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Abstract. One proves a contraction principle for a transformation with a closed graph
and present two simple applications of this result.

1. Introduction

One proves at Theorem 2.1 a contraction principle for a transformation with a closed
graph. The price to pay for this relaxation from the usual Contraction Principle with
a continuous transformation is the assumption that the transformed random system is
exponentially tight. We present two simple applications of this result. The first one, in
the domain of self-normalized sequences, indicates that one should not worry with divid-
ing by zero when this almost never occurs! We hope that Theorem 2.1 may bring some
comfort when proving such results. In our second application, one relaxes a topological
assumption on the state space when proving large deviations for the empirical measures
associated with U -statistics. The state space may only be metric and separable with-
out being complete. Of course, one might not expect striking improvements when using
the “closed graph version” of the contraction principle instead of the standard “continu-
ous” version. But maybe this easy result could be useful in some technically intricated
situations. (Please, let me know if you find one).

2. The contraction principle

Let {Xn}n≥1 be a collection of random elements taking their values in a topological
space X endowed with some σ-field. We assume that {Xn} obeys the Large Deviation
Principle (LDP) with rate function I : X → [0,∞]. As usual (see [2]), this means that for
every closed measurable set F and every open measurable set G

lim sup
n→∞

1

n
log IP (Xn ∈ F ) ≤ −I(F )

−I(G) ≤ lim inf
n→∞

1

n
log IP (Xn ∈ G)

where we used the notation I(A) = infx∈A I(x).
Let f : X → Y be a transformation from X to another topological space Y endowed with
some σ-field. We are interested in the large deviation behavior of

Yn
M
= f(Xn)

where it is assumed that Yn is measurable. Our main result is the following
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2 CHRISTIAN LÉONARD

Theorem 2.1 (Contraction Principle). Let us assume that f : X → Y has a closed graph
and that {Yn} is exponentially tight in Y . Then, {Yn} obeys the LDP in Y with the rate
function J(y) = inf{I(x); x ∈ X , f(x) = y}, y ∈ Y .

We shall need the following lemma to prove the theorem.

Lemma 2.2. Let f : X → Y be a function with a closed graph. For any compact subset
K of Y , f−1(K) = {x ∈ X ; f(x) ∈ K} is a closed subset of X .

In order to apply the present contraction principle in the context of U -statistics, it is
not assumed that the topologies are first countable. As a consequence, the next proof is
given in terms of nets rather than sequences. For more details about nets, see for instance
([3], Sections IV.2 and IV.3). When working with closed and compact sets, the recipe is
“Use nets as you use sequences”.

Proof. Let {xα}α∈I be a net in f−1(K) such that xα → x ∈ X . We have to show that
f(x) ∈ K.

We have yα
M
= f(xα) ∈ K for all α ∈ I. As K is compact, there exists a convergent subnet

{yβ}β∈J : yβ → y ∈ K. Hence, xβ → x and yβ = f(xβ) → y. As the graph of f is closed,
we get y = f(x). Hence f(x) ∈ K, which is the desired result. ¤

Proof of Theorem 2.1. It is assumed that {Yn} is exponentially tight: for all L ≥ 0, there
exists a measurable compact subset KL of Y such that

lim sup
n→∞

1

n
log IP (Yn 6∈ KL) ≤ −L. (1)

Let us begin with the upper bound. Let F be a closed subset of Y . For any L ≥ 0, we
have

lim sup
n→∞

1

n
log IP (Yn ∈ F ) ≤ lim sup

n→∞

1

n
log[IP (Yn ∈ F ∩KL) + IP (Yn 6∈ KL)]

≤ max[lim sup
n→∞

1

n
log IP (Yn ∈ F ∩KL),−L]. (2)

By the above lemma, f−1(F ∩KL) is a closed subset X and the LDP for {Xn} leads us
to

lim sup
n→∞

1

n
log IP (Yn ∈ F ∩KL) = lim sup

n→∞

1

n
log IP (Xn ∈ f−1(F ∩KL))

≤ − inf{I(x); x ∈ f−1(F ∩KL)}
= − inf

y∈F∩KL

inf{I(x); x ∈ X , f(x) = y}
≤ − inf

y∈F
inf{I(x); x ∈ X , f(x) = y}

= − inf
y∈F

J(y).

Plugging this estimate in (2) and letting L tend to infinity leads to the desired result.
Let us go on with the lower bound. Let G be an open subet of Y . We want to prove

lim inf
n→∞

1

n
log IP (Yn ∈ G) ≥ −I(f−1(G)). (3)
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Let L ≥ 0, we define

U(G,L)
M
= f−1(G ∪Kc

L).

This set is open. Indeed, U(G,L) = f−1([Gc ∩KL]c) = f−1(Gc ∩KL)c and f−1(Gc ∩KL)
is closed by Lemma 2.2.
The basic estimate is

IP (Yn ∈ G) ≥ IP (Xn ∈ U(G,L))− IP (Yn 6∈ KL) (4)

which holds since U(G,L) = f−1(G) ∪ f−1(Kc
L) so that IP (Xn ∈ U(G,L)) ≤ IP (Yn ∈

G) + IP (Yn 6∈ KL).
Before applying the lower bound for {Xn} to the open set U(G,L) we need some more
estimates. We have

I(f−1(KL)c) ≥ L,∀L ≥ 0. (5)

Indeed, (1) is −L ≥ lim supn→∞
1
n

log IP (Xn ∈ f−1(KL)c) where by Lemma 2.2, f−1(KL)c

is open. Thanks to the lower bound of the LDP for {Xn}, we get

lim sup
n→∞

1

n
log IP (Yn 6∈ KL) = lim sup

n→∞

1

n
log IP (Xn ∈ f−1(KL)c)

≥ lim inf
n→∞

1

n
log IP (Xn ∈ f−1(KL)c)

≥ −I(f−1(KL)c),

which leads to (5).
We also need to know that if I(f−1(G)) < ∞, there exists L1(G) ≥ 0 such that for all
L ≥ 0,

L ≥ L1(G) =⇒ I(U(G,L)) = I(f−1(G)). (6)

Indeed, I(U(G,L)) = min[I(f−1(G)), I(f−1(KL)c)] since U(G,L) = f−1(G) ∪ f−1(KL)c,
and (6) follows with (5).
Let us show now that (3) holds. If I(f−1(G)) = ∞, there is nothing to prove. Let us sup-
pose from now on that I(f−1(G)) < ∞. As U(G,L) is open, by the lower bound for {Xn}
and (6), we obtain lim infn→∞ 1

n
log IP (Xn ∈ U(G,L)) ≥ −I(U(G,L)) = −I(f−1(G)) for

all L ≥ L1(G). Hence, for all δ > 0, there exist n1(δ,G) ≥ 1 such that IP (Xn ∈ U(G,L)) ≥
exp(−n[I(f−1(G)) + δ]), as soon as n ≥ n1(δ,G).
On the other hand, by (1) there exists n2(L) ≥ 1 such that IP (Yn 6∈ KL) ≤ exp(−nL

2
),

as soon as n ≥ n2(L). One can choose 0 < δ ≤ 1 without loss. Therefore, there ex-
ists L2(G) ≥ 0 such that for all n ≥ 1, 0 < δ ≤ 1 and all L ≥ L2(G), exp(−nL

2
) ≤

1
2
exp(−n[I(f−1(G)) + δ]).

Taking (4) into account, it comes out that for all n ≥ max(n1(δ,G), n2(L∗(G))) with
L∗(G) = max(L1(G), L2(G)) and all 0 < δ ≤ 1 we have IP (Yn ∈ G) ≥ 1

2
exp(−n[I(f−1(G))+

δ]) which leads to the desired result. ¤

3. Applications

In this section, we give two simple applications of Theorem 2.1.
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3.1. Self-normalized sequences. About self-normalized sequences and their applica-
tions in statistics, see for instance [1] and [4]. Let us consider the simplest self-normalized
sequence:

Yn =
1
n

∑n
i=1 Zi(

1
n

∑n
i=1 |Zi|p

)1/p

where 1 ≤ p < ∞ and (Zi) is an iid sequence of real valued centered random variables.

We decide that Yn = 0 if either Un
M
= 1

n

∑n
i=1 Zi or Vn

M
= [ 1

n

∑n
i=1 |Zi|p]1/p vanishes.

We have Yn = f(Xn) with Xn = (Un, Vn) and f(u, v) = u/v if v 6= 0 and f(u, 0) = 0 (as
a convention). Clearly, f has a closed graph. On the other hand, by Jensen’s inequality
Yn ∈ [−1, 1] so that it is exponentially tight. Therefore, using Theorem 2.1 one can derive
the LDP for {Yn} from the LDP for (Un, Vn) without worrying about dividing by zero
(which of course is not a real trouble since Vn almost never vanishes).

3.2. U-statistics. Let S be a separable metric space endowed with its Borel σ-field B(S)
and (Zi)i≥1 a sequence of S-valued random variables. Suppose that the collection of the
empirical measures

Xn =
1

n

n∑
i=1

δZi
∈ P(S), n ≥ 1

obeys the LDP in the space P(S) of all probability measures on S equipped with the
usual topology of weak convergence with the rate function I. For instance, if the Zi’s are
independent and identically distributed with the law P ∈ P(S), I is the relative entropy
with respect to P. We are interested in the large deviations of the U -statistics

X(2)
n =

1

n(n− 1)

n∑

i,j=1;i 6=j

δ(Zi,Zj) ∈ P(S2), n ≥ 2

As X
(2)
n = n

n−1
X⊗2

n − 1
n−1

1
n

∑n
i=1 δ(Zi,Zi), one way to derive the LDP for {X(2)

n } from the
LDP for {Xn} is to prove a LDP for

Yn = X⊗2
n

and then show that Yn and X
(2)
n are exponentially equivalent. It appears that Yn = f(Xn)

with

f : ν ∈ P(S) 7→ ν⊗2 ∈ P(S2)

where the product space S2 is equipped with the product topology B(S)⊗2. We have
assumed that S is a metric separable space to insure the identity: B(S)⊗2 = B(S2). Our
aim in the following lines is to present a proof of the LDP for {Yn}, based on Theorem
2.1.
First of all, let us note that if the separable metric space S is also complete, f is a
continuous function (see Lemma 3.1 below. Hence, the LDP for {Yn} follows from the
usual Contraction Principle. At Proposition 3.3, we are going to extend this result to a
separable metric space S in the case where {Yn} is exponentially tight.

Lemma 3.1. If S is a Polish space, then f is continuous.
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Proof. As S is a separable metric space, P(S) and P(S2) are metric spaces and it is enough
to build the proof with sequences. As S is Polish, the set Cb(S)⊗2 of all tensor products
u⊗ v(s, t) = u(s)v(t) of continuous bounded functions u and v on S is convergence deter-
mining for the topology of weak convergence on P(S2). Let (νn) be a convergent sequence:
νn → ν ∈ P(S). For all u ⊗ v ∈ Cb(S)⊗2, limn

∫
S2 u ⊗ v dν⊗2

n = limn

∫
S

u dνn

∫
S

v dνn =∫
S

u dν
∫

S
v dν =

∫
S2 u⊗ v dν⊗2. This proves the desired result. ¤

Lemma 3.2. If S is a separable metric space, then f has a closed graph.

Proof. If S is only a separable metric space, Cb(S)⊗2 may not be convergence determining
anymore, but it is still a determining set. Let us take (νn) a convergent sequence: νn →
ν ∈ P(S) such that the limit µ = limn f(νn) = limn ν⊗2

n exists in P(S2). For all u ⊗ v ∈
Cb(S)⊗2, we have limn

∫
S2 u⊗v dν⊗2

n =
∫

S2 u⊗v dµ. As in the above lemma, we also obtain
limn

∫
S2 u⊗v dν⊗2

n =
∫

S2 u⊗v dν⊗2. Therefore, limn f(νn) = µ = ν⊗2, which is the desired
result. ¤

Proposition 3.3. Let S be a separable metric space such that {Xn} obeys the LDP in
P(S) with rate function I. Let us assume in addition that

(i) for all n, k ≥ 1 and δ > 0, there exists a compact subset K ⊂ S such that
IP (Xn(Kc) > 1/k) ≤ δ, and

(ii) for all k ≥ 1 and A ≥ 0, there exists a compact subset K ⊂ S such that
lim supn→∞

1
n

log IP (Xn(Kc) > 1/k) ≤ −A.

Then, {X⊗2
n } obeys the LDP in P(S2) with rate function J(µ) = I(ν) if µ = ν⊗2 ∈ P(S2)

and J(µ) = +∞ otherwise.

The requirement (i) means that the law of Xn is tight, for all n.

Proof. For any ν ∈ P(S) and any K ∈ B(S), ν⊗2([K ×K]c) ≤ 2ν(Kc). So that (i) and
(ii) are satisfied for {X⊗2

n } in P(S2) whenever they are satisfied for {Xn}. By Lemma 3.4
below, {X⊗2

n } is exponentially tight in P(S2). Since f has a closed graph by Lemma 3.2,
one can apply Theorem 2.1 to get the desired result. ¤

Lemma 3.4. Let {Xn} be a collection of random elements of P(S) which satisfies the
requirements (i) and (ii) of Proposition 3.3. Then, it is exponentially tight in P(S).

Proof. Thanks to (ii), for all A ≥ 0, k ≥ 1, there exists K a compact subset and N ≥ 1
such that for all n ≥ N, IP (Xn(Kc) > 1/k) ≤ e−nA. With (i), one obtains a similar
control for the N first Xn’s, so that for all A ≥ 0, k ≥ 1, there exists KA,k a compact

subset such that for all n ≥ 1, IP (Xn(Kc
A,k) > 1/k) ≤ e−nA. Let us consider KA M

=
∩k≥1{ν ∈ P(S); ν(KA(k),k) ≥ 1 − 1/k}. By the direct statement of Prokhorov’s theorem
(in a metric space), it is a compact subset of P(S). Choosing A(k) = A + k, one gets

IP (Xn 6∈ KA) ≤
∑

k≥1

IP (Xn(Kc
A+k,k) > 1/k)

≤ e−nA
∑

k≥1

e−k ≤ e−nA

which completes the proof of the lemma. ¤
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As an immediate consequence of Proposition 3.3 and Sanov’s theorem, we obtain the
following

Corollary 3.5. Let (Zi) be a sequence of independent identically distributed radom el-
ements with values in separable metric space S. Let us assume that the common law

P ∈ P(S) of the Zi’s is a tight measure. Then, the collection of U-statistics {X(2)
n } obeys

the LDP in P(S2) with the rate function J(µ) = I(ν | P ) if µ = ν⊗2 and +∞ otherwise,
where I(ν | P ) is the relative entropy of ν ∈ P(S) with respect to P.

The point is that S is not supposed to be complete, but P is assumed to be tight (this
is automatically fulfilled when the sepearble metric space S is also complete).
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