defined on [0, T ]
by (80),(81), and by (100),(101). Then, for all R ≥ R(w0, T ) and all n ∈ N,

law(Xn, Φn) = law(Xεn,R, Φεn,R),

We proceed now to the

Proof of Theorem 6.1: Let k ∈ N be fixed. Consider the set P(Ck
T ) of probabilities Q

on the space
Ck

T := C([0, T ], (R3)k × (M3×3)k),
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and the Kantorovich-Rubinstein distance

D̂(Q,Q′) :=

inf
{ ∫

(Ck
T )2

sup
0≤t≤T

min{|x(t)− y(t)|, 1}+ min{|φ(t)− ψ(t)|, 1}Π̂((dx, dφ), (dy, dψ)) :

Π̂ has marginals Q and Q′
}

(which is a distance on P(Ck
T ), compatible with the topology of the weak convergence). Let

Z
i,n := (Xi,εn,R,Φi,εn,R) be the process defined in (88), with R = R(w0, T ) and ε = εn. If

P is the solution in PT
3
2
,b,0

of the nonlinear martingale problem (45), we have

D̂
(
(law(Z1,n, . . . , Zk,n), P⊗k

)

≤ D̂
(
(law(Z1,n, . . . , Zk,n), law(Z1,n

. . . , Z
k,n)

)
+ D̂

(
law(Z1,n

. . . , Z
k,n), law(Z1

, . . . , Z
k)

)

≤ C

k∑

i=1

E

[
sup

t∈[0,T ]

{
|Xi,εn,R,n

t −Xi,εn,R
t |+ |Φi,εn,R,n

t −Φi,εn,R
t |

}]
+ D̂

(
law(Z1,n

. . . , Z
k,n), P⊗k

)
.

The term involving the sum is bounded by kCεn√
n

exp
{
C2ε

−9
n ‖w0‖1T (R + 1) (‖w0‖1 + RT )

}

thanks to Theorem 5.2, and goes to 0 by the choice of εn. The last term goes to 0 thanks
to Proposition 6.2 and Proposition 6.1 iii), and this finishes the proof.

Remark 6.5 In order to obtain an explicit rate in the previous convergence, it is necessary
to estimate in terms of εn the distance between P εn and P . This distance could be deduced
from L∞ estimates of Kεn(wεn)−K(w) and ∇Kεn(wεn)−∇K(w). The explosion at t = 0
of the Sobolev norms prevents us from obtaining such estimates in the functional setting we
have chosen, but this should possible under additional regularity assumptions on w0. On
the other hand, it seems hard to improve the propagation of chaos estimates in Section 5,
at least by the approach we have followed there (which does not depend on the specific form
of the interaction kernel).

A first consequence is convergence at the level of empirical processes. Consider the space
M3(R3) of finite R3-valued measures on R3, endowed with the weak topology, and the
space C([0, T ],M3(R3)) with the topology of uniform convergence.

Corollary 6.1 The family (µ̃n,εn,R
t )0≤t≤T of R3-weighted empirical measures on R3

µ̃n,εn,R
t =

1
n

n∑

i=1

δ
Xi,εn,R,n

t
·
(
χR(Φi,εn,R,n

t )h0(Xi
0)

)

converges in law and in probability to (w(t, x)dx)0≤t≤T in the space C([0, T ],M3(R3)).

Proof: Since law(Z1,n, ..., Zn,n) is exchangeable, the propagation of chaos in Theorem 6.1
is equivalent to the convergence in law (and in probability) of the empirical measure of the
system to P , as a probability measure in the path space (see [31]). This implies that

E

(
1
n

n∑

i=1

f(Xi,εn,R,n
t )χ(Φi,εn,R,n

t )f0(Xi
0)

)
→ EP (f(Xt)χ(Φt)f0(X0)) ,
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for all continuous bounded functions f0, f : R3 → R3 and χ : M3×3 → M3×3. Let k ∈ N
and hk

0 be a continuous bounded function approximating h0 as in Proposition 4.2. Since
under P we have χR(Φt) = Φt, it follows that

∣∣∣∣E〈µ̃n,εn,R
t , f〉 −

∫

R3

f(x)w(t, x)dx

∣∣∣∣

≤ E

∣∣∣∣
1
n

n∑

i=1

f(Xi,εn,R,n
t )χR(Φi,εn,R,n

t )h0(Xi
0)− EP (f(Xt)χR(Φt)h0(X0)))

∣∣∣∣

≤ E

∣∣∣∣∣
1
n

n∑

i=1

f(Xi,εn,R,n
t )χR(Φi,εn,R,n

t )(h0(Xi
0)− hk

0(X
i
0))

∣∣∣∣∣

+ E

∣∣∣∣∣
1
n

n∑

i=1

f(Xi,εn,R,n
t )χR(Φi,εn,R,n

t )hk
0(X

i
0)− EP (f(Xt)χR(Φt)hk

0(X0)

∣∣∣∣∣
+ EP |f(Xt)χR(Φt)(hk

0(X0)− h0(X0))|.

By similar arguments as in the proof of Proposition 4.2 we conclude that

lim sup
n→∞

∣∣∣∣E〈µ̃n,εn,R
t , f〉 −

∫

R3

f(x)w(t, x)dx

∣∣∣∣ = 0.

6.3 Stochastic approximations of the velocity field

Finally, we prove the convergence of the “approximated velocity field”, defined by

Kεn(µ̃n,εn,R)(t, x) :=
∫

R3

Kεn(x− y) ∧ µ̃n,εn,R
t (dy),

to the local solution u(t) = K(w)(t) of the Navier-Stokes equation in F0,q,T . We need a
technical lemma:

Lemma 6.1 Under the assumptions of Theorem 6.2, we have

‖∇wε(t)−∇w(t)‖p → 0 for all t ∈]0, T ], and
∫ T

0
‖∇wε(t)−∇w(t)‖pdt → 0

when ε → 0.

Proof: We write wε;τ := wε(τ + ·) (so that w0;τ = w(τ + ·)). For each ε > 0 and
τ ∈ [0, T ], wτ,ε ∈ F1,p,T−τ solves the “shifted” equation wε;τ = wε;τ

0 + Bε(wε;τ ,wε;τ ), with
wε;τ

0 := Gν
t ∗wε(τ). On the other hand, it is clear that div wε(t) = 0. Taking derivatives

in the previous equation yields, for k = 1, 2, 3,

∂wε;τ

∂xi
(t, x) =

∫

R3

∂Gν
t

∂xi
(x− y)(wε)k(τ, y)dy

−
∫ t

0

3∑

j=1

∫

R3

∂Gν
t−s

∂xi
(x− y)

[
Kε;τ (wε;τ )j(s, y)

∂wε;τ
k (s, y)
∂yj

−wε;τ
j (s, y)

∂Kε(wε;τ )k(s, y)
∂yj

]
dy ds.
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By taking now Lp
3 norm of the differences ∂wε;τ

∂xi
(t, x)− ∂w0;τ

∂xi
(t, x), i = 1, 2, 3, we deduce by

similar arguments as in Theorem 3.1 a) that

‖∇wε;τ (t)−∇w0;τ (t)‖p ≤Ct−
1
2 ‖wε(τ)−w(τ)‖p

+ C

∫ t

0
(t− s)−

3
2p (τ + s)−

1
2
[‖wε;τ (s)−w0;τ (s)‖p

+ ‖Kε(w0,τ )(s)−K(w0,τ )(s)‖q

]
ds

+ C

∫ t

0
(t− s)−

3
2p

[‖∇wε;τ (s) +∇w0;τ (s)‖p

+ ‖∇Kε(w0;τ )(s)−∇K(w0;τ )(s)‖q

]
ds

Now define δε,τ (t) := ‖∇wε;τ (t)−∇w0;τ (t)‖p, and

∆ε,τ (t) :=τ−
1
2
(‖wε;τ (t)−w0;τ (t)‖p + ‖Kε(w0,τ )(t)−K(w0,τ )(t)‖q

)

+ ‖∇Kε(w0,τ )(t)−∇K(w0,τ )(t)‖q.

Observe that since w0,τ ∈ F0,p,T−τ ∩ F0,q,T−τ , the convergence ∆ε,τ (t) → 0 holds for each
t ∈]0, T − τ [ when ε → 0 (cf. Remark 4.4). Now, for all t ∈]0, T − τ ] we have

δε,τ (t) ≤ Ct−
1
2 ‖wε(τ)−w(τ)‖p +

∫ t

0
(t− s)−

3
2p (∆ε,τ (s) + δε,τ (s))ds.

As in the proof of Lemma 4.5 (and with the same notation), it follows by induction that

δε,τ (t) ≤ C‖wε(τ)−w(τ)‖p

Ñ(p)∑

k=1

t(k−1)θ0− 1
2 + C

∫ t

0
α(t− s)∆ε,τ (s)ds + C(T )

∫ t

0
δε,τ (s)ds.

(104)
Thus, integrating and using Gronwall’s lemma yield, for all λ ∈ [0, T − τ ],

∫ λ

0
δε,τ (t)dt ≤ C(T )‖wε(τ)−w(τ)‖p + C ′(T )

∫ T−τ

0

∫ t

0
α(t− s)∆ε,τ (s)ds dt.

Therefore,
∫ λ
0 δε,τ (t)dt → 0 and from this and (104) we deduce that δε,τ (t) → 0 for all

t ∈]0, T − τ [. Consequently, ∇wε(t) → ∇w(t) in (Lp
3)

3 for all t ∈]0, T ]. Since wε is
bounded in F1,p,T uniformly in ε, the convergence takes also place in L1([0, T ], (Lp

3)
3).

Corollary 6.2 Let T
1− 3

2p ‖w0‖p < 1
Γ0(p) and denote u = K(w). Let εn = (c ln n)−9 be a

sequence satisfying the condition of Theorem 6.1. Then, when n →∞, we have

sup
x∈R3

E
(∣∣Kεn(µ̃n,εn,R)(t, x)− u(t, x)

∣∣) → 0

for each t ∈]0, T ], and

sup
x∈R3

E

(∫ T

0

∣∣Kεn(µ̃n,εn,R)(t, x)− u(t, x)
∣∣ dt

)
→ 0.
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Proof: For all (t, x) ∈ [0, T ]× R3, it holds that

∣∣Kεn(µ̃n,εn,R)(t, x)− u(t, x)
∣∣ ≤

∣∣∣∣Kεn(µ̃n,εn,R)(t, x)

− 1
n

n∑

i=1

Kεn(x−Xi,εn,R
t ) ∧ (χR(Φi,εn,R

t )h0(Xi
0))

∣∣∣∣

+
∣∣∣∣
1
n

n∑

i=1

Kεn(x−Xi,εn,R
t ) ∧ (χR(Φi,εn,R

t )h0(Xi
0))

−
∫

CT

Kεn(x− y(s)) ∧ χR(φ(s))h0(x(0))P εn,R(dy, dφ)
∣∣∣∣

+ |Kεn(wεn)(t, x)− u(t, x)|
(105)

with P εn,R = P εn = law(Xi,εn,R,Φi,εn,R). The independence of the processes (Xi,εn,R, Φi,εn,R),
i ∈ N, imply that the expectation of the second term is bounded by 1√

n
(2MεnR‖w0‖1).

Thus,

E
∣∣Kεn(µ̃n,εn,R)(t, x)− u(t, x)

∣∣ ≤(LεnR‖w0‖1 + Mεn‖w0‖1)
Cε(1 + R‖w0‖1T )√

n(R‖w0‖1T )
× exp{C2ε

−9
n ‖w0‖1T (R + 1)(‖w0‖1 + RT )}

+
1√
n

(2MεnR‖w0‖1)

+ ‖Kεn(wεn)(t)−Kεn(w)(t)‖∞
+ ‖Kεn(w)(t) + u(t)‖∞.

(106)

The first term is bounded by C (ln n)α1

nα2 for some constants C,α1, α2 > 0 and goes to 0
when n → ∞. The same holds for the second term for some other constants. The third
is bounded by C‖wεn(t) −w(t)‖W 1,p by Remark 4.3, and goes to 0 for each t ∈]0, T ] and
in L1([0, T ],R), thanks to Proposition 6.1 i) and Lemma 6.1. The convergence of the last
term for each t ∈]0, T ] and in L1([0, T ],R) is obtained by standard arguments.

Remark 6.6 In order to improve the estimate of the first term in the l.h.s. of (105) (i.e.
by avoiding the dependence on the divergent constants Lεn and Mεn we used in the l.h.s. of
(106)), one could envisage to adapt the argument of Méléard [25] for the two dimensional
vortex equation. That argument used uniform estimates in Lebesgue spaces for the densities
of the approximating processes, following from results on generators in generalized diver-
gence form in Osada [28], together with a representation formula for the Biot-Savart kernel
in 2dimensions also given therein. We have yet not been able to generalize that formula
(and the consequent argument) to the three dimensional case.

Acknowledgements: I am grateful to Sylvie Méléard for her encouragements and invalu-
able support during the preparation of this work.
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