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Abstract

We consider estimation of the common probability density f of i.i.d. ran-
dom variables Xi that are observed with an additive i.i.d. noise. We assume
that the unknown density f belongs to a class A of densities whose charac-
teristic function is described by the exponent exp(−α|u|r) as |u| → ∞, where
α > 0, r > 0. The noise density is supposed to be known and such that
its characteristic function decays as exp(−β|u|s), as |u| → ∞, where β > 0,
s > 0. Assuming that r < s, we suggest a kernel type estimator that is op-
timal in sharp asymptotical minimax sense on A simultaneously under the
pointwise and the L2-risks. The variance of this estimator turns out to be
asymptotically negligible w.r.t. its squared bias. For r < s/2 we construct a
sharp adaptive estimator of f . We discuss some effects of dominating bias,
such as superefficiency of minimax estimators.

Mathematics Subject Classifications: 62G05, 62G20
Key Words: Deconvolution, nonparametric density estimation, infinitely differen-
tiable functions, exact constants in nonparametric smoothing, minimax risk, adap-
tive curve estimation.
Short title: Sharp optimality in density deconvolution

1 Introduction

Assume that one observes Y1, . . . , Yn in the model

Yi = Xi + εi, i = 1, . . . , n,

where Xi are i.i.d. random variables with an unknown probability density f w.r.t.
the Lebesgue mesure on R, the random variables εi are i.i.d. with known probability
density f ε w.r.t. the Lebesgue mesure on R, and (ε1, . . . , εn) is independent of
(X1, . . . , Xn). The deconvolution problem that we consider here is to estimate f
from observations Y1, . . . , Yn.
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Denote by fY = f ∗ f ε the density of the variables Yi, where ∗ is the convolution
sign. Let ΦY , ΦX and Φε be the characteristic functions of random variables Yi,
Xi and εi, respectively. For an integrable function g : R → R, define the Fourier
transform

Φg(u) =

∫
g(x) exp(ixu)du.

We assume that the unknown density f belongs to the class of functions

Aα,r(L) = {f is a probability density on R and

∫ ∣∣Φf (u)
∣∣2 exp(2α|u|r)du ≤ 2πL},

where α > 0, r > 0, L > 0 are finite constants. The classes of densities of this type
have been studied by many authors starting from Ibragimov and Hasminskii (1983).
For a recent overview see Belitser and Levit (2001) and Artiles (2001).

We suppose also in most of the results that the characteristic function of noise
εi satisfies the following assumption.

Assumption (N). There exist constants u0 > 0, β > 0, s > 0, bmin > 0,
bmax > 0 and γ, γ′ ∈ R such that

bmin|u|γ exp(−β |u|s) ≤ |Φε(u)| ≤ bmax|u|γ
′
exp(−β |u|s) (1)

for |u| ≥ u0.

Many important probability densities belong to the class Aα,r(L) with some
α, r, L or have the characteristic function satisfying (1). All such densities are in-
finitely many times differentiable on R. Examples include normal, Cauchy and
general stable laws, Student, logistic, extreme value distributions and other, as well
as their mixtures and convolutions. Note that in these examples the values r and/or
s are less or equal to 2. Although the densities with r > 2, s > 2 are in principle
conceivable, they are difficult to express in a closed form, and the set of such den-
sities does not contain statistically famous representatives. This remark concerns
especially the noise density f ε that should be explicitly known. Therefore, without
a meaningful loss, we will sometimes restrict our study to the case 0 < s ≤ 2.

For any estimator f̂n of f define the maximal pointwise risk over the classAα,r(L)
for any fixed x ∈ R by

Rn(x, f̂n,Aα,r(L)) = sup
f∈Aα,r(L)

Ef

[∣∣∣f̂n(x)− f(x)
∣∣∣2]

and the maximal L2-risk

Rn(L2, f̂n,Aα,r(L)) = sup
f∈Aα,r(L)

Ef

[
‖f̂n − f‖2

2

]
,

where Ef (·) is the expectation with respect to the joint distribution Pf of Y1, . . . , Yn,
when the underlying probability density of Xi’s is f , and ‖ · ‖2 stands for the L2(R)-
norm. (In what follows we use the notation Lp(R), in general, for the Lp-spaces of
complex valued functions on R.)
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The asymptotics of optimal estimators differ significantly for the cases r < s,
r = s and r > s. If r < s the variance of the optimal estimator is asymptotically
negligible w.r.t. the bias, while for r > s the bias is asymptotically negligible w.r.t.
the variance. In this paper we consider the bias dominated case, i.e. we assume that
r < s. The setting with dominating variance will be treated in another paper.

The problems of density deconvolution with dominating bias were historically the
first ones studied in the literature [cf. Ritov (1987), Stefanski and Carroll (1990),
Carroll and Hall (1988), Zhang (1990), Fan (1991a,b), Masry (1991), Efromovich
(1997)], motivated by the importance of deconvolution with gaussian noise. These
papers consider, in particular, the noise distributions satisfying (1), but the densities
f belonging to finite smoothness classes, such as Hölder or Sobolev ones, where the
estimation of f is harder than for the classAα,r(L). In this framework they show that
optimal rates of convergence are as a power of log n which suggests that essentially
there is no hope to recover f with a reasonably small error for reasonable sample
sizes. This conclusion is often interpreted as a general pessimistic message about
the gaussian deconvolution problem. Note, however, that such minimax results are
obtained for the least favorable densities in Hölder or Sobolev classes. Often the
underlying density is much nicer (for instance, it belongs to Aα,r(L), as the popular
densities mentioned above), and the estimation can be significantly improved, as we
show below: the optimal rates of convergence are in fact faster than any power of
log n.

Pensky and Vidakovic (1999) studied density deconvolution in the classes of den-
sities that are somewhat smaller than Aα,r(L) (including an additional restriction
on the tails of f) and with the noise satisfying (1). They analyzed the rates of
convergence of wavelet deconvolution estimators, restricting their attention to the
L2-risk. Our results imply that the rates achieved by their estimators are not opti-
mal on Aα,r(L) and that the optimal rates can be attained by a simpler and more
traditional kernel deconvolution method with suitably chosen parameters. We will
show that our method attains not only the optimal rates but also the best asymp-
totic constants (i.e. is sharp optimal). Moreover, we will prove that the proposed
estimator is sharp optimal simultaneously under the L2-risk and under the pointwise
risk and that it is sharp adaptive to the parameters α, r, L in some cases.

The most difficult part of our results is the construction of minimax lower bounds.
The technique that we develop might be useful to get lower bounds for similar “2
exponents” type settings in other inverse problems. To our knowledge, except for the
case r = s = 1 treated by Golubev and Khasminskii (2001), Tsybakov (2000) and
Cavalier, Golubev, Lepski and Tsybakov (2003), such lower bounds are not available
even for the Gaussian white noise (or sequence space) deconvolution model, although
some upper bounds are known (cf. Ermakov (1989), Efromovich and Koltchinskii
(2001)).

Finally, we mention publications on adaptive deconvolution under Assumption
(N) or its analogs. They deal with the problems that are somewhat different from
ours. Efromovich (1997) considered the problem of deconvolution where the den-
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sities f and f ε are both periodic on [0, 2π], f ε satisfies an analog of Assumption
(N) expressed in terms of Fourier coefficients and f belongs to a class of periodic
functions of Sobolev type. He proposed sharp adaptive estimators with logarithmic
rates which are optimal for that framework, as discussed above. Adaptive deconvo-
lution in a gaussian white noise model had been studied by Goldenshluger (1998).
He worked under the Assumption (N) on the Fourier transform of the convolution
kernel or under the assumption that it decreases as a power of u, as |u| → ∞, but he
assumed that the function f to estimate belongs to a Sobolev class with unknown
parameters. He proposed a rate adaptive estimator under the pointwise risk.

2 The estimator, its bias and variance

Consider the following kernel estimator of f :

f̂n(x) =
1

nhn

n∑
i=1

Kn

(
Yi − x

hn

)
, (2)

where hn > 0 is a bandwidth and Kn is the function on R defined as the inverse
Fourier transform of

ΦKn(u) =
I(|u| ≤ 1)

Φε(u/hn)
. (3)

Here and later I(·) denotes the indicator function. The function Kn is called kernel,
but unlike the usual Parzen-Rosenblatt kernels, it depends on n.

For the existence of Kn it is enough that ΦKn ∈ L2(R) (and thus ΦKn ∈ L1(R)).
This holds under mild assumptions. For example, in view of the continuity property
of characterictic functions, the assumption that Φε(u) 6= 0 for all u ∈ R is sufficient
to have ΦKn ∈ L2(R). Moreover, the condition ΦKn ∈ L2(R) implies that the kernel
Kn is real-valued. In fact, under this condition we have ΦKn(u) = Φε(−u/hn)Vn(u)
for almost all u ∈ R, where Vn(u) = I(|u| ≤ 1)/|Φε(u/hn)|2 is an even real-valued
function belonging to L1(R) and Φε(−u/hn) (the complex conjugate of Φε(u/hn))
is the Fourier transform of real-valued function t 7→ hnf

ε(−hnt). This implies that
Kn is a convolution of two real-valued functions.

The estimator (2) belongs to the family of kernel deconvolution estimators stud-
ied in many papers starting from Stefanski and Carroll (1990), Carroll and Hall
(1988) and Zhang (1990). It can be also deduced from a unified approach to con-
struction of estimators in statistical inverse problems (Ruymgaart (1993)).

The following proposition establishes upper bounds on the pointwise and the L2

bias terms, i.e. on the quantities |Ef f̂n(x)− f(x)|2 and ‖Ef f̂n − f‖2
2.

Proposition 1 Let f ∈ Aα,r(L), α > 0, r > 0, L > 0 and assume that ΦKn ∈ L2(R)

for any hn > 0. Then the squared bias of f̂n(x) is bounded as follows

sup
x∈R

∣∣∣Ef f̂n(x)− f(x)
∣∣∣2 ≤ L

2παr
hr−1

n exp

(
−2α

hr
n

)
(1 + o(1)),
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as hn → 0, while the bias term of the L2-risk satisfies

‖Ef f̂n − f‖2
2 ≤ L exp

(
−2α

hr
n

)
for every hn > 0.

Proof. For the pointwise bias we have∣∣∣Ef f̂n(x)− f(x)
∣∣∣2 =

∣∣∣∣( 1

hn

Kn

(
·
hn

)
∗ fY (·)

)
(x)− f(x)

∣∣∣∣2
=

∣∣∣∣ 1

2π

∫ [
ΦKn(uhn)ΦY (u)− ΦX(u)

]
exp(−iux)du

∣∣∣∣2
≤ 1

(2π)2

(∫
I(|uhn| > 1)|ΦX(u)|du

)2

.

Applying the Cauchy-Schwarz inequality and the assumption that f belongs to
Aα,r(L) we get∣∣∣Ef f̂n(x)− f(x)

∣∣∣2
≤ 1

(2π)2

∫
|u|>1/hn

exp(−2α|u|r)du
∫
|u|>1/hn

|ΦX(u)|2 exp(2α|u|r)du (4)

≤ L

2π

∫
|u|>1/hn

exp(−2α|u|r)du

which together with Lemma 6 yields the first inequality of the Proposition. To prove
the second inequality, we apply the Plancherel formula and get

‖Ef f̂n − f‖2
2 =

∥∥∥∥ 1

hn

EfKn

(
Y1 − ·
hn

)
− f(·)

∥∥∥∥2

2

=
1

2π

∫ ∣∣ΦKn(uhn)ΦY (u)− ΦX(u)
∣∣ 2du

=
1

2π

∫
I(|uhn| > 1)|ΦX(u)|2du

≤ exp(−2α/hr
n)

2π

∫
|u|>1/hn

∣∣ΦX(u)
∣∣ 2 exp(2α |u|r)du. (5)

2

The next proposition gives upper bounds on the pointwise and the L2 variance
terms defined as

V arf f̂n(x) = Ef

[
|f̂n(x)− Ef f̂n(x)|2

]
and V arf,2f̂n = Ef

[
‖f̂n − Ef f̂n‖2

2

]
respectively.
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Proposition 2 Let the left inequality in (1) hold and Φε(u) 6= 0,∀ u ∈ R. Then,
for any density f such that supx∈R f(x) ≤ f ∗ < ∞, the pointwise variance of the

estimator f̂n(x) is bounded as follows

sup
x∈R

V arf f̂n(x) = sup
x∈R

Ef

[
|f̂n(x)− Ef f̂n(x)|2

]
≤ f∗h

s−2γ−1
n

2πβsb2minn
exp

(
2β

hs
n

)
(1 + o(1)),

(6)
as hn → 0, and, for an arbitrary density f , the variance term of the L2-risk satisfies

V arf,2f̂n = Ef

[
‖f̂n − Ef f̂n‖2

2

]
≤ hs−2γ−1

n

2πβsb2minn
exp

(
2β

hs
n

)
(1 + o(1)) (7)

as hn → 0.

Proof. Define

K2,n(x) =
1

hn

K2
n

(
x

hn

)
.

For the pointwise variance we write

V arf f̂n(x) =
1

n
Ef

[∣∣∣∣ 1

hn

Kn

(
Y1 − x

hn

)
− Ef

[
1

hn

Kn

(
Y1 − x

hn

)]∣∣∣∣2
]

≤ 1

nhn

(K2,n ∗ fY )(x)

≤ f∗
nhn

‖Kn‖2
2, (8)

where we used the fact that the convolution density fY = f∗f ε is uniformly bounded
by f∗. Applying the Plancherel formula and using (1) and (64) of Lemma 6 in the
Appendix we get

‖Kn‖2
2 =

hn

2π

∫
|u|≤1/hn

|Φε(u)|−2du

≤ hn

2πb2min

∫
u0≤|u|≤1/hn

|u|2γ exp(2β|u|s)du+
hn

2π

∫
|u|≤u0

|Φε(u)|−2du

≤ hn

πb2min

∫ 1/hn

0

u2γ exp(2βus)du+O(hn)

=
hs−2γ

n

2πb2minβs
exp

(
2β

hs
n

)
(1 + o(1)), hn → 0. (9)

This and (8) imply (6). In a similar way

V arf,2f̂n ≤ 1

nhn

∫
(K2,n ∗ fY )(x)dx

=
1

nhn

‖Kn‖2
2,
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and in view of (9) we obtain (7). 2

Clearly, the bounds of Proposition 2 can be applied to f ∈ Aα,r(L) with, for
example,

f∗ = sup
f∈Aα,r(L)

sup
x∈R

|f(x)|.

This value is finite and can be taken as in Lemma 5 of the Appendix.

3 Optimal bandwidths and upper bounds for the

risks

Propositions 1 and 2 lead to upper bounds for pointwise and L2 risks that can be
minimized in hn. In this section we give an asymptotic approximation for the result
of such a minimization assuming that r < s. The corresponding solutions hn will be
called optimal bandwidths. Note that here we consider only optimization within a
given class of estimators, moreover we minimize upper bounds on the risks and not
the exact risks. However, this turns out to be precise enough in asymptotical sense:
in the next section we will show that the estimator f̂n with optimal bandwidth is
sharp minimax over all possible estimators.

Decomposition of the mean squared error of the kernel estimator into bias and
variance terms and application of Propositions 1 and 2 yields

Ef

[∣∣∣f̂n(x)− f(x)
∣∣∣2] =

∣∣∣Ef f̂n(x)− f(x)
∣∣∣2 + V arf f̂n(x)

≤ L

2παr
hr−1

n exp

(
−2α

hr
n

)
+

f∗
2πβsb2min

hs−2γ−1
n

n
exp

(
2β

hs
n

)
.

We now minimize the last expression in hn. Clearly, the minimizer hn = h̃n tends
to 0, as n → ∞. Taking derivatives with respect to hn and neglecting the smaller
terms lead us to the equation for optimal bandwidth

Lb2min

f∗
nh̃2γ

n (1 + o(1)) = exp

(
2α

h̃r
n

+
2β

h̃s
n

)
, (10)

(asymptotics are taken as h̃n → 0, n→∞). Taking logarithms in the above equation
we obtain that the optimal bandwidth h̃n is a solution in h of the equation

−2γ log h+
2α

hr
+

2β

hs
= log n+ C(1 + o(1)), (11)

Here and in what follows we denote by C constants with values in R that can be
different on different occasions. For the bandwidth h = h̃n satisfying (10) and (11)
we can write

h̃r−1
n exp

(
−2α

h̃r
n

)
= C(1 + o(1))

h̃r−2γ−1
n

n
exp

(
2β

h̃s
n

)
= C(1 + o(1))h̃r−s

n

h̃s−2γ−1
n

n
exp

(
2β

h̃s
n

)
,
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with some constant C > 0. This proves that, for the optimal bandwidth, the
bias term dominates the variance term whenever r < s. (Strictly speaking, here
we consider upper bounds on the bias and variance terms and not precisely these
terms.)

Similarly, for the L2-risk we get

Ef

[
‖f̂n − f‖2

2

]
= ‖Ef f̂n − f‖2

2 + V arf,2f̂n

≤ L exp

(
−2α

hr
n

)
+

1

2πβsb2min

hs−2γ−1
n

n
exp

(
2β

hs
n

)
,

and the minimizer hn = hn(L2) of the last expression is a solution in h of the
equation

(r − 2γ − 1) log h+
2α

hr
+

2β

hs
= log n+ C(1 + o(1)). (12)

Now, this equation implies

exp

(
− 2α

hr
n(L2)

)
= C(1 + o(1))

hr−2γ−1
n (L2)

n
exp

(
2β

hs
n(L2)

)
= C(1 + o(1))hr−s

n (L2)
hs−2γ−1

n (L2)

n
exp

(
2β

hs
n(L2)

)
,

for some constant C > 0. This proves that also for the L2-risk the bias term
dominates the variance term whenever r < s.

Thus we obtain two different equations (11) and (12) that define optimal band-
widths for pointwise and L2 risks respectively, and in both cases the bias terms are
asymptotically dominating.

In fact, we can obtain the same results using a single bandwidth defined as
follows. Denote by h∗ = h∗(n) the unique solution of the equation

2β

hs
∗

+
2α

hr
∗

= log n− (log log n)2, (13)

(in what follows we will assume w.l.o.g. that n ≥ 3 to ensure that log n > (log log n)2).
Lemma 8 in the Appendix implies that, both for the pointwise and the L2 loss, the
bias terms of the estimator f̂n with bandwidth h∗ given by (13) are of the same or-
der as those corresponding to bandwidths h̃n and hn(L2), while the variance terms
corresponding to (13) are asymptotically smaller. Thus, the pointwise risk and the
L2 risk of the estimator f̂n with bandwidth h∗ given by (13) are asymptotically of
the same order as those for estimators f̂n with optimal bandwidths h̃n and hn(L2)
respectively.

Note that, in fact, h∗ is better than both bandwidths h̃n and hn(L2) in the
variance terms, but these terms are asymptotically negligible w.r.t. the bias ones
(cf. Lemma 8). Therefore, the improvement does not appear in the main term of the
asymptotics. Note also that the sequence (log log n)2 in (13) can be replaced by a
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sequence satisfying bn = o((log n)1−r/s), bn/ log log n→∞ and the above argument
remains valid (cf. the proof of Lemma 8).

Calculating the upper bounds for bias terms of the estimator f̂n with band-
width (13) we get the following asymptotical upper bounds for its pointwise and L2

risks respectively:

ϕ2
n =

L

2παr
hr−1
∗ exp

(
−2α

hr
∗

)
=

L

2παr

(
log n

2β

)(1−r)/s

exp

(
−2α

hr
∗

)
(1 + o(1)) (14)

and

ϕ2
n(L2) = L exp

(
−2α

hr
∗

)
. (15)

The above remarks can be summarized as follows.

Theorem 1 Let α > 0, L > 0, 0 < r < s <∞, let the left inequality in (1) hold and
Φε(u) 6= 0,∀ u ∈ R. Then the kernel estimator f̂n with bandwidth defined by (13)
satisfies the following pointwise and L2-risk bounds

lim sup
n→∞

sup
x∈R

Rn(x, f̂n,Aα,r(L))ϕ−2
n ≤ 1, (16)

lim sup
n→∞

Rn(L2, f̂n,Aα,r(L))ϕ−2
n (L2) ≤ 1, (17)

where the rates ϕn and ϕn(L2) are given in (14) and (15).

Consider now the case r ≤ s/2 that is of a particular interest. It covers the
situation where the noise density f ε is gaussian (s = 2) and the underlying density
f admits the analytic continuation into a strip of the complex plane (r = 1), as it
is the case for the statistically famous densities mentioned in the introduction. The
classes with r < 1 are even larger. It is easy to see that

ϕ2
n =


L

2παr

(
log n
2β

)(1−r)/s

exp

(
−2α

(
log n
2β

)r/s
)

(1 + o(1)), if r < s/2,

L
2παr

(
log n
2β

)(1−r)/s

exp
(
−2α

√
log n
2β

+ α2

β

)
(1 + o(1)), if r = s/2

(18)

and

ϕ2
n(L2) =


L exp

(
−2α

(
log n
2β

)r/s
)

(1 + o(1)), if r < s/2,

L exp
(
−2α

√
log n
2β

+ α2

β

)
(1 + o(1)), if r = s/2.

(19)

The bandwidth (13) depends on the parameters α, r of the class Aα,r(L) that are
not known in practice. However, it is possible to construct an adaptive estimator
that does not depend on these parameters and that attains the same asymptotic
behavior as in Theorem 1 both for pointwise and L2 risks when r < s/2. Define the
set of parameters

Θ = {(α,L, r) : α > 0, L > 0, 0 < r < s/2} .

Note that the parameters s and β are supposed to be known since they characterize
the known density of noise f ε.
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Theorem 2 Suppose that the left inequality in (1) holds and Φε(u) 6= 0,∀ u ∈ R.
Let fa

n be kernel estimator defined in (2) with bandwidth hn = ha
n defined by

ha
n =

(
log n

2β
−

√
log n

2β

)−1/s

(20)

for n large enough so that log n/(2β) > 1. Then, for all (α,L, r) ∈ Θ,

lim sup
n→∞

sup
x∈R

Rn(x, fa
n ,Aα,r(L))ϕ−2

n ≤ 1,

and
lim sup

n→∞
Rn(L2, f

a
n ,Aα,r(L))ϕ−2

n (L2) ≤ 1,

where the rates ϕn and ϕn(L2) are defined in (14) and (15) (and, more particularly,
satisfy (18) and (19) with r < s/2).

Proof. Since r/s < 1/2, we have −
(

log n
2β

−
√

log n
2β

)r/s

> − β
2α

√
log n
2β

for n large

enough, and thus

exp

(
− 2α

(ha
n)r

)
≥ exp

(
−β

√
log n

2β

)
.

On the other hand,

1

n
exp

(
2β

(ha
n)s

)
= exp

(
−2β

√
log n

2β

)
.

Therefore, the ratio of the bias term of fa
n to the variance term of fa

n both for the
pointwise risk and for the L2-risk is bounded from below by

(log n)b exp

(
β

√
log n

2β

)
for some b ∈ R. This expression tends to ∞ as n → ∞. Thus, the variance terms
are asymptotically negligible w.r.t. the bias terms. It remains to check that the bias
terms of fa

n for both risks are asymptotically bounded by ϕ2
n and ϕ2

n(L2) respectively.
In view of Proposition 1, for n large enough the bias term of fa

n for the pointwise
risk is bounded from above by

L

2παr
(ha

n)r−1 exp

−2α

(
log n

2β

)r/s
[
1−

(
log n

2β

)−1/2
]r/s


≤ L

2παr

(
log n

2β

)(1−r)/s

exp

(
−2α

(
log n

2β

)r/s

+ c

(
log n

2β

)r/s−1/2
)

(1 + o(1))

= ϕ2
n(1 + o(1)),
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where c > 0 is a constant and we have used (18) with r < s/2 for the last equality.
Similarly, for n large enough the bias term of fa

n for the L2-risk is bounded from
above by

L exp

−2α

(
log n

2β

)r/s
[
1−

(
log n

2β

)−1/2
]r/s


≤ L exp

(
−2α

(
log n

2β

)r/s

+ c

(
log n

2β

)r/s−1/2
)

= ϕ2
n(L2)(1 + o(1)),

where c > 0 and we have used (19) with r < s/2 for the last equality. 2

If r = s/2, adaptation to (α,L) is still possible via a procedure similar to that of
Theorem 2, but it does not attain the exact constant, as shows the following result.
Introduce the set

Θ0 = {(α,L) : 0 < α ≤ α0, L > 0},
where α0 > 0 is a constant.

Theorem 3 Suppose that the left inequality in (1) holds and Φε(u) 6= 0,∀ u ∈ R.
Let fa

n be the kernel estimator defined in (2) with bandwidth hn = ha
n defined by

ha
n =

(
log n

2β
− A

β

√
log n

2β

)−1/s

where A > α0 and n is large enough so that log n/(2β) > (A/β)2. Then for r = s/2
and for all (α,L) ∈ Θ0,

lim sup
n→∞

sup
x∈R

Rn(x, fa
n ,Aα,r(L))ϕ−2

n ≤ exp

(
αA

β
− α2

β

)
, (21)

lim sup
n→∞

Rn(L2, f
a
n ,Aα,r(L))ϕ−2

n (L2) ≤ exp

(
αA

β
− α2

β

)
, (22)

where the rates ϕn and ϕn(L2) are given in (18) and (19).

Proof. It is easily checked that the bias exponent

exp

(
− 2α

(ha
n)r

)
= exp

(
−2α

√
log n

2β
+
αA

β

)
(1 + o(1)),

while for the variance term exponent

1

n
exp

(
− 2β

(ha
n)s

)
= exp

(
−2A

√
log n

2β

)
.

Since A > α, the bias term of fa
n asymptotically dominates its variance term. In-

equalities (21) and (22) now follow from these remarks and the expressions for ϕ2
n,

ϕ2
n(L2) in (18) and (19) with r = s/2. 2
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4 Minimax lower bounds, sharp optimality and

superefficiency

In this section we establish lower bounds for the risks showing that, under mild ad-
ditional assumptions, the upper bounds of the previous section cannot be improved
(in a minimax sense on the class of densities Aα,r(L)) not only among kernel esti-
mators, but also among all estimators. In other words, the estimators suggested in
the previous section attain optimal rates of convergence on Aα,r(L) with optimal
exact constants.

We suppose that the following assumption holds.

Assumption (ND). There exist constants u1 > 0, B > 0 and γ1 ∈ R such that
Φε(u) is twice continuously differentiable for |u| ≥ u1 with the derivatives satisfying

max{|(Φε(u))′|, |(Φε(u))′′|} ≤ B|u|γ1 exp(−β|u|s),

where β > 0 and s > 0 are the same as in Assumption (N).

Note that this assumption is satisfied for the examples of popular noise densities
mentioned in the Introduction.

Theorem 4 Let α > 0, L > 0, 0 < r < s ≤ 2, and suppose that Assumption (ND)
and the right hand inequality in (1) hold. Then

lim inf
n→∞

inf
Tn

Rn(x, Tn,Aα,r(L))ϕ−2
n ≥ 1, ∀ x ∈ R, (23)

and
lim inf
n→∞

inf
Tn

Rn(L2, Tn,Aα,r(L))ϕ−2
n (L2) ≥ 1, (24)

where infTn denotes the infimum over all estimators and the rates ϕn, ϕn(L2) are
defined in (14) and (15).

Proof of Theorem 4 is given in Section 5.
Theorems 1,2 and 4 immediately imply the following result on sharp asymptotic

minimaxity of the estimators constructed in Section 3.

Theorem 5 Let α > 0, L > 0, 0 < r < s ≤ 2, let Assumptions (N), (ND) hold and
Φε(u) 6= 0,∀ u ∈ R. Then the kernel estimator f̂n with bandwidth defined by (13)
(or with bandwidth defined by (20) if r < s/2) is sharp asymptotically minimax on
Aα,r(L) both in pointwise and in L2 sense:

lim
n→∞

Rn(x, f̂n,Aα,r(L))ϕ−2
n = lim

n→∞
inf
Tn

Rn(x, Tn,Aα,r(L))ϕ−2
n = 1, ∀ x ∈ R, (25)

lim
n→∞

Rn(L2, f̂n,Aα,r(L))ϕ−2
n (L2) = lim

n→∞
inf
Tn

Rn(L2, Tn,Aα,r(L))ϕ−2
n (L2) = 1. (26)

12



This is the main result of the paper. It shows that the kernel estimator f̂n with a
properly chosen bandwidth hn is sharp optimal in asymptotically minimax sense on
Aα,r(L) and that for r < s/2 the estimator fa

n is sharp adaptive in asymptotically
minimax sense on Aα,r(L). Sharp adaptation is thus obtained by direct tuning of
the smoothing parameter without any additional adaptation rule. This is one of the
effects of dominating bias. Theorem 5 also provides exact asymptotical expressions
for minimax risks on Aα,r(L) under the pointwise and the L2 losses: it states that
they are equal to ϕ2

n and ϕ2
n(L2) respectively.

Thus, ϕ2
n and ϕ2

n(L2) can be chosen as reference values to determine efficiency of
estimators. An interesting question is whether there exist superefficient estimators
f̃n, i.e. such that

sup
x∈R

Ef

[
|f̃n(x)− f(x)|2

]
= o(ϕ2

n) and Ef

[
‖f̃n − f‖2

2

]
= o(ϕ2

n(L2)), (27)

as n → ∞, for any fixed f ∈ Aα,r(L). The answer to this question is positive, as
shows the next proposition.

Proposition 3 Let the conditions of Theorem 1 hold. Let f̃n be the kernel estimator
f̂n with bandwidth defined by (13) (or by (20) if r < s/2). Then f̃n satisfies (27).
If, moreover, the conditions of Theorem 5 hold, f̃n is superefficient in the sense that

lim
n→∞

Ef [|f̃n(x)− f(x)|2]
infTn supf∈Aα,r(L)Ef [|Tn(x)− f(x)|2]

= 0, ∀x ∈ R, (28)

lim
n→∞

Ef [‖f̃n − f‖2
2]

infTn supf∈Aα,r(L)Ef [‖Tn − f‖2
2]

= 0. (29)

Proof. Consider the kernel estimator f̂n with bandwidth defined by (13). In-
stead of using Proposition 1 to bound the bias term, we apply directly (4) for the
pointwise risk and (5) for the L2-risk which yields that, for any fixed f ∈ Aα,r(L),

sup
x∈R

|Ef f̂n(x)− f(x)|2 = o
(
hr−1
∗ exp(−2α/hr

∗)
)

= o(ϕ2
n),

‖Ef f̂n − f‖2
2 = o (exp(−2α/hr

∗)) = o(ϕ2
n(L2)),

as n → ∞. Now, Proposition 2 and (68) of Lemma 8 imply that the variance
terms are also o(ϕ2

n) and o(ϕ2
n(L2)), as n → ∞, respectively. Hence, (27) follows

and implies (28) and (29), in view of Theorem 5. The case where the bandwidth is
defined by (20) and r < s/2 is treated similarly. 2

The result of Proposition 3 is explained by the fact that the value of the minimax
risk in the denominator of (29) is attained (up to a 1 + o(1) factor) on the densities
that depend on n, while in the numerator we have a fixed density f . Such a superef-
ficiency property occurs in other nonparametric problems (see e.g. Brown, Low and
Zhao (1997) or Tsybakov (2004), Chapter 3), where it is proved for various adaptive
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estimators. On the contrary, non-adaptive asymptotically minimax estimators, for
example, the Pinsker estimator which is efficient for ellipsoids in gaussian sequence
model, are not superefficient and turn out to be inadmissible (Tsybakov (2004), Sec-
tion 3.8). Compared with that, the result of Proposition 3 is somewhat surprising,
because it states that a non-adaptive asymptotically minimax estimator f̂n with
bandwidth defined by (13) is superefficient. This provides a simple counter-example
of a superefficient nonparametric estimator which is not adaptive. We conjecture
that this is a general property of nonparametric problems with dominating bias.

5 Proof of Theorem 4

5.1 General scheme of the proof

We use the method of proving lower bounds by reduction to the problem of testing
two simple hypotheses (cf. e.g. Tsybakov (2004), Chapter 2). Namely, we define
two properly chosen probability densities fn1 and fn2, depending on n and belonging
to Aα,r(L) and we bound the minimax risk as follows

inf
Tn

Rn(Tn,Aα,r)ψ
−2
n ≥ inf

Tn

max
f∈{fn1,fn2}

Efd
2(Tn, f)ψ−2

n

≥ inf
Tn

max
f∈{fn1,fn2}

(Efd(Tn, f))2 ψ−2
n , (30)

where Rn(Tn,Aα,r(L)) is either Rn(x, Tn,Aα,r(L)) or Rn(L2, Tn,Aα,r(L)), ψn is de-
fined as ϕn or ϕn(L2) (cf. (14) and (15)) respectively and d(Tn, f) stands for the
distance |Tn(x)− f(x)| at a fixed point x or the L2-distance ‖Tn − f‖2 respectively.
Hence, to prove the theorem it remains to show that

R
def
= inf

Tn

max
f∈{fn1,fn2}

Efd(Tn, f) ≥ ψn(1 + o(1)), (31)

as n → ∞, for both pointwise and L2 distances d(·, ·). This will be done by appli-
cation of Lemma 4 of the Appendix. According to Lemma 4, (31) is satisfied if the
functions fn1 and fn2 are chosen such that

d(fn1, fn2) ≥ 2ψn(1 + o(1)), as n→∞, (32)

χ2(Pfn1 , Pfn2) = o(1), as n→∞, (33)

where χ2(Pfn1 , Pfn2) is the χ2-divergence between the probability measures Pfn1 and
Pfn2 (recall that Pf denotes the joint distribution of Y1, . . . , Yn when the underlying
probability density of Xi’s is f). Thus, to prove Theorem 4 it suffices to construct
two functions fn1 and fn2 belonging to Aα,r(L) and satisfying (32)−(33). Since Pfnj

is a product of n identical probability measures corresponding to the density fY
nj =

fnj ∗ f ε, for j = 1, 2, we have χ2(Pfn1 , Pfn2) ≤ Cnχ2(fY
n1, f

Y
n2) if χ2(fY

n1, f
Y
n2) ≤ 1/n,

where C is a finite constant and

χ2(fY
n1, f

Y
n2) =

∫
(fY

n1 − fY
n2)

2

fY
n1

(x)dx
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(cf. e.g. Tsybakov (2004), p. 72). Therefore, (33) follows from

nχ2(fY
n1, f

Y
n2) → 0, as n→∞. (34)

We now proceed to the construction of densities fn1, fn2 ∈ Aα,r(L) satisfying (34)
and (32) for pointwise and L2-distances d(·, ·).

Consider a density f0 of a symmetric stable law whose characteristic function is

Φ0 (u) =

{
exp (− |c0u|r) , if 1 < r < 2,
exp (− |c0u|) , if 0 < r ≤ 1,

where c0 > max{α1/r, α}. Clearly, for any 0 < a < 1 there exists c0 > 0 large
enough so that f0 ∈ Aα,r(a

2L). In view of Lemma 7, there exists c′1 > 0 such that

f0 (x) =
1

c0
p

(
x

c0

)
≥ c′1

|x|max{r+1,2} + 1
, (35)

for all x ∈ R, where p is the density of stable symmetric distribution with character-
istic function exp(−|t|max{r,1}), 0 < r < 2. Let h+ = h+(n) be the unique solution
of the equation

2α

hr
+

+
2β

hs
+

= log n+ (log log n)2. (36)

Note that h+ is analogous to h∗ defined by (13) with the only difference that the
(log log n)2 term changes the sign.

We define the densities fn1 and fn2 by their characteristic functions

Φn1 (u) = Φ0 (u) + ΦH (u, h+) , Φn2 (u) = Φ0 (u)− ΦH (u, h+) , u ∈ R, (37)

where u 7→ ΦH(u, h) with h > 0 will be called perturbation function and will be
defined differently for the pointwise distance and the L2-distance. The construction
of perturbation functions will be based on the following lemma.

Lemma 1 For any δ > 0 and any D > 4δ there exists a function ΦG : R → [0, 1]
such that

(i) ΦG is 3 times continuously differentiable on R and the first 3 derivatives of
ΦG are uniformly bounded on R,

(ii) ΦG is compactly supported on (δ,D − δ) and

I (2δ ≤ u ≤ D − 2δ) ≤ ΦG (u) ≤ I (δ ≤ u ≤ D − δ) ,

for all u ∈ R.
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Proof of Lemma 1. Denote by J0 the 5-fold convolution of the indicator function
I(|u| ≤ 1) with itself. Let J : R → [0,∞) be a rescaling of J0 such that the
support of J is (−1, 1) and

∫
J(x)dx = 1. Then J0 and J are 3 times continuously

differentiable on R. For δ > 0 and D > 4δ define

ΦG(u) =

∫ u−3δ/2

u−D+3δ/2

2

δ
J

(
2x

δ

)
dx.

Clearly, ΦG is 3 times continuously differentiable on R and 0 ≤ ΦG(u) ≤ 1, ∀u ∈ R.
Moreover, supp ΦG = (δ,D − δ) and for any u ∈ (2δ,D − 2δ) we have ΦG(u) =∫ 1

−1
J(x)dx = 1. 2

5.2 Lower bound at a fixed point

Without loss of generality, we will prove the lower bound for the distance d(f, g) =
|f(0) − g(0)| at the point x = 0 (if x 6= 0 it suffices to shift the functions fn1 and
fn2 at x). Define the perturbation function

ΦH (u, h) =
√

2παrL h(1−r)/2 exp
( α
hr

)
exp (−2α |u|r) ΦG

(
|u|r − 1

hr

)
, (38)

where ΦG is a function satisfying the properties given in Lemma 1 for some δ > 0
and D > 4δ.

Most of the computations below work when ΦG is replaced by an indicator func-
tion of the interval [0, D]. However, we obviously need a continuous perturbation
function ΦH that satisfies ΦH(0) = 0 to ensure that fn1 and fn2 integrate to 1 and
that is smooth enough to allow an appropriate bound on the χ2-divergence.

Lemma 2 Let fn1 and fn2 be the functions defined by their Fourier transforms (37),
(38) with ΦG satisfying the properties given in Lemma 1. Then we have the following.

1. The functions fn1 and fn2 are probability densities for any n large enough.

2. The functions fn1 and fn2 belong to Aα,r (L) for n large enough if c0 > 0 in
the definition of f0 large enough.

3. The distance between fn1 and fn2 at x = 0 satisfies

|fn1 (0)− fn2 (0)| ≥ 2ϕn[e−4αδ − e−2α(D−2δ)](1 + o(1)),

as n→∞.

4. The χ2-divergence χ2
(
fY

n1, f
Y
n2

)
satisfies (34).
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Proof. 1. Clearly, ΦH(·, h) is an even, 3 times continuously differentiable function
on R having a compact support. It is easy to see that the integrals

∫
|ΦH(u, h)|du

and
∫
|∂3ΦH(u, h)/∂u3|du are bounded uniformly over 0 < h ≤ h0 for any h0 > 0.

Integration by parts yields that the inverse Fourier transform of ΦH(·, h) can be
written as

H(x, h)
def
=

1

2π

∫
cos(xu)ΦH(u, h)du = − 1

2πx3

∫
sin(xu)

∂3ΦH(u, h)

∂u3
du (39)

for all x ∈ R and 0 < h ≤ h0. Thus, there exists a constant CH < ∞ independent
of n and such that

|H(x, h+)| ≤ CH(|x|3 + 1)−1, for all x ∈ R. (40)

Denote byDom the common support of the functions ΦG(|u|r−1/hr
+) and ΦH(u, h+):

Dom
def
=

{
u : |u|r − 1

hr
+

∈ [δ,D − δ]

}
=

{
u :

(
δ +

1

hr
+

)1/r

≤ |u| ≤
(
D − δ +

1

hr
+

)1/r
}
.

Using the fact that
(
δ + 1/hr

+

)1/r →∞, as n→∞, for any fixed δ > 0 and applying
(63) of Lemma 6 in the Appendix, we find

‖H(·, h+)‖∞
def
= sup

x∈R
|H(x, h+)| ≤ 1

2π

∫
|ΦH(u, h+)|du

≤
√
αrL

2π
h

(1−r)/2
+ exp

(
α/hr

+

) ∫
Dom

exp(−2α|u|r)du

≤ ch
(r−1)/2
+ exp(−α/hr

+) = o(1), as n→∞, (41)

where c > 0 is a finite constant.
Now, fn1(x) = f0(x)+H(x, h+), fn2(x) = f0(x)−H(x, h+). Choose A > 0 large

enough so that for |x| > A we have CH(|x|3+1)−1 < c′1(|x|max{r+1,2}+1)−1 (note that
max{r+1, 2} < 3). Then, in view of (35) and (40), fnj(x) > 0, j = 1, 2, for |x| > A.
Now, if n is large enough, fnj(x) > 0 also for |x| ≤ A since inf |x|≤A f0(x) > 0 (cf.
(35) ) and (41) holds.

Thus, fnj(x) > 0, j = 1, 2, for all x ∈ R if n is large enough. It remains to
note that fn1 and fn2 integrate to 1 since

∫
H(x, h+)dx = ΦH(0, h+) = 0 (indeed,

0 6∈ supp ΦH(·, h+) = Dom).
2. We have, by (38) and Lemma 1,∫ ∣∣ΦH (u, h+)

∣∣2 exp (2α |u|r) du

≤ 2παrLh1−r
+ exp

(
2α

hr
+

)∫
Dom

exp (−2α |u|r) du

≤ 4παrLh1−r
+ exp

(
2α

hr
+

)∫ ∞

(δ+1/hr
+)1/r

exp(−2αur)du.
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By Lemma 6,∫ ∞

(δ+1/hr
+)1/r

exp(−2αur)du =
1

2αr

(
δ +

1

hr
+

)(1−r)/r

exp

(
−2α

(
δ +

1

hr
+

))
(1 + o(1))

=
hr−1

+

2αr
exp

(
−2α

hr
+

)
exp(−2αδ)(1 + δhr

+)(1−r)/r(1 + o(1)),

as n→∞. We get therefore,∫
|ΦH(x, h+)|2 exp(2α|u|r)du ≤ 2πL exp(−2αδ)(1 + o(1)), (42)

as n → ∞, for any fixed δ > 0. Now, choose c0 > 0 in the definition of f0 large
enough to guarantee that f0 ∈ Aα,r(a

2L) with a = 1− e−αδ/2. This and (42) imply(∫
|Φnj(u)|2 exp(2α|u|r)du

)1/2

≤ ‖Φ0(·) exp(α| · |r)‖2 + ‖ΦH(·, h+) exp(α| · |r)‖2

≤ (1− e−αδ/2)
√

2πL+ e−αδ
√

2πL(1 + o(1))

≤
√

2πL, j = 1, 2,

for n large enough and any fixed δ > 0.
3. Using the left inequality in (ii) of Lemma 1 we get

|fn1 (0)− fn2 (0)|2 =
1

(2π)2

∣∣∣∣∫ (Φn1 (u)− Φn2 (u)) du

∣∣∣∣2 =
4

(2π)2

∣∣∣∣∫ ΦH (u, h+) du

∣∣∣∣2
=

2αrLh1−r
+

π
exp

(
2α

hr
+

) ∣∣∣∣∫ exp (−2α|u|r) ΦG

(
|u|r − 1

hr
+

)
du

∣∣∣∣2
≥ 2αrLh1−r

+

π
exp

(
2α

hr
+

) ∣∣∣∣∣2
∫ (D−2δ+1/hr

+)1/r

(2δ+1/hr
+)1/r

exp (−2αur) du

∣∣∣∣∣
2

.(43)

By (63) of Lemma 6 in the Appendix,∫ (D−2δ+1/hr
+)1/r

(2δ+1/hr
+)1/r

exp (−2αur) du

=
hr−1

+

2αr
exp

(
−2α

hr
+

)[
(1 + 2δhr

+)(1−r)/re−4αδ(1 + o(1))

−(1 + (D − 2δ)hr
+)(1−r)/re−2α(D−2δ)(1 + o(1))

]
=

hr−1
+

2αr
exp

(
−2α

hr
+

)
[e−4αδ − e−2α(D−2δ)](1 + o(1)), (44)

as n → ∞. The expression in square brackets here is positive since D > 4δ.
Combining (43) and (44) and using (74) of Lemma 9 in the Appendix together with

18



(14) we get

|fn1 (0)− fn2 (0)|2 ≥ 4

[
L

2παr
hr−1

+ exp

(
−2α

hr
+

)]
[e−4αδ − e−2α(D−2δ)]2(1 + o(1))

= 4

[
L

2παr
hr−1
∗ exp

(
−2α

hr
∗

)]
[e−4αδ − e−2α(D−2δ)]2(1 + o(1))

= 4ϕ2
n[e−4αδ − e−2α(D−2δ)]2(1 + o(1)),

as n→∞.
4. Inequalities (35), (40), (41) and the fact that r < 2 imply the existence of a

constant c′2 > 0 independent of n and such that

fn1(x) ≥
c′2

|x|max{r+1,2} + 1
, ∀x ∈ R,

for all n large enough. Since f ε is a probability density, we have
∫M

−M
f ε(x)dx ≥ 1/2

for a constant M > 1 large enough. Hence,

fY
n1(x) ≥

∫ M

−M

fn1(x− y)f ε(y)dy ≥ c′2
2

inf
|y|≤M

[
1

|x− y|max{r+1,2} + 1

]
≥ c′3 min

{
1

Mmax{r+1,2} ,
1

|x|max{r+1,2}

}
(45)

where n and M are large enough, c′3 > 0 is independent of n, and the last inequality
is obtained by considering separately |x| ≤M and |x| > M . Thus

nχ2(fY
n1, f

Y
n2) = n

∫
(fY

n2 − fY
n1)

2(x)

fY
n1(x)

dx = 4n

∫
(H ∗ f ε)2(x)

fY
n1(x)

dx

≤ 4

c′3

(
nMmax{r+1,2}

∫
|x|≤M

(H ∗ f ε)2(x)dx

+n

∫
|x|>M

|x|max{r+1,2}(H ∗ f ε)2(x)dx

)
≤ (4M3/c′3)(Tn1 + Tn2), (46)

for n and M large enough, where H(x) = H(x, h+) for brevity and

Tn1 = n‖H ∗ f ε‖2
2, Tn2 = n

∫
|x|4(H ∗ f ε)2(x)dx. (47)

Using Plancherel’s formula and the right hand inequality in (1) we get, for n large
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enough,

‖H ∗ f ε‖2
2 =

1

2π

∫ ∣∣ΦH(u, h+)Φε(u)
∣∣2 du

≤ b2maxαrLh
1−r
+ exp

(
2α

hr
+

)∫
Dom

|u|2γ′exp(−4α|u|r − 2β|u|s)du

≤ 2b2maxαrLh
1−r
+ exp

(
2α

hr
+

)∫ ∞

(δ+1/hr
+)1/r

u2γ′exp(−4αur − 2βus)du

≤ 2b2maxαrLh
1−r
+ exp

(
−2α

hr
+

)∫ ∞

1/h+

u2γ′exp(−2βus)du. (48)

The last integral is evaluated using (63) of Lemma 6 in the Appendix:∫ ∞

1/h+

u2γ′exp(−2βus)du =
hs−2γ′−1

+

2βs
exp

(
−2β

hs
+

)
(1 + o(1)), (49)

as n→∞. This, together with (48) and (75) of Lemma 9 in the Appendix, yields

‖H ∗ f ε‖2
2 ≤ Chs−2γ′−r

+ exp

(
−2α

hr
+

− 2β

hs
+

)
= o

(
1

n

)
, (50)

as n→∞, where C > 0 is a constant. Thus,

Tn1 = o(1), as n→∞. (51)

Now, assume that n is large enough to have (δ + 1/hr
+)1/r > max(u0, u1), where

u0 > 0, u1 > 0 are the constants in Assumptions (N) and (ND). Then ΦG(|u|r −
1/hr

+) = 0 for |u| ≤ max(u0, u1), and thus the function ΦH(·, h+)Φε(·) is twice
continuously differentiable on R. Using Assumption (ND), the right hand inequality
in (1) and the fact that ΦG, together with its first two derivatives, is uniformly
bounded on R we find that there exist constants B1 <∞ and a ∈ R such that, for
n large enough and all u ∈ R,∣∣(ΦH(u, h+)Φε(u))′′

∣∣ ≤ B1h
(1−r)/2
+ exp

(
α

hr
+

)
|u|a exp(−2α|u|r − β|u|s). (52)

Thus, for n large enough, we have, by Plancherel’s formula for derivatives and (52),

Tn2 =
n

2π

∫ ∣∣(ΦH(u, h+)Φε(u))′′
∣∣2 du

≤ n

2π
B2

1h
1−r
+ exp

(
2α

hr
+

)∫
Dom

|u|2a exp(−4α|u|r − 2β|u|s)du

≤ n

π
B2

1h
1−r
+ exp

(
2α

hr
+

)∫ ∞

(δ+1/hr
+)1/r

u2a exp(−4αur − 2βus)du

≤ n

π
B2

1h
1−r
+ exp

(
−2α

hr
+

)∫ ∞

1/h+

u2a exp(−2βus)du. (53)
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Plugging (49) with γ′ = a into (53) and using (75) of Lemma 9 in the Appendix we
get

Tn2 ≤ Cnh−2a+s−r
+ exp

(
−2α

hr
+

− 2β

hs
+

)
(1 + o(1)) = o(1), (54)

as n→∞, where C > 0 is a constant.
Combining (46), (51) and (54) we get that nχ2(fY

n1, f
Y
n2) → 0, as n→∞. 2

Proof of (23). We use the general scheme of Section 5.1 with d(fn1, fn2) =
|fn1(0) − fn2(0)|. Choose c0 > 0 in the definition of f0 large enough to guarantee
that assertion 2 of Lemma 2 holds. Lemma 2 implies that (34) and thus (33) are
satisfied and that (32) holds with

ψn = ϕn[e−4αδ − e−2α(D−2δ)].

Therefore, Lemma 4 of the Appendix implies that

R ≥ ϕn[e−4αδ − e−2α(D−2δ)](1 + o(1)),

as n→∞, where R is defined in (31). This and (30) yield that, as n→∞,

inf
Tn

Rn(0, Tn,Aα,r(L))ϕ−2
n ≥ [e−4αδ − e−2α(D−2δ)](1 + o(1)).

Taking limits as n→∞ and then as D →∞ and δ → 0 we get (23) for x = 0. The
proof for x 6= 0 is analogous (see the remark at the beginning of this section). 2

5.3 Lower bound in L2

Introduce the perturbation function

ΦH(u, h) =
√

2παrL(d− 1) h(1−r)/2e(d−1)α/hr

exp (−αd|u|r) ΦG

(
|u|r − 1

hr

)
, (55)

where ΦG is a function satisfying the properties given in Lemma 1 and d = d(δ) > 1
is a constant depending on the value δ that appears in the construction of ΦG.
The argument below is similar to that of Section 5.2, modulo the choice of the
perturbation function (55) which is slightly different from (38). The argument goes
through with d such that d(δ) → ∞ and δd(δ) → 0 as δ → 0, but we will set for
simplicity d(δ) = δ−1/2 and assume that 0 < δ < 1, which ensures that d(δ) > 1.

Lemma 3 Let fn1 and fn2 be the functions defined by their Fourier transforms (37),
(55) with ΦG satisfying the properties of Lemma 1 and 0 < δ < 1. Then we have
the following.

1. The functions fn1 and fn2 are probability densities for n large enough.

2. The functions fn1 and fn2 belong to Aα,r(L) for n large enough if c0 > 0 in
the definition of f0 large enough.
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3. The L2 distance between fn1 and fn2 satisfies

‖fn1 − fn2‖2 ≥ 2ϕn(L2)
(
(1−

√
δ)[e−4α

√
δ − e−2α(D−2δ)/

√
δ])
)1/2

(1 + o(1)),

as n→∞.

4. The χ2-divergence χ2
(
fY

n1, f
Y
n2

)
satisfies (34).

Proof. 1. The argument is analogous to the proof of assertion 1 of Lemma 2. In
particular, one also has |H(x, h)| ≤ C ′

H(|x|3+1)−1, ∀x ∈ R, and ‖H(·, h+)‖∞ = o(1),
as n→∞, for some constant C ′

H <∞. We omit the details.
2. We have by (37) and Lemma 1∫ ∣∣ΦH (u, h+)

∣∣2 exp (2α |u|r) du

≤ 2παrL(d− 1)h1−r
+ exp

(
2(d− 1)α

hr
+

)∫
Dom

exp (−2α(d− 1) |u|r) du

≤ 4παrL(d− 1)h1−r
+ exp

(
2(d− 1)α

hr
+

)∫ ∞

(δ+1/hr
+)1/r

exp (−2α(d− 1)ur) du.

By Lemma 6,∫ ∞

(δ+1/hr
+)1/r

exp (−2α(d− 1)ur) du

=
1

2α(d− 1)r

(
δ +

1

hr
+

)(1−r)/r

exp

(
−2α(d− 1)

(
δ +

1

hr
+

))
(1 + o(1))

=
hr−1

+

2α(d− 1)r
exp

(
−2(d− 1)α

hr
+

)
exp (−2α(d− 1)δ)

(
1 + δhr

+

)(1−r)/r
(1 + o(1)),

as n→∞. We get therefore,∫
|ΦH(u, h+)|2 exp(2α|u|r)du ≤ 2πL exp(−2α(d− 1)δ)(1 + o(1)),

as n→∞, for any fixed δ > 0. Now, since d = δ−1/2, we get that the last exponent
is strictly less than 1 for 0 < δ < 1, and thus the argument similar to that after
formula (42) can be applied to show that∫

|Φnj(u)|2 exp(2α|u|r)du ≤ 2πL, j = 1, 2,

for n large enough, if c0 > 0 in the definition of f0 is chosen large enough.
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3. The L2 distance is

‖fn1 − fn2‖2
2 =

1

2π

∫
(Φn1 (u)− Φn2 (u))2 du =

4

2π

∫ ∣∣ΦH (u, h+)
∣∣2 du

= 4Lαr(d− 1)h1−r
+ exp

(
2(d− 1)α

hr
+

)∫
exp (−2αd |u|r)

∣∣∣∣ΦG

(
|u|r − 1

hr
+

)∣∣∣∣2 du
≥ 4Lαr(d− 1)h1−r

+ exp

(
2(d− 1)α

hr
+

)[
2

∫ (D−2δ+1/hr
+)1/r

(2δ+1/hr
+)1/r

exp (−2αdur) du

]
(56)

where we used the left inequality in (ii) of Lemma 2. Lemma 6 implies that (cf.
(44)): ∫ (D−2δ+1/hr

+)1/r

(2δ+1/hr
+)1/r

exp (−2αdur) du

=
hr−1

+

2αdr
exp

(
−2αd

hr
+

)
[e−4αdδ − e−2αd(D−2δ)](1 + o(1)),

as n→∞. Substituting this into (56) and using (74) of Lemma 9 we obtain

‖fn1 − fn2‖2
2 ≥ 4L

d− 1

d
exp

(
−2α

hr
+

)
[e−4αdδ − e−2αd(D−2δ)](1 + o(1))

= 4L exp

(
−2α

hr
∗

)
(1−

√
δ)[e−4α

√
δ − e−2α(D−2δ)/

√
δ](1 + o(1))

= 4ϕ2
n(L2)(1−

√
δ)[e−4α

√
δ − e−2α(D−2δ)/

√
δ](1 + o(1)),

as n→∞, (cf. the definition of ϕn(L2) in (15)).
4. Similarly to the proof of assertion 4 of Lemma 2, we obtain

nχ2(fY
n1, f

Y
n2) ≤ c′4(Tn1 + Tn2), (57)

for n and M large enough, where Tn1 and Tn2 are defined in (47) and c′4 < ∞ is
a constant. The only difference from the proof of Lemma 2 is that the function
H(x) = H(x, h+) is now defined as the inverse Fourier transform of (38) and not as
that of (37). As in (48)− (50), we get, for n large enough,

Tn1 = n‖H ∗ f ε‖2
2

≤ b2maxαrL(d− 1)nh1−r
+ exp

(
2(d− 1)α

hr
+

)∫
Dom

|u|2γ′exp (−2αd|u|r − 2β|u|s) du

≤ c′nh1−r
+ exp

(
−2α

hr
+

)∫ ∞

1/h+

u2γ′exp (−2βus) du

≤ c′′nhs−2γ′−r
+ exp

(
−2α

hr
+

− 2β

hs
+

)
= o(1), (58)
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as n→∞, where c′ > 0 and c′′ > 0 are some finite constants.
Next, similarly to (52), we have, for n large enough and all u ∈ R,

|(ΦH(u, h+)Φε(u))′′| ≤ B2h
(1−r)/2
+ exp

(
(d− 1)α

hr
+

)
|u|a′ exp(−2αd|u|r − β|u|s),

where B2 <∞ and a′ ∈ R are some constants. This implies, as in (53)− (54), that

Tn2 =
n

2π

∫
|(ΦH(u, h+)Φε(u))′′|2du

≤ n

π
B2

2h
1−r
+ exp

(
−2α

hr
+

)∫ ∞

1/h+

u2a′ exp(−2βus)du

≤ c̄nh−2a′+s−r
+ exp

(
−2α

hr
+

− 2β

hs
+

)
= o(1), (59)

as n→∞, where c̄ > 0 is finite constant. It remains now to combine (57)− (59).
Proof of (24) is now obtained following the same lines as the proof of (23) in

Section 5.2, but with d(fn1, fn2) = ‖fn1−fn2‖2 and ψn = ϕn(L2)
(
(1−

√
δ)[e−4α

√
δ−

e−2α(D−2δ)/
√

δ]
)1/2

. 2

6 Appendix

Let (X ,A) and (Θ, T ) be measurable spaces and let P1 and P2 be two probability
measures on A. Let d : (Θ × Θ, T ⊗ T ) → (R+,B) be a non-negative measurable
function where B is the Borel σ-algebra. Define

R = inf
θ̂

max
i∈{1,2}

Ei[d(θ̂, θi)],

where inf θ̂ denotes the infimum with respect to all the measurable mappings θ̂ :
(X ,A) → (Θ, T ), Ei denotes the expectation with respect to Pi, and θ1, θ2 are two
elements of Θ.

Lemma 4 Suppose that:

(i) d(·, ·) satisfies the triangle inequality,

(ii) θ1, θ2 ∈ Θ are such that d(θ1, θ2) ≥ 2ψ, for some ψ > 0,

(iii) P2 � P1 and there exist constants τ > 0 and 0 < γ < 1 such that

P1

[
dP2

dP1

≥ τ

]
≥ 1− γ.
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Then
R ≥ ψ(1− γ) min{τ, 1}. (60)

Furthermore, if instead of (iii) we suppose that

(iv) χ2(P1, P2) ≤ γ2, where 0 < γ < 1 and

χ2(P1, P2) =

∫ (
dP2

dP1

− 1

)2

dP1,

then
R ≥ ψ(1− γ)(1−√γ). (61)

Proof. We first show (60). We have

R ≥ 1

2
inf
θ̂

(
E1[d(θ̂, θ1)] + E2[d(θ̂, θ2)]

)
≥ 1

2
inf
θ̂

(
E1[d(θ̂, θ1)] + τE1

[
I

(
dP2

dP1

≥ τ

)
d(θ̂, θ2)

])
≥ min{τ, 1}

2
inf
θ̂
E1

[
I

(
dP2

dP1

≥ τ

)
[d(θ̂, θ1) + d(θ̂, θ2)]

]
.

Using here the triangle inequality and (ii)− (iii), we find

R ≥ ψmin{τ, 1}P1

[
dP2

dP1

≥ τ

]
≥ ψ(1− γ) min{τ, 1}.

To show (61) it is sufficent to note that, in view of Chebyshev’s inequality

P1

[
dP2

dP1

≥ 1−√γ
]

= 1−P1

[
dP2

dP1

− 1 < −√γ
]
≥ 1− 1

γ

∫ (
dP2

dP1

− 1

)2

dP1 ≥ 1−γ,

and thus (iv) implies (iii) with τ = 1−√γ. 2

Lemma 5 For 0 < α, r, L <∞,

sup
f∈Aα,r(L)

sup
x∈R

|f(x)| ≤ L+ π−1C(r, α),

where C(r, α) =
∫∞

0
exp(−2αur)du.

Proof. Let Φ = Φf be the characteristic function of f . Clearly,

|f(x)| ≤ 1

2π

∫
|Φ(u)|du, ∀x ∈ R. (62)

By Markov’s inequality∫
|Φ(u)| I

(
|Φ(u)| exp (2α|u|r) > 1

)
du ≤

∫
exp (2α|u|r) |Φ(u)|2du ≤ 2πL.
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Also,∫
|Φ(u)| I

(
|Φ(u)| exp (2α|u|r) ≤ 1

)
du ≤ 2

∫ ∞

0

exp (−2αur) du = 2C(r, α).

Combining the last two inequalities with (62) proves the Lemma. 2

Lemma 6 For any positive α, β, r, s and for any A ∈ R and B ∈ R, we have∫ ∞

v

uA exp (−αur) du =
1

αr
vA+1−r exp(−αvr)(1 + o(1)), v →∞, (63)

and ∫ v

0

uB exp (βus) du =
1

βs
vB+1−s exp(βvs)(1 + o(1)), v →∞. (64)

Proof. To prove (63), note first that, with x = ur,∫ ∞

v

uAe−αur

du =
1

r

∫ ∞

vr

x(A+1)/r−1e−αxdx
def
= I.

Taking the integral by parts, we get

I = − 1

αr

[
x(A+1)/r−1e−αx|∞vr −

(
A+ 1

r
− 1

)∫ ∞

vr

x(A+1)/r−2e−αxdx

]
=

1

αr
vA+1−re−αvr

+
1

αr

(
A+ 1

r
− 1

)∫ ∞

vr

x(A+1)/r−2e−αxdx.

Here,∫ ∞

vr

x(A+1)/r−2e−αxdx ≤ v−r

∫ ∞

vr

x(A+1)/r−1e−αxdx = O(v−rI) = o(I), v →∞.

Hence, as v →∞, we have

I(1 + o(1)) =
1

αr
vA+1−re−αvr

,

which proves (63).
Let us prove (64). We have, with x = ur,∫ v

0

uBeβus

du =
1

s

∫ vs

0

x(B+1)/s−1eβxdx

= O
(
v(B+1)/2−s/2eβvs/2

)
+ I ′ = o(vB+1−seβvs

) + I ′,

as v →∞,where

I ′ =
1

s

∫ vs

vs/2

x(B+1)/s−1eβxdx.
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Taking the last integral by parts, we get

I ′ =
1

βs

[
x(B+1)/s−1eβx|vs

vs/2 −
B + 1− s

s

∫ vs

vs/2

x(B+1)/s−2eβxdx

]
=

1

βs
vB+1−seβvs

(1 + o(1)) +O(1)

∫ vs

vs/2

x(B+1)/s−2eβxdx,

as v →∞. Here∫ vs

vs/2

x(B+1)/s−2eβxdx ≤ v−s/2

∫ vs

vs/2

x(B+1)/s−1eβxdx = O(v−s/2I ′) = o(I ′),

as v →∞ and (64) follows. 2

Lemma 7 Let p be the density of stable symmetric distribution with characteristic
function exp(−|t|r), 1 < r < 2. Then p is continuous, p(x) > 0 for all x ∈ R and
there exist c1 > 0, c2 > 0 such that

p(x) ≥ c1|x|−r−1,

for |x| ≥ c2.

Proof. From Zolotarev (1986), Th. 2.2.3., formula (2.2.18), we get

p(x) =
r|x|1/(r−1)

2|1− r|

∫ 1

0

u(ϕ) exp(−|x|r/(r−1)u(ϕ))dϕ, x 6= 0, (65)

where

u(ϕ) =

(
sin(πrα/2)

cos(πϕ/2)

)r/(1−r)
cos(π(r − 1)ϕ/2)

cos(πϕ/2)
.

Clearly, for ϕ ∈ [1/2, 1] we have

1 ≥ cos(π(r − 1)ϕ/2) ≥ cos(π(r − 1)/4) > 0

c3 ≥ sin(πrϕ/2) ≥ c4 > 0,

where c3 > 0 and c4 > 0 are constants. Thus,

c6 (cos(πϕ/2))1/(r−1) ≤ u(ϕ) ≤ c5 (cos(πϕ/2))1/(r−1) ,

ϕ ∈ [1/2, 1], c5 > 0, c6 > 0 are constants. Now, if ϕ ∈ [1/2, 1]

c7(1− ϕ) ≤ cos(πϕ/2) ≤ c8(1− ϕ)

for some c7 > 0, c8 > 0. Finally,

c10(1− ϕ)1/(r−1) ≤ u(ϕ) ≤ c9(1− ϕ)1/(r−1),∀ϕ ∈ [1/2, 1].
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Using (65) and the fact that u(ϕ) ≥ 0 for ϕ ∈ [0, 1], we get

p(x) ≥ c|x|1/(r−1)

∫ 1

1/2

(1− ϕ)1/(r−1) exp
(
−|x|r/(r−1)c9(1− ϕ)1/(r−1)

)
dϕ

= c|x|1/(r−1)

∫ 1/2

0

ϕ1/(r−1) exp
(
−c9(|x|rϕ)1/(r−1)

)
dϕ.

Here and further on c > 0 are constants, probably different on different occasions.
By change of variables, u = (|x|rϕ)1/(r−1), we get

p(x) ≥ c|x|1/(r−1)

∫ (|x|r/2)1/(r−1)

0

u

|x|r/(r−1)
exp(−c9u)

ur−1

|x|r
du

= c|x|−1−r

∫ (|x|r/2)1/(r−1)

0

ur−1 exp(−c9u)du

≥ c|x|−1−r

∫ (cr
2/2)1/(r−1)

0

ur−1 exp(−c9u)du ≥ c1|x|−1−r,

for |x| ≥ c2 > 0. 2

Lemma 8 Let 0 < r < s <∞ and let h∗ = h∗(n) be defined by (13), i.e.

2α

hr
∗

+
2β

hs
∗

= log n− (log log n)2.

Let hn satisfy

b log hn +
2α

hr
n

+
2β

hs
n

= log n+ C(1 + o(1)), n→∞,

for some b ∈ R and C ∈ R. Then, as n→∞, we have

h∗(n) = (log n/(2β))−1/s(1 + o(1)), (66)

ha
n exp

(
−2α

hr
n

)
= ha

∗ exp

(
−2α

hr
∗

)
(1 + o(1)), (67)

ha
∗
n

exp

(
2β

hs
∗

)
= o

(
exp

(
−2α

hr
∗

))
, (68)

for any a ∈ R, and

hs−2γ−1
∗ exp

(
2β

hs
∗

)
≤ hs−2γ−1

n exp

(
2β

hs
n

)
, (69)

for n large enough.

28



Proof. Define x∗ = h−s
∗ , xn = h−s

n , and write, for t > 0,

F (t)
def
= 2βt+ 2αtr/s, F1(t)

def
= (−b/s) log t+ 2βt+ 2αtr/s.

Then

F (x∗) = log n− (log log n)2, (70)

F1(xn) = log n+ C(1 + o(1)), (71)

for a constant C ∈ R. We first prove that xn satisfies

F (xn) = 2βxn + 2αxr/s
n = log n+ C1 log log n(1 + o(1)) + C2(1 + o(1)) (72)

for some constants C1, C2 ∈ R. In fact,

F ′
1(xn) =

1

xn

(
−b
s

)
+ 2β +

2αr

s
xr/s−1

n > 0,

for xn large enough, thus F1(t) is strictly monotone increasing for large t, and a
solution xn of (71) exists for large n (and is unique). Next, clearly,

F1(t)

2βt
→ 1, t→∞,

and therefore log n/(2βxn) → 1, as n→∞. Similarly, log n/(2βx∗) → 1, as n→∞,
which yields (66). Thus (−b/s) log xn = (−b/s) log log n(1 + o(1)), as n → ∞, and
(72) follows. Next, let F−1(·) be the inverse of F (·), then

(F−1(x))′ =
1

F ′(x)
=

1

2β + (2αr/s)xr/s−1
,

(F−1(x))′′ =

(
1

2β + (2αr/s)xr/s−1

)′
=
−(2αr/s)(r/s− 1)xr/s−2

(2β + (2αr/s)xr/s−1)2
.

We have
xn = F−1(log n+ an), x∗ = F−1(log n− bn)

where an = C1 log log n(1+ o(1))+C2(1+ o(1)) = O(log log n) and bn = (log log n)2.
Hence, for some 0 < τ < 1 and for n large enough,

xn = F−1(log n+ an) = F−1(log n− bn) + (F−1(log n− bn))′(an + bn)

+
1

2

(
F−1(log n− bn(1− τ) + τan)

)′′
(an + bn)2.

Here

(F−1(log n− bn))′ =
1

2β
+ o(1), n→∞,

(F−1(log n− bn(1− τ) + τan))′′ = O((log n)r/s−2), n→∞.
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Thus,

x∗ − xn = − 1

2β
(1 + o(1))(an + bn) +O

(
(an + bn)2

(log n)2−r/s

)
= − bn

2β
(1 + o(1)) +O

(
(log log n)4

(log n)2−r/s

)
= − bn

2β
(1 + o(1)). (73)

Using this representation we obtain

exp

(
−2α

hr
n

+
2α

hr
∗

)
= exp(−2α(xr/s

n − xr/s
∗ ))

= exp
(
−2α[x∗ + bn(2β)−1(1 + o(1))]r/s − xr/s

∗ )
)

= exp
(
−2αxr/s

∗ ([1 + bn(2βx∗)
−1(1 + o(1))]r/s − 1)

)
= exp

(
O(bnx

r/s−1
∗ )

)
= 1 + o(1),

since bn = (log log n)2, x∗ = (2β)−1 log n (1 + o(1)) and r < s. This and the fact
that (hn/h∗)

a = (x∗/xn)sa = 1 + o(1) imply (67). Next, (68) follows directly from
the definition of h∗ and from (66). To prove (69), note that, in view of (73),

hs−2γ−1
∗

hs−2γ−1
n

exp

(
2β

hs
∗
− 2β

hs
n

)
= (1 + o(1)) exp(2β(x∗ − xn))

= (1 + o(1)) exp(−bn[1 + o(1)]) ≤ 1

for n large enough. 2

Lemma 9 Let 0 < r < s < ∞ and let h+ = h+(n) be the solution of (36). Then
h+(n) = (log n/(2β))−1/s(1 + o(1)),

ha
+ exp

(
−2α

hr
+

)
= ha

∗ exp

(
−2α

hr
∗

)
(1 + o(1)), as n→∞ (74)

and

(log n)bn exp

(
−2α

hr
+

− 2β

hs
+

)
= o(1), (75)

as n→∞, for any a ∈ R, b ∈ R.

Proof is analogous to that of Lemma 8. 2
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