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Abstract

In this paper we consider a kernel estimator of a density in a convolution
model and give a central limit theorem for its integrated square error (ISE).
The kernel estimator is rather classical in minimax theory when the underlying
density is recovered from noisy observations. The kernel is fixed and depends
heavily on the distribution of the noise, supposed entirely known. The bandwidth
is not fixed, the results hold for any sequence of bandwidths decreasing to 0. In
particular the central limit theorem holds for the bandwidth minimizing the
mean integrated square error (MISE). Rates of convergence are sensibly different
in the case of regular noise and of super-regular noise. The smoothness of the
underlying unknown density is relevant for the evaluation of the MISE.

Mathematics Subject Classifications: 62G05, 62G20

Key Words: Convolution density estimation, Nonparametric density estimation, Cen-

tral Limit Theorem, Integrated Squared Error, Noisy observations.

Short title: Central Limit Theorem in the convolution model

In this paper we consider the following convolution model:

Zi = Xi + ei,

where Xi, i = 1, . . . , n are i.i.d. random variables of unknown density f which we need

to recover from noisy observations Yi, i = 1, . . . , n. The noise variables ei are supposed

i.i.d. of known fixed distribution, having a density function η in L1 and L2 and a

characteristic function Φη.
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We suggest here an estimator fn of f from noisy observations and study the asymp-

totic normality of its integrated square error (ISE)

ISE(fn, f) =

∫
(fn(x)− f(x))2dx. (1)

Let us suppose for the beginning that, like in the minimax setup, f belongs to a

Sobolev class W (r, L) of densities such that

f ∈ L1 and L2,

∫
|Φ(u)|2|u|2rdu ≤ 2πL

where Φ(u) =
∫

exp(iux)f(x)dx denotes its Fourier transform, for some fixed r > 1/2

and a constant L > 0. This roughly means these densities are continuously derivable

up to order r and their r-th derivative has bounded L2 norm.

It is known from estimation theory in the convolution model, that the rates and

behaviors of estimators are sensibly different if the characteristic function of the noise

decreases polynomially or exponentially asymptotically. We suppose in a first part that

the noise is ”polynomial”, i.e.

|Φη(u)| ∼ |u|−s, as |u| → ∞,

where ∼ means that the functions behave similarly and s > 0 such that r > s.

Let us denote g = f ? η the common density of Yi, i = 1, . . . , n and Φg = Φ · Φη its

Fourier transform.

In Section 2, we state our results for different setups, mainly classes of supersmooth

densities and Sobolev or supersmooth densities in association with exponentially de-

creasing noise. Exponential noise means

|Φη(u)| ∼ exp(−γ|u|s), as |u| → ∞,

where γ, s > 0.

We work here with a most studied kernel estimator of the deconvolution density

fn(x) =
1

n

n∑
i=1

Kn
h (x− Yi) , (2)

where h > 0 is small, Kn
h denotes Kn(·/h)/h and the kernel Kn is defined via its

Fourier transform

ΦKn

(u) =
ΦK(u)

Φη(u/h)
, where ΦK(u) = I[|u| ≤ 1].

2



Since pioneer work by Carroll and Hall (1988), deconvolution density was already

estimated in plenty of setups. We shall cite here only works very much related to our

frameworks and problems. Such kernel estimates were used on classes similar to the

Sobolev class by Fan (1991a), who computed the rates of convergence of the minimax

L2 risk. Recently wavelet estimators were proven to attain the same rates on Besov

bodies and these rates are known to be optimal in the minimax approach, see Fan and

Koo (2002).

In the setup of Sobolev densities, Goldenshluger (1999) generalized the minimax

rate for estimating f with pointwise risk to adaptive (to the Sobolev smoothness) rates

when the noise is either polynomial or exponential (without loss of rate in this last

case). Efromovich (1997) computed exact asymptotic risks (pointwise and in L2 norm)

for estimating Sobolev densities in presence of exponentially decreasing noise.

Kernel estimator in (2) (with adequate bandwidth) was proven to be minimax for

estimating supersmooth densities with polynomial noise in Butucea (2003) and with

exponential noise in Butucea and Tsybakov (2003).

The same kernel estimator was proven asymptotically normal when the noise is

either polynomial or exponential in Fan (1991b) and Fan and Liu (1997).

Here we study the asymptotic normality of the ISE in (1) and will discuss in Sec-

tion 2 on several important applications of results issued from these computations.

Such computations can be found in Hall (1984) for a nonparametric density estimator

with direct observations. His study is a direct application of a Central Limit Theorem

of degenerate U-statistics of second order. He motivates this by the practical use in

simulations of ISE as a measure of the performance of a density estimator.

The main goal is to evaluate cn and σn such that

σ−1
n (ISE(fn, f)− cn) → N(0, 1),

when h → 0 and n →∞.

1 Results

As a first step it is natural to replace cn by Ef [ISE(fn, f)] also denoted by MISE(fn, f)

for mean integrated square error. From now on Pf , Ef , and Vf denote the probability,

the expectation and the variance when the true underlying density of the model is f .

We may use constants c, C, C ′, . . . different throughout the whole proof.
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Note that the density of our observations is g = f ? η. We note next that

ISE(fn, f) =

∫
(fn(x)− Ef [fn(x)] + Ef [fn(x)]− f(x))2dx

=

∫
(fn(x)− Ef [fn(x)])2dx +

∫
(Ef [fn(x)]− f(x))2dx.

Indeed, the crossed term is null, see Lemma 2. We replace from now on Ef [fn(x)] by

its value Kh ? f . Then

MISE(fn, f) = Ef [ISE(fn, f))] = Ef

[∫
(fn(x)− Ef [fn(x)])2dx

]
+

∫
(Ef [fn(x)]−f(x))2dx

and we write

ISE(fn, f)− Ef [ISE(fn, f))] = In − Ef [In],

where In =
∫

(fn(x) − Ef [fn(x)])2dx. Computation of Ef [In] is rather classical in

minimax theory.

Lemma 1 Let fn(·, Y1, . . . , Yn) be the kernel density estimator defined in (2) based on

the noisy observations in our convolution model with a bandwidth h → 0 when n →∞.

Then

Ef [In] =
1 + o(1)

π(2s + 1)nh2s+1
.

If the underlying density belongs to a Sobolev smoothness class W (r, L) with r >

1/2, then

sup
f∈W (r,L)

∫
(Ef [fn(x)]− f(x))2 dx = Lh2r = o(1).

In conclusion MISE(fn, f) converges to 0, if and only if nh2s+1 → ∞ when n → ∞
and the bandwidth minimizing supf∈W (r,L) MISE(fn, f) is

hMISE = (Lπ(2s + 1)n)−
1

2(r+s)+1 .

Proof. We present here only exact calculation of Ef [In], since the remaining results

are obvious or not entirely new. We have

Ef [In] =
1

n

∫ (∫
(Kn

h (x− y)−Kh ? f)2 (x)dx

)
g(y)dy

=
1

n

(∫ (∫
(Kn

h (x− y))2 dx

)
g(y)dy − ‖Kh ? f‖2

2

)
.
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We know that ‖Kh ? f‖2
2 is equal to ‖f‖2

2 plus some estimation bias which tends to 0

when h → 0 on a smoothness class like the Sobolev class, W (r, L). So, the main term

is
∫ (∫

(Kn
h (x− y))2 dx

)
g(y)dy. Use Lemma 2:

∫ (∫
(Kn

h (x− y))2 dx

)
g(y)dy =

1

h

∫
(Kn)2

h ? g(x)dx =
1

2πh
Φ(Kn)2h?g(0)

=
1

2πh
Φg(0)Φ(Kn)2(0) =

1

2πh

∫
ΦKn

(−u)ΦKn

(u)du

=
1 + o(1)

π(2s + 1)h2s+1
.

Remark that in previous equations and in the following proofs, we compute integrals

like
∫

(ΦKn
)2 by actually replacing the c. f. of the noise by |u|−s, its asymptotic

expression. We do this for simplicity, since calculation would actually need splitting

integration domain into |u| ≤ M and M < |u| < 1/h, for some large enough, but fixed

M > 0. If M is large enough, Φη is almost |u|−s and the second integral is always

dominating over the first and gives the order of the whole expression. For a complete

and explicit computation of ‖Kn‖2
2 see Butucea (2003).

Let us look closer to In:

In =
1

n2

∫ (
n∑

i=1

(Kn
h (x− Yi)−Kh ? f(x))

)2

dx

=
1

n2

n∑
i=1

‖Kn
h (· − Yi)−Kh ? f‖2

2 +
1

n2

n∑

i 6=j=1

〈Kn
h (· − Yi)−Kh ? f,Kn

h (· − Yj)−Kh ? f〉,

where ‖ · ‖ and 〈·, ·〉 denote the L2 norm and the scalar product in L2, respectively. If

we denote by

Ui = Ui(x, h, Yi) = Kn
h (x− Yi)−Kh ? f(x), (3)

these variables are centered and independent. We get

In − Ef [In] =
1

n2

n∑
i=1

(‖Ui‖2
2 − Ef [‖Ui‖2

2]
)

+
1

n2

n∑

i6=j=1

〈Ui, Uj〉

= S1 + S2, say.

It is easy to see that variables in S1 and in S2 are uncorrelated:

Ef [(‖Uk‖2
2 − Ef [‖Uk‖2

2])(〈Ui, Uj〉)] = 0,

for all k, i, j = 1, . . . , n and i 6= j. It is necessary now to compute the variance of each

sum and compare. What we prove in the following is that S2 has a larger variance (in
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order) than S1, for any h → 0 and n →∞. Then we prove its asymptotic normality and

deduce the asymptotic normality of ISE(fn, f)−Ef [ISE(fn, f)]. The main difficulty

comes from the fact that S2 is an U-statistic of order 2 and degenerate. Indeed,

Ef [〈Ui, Uj〉/Yj = yj] = Ef [〈Kn
h (· − Yi)−Kh ? f, Kn

h (· − yj)−Kh ? f〉]
= 〈Ef [K

n
h (· − Yi)]−Kh ? f, Kn

h (· − yj)−Kh ? f〉 = 0.

Nevertheless, each term of the sum depends on n and we apply a central limit theorem

for degenerate U-statistics by Hall (1984), which he already applied in his paper for

the ISE of a nonparametric estimator with direct observations. Here, we have noisy

observations and a particular choice of the kernel (motivated by the minimax theory

in this field) giving sensibly different asymptotic behaviours and rates.

Theorem 1 Let fn(·, Y1, . . . , Yn) be the kernel density estimator defined in (2) based

on the noisy observations in our convolution model and a bandwidth h → 0 such that

nh2s+1 →∞, when n →∞. Then
√

π(4s + 1)n2h4s+1

2‖g‖2
2

(ISE(fn, f)− Ef [ISE(fn, f)]) → N(0, 1)

where the convergence is in law when n →∞.

Corollary 2 Let fn(·, Y1, . . . , Yn) be the kernel density estimator in (2) based on the

noisy observations with noise having polynomially decreasing Fourier transform and a

bandwidth h → 0 such that nh2s+1 → ∞, when n → ∞. Then In is asymptotically

normally distributed with

mean of order:
1

π(2s + 1)nh2s+1
and variance:

2‖g‖2
2

π(4s + 1)n2h4s+1
;

if f belongs to the Sobolev class W (r, L), the integrated square error ISE(fn, f) is

asymptotically normally distributed with

mean: MISE(fn, f) ≤ Lh2r +
1

π(2s + 1)nh2s+1
, when f ∈ W (r, L)

and variance:
2‖g‖2

2

π(4s + 1)n2h4s+1

and this upper bound of MISE becomes minimal (and of the order of the minimax L2

risk) for h = (Lπ(2s + 1)n)1/(2(r+s)+1)

inf
h>0

sup
f∈W (r,L)

MISE(fn, f) = L
1

2(r+s)+1 (π(2s + 1)n)−
2r

2(r+s)+1 .
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Remark that for practical use of the asymptotic normality, the MISE is directly

computable, whereas the variance still depends on the unknown ‖g‖2
2. Nevertheless, g

is the density of our observations and can be directly evaluated at a faster rate than f

(the same holds for different frameworks). Indeed, not only we have direct observations,

moreover, g is more regular than f due to the convolution (which adds smoothness).

The estimation of the L2 norm of a regular enough density, having a smoothness > 1/4,

can be done efficiently at rate 1/
√

n, see e.g. Laurent (1996).

Proof. Convergence of S1

S1 =
1

n2

n∑
i=1

(‖Ui‖2
2 − Ef [‖Ui‖2

2]
)
.

Let us compute an upper bound of the variance of S1. We have

Vf [S1] =
1

n4

n∑
i=1

Ef

[(‖Ui‖2
2 − Ef [‖Ui‖2

2]
)2

]

=
1

n3

(
Ef [‖U1‖4

2]−
(
Ef [‖U1‖2

2]
)2

)
≤ Ef [‖U1‖4

2]

n3
.

In order to evaluate an upper bound of this, we develop the square of sums in Ef [‖U1‖4
2]

and conclude by saying that the dominant term is given by one of positive terms (this

expectation being a positive real number):

Ef [‖U1‖4
2] =

∫ (∫
(Kn

h (x− y)−Kh ? f(x))2 dx

)2

g(y)dy

=

∫ (∫
(Kn

h (x− y))2 dx

)2

g(y)dy

+2‖Kh ? f‖2
2

∫ (∫
(Kn

h (x− y))2 dx

)
g(y)dy

+4

∫ (∫
Kn

h (x− y)Kh ? f(x)dx

)2

g(y)dy.

Note that, by Cauchy-Schwarz and previous evalutions:

∫ (∫
Kn

h (x− y)Kh ? f(x)dx

)2

g(y)dy

≤
∫ (∫

(Kn
h (x− y))2 dx

)1/2

‖Kh ? f‖2g(y)dy ≤ O(1)

h2s+1
.
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It remains to compute an asymptotic upper bound of
∫ (∫

(Kn
h (x− y))2 dx

)2
g(y)dy.

As previously,

∫ (∫
(Kn

h (x− y))2 dx

)2

g(y)dy ≤ C

h2
‖Kn‖4

2 ≤
c

h4s+2
.

Then, for all h > 0 small such that nh2s+1 →∞,

Vf

[√
π(4s + 1)n2h4s+1

2‖g‖2
2

S1

]
≤ C

nh
= o(1), when n →∞ (4)

and then √
π(4s + 1)n2h4s+1

2‖g‖2
2

S1 →P 0, when n →∞.

Convergence of S2:

S2 =
1

n2

n∑

i6=j=1

〈Ui, Uj〉.

The variables in S2 are centered and, moreover, Ef [〈Ui, Uj〉〈Uk, Ul〉] = 0 as soon as

(i, j) 6= (k, l). Then

Vf [S2] =
1

n4
Ef




(
n∑

i6=j=1

〈Ui, Uj〉
)2


 =

2

n4
n(n− 1)Ef [〈U1, U2〉2] =

2 + o(1)

n2
Ef [〈U1, U2〉2]

If we develop this, we get

Ef [〈U1, U2〉2] = Ef [〈Kn
h (x− Y1), K

n
h (x− Y2)〉2]− ‖Kh ? f‖4

2.

We use again the fact that ‖Kh ? f‖2
2 is equal to ‖f‖2

2 plus some estimation bias which

tends to 0 when h → 0 on the class W (r, L). So, the main term is the first one. Indeed:

Ef [〈Kn
h (· − Y1), K

n
h (· − Y2)〉2] =

∫ ∫ (∫
Kn

h (x− u)Kn
h (x− v)dx

)2

g(u)g(v)dudv

=
1

h

∫ ∫
(Mn)2

h(v − u)g(u)g(v)dudv,

where we put Mn(x) =
∫

Kn(z + x)Kn(z)dz. Note that,

∫
(Mn(x))2dx =

1

2π

∫ ∣∣Φ〈Kn(x+·),Kn(·)〉(u)
∣∣2 du =

1

2π

∫ ∣∣ΦKn

(u)ΦKn

(−u)
∣∣2 du

=
1

2π

∫

|u|≤1

du

|Φη(u/h)|2 |Φη(−u/h)|2 =
1 + o(1)

π(4s + 1)h4s
.
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Since densities g are continuous functions, even (r+s−1/2) - Lipschitz continuous, see

Lemma 3, they are uniformly bounded over f in the Sobolev class W (r, L) with any

noise density η under our assumptions. Then for any small ε > 0, such that ε/h →∞,

when n →∞:
∣∣∣∣
∫ ∫

(Mn)2
h(v − u)g(u)g(v)dudv −

∫
(Mn)2‖g‖2

2

∣∣∣∣

=

∣∣∣∣
∫ ∫ (

(Mn)2
h(v − u)g(u)− g(v)

∫
(Mn)2

)
dug(v)dv

∣∣∣∣

≤
∫ ∣∣∣∣

∫
(Mn)2(x)(g(v + hx)− g(v))dx

∣∣∣∣ g(v)dv

≤
∫

|hx|≤ε

(Mn)2(x)|hx|r+s−1/2dx + 2 sup
f,η
‖g‖∞

∫

|hx|>ε

(Mn)2(x)dx ≤ o

(∫
(Mn)2

)
.

This means

Ef [〈Kn
h (x− Y1), K

n
h (x− Y2)〉2] =

1 + o(1)

π(4s + 1)h4s+1
‖g‖2

2

which implies that

Vf [S2] =
(2 + o(1))‖g‖2

2

π(4s + 1)n2h(4s+1)
. (5)

Asymptotic normality of S2. We apply here the following Proposition by

Hall (1984):

Proposition 1 (see Theorem 1, Hall (1984)) Assume Hn(x, y) is a symmetric func-

tion such that E[Hn(X1, X2)/X1] = 0 almost surely and E[H2
n(X1, X2)] < ∞ for each

n. Denote by

Gn(x, y) = E[Hn(X1, x)Hn(X1, y)].

If (
E[G2

n(X1, X2)] + n−1E[H4
n(X1, X2)]

)
/
(
E[H2

n(X1, X2)]
)2 → 0, (6)

as n →∞, then

Wn ≡
n∑

i<j=1

Hn(Xi, Xj)

is asymptotically normally distributed with zero mean and variance n2E[H2
n(X1, X2)]/2.

We apply this result to

n2S2/2 =
n∑

i<j=1

〈Ui, Uj〉.
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We have seen already that this U-statistic is degenerate and that

Ef [〈U1, U2〉2] =
‖g‖2

2 + o(1)

π(4s + 1)h4s+1
< ∞.

In order to check (6) we evaluate and bound from above Ef [G
2
n(Y1, Y2)] and Ef [〈U1, U2〉4].

First, if we replace U1 and U2 and we keep the dominant term in the expectation:

Ef [〈U1, U2〉4] ≤
∫ (∫

1

h2
Kn

(
u− y1

h

)
Kn

(
u− y2

h

))4

g(y1)g(y2)dy1dy2

≤ 1

h3

∫
1

h

(
Kn

(
z +

y2 − y1

h

)
Kn(z)dz

)4

g(y1)g(y2)dy1dy2

≤ 1

h3

∫
Rn

h(y2 − y1)g(y1)g(y2)dy1dy2,

where Rn(z) = (
∫

Kn(z + u)Kn(u)du)4 = (Mn(z))4. As in the previous part of this

proof, we need to evaluate

∫
Rn(z)dz =

∫
(Mn)4(z)dz =

1

2π

∫ ∣∣ΦMn

? ΦMn

(u)
∣∣2 du ≤

(∫ ∣∣ΦMn

(u)
∣∣2 du

)2

≤ c

h8s
.

Thus,

Ef [〈U1, U2〉4]/
(
n(Ef [〈U1, U2〉2])2

) ≤ c/h8s+3

n/h8s+2
≤ C ′

nh
= o(1) (7)

and this proves the first part of (6).

Now, recall (3) and write

Gn(y1, y2) =

∫
〈U1(·, h, y1), U3(·, h, y3)〉〈U2(·, h, y2), U3(·, h, y3)〉g(y3)dy3.

We have

〈U1(·, h, y1), U3(·, h, y3)〉 =

∫
1

h2
Kn

(
u− y1

h

)
Kn

(
u− y3

h

)
du

−1

h

∫
Kh ? f(u)

[
Kn

(
u− y1

h

)
+ Kn

(
u− y3

h

)]
du

+‖Kh ? f‖2
2

By changing the variable, the first term on the right-hand side becomes

1

h

∫
Kn

(
u +

y3 − y1

h

)
K(u)du = Mn

h (y3 − y1),
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where again Mn(z) =
∫

Kn(u+z)Kn(u)du. Then, when we replace this into Ef [G
2
n(Y1, Y2)],

we keep only the dominant term:

Ef [G
2
n(Y1, Y2)] ≤

∫ ∫ (∫
Mn

h (y3 − y1)M
n
h (y3 − y2)g(y3)dy3

)2

g(y1)g(y2)dy1dy2

≤ 1

h

∫ ∫
1

h

(
Mn

(
z +

y2 − y1

h

)
Mn(z)g(y2 + hz)dz

)2

g(y1)g(y2)dy1dy2

≤ 1

h

∫ ∫
1

h

∫
(Mn)2

(
z +

y2 − y1

h

)
(Mn)2(z)g(y2 + hz)dzg(y1)g(y2)dy1dy2

≤ C
1

h

∫ ∫
Qn

h(y2 − y1)g(y1)g(y2)dy1dy2,

where we used Jensen inequality, the fact that densities g are uniformly bounded by a

constant C depending only on r, s, L. We denoted by

Qn(z) = (

∫
(Mn)2(z + x)(Mn)2(x)dx)2.

Similarly to previous calculation of Ef [〈U1, U2〉2]
∫

Qn(z)dz =

∫ ∫
(Mn)2(z + x)(Mn)2(x)dxdz =

(∫
(Mn)2(x)dx

)2

≤ C ′′

h8s
.

Thus,

Ef [G
2
n(Y1, Y2)]/(Ef [〈U1, U2〉2])2 ≤ C ′′′h = o(1). (8)

Inequalities (7) and (8) entail verification of (6) and the proof of asymptotic normality.

Thus, together with (5), we get the theorem: ISE(fn, f)−MISE(fn, f) is asymptot-

ically normally distributed with mean 0 and variance 2‖g‖2
2/(π(2s + 1)n2h4s+1).

If we take in consideration Lemma 1, plus some computations, we get the Corollary.

2 Other frameworks and discussion

2.1 Polynomial noise

In the previous context, condition nh2s+1 → ∞ was necessary to ensure consistency

of the MISE, but we only need the more classical, less restrictive condition nh →∞
in order to have S1 converging in probability to 0 (see (4)) and for the asymptotic

normality of the ISE, see (7) necessary to get (6).
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The fact that f was in the Sobolev class allowed us to evaluate the bias term in

MISE and to minimize over h > 0 the MISE.

If we consider instead of Sobolev smoothness classes, a class S(α, r, L) of super-

smooth densities f in L1 and L2 such that:

∫
|Φ(u)|2e2α|u|rdu ≤ 2πL,

we know (see Butucea (2003)) that

∫
(Ef [fn(x)]− f(x))2 du ≤ L exp

(
−2α

hr

)
.

Theorem 3 Let fn(·, Y1, . . . , Yn) be the kernel density estimator in (2) based on noisy

observations with noise having polynomially decreasing Fourier transform and a band-

width h → 0 such that nh2s+1 →∞, when n →∞. Then Theorem 1 holds. Moreover,

In is asymptotically normally distributed with

mean of order:
1

π(2s + 1)nh2s+1
and variance:

2‖g‖2
2

π(4s + 1)n2h4s+1
;

if f belongs to the class S(α, r, L), the integrated square error ISE(fn, f) is asymptot-

ically normally distributed with

mean: MISE(fn, f) ≤ L exp

(
−2α

hr

)
+

1

π(2s + 1)nh2s+1
, when f ∈ S(α, r, L)

and variance:
2‖g‖2

2

π(4s + 1)n2h4s+1

and this upper bound of MISE becomes minimal for h of order (log n/(2α))−1/r

inf
h>0

sup
f∈S(α,r,L)

MISE(fn, f) =
1

π(2s + 1)n

(
log n

2α

)(2s+1)/r

.

2.2 Exponential noise

The situation changes completely if the noise is exponentially smooth. From Butucea

and Tsybakov (2003) we know

Ef [In] =
hs−1(1 + o(1))

2πγsn
exp

(
2γ

hs

)

and this has to be o(1) as a necessary condition for the MISE to be consistent.

12



Theorem 4 Let fn(·, Y1, . . . , Yn) be the kernel density estimator defined in (2) based

on noisy observations with noise having exponentially decreasing Fourier transform in

our convolution model and a bandwidth h → 0 such that hs−1 exp(2γ/hs)/n → 0, when

n →∞. Then
√

2πγsn2

hs−1 exp(4γ/hs)‖g‖2
2

(ISE(fn, f)− Ef [ISE(fn, f)]) → N(0, 1)

where the convergence is in law when n →∞. Moreover, In is asymptotically normally

distributed with

mean of order:
hs−1

2πγsn
e2γ/hs

and variance:
hs−1‖g‖2

2

2πγsn2
e4γ/hs

;

if f belongs to the class W (r, L), the integrated square error ISE(fn, f) is asymptoti-

cally normally distributed with

mean: MISE(fn, f) ≤ Lh2r +
hs−1

2πγsn
e2γ/hs

, when f ∈ W (r, L)

and variance:
hs−1‖g‖2

2

2πγsn2
e4γ/hs

and the upper bound of MISE becomes minimal (and of the order of the minimax L2

risk, see Efromovich (1997)) for h of order (log n/(2γ))−1/s

inf
h>0

sup
f∈W (r,L)

MISE(fn, f) = L

(
log n

2γ

)−2r/s

.

Proof. Indeed, we can see that

Vf [S1] ≤ Ef [‖U1‖4
2]

n3

≤ 1

n3

(∫ (∫
(Kn

h (x− y))2dx

)2

g(y)dy + 2‖Kh ? f‖2
2

∫ (∫
(Kn

h (x− y))2dx

)
g(y)dy

4

∫ (∫
Kn

h (x− y)Kh ? f(x)dx

)2

g(y)dy

)
.

By Cauchy-Schwarz inequality:

(∫
Kn

h (x− y)Kh ? f(x)dx

)2

≤ ‖Kh ? f‖2
2

∫
(Kn

h (x− y))2dx.

13



Densities g are uniformly bounded over f in the class of supersmooth densities S(α, r, L),

then:

Vf [S1] ≤ 1

n3

(
C1

(∫
(Kn

h (x− y))2dx

)2

+ C2

∫
(Kn

h (x− y))2dx

)
,

for some constants C1, C2. Using Lemma 3:

∫
(Kn

h (x− y))2dx =
1

h
‖Kn‖2

2 =
hs−1(1 + o(1))

2πγs
exp

(
2γ

hs

)
.

So,

Vf [S1] ≤ C

n3
h2(s−1) exp

(
4γ

hs

)
.

As in the proof of Theorem 1:

Vf [S2] =
2 + o(1)

n2
Ef [〈U1, U2〉2]

=
2 + o(1)

n2h

∫ ∫
(Mn)2

h(v − u)g(u)g(v)dudv

=
2 + o(1)

n2h
‖Mn‖2

2‖g‖2
2.

In this case, for some M fixed but large enough:

‖Mn‖2
2 =

1

2π

∫

|u|≤1

du

|Φη(u/h)|2|Φη(−u/h|2

=
h

2π

(∫

|u|≤M

dv

|Φη(v)|2|Φη(−v)|2 +

∫

M<|u|≤1/h

dv

|Φη(v)|2|Φη(−v)|2
)

=
h

2π

(
I1 + (1 + o(1))

∫

M<|u|≤1/h

exp(4γ|u|s)dv

)

=
1 + o(1)

4πγs

hs

n2
exp

(
4γ

hs

)
,

where I1 is the integral over fixed compact support [−M, M ] of smooth functions so it

infinitely smaller than the second integral. Finally,

Vf [S2] =
(1 + o(1))‖g‖2

2

2πγs

hs

n2
exp

(
4γ

hs

)
.

We can see that Vf [S1]/Vf [S2] ≤ Chs−1/n = o(1) for all bandwidths h > 0 such

that MISE is consistent, that is such that hs−1 exp(2γ/hs)/n = o(1). Thus S2 is still

the dominating term in the weak convergence to the normal law.

14



Finally, we need to check (6). On one hand,

Ef [H
4
n(Y1, Y2)]

nEf [H2
n(Y1, Y2)]2

≤ Chs−1/n exp(4γ/hs)

nh2(s−1) exp(4γ/hs)
≤ C

nhs−1
= o(1)

and on the other hand

Ef [G
2
n(Y1, Y2)]

(Ef [H2
n(Y1, Y2)])2

≤ C‖Mn‖4
2/h

(‖Mn‖2
2/h)2

≤ Ch = o(1).

By Proposition 1 we deduce the asymptotic normality.

Applications This subject is strongly related to estimating the L2 norm of the

density f from noisy observations. Indeed, a natural estimator d2
n of ‖f‖2

2 can be

decomposed such that one of the terms is S2. For not too smooth densities S2 is the

dominating term and this gives the rate of estimation.

Estimating the L2 norm of a density is furthermore providing a minimax optimal

test procedure for nonparametric testing in the convolution model. These problems

will be soon the subject of communications and the asymptotic normality of ISE is

an important tool in the sequel.

3 Auxiliary results

Lemma 2 Let fn be the kernel estimator defined in (2) with the particular choice of

the kernel and for arbitrary h > 0 small. Then

Ef [fn(x)] = K ? f(x);

moreover, due to the choice of the kernel the cross term in ISE(fn, f) is null
∫

(fn(x)− Ef [fn(x)]) (Ef [fn(x)]− f(x)) dx = 0.

Proof. For the first part, we use the Fourier inversion formula, the expression of

the Fourier transform of the kernel and the fact that Φg = Φ · Φη:

Ef [fn(x)] =

∫
1

h
Kn

(
x− y

h

)
g(y)dy =

1

2π

∫
e−ixuΦKn

(hu)Φg(u)du

=
1

2π

∫
e−ixuΦK(hu)Φ(u)du =

∫
1

h
K

(
x− y

h

)
f(y)dy = Kh ? f(x).

Next,
∫

(fn(x)− Ef [fn(x)]) (Ef [fn(x)]− f(x)) dx

=

∫
(fn(x)− Ef [fn(x)]) Ef [fn(x)]dx−

∫
(fn(x)− Ef [fn(x)]) f(x)dx. (9)
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Now, the first term of the difference, we use again Plancherel formula (saying that∫
p · q =

∫
Φp · Φq

/2π for any functions p and q in L1 and L2):

∫
(fn(x)− Ef [fn(x)]) Ef [fn(x)]dx

=
1

n

n∑
i=1

∫
(Kn

h (x− Yi)−Kh ? f) Kh ? f(x)dx

=
1

2πn

n∑
i=1

∫
e−ixu

(
ΦK(hu)eiuYi

Φη(u)
− ΦK(hu)Φ(u)

)
ΦK(hu)Φ(u)du

=
1

πn

n∑
i=1

∫
e−ixu

(
ΦK(hu)eiuYi

Φη(u)
− ΦK(hu)Φ(u)

)
Φ(u)du

=

∫
(fn(x)− Ef [fn(x)]) f(x)dx,

where ΦK(u) is the complex conjugate of ΦK(u) = I[|u| ≤ 1] and we used the fact that

(ΦK)2 = ΦK . Then the difference in (9) is null.

Lemma 3 1) If f belongs to a Sobolev class W (r, L) with r > 1/2, then g = f ?η, with

η the density of a polynomial noise, is (r + s− 1/2)- Lipschitz continuous function. If

the noise is exponential or if f is a supersmooth density in S(α, r, L), then g is at least

Lipschitz continuous.

2) If f is either Sobolev or supersmooth density then f and g = f ? η are uniformly

bounded densities, whether the noise is polynomial or exponential. That means, there

exists a constant C > 0, depending only on r, s, L, such that

sup
f
‖f‖∞ ≤ C and sup

f
‖g‖∞ ≤ C.

3) If the noise is polynomial then

‖Kn‖2
2 =

1 + o(1)

π(2s + 1)h2s
,

if the noise is exponential, then

‖Kn‖2
2 =

hs(1 + o(1))

2πγs
exp

(
2γ

hs

)
.

16



Proof. 1) If f is in the Sobolev class W (r, L) and η is the density of a polynomial

noise, we have:

|g(x + y)− g(x)| =
1

2π

∣∣∣∣
∫

(e−iu(x+y) − e−iux)Φg(u)du

∣∣∣∣

≤ 1

2π

∫ |e−iuy − 1|
|u|r+s

|Φ(u)||u|r|Φη(u)||u|sdu

≤ 1

2π

(∫ |e−iuy − 1|2
|u|2(r+s)

du

∫
|Φ(u)|2|u|2r|Φη(u)||u|2sdu

)1/2

≤ |y|r+s−1/2

2π

(∫ |e−iv − 1|2
|v|2(r+s)

dv

)1/2 (∫

|u|≤M

|Φ(u)|2|Φη(u)|2|u|2(r+s)du

+

∫

|u|>M

|Φ(u)|2|u|2rdu

)1/2

and all the integrals are finite, for any M > 0 large enough but fixed. Then there exists

a finite constant C > 0 that does not depend on x or y, such that

|g(x + y)− g(x)| ≤ C|y|r+s−1/2.

If the noise is exponential, we roughly bound | exp(−iuy)− 1| ≤ C|y||u|. We get:

|g(x + y)− g(x)| ≤ C|y|
(∫

|u|2(1−r) exp(−2γ|u|s)du

∫
|Φg(u)|2|u|2r exp(2γ|u|s)du

)1/2

,

and all integrals are finite.

If f is a supersmooth density in the class S(α, r, L), we proceed the same way and

then:

|g(x + y)− g(x)| ≤ C|y|
(∫

|u|2(1−s) exp(−2α|u|r)du

∫
|Φg(u)|2 exp(2α|u|r)|u|2sdu

)1/2

,

in the case of a polynomial noise, respectively,

|g(x + y)− g(x)| ≤ C|y|
(∫

|u|2 exp(−2α|u|r − 2γ|u|s)du

∫
|Φg(u)|2 exp(2α|u|r + 2γ|u|s)du

)1/2

,

for an exponential noise. All previous integrals being finite, the density g is at least

Lipschitz in either cases.
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2) Probability density functions f in the Sobolev class are such that:

|f(x)| =
1

2π

∣∣∣∣
∫

e−ixuΦ(u)du

∣∣∣∣

≤ 1

2π

(∫
|Φ(u)|2(1 + |u|2r)du

∫
(1 + |u|2r)−1du

)1/2

,

which is less than some constant C depending only on r and L. Similarly for g.

3) For this we refer to Butucea (2003) and Butucea and Tsybakov (2003).
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