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1 Introduction

Prolongating ideas introduced in Datta & McCormick (1993), Bertail &
Clémençon (2003a,b) proposed a general resampling method, namely the
Regenerative Block Bootstrap (RBB in abbreviated form), for bootstrapping
statistics based on data X1, ..., Xn drawn from (eventually nonstationary)
regenerative Markov chains. When the chain (positive Harris recurrent) pos-
sesses a known atom, they proved that this resampling method is second
order correct up to OP (n−1) in the case of the studentized sample mean
statistic under specific Cramer and ”block moment” conditions (less restric-
tive than the exponential strong mixing rate condition generally assumed
when the matter is to deal with dependent data). This is the optimal rate
that may be attained by the naive Bootstrap method in the i.i.d. case (see
Hall (1992)). These results should be put in contrast with the usual rates
that may be attained by the Moving Block Bootstrap (MBB), which are at
best OP (n−3/4) (see Götze & Künsch (1996)). We emphasize that the RBB
straightforwardly applies to numerous specific regenerative models, widely
used in the modeling of queuing and storage systems, and to all countable
Markov chains. Resting on the theoretical construction introduced by Num-
melin (1978), namely the Nummelin splitting technique, which is based on
the crucial notion of small set (cf Meyn & Tweedie (1996)), any general
Harris Markov chain could be considered as regenerative in the sense of the
existence of a regenerative extension. Bertail & Clémençon (2003b) pro-
posed a resampling procedure, the Approximate Regenerative Block Bootstrap
(ARBB), that generalizes the RBB method and applies to all Harris Markov
chains. The method is based on the prior knowledge of a small set for the
chain and a practical approximation of the Nummelin splitting extension. It
thus consists in using an empirical method to build approximatively a real-
ization drawn from a regenerative extension of the chain and in applying the
RBB methodology to the latter.

In this paper we propose a modification of the original ARBB algorithm
based on the ”2-split” method considered by Schick (2001). We also show
how the asymptotic results obtained for the RBB in the regenerative case
may be extended to this modified ARBB procedure at the cost of some small
loss in the Edgeworth expansions, which is closely linked to the uniform rate
for estimating the transition kernel of the chain over a well chosen small
set. The outline is as follows. In section 2 the principles of the ARBB are
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briefly recalled and a modification of the original method using a variant of
the ”2-split” trick is presented. In section 3 an asymptotic result claiming
the second order asymptotic validity of this ARBB method for studentized
sample mean statistics is stated. Finally, in section 4, practical selection rules
for the tuning parameters of the algorithm are proposed and some simulation
results are presented.

2 Nummelin splitting approximation and ARBB

2.1 Notation and basic notions

Here and throughout we shall use the same notations as in section 2 of Bertail
& Clémençon (2003b). Consider X = (Xn)n∈N a positive recurrent Markov
chain on a countably generated state space (E, E) with transition probability
Π(., .), stationary probability measure µ and initial distribution ν. We denote
by Pν (respectively Px for x in E, resp. PA for A ∈ E) the probability measure
on the underlying space such that X0 ∼ ν (resp. conditionally to X0 = x,
resp. conditionally to X0 ∈ A), by Eν (.) the Pν-expectation (resp. by Ex (.)
the Px-expectation, resp. by EA(.) the PA-expectation) and by I{A} the
indicator function of the event A.

We recall that a set S ∈ E is said to be small (see Meyn & Tweedie (1996))
if there exist k ∈ N, a probability measure Φ supported by S, and δ > 0 such
that ∀x ∈ S,∀A ∈ E , Πk(x,A) ≥ δΦ(A), denoting by Πk the k-th iterate
of Π (recall that small sets always exist for irreducible chains). When this
holds, we shall say that X satisfies the minorization condition M(k, S, δ,Φ).
Even if it entails to replace the chain (Xn)n∈N by

(
(Xnk, ..., Xn(k+1)−1

)
)n∈N,

we suppose k = 1 in what follows. We assume further that the family of
the conditional distributions {Π(x, dy)}x∈E and the initial distribution ν are
dominated by a σ-finite measure λ of reference, so that ν(dy) = f(y)λ(dy) and
Π(x, dy) = p(x, y)λ(dy) for all x ∈ E. In this case, the condition M(k, S, δ,Φ)
entails that Φ is also absolutely continuous with respect to λ and p(x, y) ≥
δφ(y), λ(dy) a.s, for any x ∈ S, with Φ(dy) = φ(y)dλ(y). We assume

H0 : The chain X satisfies condition M(1, S, δ,Φ) for some known pa-
rameters S ∈ E such that µ(S) > 0, δ > 0 and probability Φ(dy) = φ(y)dλ(y)
supported by S such that infy∈S φ(y) > 0.

The Nummelin splitting technique consists in constructing a bivariate
Markov chain XM = ((Xn, Yn))n∈N , called the split chain, taking its values
in the state space E × {0, 1} . This construction entails that, conditionally
to X(n+1) = (X1, ..., Xn+1), the Yi’s, 1 6 i 6 n, are independent Bernoulli
r.v.’s. The Bernoulli parameter is δ, unless X has hit the small set S at time i.
And in the case when Xi ∈ S, Yi is drawn from the Bernoulli distribution with
parameter δφ(Xi+1)/p(Xi, Xi+1). We denote by L(n)(p, S, δ, φ, X(n+1)) the
probability distribution of Y (n) = (Y1, ..., Yn) conditionally to X(n+1), which
is simply the tensor product of these Bernoulli distributions. The whole point
of the construction consists in the fact that AM = S×{1} is an atom for the
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split chain XM, which inherits all the communication and stochastic stability
properties from X. In particular, the sample path of XM can be classically
divided into regeneration blocks corresponding to the blocks of observations
between successive visits of the split chain to AM, which are i.i.d. r.v.’s val-
ued in the torus T = ∪∞n=1E

n, by virtue of the strong Markov property. For
a given time m∗ ∈ N that will be fixed later, we shall here consider the regen-
eration times (i.e. the times i at which Xi ∈ S and Yi = 1) posterior to m∗,
which are denoted by τm∗

.= τm∗(1) = inf {k > m∗ + 1/ Xk ∈ S, Yk = 1},
τm∗(j) = inf {k > τm∗(j − 1)/ Xk ∈ S, Yk = 1} for j > 2. We denote by
lm∗,n =

∑n
i=m∗+1 I{Xi ∈ S, Yi = 1) the number of visits to the set AM =

S × {1} between time m∗ + 1 and time n. The corresponding regeneration
blocks are denoted by B0,m∗ = (Xm+1, ..., Xτm∗ (1)), B1,m∗ = (Xτm∗ (1)+1, ...,

Xτm∗ (2)), ..., Blm∗,n−1,m∗ = (Xτm∗ (lm∗,n−1)+1, ..., Xτm∗ (lm∗,n)), B
(n)
lm∗,n,m∗ =

(Xτm∗ (lm∗,n)+1, ..., Xn).

2.2 Approximate Nummelin splitting construction

Of course these blocks are practically unknown since their construction ex-
plicitly depends on the unknown transition density p(x, y) (see § 2.1). The
proposal of Bertail & Clémençon (2003b) for approximating this construc-
tion consists in using an estimate pn(x, y) of the transition density computed
from data X1, ..., Xn to generate a random vector (Ŷ1, ..., Ŷn), conditionally
to X(n+1), drawn from the distribution L(n)(pn, S, δ, φ, X(n+1)). However this
estimation step induces strong dependency problems that make the second
order properties of the ARBB procedure very difficult to study, when applied
to the data (X1, Ŷ1), ..., (Xn, Ŷn). Here we propose a modification of the
method based on the well known semiparametric ”splitting trick”.

Given the data X(n+1), keep the first m observations X(m) = (X1, ...,
Xm) only to compute an estimate pm(x, y) of p(x, y) such that pm(x, y) ≥
δφ(y), λ(dy) a.s. and pm(Xi, Xi+1) > 0, 1 6 i 6 n. To ensure that the
observations X(m∗,n+1) = (Xm∗+1, ..., Xn+1), which shall be used for forming
the pseudo-regeneration blocks to resample, are independent from the first m
observations (i.e. that a regeneration, or equivalently a visit of XM to AM,
occurs between time m + 1 and time m∗) with overwhelming probability, we
separate them by a small gap of length p. We will typically choose m∗ =
m + p with m, p and m∗ depending on n such that p = O(m) as n →
∞. This procedure is very similar to the 2-split method proposed in Schick
(2001), except that the user is here free to pick the exact number p of deleted
observations, within the limits of the previous asymptotic constraint. In the
following, we take m → ∞ as n → ∞, so as to get a consistent estimator
pm(x, y), at a rate sufficiently slow (typically such that m

n → 0 as n → ∞)
to ensure that the number of pseudo-blocks to resample also tends to infinity
as n →∞.

Conditionally to X(n+1), draw then a vector (Ŷm∗+1, ..., Ŷn) from the dis-
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tribution estimate L(n−m∗)(pm, S, δ, φ,X(m∗,n+1)). From a practical view-
point, it actually suffices to draw the Ŷi’s at times i when the chain visits the
set S (i.e. when Xi ∈ S), which are the only time points at which the split
chain may regenerate: at such a time i, draw Ŷi according to the Bernoulli
law with parameter δφ(Xi+1)/pm(Xi, Xi+1)). Count then the number of vis-
its l̂m∗,n =

∑n
i=m∗+1 I{Xi ∈ S, Ŷi = 1) to AM = S×{1} between time m∗+

1 and time n and divide the truncated sample path X(m∗,n) into l̂n+1 blocks,
corresponding to the pieces of the data segment between consecutive visits
to AM, B̂0,m∗ = (Xm∗+1, ..., Xτ̂m∗ (1)), B̂1,m∗ = (Xτ̂m∗ (1)+1, ..., Xτ̂m∗ (2)), ...,
B̂(n)

lm∗,n,m∗ = (Xτ̂m∗ (l̂m∗,n)+1, ..., Xn) with τ̂m∗(0) = m∗ and for any j > 1,

τ̂m∗(j) = inf
{

k > τ̂m∗(j − 1), Xk ∈ S, Ŷk = 1
}

. For convenience, denote by

l(B̂j,m∗) = τ̂m∗(j + 1)− τ̂m∗(j) the length of the block B̂j,m∗ , j > 1.

2.3 Approximate Regenerative Block Bootstrap

Let Tn+1 = Tn+1(X(n+1)) be a statistic of interest and Sn+1 = Sn+1(X(n+1))
be an adequate standardization of the latter. The modified ARBB algorithm
(which we still call ARBB algorithm for the sake of the simplicity) consists
then in applying the RBB procedure in the following manner.

1. Draw sequentially bootstrap data blocks B∗1 , ..., B∗k independently from

the empirical distribution Fm∗,n = (l̂ m∗,n − 1)−1
∑l̂m∗,n−1

j=1 δB̂j,m∗
of the

blocks B̂1,m∗ , ..., B̂l̂m∗,n−1,m∗ conditioned on X(n+1), until the length of the

bootstrap data series L∗(k) =
∑k

j=1 l(B∗j ) is larger than n. Let l∗n = inf{k >
1, L∗(k) > n}.

2. From these bootstrap data blocks, reconstruct a pseudo-trajectory by
binding the blocks together, getting the reconstructed ARBB sample path
X∗(n) = (B∗1 , ...,B∗l∗n−1). Then compute the ARBB statistic T ∗n = TL∗(l∗n)(X∗(n))
and the ARBB standardization S∗n = SL∗(l∗n)(X∗(n)).

3. The ARBB distribution is then given by HARBB(x) = P ∗(S∗−1
n (T ∗n −

Tn+1) 6 x | X(n+1)), which may be approximated by a classical Monte-Carlo
resampling scheme.

As shown in Bertail & Clémençon (2003b), the sequential resampling
in step 1 allows to approximatively mimic the renewal property of the split
chain and to efficiently reproduce the second order structure.

3 Second order properties for linear functionals

3.1 Basic estimators

Let f : E → < be a µ-integrable function. Our parameter of interest is now
the unknown mean µ(f) = Eµ(f(X1)). Although the sample mean µn+1(f) =
(n + 1)−1

∑n+1
i=1 f(Xi) is an asymptotically normal estimator of µ(f) un-
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der simple moment conditions, we shall consider the truncated sample mean
based on the data segment (Xτ̂m∗ (1)+1, ...,, Xτ̂m∗ (1m∗,n)) only (or equivalently
on the blocks B̂1,m∗ , ..., B̂l̂m∗,n−1,m∗), since the matter is here to deal with esti-
mators of which the distribution may be accurately approximated (refer to the
discussions in Bertail & Clémençon (2003a, b)). Denote by n̂ = τ̂

m∗ (l̂m∗ ,n)−
τ̂

m∗ (1) =
∑l̂m∗,n−1

j=1 l(B̂j,m∗) the length of this segment. Set f(B̂j,m∗) =∑τ̂m∗ (j+1)
i=1+τ̂m∗ (j)

f(Xi), j > 1, µ̂m∗,n(f) = n̂−1
∑l̂m∗,n−1

j=1 f(B̂j,m∗), σ̂2
m∗,n(f) =

n̂−1
∑l̂m∗,n−1

j=1 {f(B̂j,m∗)−µ̂m∗,n(f)l(B̂j,m∗)}2. It can easily be shown by using
the argument of Theorems 17.2.2 and 17.3.6 in Meyn & Tweedie (1996) that,
under suitable block moment conditions, µ̂m∗,n(f) is asymptotically normal
and σ̂2

m∗,n(f) is a consistent estimator of the asymptotic variance of µ̂m∗,n(f)
(resp., of µn+1(f)), namely σ2(f) = EAM(τAM)−1EAM((

∑τAM
i=1 {f(Xi) −

µ(f)})2), where τAM = inf{k > 1/ Xk ∈ S, Yk = 1} and EAM(.) de-
notes the conditional expectation given (X0, Y0) ∈ S × {1}. We then define
the unstudentized mean ς̂n = n̂1/2 µ̂m∗,n(f)−µ(f)

σ(f) and the studentized mean

t̂n = n̂1/2 µ̂n(f)−µ(f)
σ̂m∗,n(f) . Bertail & Clémençon (2003a) have shown how to ob-

tain Edgeworth expansions up to O(n−1) for such quantities using the same
technique as in Bolthausen (1982) and in Malinovskii (1987).

3.2 Asymptotic validity of the ARBB

Let P ∗(.) denote the conditional probability under the resampling scheme
described in step 1 (see § 2.3) for given X(n+1). Consider now the ARBB
counterparts of the statistics introduced above: µ∗n(f) = n∗−1

∑l∗n−1
j=1 f(B∗j )

and σ∗2n (f) = n∗−1
∑l∗n−1

j=1 {f(B∗j )−µ∗n(f)l(B∗j )}2 with n∗ =
∑l∗n−1

j=1 l(B∗j ). De-
fine also the ARBB version of the pseudo-regenerative unstudentized sample
mean by ς̂∗n = n∗1/2σ∗n(f)−1(µ∗n(f) − µ̂n(f)) and the one of the pseudo-
regenerative studentized mean by t̂∗n = n∗1/2σ∗n(f)−1(µ∗n(f) − µ̂n(f)). We
shall use the following assumptions. Let k > 2 and set τS = inf{i > 1/
Xi ∈ S}.

H1(f, k) : The small set S is such that supx∈S Ex((
∑τS

i=1 |f(Xi)|)k) < ∞.
H2(k) : The small set S is such that supx∈S Ex(τk

S) < ∞.
These conditions may be classically replaced by some Liapounov’s drift

conditions (see Meyn & Tweedie (1996)). For a sequence of nonnegative real
numbers α = (αn)n∈N converging to 0 as n →∞, consider

H3 : p(x, y) is uniformly estimated by pm(x, y) based on X(m) at the rate
αm at least for the MSE when error is measured by the L∞ loss over S × S:

lim
m→∞

α−1
m (E( sup

(x,y)∈S×S

|pm(x, y)− p(x, y)|2))1/2 = 0.

H4(k) : The sequences m = m(n) and p = p(n) are chosen such that
n1/k ≤ p ≤ m and m/n → 0 as n →∞.
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H5 : limt→∞ supx∈S |Ex(exp(it
∑τS

i=1{f(Xi)− µ(f)}))| < 1 (Cramer
type condition).

H6: There exists N > 0 such that the N -fold convolution of the density of
(
∑τS

i=1{f(Xi) − µ(f)})2 is uniformly bounded over any starting value X0 =
x in S.

We then have the following results :

Theorem 3.1 Under assumptions H0, H1(f, k), H2(k) H3, H4(k) and
H5(k) with k > 6, we have the second order validity of the ARBB distribution
both in the standardized and unstandardized case:

sup
x∈R

|P ∗(ς̂∗n ≤ x)− Pν(ς̂n ≤ x)| = OPν
(n−1/2αm ∨ n−1/2n−1m}) ,

as n → ∞. And if these conditions holds for some k > 8 and H6 hold, we
have as n →∞ :

sup
x∈R

|P ∗(t̂∗n ≤ x)− Pν(t̂n ≤ x)| = OPν
(n−1/2αm ∨ n−1/2n−1m).

In particular if αm = m−1/2 log(m), by choosing m = n2/3, the ARBB is
second order correct up to O(n−5/6 log(n)).

Proof: The proof is based on the same technical ideas as in Bertail &
Clémençon (2003a, b) (refer to these papers for further details). It relies on
establishing the closeness between the conditional distribution of the blocks
B1,m∗ , ..., Blm∗,n,m∗ dividing the segment X(m∗,n) = (Xm∗+1, ..., Xn+1) ac-
cording to the lm∗,n visits of (Xi, Yi)m∗<i6n to the atom AM between time
m∗ + 1 and time n and the conditional distribution of the blocks B̂1,m∗ , ...,

B̂l̂m∗,n,m∗ dividing X(m∗,n) according to the l̂m∗,n successive visits of (Xi,

Ŷi)m∗<i6n to AM, for given X(n+1). By coupling arguments one may show
that, under H2(2γ), γ > 2 and H3, there exists a constant C such that for
i ∈ {1, 2},

Eν(|τ̂i − τi|γ) 6 Cαm, (1)

with the further notations τ1 = τm∗(1), τ̂1 = τ̂m∗(1), τ2 = τm∗(lm∗,n) and
τ̂2 = τ̂m∗(l̂m∗,n). Now set T

(k)
n (f) = n−1

∑lm∗,n−1
j=1 f(Bj,m∗)k and T̃

(k)
n (f) =

n−1
∑l̂m∗,n−1

j=1 f(B̂j,m∗)k for 1 6 k 6 3, with by convention T
(k)
n (f) = 0

(respectively, T̃
(k)
n (f) = 0) when lm∗,n 6 1 (resp., when l̂m∗,n 6 1) and set

D(k)
n (f) = Eν

∣∣∣T (k)
n (f)− T̃ (k)

n (f)
∣∣∣ .

Then, following line by line the argument in Bertail & Clémençon (2003b),
we have as n →∞

D(1)
n (f) = O((n−m− p)−1αm), (2)

D(k)
n (f) = O(αm), for k = 2, 3. (3)
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Observing that, conditioned on X(n+1), the reconstructed ARBB sample path
does not keep the markovian structure but still forms a regenerative sequence,
the results in Malinovskii (1987) (resp. in Bertail & Clémençon (2003a) allow
to derive an explicit Edgeworth expansion (E.E.) up to the second order for
the unstudentized ARBB version (resp., for the studentized ARBB version).
Given (2) and (3) it is straightforward to check that the conditions of validity
of these E.E. hold and that the empirical moments appearing in the empirical
E.E. of the ARBB distribution converges to their theoretical counterparts at
the rate αm at least. Moreover the bias induced by the first and last pseudo-
regeneration blocks does not perturb the E.E. up to OP (n−1αm). The main
difficulty actually consists in establishing an E.E. for the original statistic. In
the unstudentized case, since the functional is then linear, it simply amounts
to control the error induced by a split at the ”wrong place” for the first
(resp. the last) block (i.e. the distance between τi and τ̂i, i = 1, 2): this is
typically of the same order as the deviation (2). The unstandardized mean
thus admits an E.E. on powers of (n−m−p)−1/2, which in turn coincides with
the E.E. of the empirical mean up to O(n−1/2(m/n)). In the studentized case
one must first check that the variance estimate computed from the pseudo-
blocks is close to the variance estimate based on the regeneration blocks up to
OP (n−1αm), conditionally to the first m observations. CombiningH4(k) with
H2(k), for k > 4, it is straightforward that the probability that the split chain
does not visit the regeneration set S × {1} between m and m + p is typically
of order O(n−1). Subsequently to a regeneration occurring between m + 1
and m + p, the remaining observations may be then decomposed into true
regeneration blocks (independent from the first m observations) using the
same partitioning arguments as in Malinovskii (1987) or Bertail & Clémençon
(2003). This yields the validity of the E.E. on powers of (n −m − p)−1/2 =
n−1/2 + O(n−1/2(m/n)). A straightforward optimization argument leads to
the last statement. �

4 Tuning parameters and simulation results

The main tuning parameter relies in the choice of the small set. If the
transition density p(x, y) is continuous on some neighborhood Vx0(ε)

2 =
[x0 − ε, x0 + ε]2 of some fixed point (x0, x0) such that p(x0, x0) > 0, then
there exists δ = δ(ε, p) ∈]0, 1[ such that inf(x,y)∈V 2

x0
p(x, y) > δ(2ε)−1. Such

a compact interval Vx0(ε) is thus a small set for X. It satisfies condition
M(1, Vx0(ε), δ,UVx0 (ε)), where UVx0 (ε) denotes the uniform distribution on
Vx0(ε). Hence, in the case when one knows x0, ε and δ such that (2) holds
(this simply amounts to know a uniform lower bound estimate for the proba-
bility of returning to Vx0(ε) in one step), one may effectively apply the ARBB
methodology to X. A possible selection rule for ε relies on fixing x0 and
searching for ε > 0 so as to maximize the expected number of regeneration-
blocks conditionally to the observed trajectory X(n+1), that is
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Nn(ε, p) = E(
∑n

i=m∗+1 I{Xi ∈ Vx0(ε), Yi = 1} |X(n+1))
= δ(ε,p)

2ε

∑n
i=m∗+1 I{(Xi, Xi+1) ∈ Vx0(ε)

2} 1
p(Xi,Xi+1)

.

Since the transition density p and its minimum over Vx0(ε)
2 are unknown, a

practical criterion N̂n(ε) to optimize is obtained by replacing p by pm and
δ(ε, p)/2ε by a sharp lower bound δ̂m(ε, pm)/2ε for pm over Vx0(ε)

2. The final
procedure may be then implemented in 4 steps as follows. Let x0 be fixed.

1. Compute an estimator p̂m of the transition density, for instance of
Nadaraya-Watson’s type, with m = Cn2/3, C > 0.

2. Select the small set Vx0(ε) by maximizing the empirical criterion N̂n(ε)
described above over ε > 0. This yields ε̂m,opt and a corresponding minimum
value δ̂m,opt.

3. At each time i > m∗ when (Xi, Xi+1) ∈ [−ε̂m,opt, ε̂m,opt]2, draw inde-
pendent Bernoulli r.v.’s Ŷi with parameter 1−δ̂m,opt(2εm,opt)−1/p̂m(Xi, Xi+1).
At each time i such that Ŷi = 1, divide the trajectory, getting data blocks of
random size.

4. Apply the ARBB procedure to the sample mean as previously de-
scribed.

Because the tuning parameters pm, ε̂m,opt, δ̂m,opt explicitly depends on
the first m observations only, the ”2-split” technique ensures that the ARBB
resampling will not be asymptotically perturbed by the latter.

In the following tables, we compare the quantile of order γ of the true
distribution (TD) of the mean respectively. We take X0 = 0, εi i.i.d. ∼
N(0, 1) and consider

-an AR(1) model : Xi = ρXi−1 + εi , with ρ = 0.95 and n = 200, m =
68 = [2 ∗ n2/3)].

-an AR model with a ARCH(1) structure Xi = ρXi−1 +(1+αX2
i−1)

1/2εi,

ρ = 0.6, α = 0.1. See Bertail and Clémençon (2003b) for comparison with the
ARBB without the double splitting trick. The performance are quite similar
and suggest that the ARBB without the splitting trick enjoy the same second
order properties.

AR AR-ARCH

γ TD ARBB TD ARBB ASY

1 -3.63 -3.72 -2.53 -2.65 -2.32

2.5 -2.77 -2.81 -2.02 -2.09 -1.96

5 -2.34 -2.36 -1.79 -1.84 -1.65

10 -1.74 -1.73 -1.42 -1.44 -1.28

AR AR-ARCH

γ TD RBB TD ARBB ASY

90 1.68 1.61 1.36 1.41 1.28

95 2.16 1.99 1.73 1.82 1.65

97.5 2.73 2.46 2.00 2.14 1.96

99 3.62 3.60 2.53 2.69 2.32

Table 1: Comparison of the tails of the true (TD), modified ARBB and gaussian
(ASY) distributions for the two models.
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