A CONTRACTION PRINCIPLE FOR CLOSED GRAPH
TRANSFORMATIONS

CHRISTIAN LEONARD

ABSTRACT. One proves a contraction principle for a transformation with a closed graph
and present two simple applications of this result.

1. INTRODUCTION

One proves at Theorem 2.1 a contraction principle for a transformation with a closed
graph. The price to pay for this relaxation from the usual Contraction Principle with
a continuous transformation is the assumption that the transformed random system is
exponentially tight. We present two simple applications of this result. The first one, in
the domain of self-normalized sequences, indicates that one should not worry with divid-
ing by zero when this almost never occurs! We hope that Theorem 2.1 may bring some
comfort when proving such results. In our second application, one relaxes a topological
assumption on the state space when proving large deviations for the empirical measures
associated with U-statistics. The state space may only be metric and separable with-
out being complete. Of course, one might not expect striking improvements when using
the “closed graph version” of the contraction principle instead of the standard “continu-
ous” version. But maybe this easy result could be useful in some technically intricated
situations. (Please, let me know if you find one).

2. THE CONTRACTION PRINCIPLE

Let {X,}n>1 be a collection of random elements taking their values in a topological
space X endowed with some o-field. We assume that {X,} obeys the Large Deviation
Principle (LDP) with rate function / : X — [0, 00]. As usual (see [2]), this means that for
every closed measurable set [’ and every open measurable set GG

1
limsup —log IP(X,, € F) < —I(F)
n

1
—I(G) < liminf —log IP(X, € G)
n—oo M
where we used the notation [(A) = inf,c4 I(z).
Let f: X — ) be a transformation from X to another topological space ) endowed with
some o-field. We are interested in the large deviation behavior of

Y, £ f(Xa)
where it is assumed that Y, is measurable. Our main result is the following
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Theorem 2.1 (Contraction Principle). Let us assume that f : X — Y has a closed graph
and that {Y,} is exponentially tight in Y. Then, {Y,} obeys the LDP in Y with the rate
function J(y) = inf{I(x);x € X, f(z) =y}, y € V.

We shall need the following lemma to prove the theorem.

Lemma 2.2. Let f : X — Y be a function with a closed graph. For any compact subset
K of Y, f7H(K)={z € X; f(x) € K} is a closed subset of X.

In order to apply the present contraction principle in the context of U-statistics, it is
not assumed that the topologies are first countable. As a consequence, the next proof is
given in terms of nets rather than sequences. For more details about nets, see for instance
([3], Sections IV.2 and IV.3). When working with closed and compact sets, the recipe is
“Use nets as you use sequences”.

Proof. Let {z4}aer be a net in f~}(K) such that z, — z € X. We have to show that
f(z) € K.

We have y, = f (xq) € K for all @« € 7. As K is compact, there exists a convergent subnet
{ys}pes : ys — y € K. Hence, z3 — x and yz = f(x3) — y. As the graph of f is closed,
we get y = f(z). Hence f(z) € K, which is the desired result. O

Proof of Theorem 2.1. 1t is assumed that {Y,,} is exponentially tight: for all L > 0, there
exists a measurable compact subset K of ) such that

1
limsup —log IP(Y,, ¢ K1) < —L. (1)
n—oo N
Let us begin with the upper bound. Let F be a closed subset of ). For any L > 0, we
have

1 1
limsup — log IP(Y, € F') < limsup —log[lP(Y, € FNKy)+ P(Y, & K.)]
n

n—oo n n—oo

1
< max[limsup —log P(Y,, € FNKp),—L]. (2)

n—oo N
By the above lemma, f~'(F N Kp) is a closed subset X and the LDP for {X,} leads us
to

1 1
limsup — log IP(Y,, € FN K;) = limsup —log IP(X, € f"Y(FNK.))
n—oo n—oo N

< —inf{l(z);x € fHUFNKL)}
= — inf inf{l(z);z e X, f(x) =y}

yeFNKy,

< —infinf{I(z);z € X, f(z) =y}

yeF
= —inf .
inf J(y)
Plugging this estimate in (2) and letting L tend to infinity leads to the desired result.
Let us go on with the lower bound. Let G be an open subet of ). We want to prove
1
liminf ~log P(Y,, € G) > —I(f H(Q)). (3)

n—oo M
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Let L > 0, we define
U(G,L) = (G UKY).

This set is open. Indeed, U(G, L) = f1([G°NKL]) = fH(G°NKL)° and f~1(G N Kp)
is closed by Lemma 2.2.
The basic estimate is

P(Y, €G) > IP(X, € UG, L)) — P(Y, ¢ K.) (4)

which holds since U(G, L) = f~}G) U f~1(K¢) so that P(X, € U(G,L)) < IP(Y, €
G) + P(Y, ¢ Ky).
Before applying the lower bound for {X,} to the open set U(G, L) we need some more
estimates. We have

I(f~(Kp)*) > L,VL > 0. (5)

Indeed, (1) is —L > limsup,,_., + log IP(X,, € f~!(K.)%) where by Lemma 2.2, f~'(K)*
is open. Thanks to the lower bound of the LDP for {X,,}, we get

1 1
limsup —log IP(Y,, ¢ K;) = limsup —log IP(X, € f~'(K.))
n n

n—oo n—oo

1
liminf — log IP(X, € f~ (K1)

n—oo M

> —I(f7H(KL)),

v

which leads to (5).
We also need to know that if I(f~!(G)) < oo, there exists Li(G) > 0 such that for all
L>0,

L > L(G) = I(U(G.L)) = I(f(G)). (6)

>
Indeed, I(U(G, L)) = minlI(f~(G)), I(f~'(]1)%)] since U(G, L) = f~(G) U f (KoL),
and (6) follows with (5).
Let us show now that (3) holds. If I(f~'(G)) = oo, there is nothing to prove. Let us sup-
pose from now on that I(f~'(G)) < co. As U(G, L) is open, by the lower bound for {X,,}
and (6), we obtain liminf, .. L log IP(X, € U(G,L)) > —I(U(G,L)) = —I(f~}(G)) for
all L > L1(G). Hence, for all § > 0, there exist n;(d, G) > 1 such that P(X,, € U(G, L)) >
exp(—n[I(f~'(Q)) + d]), as soon as n > ny (5, G).
On the other hand, by (1) there exists ns(L) > 1 such that P(Y, ¢ K.) < exp(—1&),
as soon as n > ny(L). One can choose 0 < § < 1 without loss. Therefore, there ex-
ists Lo(G) > 0 such that for all n > 1,0 < § < 1 and all L > Ly(G), exp(=2£) <
s exp(—nlI(f7H(G)) +d)).
Taking (4) into account, it comes out that for all n > max(n;(d, G),n2(L.(G))) with
L,(G) = max(L(G), L»(G)) and all 0 < § < 1 we have IP(Y, € G) > Lexp(—n[I(f71(G))+
d]) which leads to the desired result. O

3. APPLICATIONS

In this section, we give two simple applications of Theorem 2.1.
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3.1. Self-normalized sequences. About self-normalized sequences and their applica-
tions in statistics, see for instance [1] and [4]. Let us consider the simplest self-normalized
sequence:

% Z?:l Zi
(A3, 1Zd)
where 1 < p < oo and (Z;) is an iid sequence of real valued centered random variables.
We decide that Y, = 0 if either U, = IS ZiorV, £ (257" | |Z,|P]'/7 vanishes.
We have Y,, = f(X,,) with X,, = (U,,V,,) and f(u,v) = u/v if v # 0 and f(u,0) =0 (as
a convention). Clearly, f has a closed graph. On the other hand, by Jensen’s inequality
Y, € [—1, 1] so that it is exponentially tight. Therefore, using Theorem 2.1 one can derive

the LDP for {Y,,} from the LDP for (U,,V,,) without worrying about dividing by zero
(which of course is not a real trouble since V;, almost never vanishes).

3.2. U-statistics. Let S be a separable metric space endowed with its Borel o-field B(.S)
and (Z;);>1 a sequence of S-valued random variables. Suppose that the collection of the
empirical measures

1 n
X, = 5;5& e P(S),n>1

obeys the LDP in the space P(S) of all probability measures on S equipped with the
usual topology of weak convergence with the rate function /. For instance, if the Z;’s are
independent and identically distributed with the law P € P(S), I is the relative entropy
with respect to P. We are interested in the large deviations of the U-statistics

1

2
n(n—1) Z O0(z:i,2;) € P(S%),n > 2

i,j=1;i7#]

X? =

As X = %X,‘?Q — L% > i1 0(z,2), one way to derive the LDP for {XT(?)} from the
LDP for {X,} is to prove a LDP for

Y, = X?

and then show that Y, and X\? are exponentially equivalent. It appears that Y, = f(X,,)
with
f:veP(S) — v ecP(S?

where the product space S? is equipped with the product topology B(S)®2. We have
assumed that S is a metric separable space to insure the identity: B(S)®? = B(S?). Our
aim in the following lines is to present a proof of the LDP for {Y,}, based on Theorem
2.1.

First of all, let us note that if the separable metric space S is also complete, f is a
continuous function (see Lemma 3.1 below. Hence, the LDP for {Y,,} follows from the
usual Contraction Principle. At Proposition 3.3, we are going to extend this result to a
separable metric space S in the case where {Y,,} is exponentially tight.

Lemma 3.1. If S is a Polish space, then f is continuous.
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Proof. As S is a separable metric space, P(S) and P(S?) are metric spaces and it is enough
to build the proof with sequences. As S is Polish, the set Cy(S5)®? of all tensor products
u®uv(s,t) = u(s)v(t) of continuous bounded functions v and v on S is convergence deter-
mining for the topology of weak convergence on P(S5?). Let (v,,) be a convergent sequence:
v, — v € P(S). For all u® v € Cy(5)¥?, lim, [ u @ vdv? = lim, [(udy, [qvdy, =
fS udy fs vdy = f52 u ® v dv®2. This proves the desired result. 0

Lemma 3.2. If S is a separable metric space, then f has a closed graph.

Proof. If S is only a separable metric space, Cy(.5)®? may not be convergence determining
anymore, but it is still a determining set. Let us take (1,) a convergent sequence: v, —
v € P(S) such that the limit x4 = lim, f(r,) = lim, v¥? exists in P(S5?). For all u @ v €
Cy(S)¥2, we have lim,, [, u®vdve? = [, u®vdp. As in the above lemma, we also obtain
limnlf52 u@vdve? = [o u®vdv®?. Therefore, lim, f(v,) = p = v®*, which is the desireél
result.

Proposition 3.3. Let S be a separable metric space such that {X,} obeys the LDP in
P(S) with rate function I. Let us assume in addition that

(i) for all n,k > 1 and § > 0, there exists a compact subset K C S such that
P(X, (K > 1/k) <6, and
(i) for all k > 1 and A > 0, there exists a compact subset K C S such that
limsup, o, = log IP(X,,(K°) > 1/k) < —A.
Then, {X%?} obeys the LDP in P(S?) with rate function J(u) = 1(v) if p = v®? € P(S?)
and J(p) = 400 otherwise.

The requirement (i) means that the law of X, is tight, for all n.

Proof. For any v € P(S) and any K € B(S), v**([K x K]¢) < 2v(K®). So that (i) and
(ii) are satisfied for { X®?} in P(S?) whenever they are satisfied for {X,,}. By Lemma 3.4
below, {X®?} is exponentially tight in P(S5?). Since f has a closed graph by Lemma 3.2,
one can apply Theorem 2.1 to get the desired result. 0

Lemma 3.4. Let {X,,} be a collection of random elements of P(S) which satisfies the
requirements (i) and (ii) of Proposition 3.3. Then, it is exponentially tight in P(S).

Proof. Thanks to (ii), for all A > 0,k > 1, there exists K a compact subset and N > 1
such that for all n > N, IP(X, (K¢ > 1/k) < e ™. With (i), one obtains a similar

control for the N first X,,’s, so that for all A > 0,k > 1, there exists K, a compact
A

subset such that for all n > 1, IP(X,(K§,) > 1/k) < e ™. Let us consider K4 =
Ne>1{v € P(S);v(Kaw k) > 1 —1/k}. By the direct statement of Prokhorov’s theorem
(in a metric space), it is a compact subset of P(S). Choosing A(k) = A + k, one gets

P(X, & Ka) < ZP<Xn(ch4+k,k) > 1/k)

k>1

< 6—nA§ 6—k < e—nA
k>1

which completes the proof of the lemma. 0
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As an immediate consequence of Proposition 3.3 and Sanov’s theorem, we obtain the
following

Corollary 3.5. Let (Z;) be a sequence of independent identically distributed radom el-
ements with values in separable metric space S. Let us assume that the common law

P € P(S) of the Z;’s is a tight measure. Then, the collection of U-statistics {Xﬁf)} obeys
the LDP in P(S?%) with the rate function J(u) = I(v | P) if u = v®? and +oo otherwise,
where I(v | P) is the relative entropy of v € P(S) with respect to P.

The point is that .S is not supposed to be complete, but P is assumed to be tight (this
is automatically fulfilled when the sepearble metric space S is also complete).
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