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Abstract 

A distinctive signature of living systems is Darwinian evolution, that is, a propensity to 

generate as well as select individual diversity. To capture this intrinsic feature of life, new 

classes of mathematical models are emerging. These models are rooted in the 

“microscopic”, stochastic description of a population of discrete individuals characterized 

by one or several adaptive traits. The population is modeled as a stochastic point process 

whose generator captures the probabilistic dynamics over continuous time of birth, 

mutation, and death, as influenced by each individual’s trait values, and interactions 

between individuals. An offspring usually inherits the trait values of her progenitor, 

except when a “mutation” causes the offspring to take an instantaneous “mutation step” 

at birth to new trait values. Once this point process is in place, the quest for tractable 

approximations can follow different mathematical paths, which differ in the 

renormalizations they assume (taking limits, in appropriate order, on population size, 

mutation rate, mutation step, and rescaling time accordingly) and the nature of the 

corresponding approximation models (deterministic, in the form of ordinary, integro-, or 

partial differential equations, or probabilistic, like stochastic partial differential equations 

or superprocesses). Adaptive dynamics models form one class of such approximations; 

although their rigorous derivation from point processes remains incomplete, the analysis 

of adaptive dynamics models has already proved highly insightful from both 

mathematical and biological viewpoints. Ultimately, mathematical models of Darwinian 

evolution derived from individual stochastic processes should encompass wider 

mechanisms of variation and transmission (sexual reproduction, somatic mutations, 

plasticity, cultural innovation and inheritance) in fluctuating environment, population 

structure generated by organismal development (e.g. age or size structure), and trait 

spaces with more complex topologies. 

Key-words: Darwinian evolution, birth and death process, local interactions, mutation – 

selection, point process, renormalization, fitness, adaptive dynamics, bifurcation analysis, 

adaptive reversal, evolutionary sliding, evolutionary branching. 
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1. Introduction 

Evolutionary biology has long received the enlightment of mathematics. Population 

genetics is undoubtly one of the most “mathematized” area of biology. Not only classical 

mathematics have been heavily used to give population genetics the strong quantitative 

basis that data analysis required; population genetics is also one of few biological fields 

that led to the opening of entirely new avenues of prosperous research in mathematics.  

The coalescent provides a striking example. 

A distinctive signature of living systems is Darwinian evolution, that is, a 

propensity to generate as well as select individual diversity. This is at odds with what we 

know of physical or chemical systems, and confront the mathematical approach with a 

major difficulty. Whereas physics and chemistry offer to mathematicians a fertile terrain 

to simplify the complexity of systems made up of many interacting components by 

“taking averages”, the nature of biological systems in essence opposes that. All 

“individuals”—be they organic molecules, genes, genomes, cells or multicellular 

organisms—have a potential for being unique, and for generating even more uniqueness 

among themselves.    

The emerging field of adaptive dynamics represents a serious attempt at designing a 

new class of mathematical models to capture this intrinsic feature of evolving life. 

Dieckmann and Law (1996) have offered appealing heuristics to scale the microscopic 

description of an evolving population as a “polymorphic stochastic” process, up to the 

macroscopic approximation given by a “deterministic monomorphic” model known as 

the “canonical equation of adaptive dynamics”. From a biological point of view, this 

pathway from microscopic models to adaptive dynamics deserves a firm mathematical 

pavement for at least two reasons: to clarify the significance of biological assumptions 

which are used along the way, and to harvest the crop of new biological questions or 

applications that mathematics can suggest.  

This paper aims at reviewing and consolidating the mathematical foundations of 

modeling adaptive evolution. Our presentation starts with the “microscopic” description 

of a population of discrete individuals characterized by one or several adaptive traits. The 

population is modeled as a stochastic point process whose generator captures the 

probabilistic dynamics over continuous time of birth, mutation and death, as influenced 
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by each individual’s trait values. The adaptive nature of a trait implies that an offspring 

usually inherits the trait values of her progenitor, except when a “mutation” occurs—then 

the offspring makes an instantaneous “mutation step” at birth to new trait values. We will 

refer to the state space parametrized by adaptive traits as the “trait space”, and will often 

(slightly abusively) call trait the actual trait value. 

The mathematical construction of the population point process yields a 

“polymorphic stochastic” model of adaptive evolution, sensu Dieckmann and Law 

(1996). Once this point process is in place, the quest for tractable approximations can 

follow different mathematical paths, which depart from each other in the 

renormalizations they assume and the nature of the approximation models they are 

conducive to. Possible renormalizations involve taking limits on population size, 

mutation rate, mutation step, and rescaling time whenever appropriate; the approximation 

models can be deterministic (in the form of ordinary, integro-, or partial differential 

equations) or probabilistic (stochastic partial differential equations or superprocesses). By 

considering possible renormalizations in different, biologically relevant combinations, we 

can aim at the systematic construction of approximation models, in such a way that we 

gain a clear understanding of how the models relate to each other, and what their 

respective biological scope is.  

The adaptive dynamics approach suggests to proceed from the stochastic 

polymorphic model by taking the following two steps (Fig. 1): 

 First, two simultaneous renormalizations (large population and rare mutations) are 

assumed to lead to an approximation model qualifying as “monomorphic stochastic”. 

This model is aimed to be a directed jump process over the trait space. 
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Fig. 1. Branching mathematical paths from the polymorphic stochastic model (PSM) to 
various possible deterministic approximations (moment equations, MDM: monomorphic 
deterministic models). Plain arrows (A-D) indicate established mathematical steps. (A) 
involves taking expectation on a large number of independent realizations (see section 
2.2). (B) Large-population limit, rescaled interaction kernel (section 3.1). (C) Large-
population limit, accelerated birth and death, infinitesimal mutation steps, rescaled 
interaction kernel (section 3.2). (D) Infinitesimal mutation steps, rescaled time (section 
4.2). Dashed routes (E-H) have not received any firm mathematical pavement yet. 
Possible approximations: (G) Large-population and small-mutation rate limits. (H) Large-
population and infinitesimal mutation step limits taken simultaneously. 
 

 

 Then this jump process is approximated by a “monomorphic deterministic” model, 

derived through an infinitesimal-mutation renormalization taken along with rescaling 

time appropriately. This deterministic process over the state space appears to be driven 

by the so-called “canonical equation of adaptive dynamics” (Dieckmann and Law 

1996). 
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At present, only the second step has received a full mathematical resolution 

(Champagnat et al. 2001, Champagnat 2003a, b). Simplifying the complexity of the 

stochastic polymorphic model via the derivation of a monomorphic stochastic 

approximation stands up as a mathematical challenge. Three alternative paths have been 

opened successfully, but it is not known yet how to continue them so as to recover 

models akin to the canonical equation: 

 Considering the moment equations associated with the microscopic point process. 

These equations aim at describing the temporal dynamics of the moments of the 

distribution of individuals across the trait space.  

 Taking the large-population limit alone to derive a “deterministic polymorphic” model 

in the form of a nonlinear integro-differential equation. This model generalizes the 

classical equation of mutation-selection balance studied in population genetics (e.g., 

Burger 2000). 

 Applying simultaneously three renormalizations: large population, fast birth and death 

(hence fast mutation), infinitesimal mutation step. Depending on the acceleration of the 

birth and death process, this leads either to a deterministic reaction-diffusion equation, or 

to a continuous random measure-valued process which generalizes the superprocess 

introduced recently by Etheridge (2001) to model spatially structured population 

dynamics. 

In section 2 we explain how to construct the microscopic point process, which 

provides a polymorphic stochastic model of the population; next we derive the 

corresponding moment equations. In section 3, we construct approximations of the 

polymorphic model based on a large-population limit. Section 4 aims at recovering the 

canonical equation of adaptive dynamics (and several extensions) by applying the 

infinitesimal mutation step renormalization on a postulated monomorphic approximation 

of the microscopic point process. Finally, section 5 presents the analysis of some recently 

developed examples of canonical equations. These two case studies suffice to unravel the 

richness of evolutionary dynamics and some of their unexpected features.  
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2. Population point process and moment equations 

Evolution manifests itself as a change in the state of a population, while its basic 

mechanisms – mutation and selection – operate at the level of individuals. Here we derive 

a polymorphic stochastic model of an evolving population by constructing an “interacting 

individual system”. The population is characterized by a counting measure, and evolves 

according to a Markov process on the path space ))(),,0([ χFM∞D  of càdlàg functions 

from ),0[ ∞  to )(χFM . )(χFM  is the set of finite nonnegative measures on χ , where χ  

denotes the trait space—the closure of a bounded connected open set of dR ; χ  is 

defined in such a way that reproduction becomes impossible for individuals with traits 

located on the boundary of χ . The infinitesimal generator of the process captures the 

birth and death events that each individual experiences while interacting with other 

individuals.  

2.1. Process construction  

We consider a population in which individuals can give birth and die at rates that 

are influenced by the individual traits and by interactions with groups of individuals 

carrying the same or different traits. These events occur randomly, in continuous time. 

Reproduction is almost faithfull: there is some probability that a mutation causes an 

offspring’s trait to differ from her progenitor’s. Interactions translate into a dependence 

of the birth and death rates of any focal individual upon the number of individuals in the 

interacting groups. 

Let tν  denote the finite point measure describing the “distribution” of individuals 

over the trait space at time t. As we construct and analyse the infinitesimal generator L of 

the Markovian dynamics 0)( ≥ttν , we will be using the notation FPM  to denote the set of  

all finite point measures in )(χFM , that is, { }χδ ∈∈= ∑ =
II

i xFP xxIM i K,,, 1
1

N , where 

xδ  is the Dirac measure at x. Also, for any FP
I

i x Mi ∈=∑ =1
δν  and for any measurable 

function ϕ  on χ , we set ∑∫ =
==

I

i
ixd

1
)( , ϕνϕϕν

χ
. 

The population is characterized at any time t by the finite point measure 
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(2.1) ∑=
=

)(

1

tI

i xt i
t

δν .  

N∈)(tI  is the number of individuals alive at time t, and )(1,... tI
tt xx  denote the individuals’ 

traits. The population dynamics are driven by a birth-mutation-death process defined as 

follows. For any trait χ∈x , individual mortality and reproduction are influenced by 

interactions between individuals. Let us set 

 ),0[))(,( ∞∈∗ xUxd tν , the death rate of individuals with trait x,  

 ),0[))(,( ∞∈∗ xVxb tν , the birth rate of individuals with trait x, with 0),( =⋅xb  for any 

x on the boundary of χ , 

where 

 ),0[)( ∞∈xU  is the interaction kernel affecting mortality, 

 ),0[)( ∞∈xV  is the interaction kernel affecting reproduction. 

Here * denotes the convolution operator, which means that the interaction effect of any 

individual with trait y on the death and birth rates of a focal individual with trait x is 

weighed by a function of the difference between the trait values, yx − . 

Mutation-related parameters are expressed as functions of the individual trait values 

only (although there would be no formal predicament to include a dependency on the 

population state): 

 [ ]1 ,0)( ∈xµ  is the probability that an offspring produced by an individual with trait x 

carries a mutated trait, 

 ),( dzxM  is the mutation step measure of the mutated offspring trait zx +  produced 

by individuals with trait x. M is assumed to satisfy 1),(
,

=∫ ∈+∈ χzxz d
dzxM

R
 and 

0),(
,

=∫ ∉+∈ χzxz d
dzxM

R
 for any χ∈x . 

Thus, the individual processes that influence the population evolution can be 

described as follows: 

 At 0=t  the population is characterized by a (possibly random) measure FPM∈0ν . 

 Each individual has two independent exponential “clocks”: a birth clock with 

parameter ))(,( xVxb tν∗ , and a death clock with parameter ))(,( xUxd tν∗ . Assuming 
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exponential distributions allows to reset both clocks to 0 every time one of them rings. At 

any time t: 

 If the death clock of an individual rings, this individual dies and disappears. 

 If the birth clock of an individual with trait x rings, this individual produces an 

offspring. With probability )(1 xµ−  the offspring carries the same trait x; with 

probability )(xµ  the trait is mutated. 

 If a mutation occurs, the mutated offspring instantly acquires a new trait zx + , picked 

randomly according to the mutation step measure ),( dzxM . 

The natural candidate operator for being the infinitesimal generator of the process 0)( ≥ttν  

is then 

(2.2) 

∑
∑ ∫
∑

=

= +

=

−−∗+

−+∗+

−+∗−=

1,

1

1,

1

1,

1

)]()([))(,(           

),()]()([))(,()(           

)]()([))(,()](1[)(

ν

ν

ν

νφδνφν

νφδνφνµ

νφδνφνµνφ

i xii

i izxiii

i xiii

i

d i

i

xUxd

dzxMxVxbx

xVxbxL

R
 

where ∑=
=

1,

1

ν δν
i xi

t
 and R→FPM:φ . The first term of Eq. (2.2) captures the effect on 

the population of birth without mutation; the second term, that of birth with mutation; and 

the last term, that of death. 

At this stage, the construction of the process is required to justify the existence of a 

Markov process admitting L as infinitesimal generator. Moreover, the explicit 

construction of 0)( ≥ttν   yields three side benefits: providing a rigorous and efficient 

algorithm for numerical simulations (given hereafter), laying the mathematical basis to 

derive the moment equations of the process (section 2.2), and establishing a general 

method that will be used to derive the canonical equation of adaptive dynamics from a 

monomorphic stochastic model (section 4). The construction method summarized here 

(and fully expanded in Fournier and Méléard 2003) utilizes Poisson point measures. We 

make the biologically natural assumptions that the trait dependence of all parameters is 

“bounded”. That is, the interaction kernel U is upper bounded over χ  by a constant U ; 

there exist a constant d  and a constant b  such that dxd )1(),( ζζ +≤  and bxb ≤),( ζ ; 

and there exist a constant C and a probability density M  on dR  such that for any trait x, 
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dzzxMdzxM ),(),( =  with )(),( zMCzxM ≤ . These assumptions ensure that there 

exists a constant C  such that for any finite measure ν , the total event rate obtained as 

the sum of all event rates is bounded by ∫∫ +
χχ
νν )()1)(( dxdxC . 

At time 0=t , the initial population state 0ν  contains KI =)0(  individuals. The 

vector of random variables Ki
ix ≤≤= 100 )(x  denotes the corresponding trait values. More 

generally the vector of traits of all individuals alive at time t is denoted by tx . We 

introduce the following sequences of independent random variables: 

 ∗∈NkkW )(  with uniform law on [ ]1 ,0 , 

 ∗∈Nkkz )(  with values in dR , with law dzzM )( , 

 N∈kk )(τ  with exponential law 0≥
−

t
tCeC 1  (hence CE k 1)( =τ ). 

We set 00 =T  and construct the process inductively for 1≥k  as follows. Let  

)1( 11
1 +
+=

−−
−

kk

k
kk II

TT τ . At time kT , one chooses an individual iik =  uniformly at 

random among the 1−kI  alive in the time interval [ )kk TT  ,1− ; this individual’s trait is i
Tk

x
1−
. 

(If 01 =−kI  then 0=tν  for all 1−≥ kt .) 

 If )(
)1(

))(,(
0

1

1

111

1
1

1
−

−

−−− =
+

−
≤≤

−

=∑
k

k

kkk

T
i

k

I

j
j

T
i
T

i
T

k W
IC

xxUxd
W x , then the chosen individual dies, 

and 11 −= −kk II . 

 If )(
)1(

))(,()](1[
)()(

1

1

1111

11 2
1

1
11 −

−

−−−−

−−
=

+

−−
+≤≤

−

=∑
k

k

kkkk

kk T
i

k

I

j
j

T
i
T

i
T

i
T

T
i

kT
i W

IC

xxVxbx
WWW xxx

µ
, then 

the chosen individual gives birth to an offspring with the same trait, and 11 += −kk II . 

 If 

)(
)1()(

),())(,()(
)()(

1

1

1

1111

11 3
1

1
22 −

−

−

−−−−

−−
=

+

−
+≤≤

−

=∑
k

k

k

kkkk

kk T
i

kk

k
i
T

I

j
j

T
i
T

i
T

i
T

T
i

kT
i W

IzMC

zxMxxVxbx
WWW xxx

µ
, 

then the chosen individual gives birth to a mutant offspring with trait k
i
T zx

k
+

−1
, and 

11 += −kk II . 
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 If )(
13 −

≥
kT

i
k WW x , nothing happens, and 1−= kk II . 

Notice that 
)1( 11 +−− kk

k

II
τ  represents the time between jumps for 1−kI  particles, and 

)1( 1 +−kIC  gives an upper bound on the total event rate for each individual.  

The number of individuals at any time 0≥t  can then be defined as 

{ }∑ ≥ <≤ +
=

0 1
)(

k kTtT ItI
kk

1 . By a standard coupling argument, one can show that the process 

)(tI  is stochastically upper-bounded by a Galton-Watson process with birth rate )1( Cb +  

and birth times denoted by N∈hh )(β . This process is of course well defined on the time 

interval [ )∞+ ,0 , which means that +∞=+∞→ hh βlim . Let us denote the h-th birth time of 

our population process by +
hT , and the h-th death time by −

hT . Obviously for lh ≥ , 

+
−

− ≥ lhh TT , and hhT β≥+  in probability. We can therefore conclude that the polymorphic 

model is well defined on the time interval [ )∞+ ,0 . 

The polymorphic stochastic model can be expressed from the multivariate point 

measure ∑ ≥
=

1 ),,,( ),,,(),,,(
k zWiT dzdwdidtdzdwdidtQ

kkkk
δ  associated with the possible 

birth, mutation and death of individuals, defined on [ ] χ×××+ 1 ,0NR . The process )( •ν  

defined by Eq. (2.1) is càdlàg from FPM  into +R  and satisfies the explicit equation 

(2.3) 
(

) .),,,(                                  
)}()({

]1,0[],0[ )}()({)}({0

32

211

dzdwdidsQ
s

i
s

ii
s

s
i

s
ii

ss
ii

s

WwWzx

t WwWxWwxt

−−−

−−−−−

≤≤+

××× ≤≤≤

+

+−+= ∫ ∫
xx

N xxx

1

11

δ

δδνν
χ

K
 

The process 0)( ≥ttν  is Markovian on FPM , with generator L defined by Eq. (2.2). 

2.2. Moment equations 

Moment equations have been proposed recently as handy analytical models for 

populations structured by a spatial variable (Bolker and Pacala 1997, 1999; Dieckmann 

and Law 2000; Law et al. 2003—refered hereafter as BPDL). The analogy with 

populations structured by an adaptive trait is straightforward: in spatially structured 

populations, the birth and death transitions depend on the individual’s spatial location 

(analogous to the individual’s trait), and an offspring moves to a new location as a result 

of a migration step at birth (analogous to a mutation step).  
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The “philosophy” of moment equations is germane to the principle of Monte-Carlo 

methods: computing the “mean path” of the point process from a large number of 

independent realizations. (The orthogonal stance, as we shall see in section 3, is to model 

the behavior of a single trajectory when it is the initial number of individuals which is 

made large). Moment properties of the point process defined by Eq. (2.3) are studied in 

detail in Fournier and Méléard (2003). In particular, for any ϕ  bounded and measurable 

on χ , the associated process defined by 

(2.4) 

∫ ∫

∫ ∫ ∫

∫ ∫∫∫

∗+

+∗−

∗−−−=Λ

t

ss

t

ss

t

sstt

xUxdxdxds

dzzxMzxxVxbxdxds

xxVxbxdxdsdxxdxx

d

0

0

00

))(,()()(         

),()())(,()()(         

)())(,())(1()()()()()(

χ

χ

χχχ

ϕ

νϕν

ϕνµν

ϕνµννϕνϕ

R
 

is a càdlàg 2L -martingale starting from 0 with predictable quadratic variation 

(2.5) 
{

( ) }.))(,())(,())(1()(                                   

),()())(,()()(
2

0

2

xVxdxVxbxx

dzzxMzxxVxbxdxds

ss

t

sst d

ννµϕ

ϕνµν
χ

ϕ

∗+∗−+

+∗=Λ ∫ ∫ ∫R  

Let us define the “deterministic measure” )(νE  associated with a random measure 

ν  by 




= ∫∫ χχ

νϕνϕ )()())(()( dxxEdxEx . An important property of the point process is 

that if the deterministic measure of the initial population admits a density 0p  w.r.t. the 

Lebesgue measure, then for all 0≥t , the deterministic measure )( tE ν  of the population 

has a probability density tp . (To see this, apply Eq. (2.4) to A1=ϕ  where A has zero 

Lebesgue measure; taking expectations then yields 0)()( =




 ∫χ νϕ dxxE .) As a 

consequence, the expectation of the total size of the population at time t is 

∫∫ =




=

χχ
ν dxxpdxEtN tt )()()( , and )()( tNdxxpt  gives the probability of observing 

one individual at time t in a small ball ),( dxx . Under the assumption (made e.g. in Bolker 

and Pacala 1997) that the death and birth rates take the particular form 

ζαζ )()(),( xxdxd += , )(),( xbxb =ζ  and 1)( =xµ , taking expectations on Eq. (2.4) 

with 1≡ϕ  yields:  
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(2.6) 





 −−






 −−+=

∫

∫ ∫

× ≠χχ

χ

ννα

να

)()()()(                               

)()]0()()()([)0()(

}{

0

dydxyxUxE

dxUxxdxbEdsNtN

ssyx

t

s

1
. 

Whether this approach may eventually help describe the population dynamics in the trait 

space is still unclear. It may none-the-less be worth emphasizing the direct connection 

that the derivation of Eq. (2.6) bears with the yet unresolved problem of moment closure 

that arises in the context of spatially structured populations (Law et al. 2003): in the case 

where b, d and α  are independent of (the spatial location) x, and U is symmetrical, Eq. 

(2.6) recasts into 

(2.7) ∫−−=
d

drCrUNdbN tR
)()()( α&  

where tC  is defined at any time t as a “spatial covariance measure” (sensu BPDL) on 

dR , given by 

(2.8) 




 −= ∫∫ ∈ dd y ttt dydxyxEdrCr

RR
)()()()()( ννϕϕ . 

for any measurable bounded functions ϕ  on dR . An evolution equation for this 

covariance measure then obtains by considering the quantities ∫ d
drCr tR

)()(ϕ  as 

functions )(νφ  and applying (2.2). This allows to precisely identify the mathematical 

issues raised by the problem of moment closure (Law et al. 2003). 

3. Large-population renormalizations of the polymorphic 

process 

The moment equation approach outlined above is based on the idea of averaging a large 

number of independent realizations of the population process initiated with a finite 

number of individuals. Let K denote the initial number of individuals – a measure of the 

“system size”, sensu Metz et al. (1996); the alternative approach is to study the exact 

process by letting that system size become very large and making some appropriate 

renormalization—it is now as if the population process was averaging by itself over a 

large number of individual realizations. Several types of approximations can then be 

derived, depending on the renormalization of the process. A “polymorphic deterministic” 
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approximation is presented in section 3.1, germane to the Fisher-Wright-Kimura equation 

for mutation-selection balance (e.g. Burger 2000). In section 3.2, a non-classical 

stochastic approximation obtains in the form of a measure-valued superprocess. 

3.1. Large-population limit 

As the system size K goes to infinity, we need to renormalize the interaction kernels 

as ),(1 yxU
K

 and ),(1 yxV
K

. A biological interpretation of this renormalization is that a 

larger system is made up of smaller individuals, which may be a consequence of a fixed 

amount of available resources in the environment. Thus, the biomass of each interacting 

individual scales as K1 , which may imply that the effect of interaction on a focal 

individual scales as K1  as well.  

In effect, the renormalization serves to “decorrelate” the life histories of “nearby” 

(in trait space) individuals. Let K
tν  be the counting measure of the population at time t. 

We define the càdlàg K
FPM -valued Markov process 0)( ≥t

K
tX  by K

t
K
t K

X ν1
= , where K

FPM  

denotes the subset 






 ∈ FPM

K
νν ,1  of )(χFM . Let us assume that the initial conditions 

converge in law (for the weak topology) towards some deterministic finite measure 0ξ . 

For any t, the process 0)( ≥t
K
tX  converges in law as K goes to infinity to a deterministic 

measure tξ  satisfying 

(3.1) ( ) ( )

( )∫ ∫ ∫

∫ ∫

∫∫






 +∗+

∗−∗−+

=

t

st

t

stt

t

dsdxdzzxMzxxVxbx

dsdxxUxdxVxbxx

dxxdxx

d0

0

0

)(),()()(,)(                          

)(])(,)(,))(1[()(                          

)()()()(

ξϕξµ

ξξξµϕ

ξϕξϕ

χ

χ

χχ

R

 

for any bounded R→χϕ : . If the initial condition 0ξ  has a density w.r.t. the Lebesgue 

measure, then for any t the finite measure tξ  has a density w.r.t. the Lebesgue measure, 

and tξ  is a solution of the functional equation: 
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(3.2) 
( ) ( )[ ]

( )∫ −∗+

∗−∗−=∂

d
dyyxyMyVybyy

xxUxdxVxbxx

tt

ttttt

R
),()(,)()(               

)()(,)(,))(1()(

ξµξ

ξξξµξ
 

for all χ∈x  and 0≥t . The proof of this result (see Fournier and Méléard (2003)) 

strongly relies on arguments of tightness in finite measure spaces (Roelly 1986). 

Desvillettes et al. (2003) suggest to refer to tξ  as the population “number density”; then 

the quantity ∫= χ
ξ dxxtn t )()(  can be interpreted as the “total population density” over 

the whole trait space. This means that if the population is initially seeded with K 

individuals, )(tnK ⋅  approximates the number of individuals alive at time t, all the more 

closely as K is larger. 

Just as we did for moment equations (cf. section 2.2), an instructive parallel can be 

drawn with models of spatially structured populations, in which case the simplifying 

assumptions that dR=χ , and that the birth, death, and interaction rates be independent 

of x, are meaningful. In this context, Eq. (3.1) leads to the following equation on )(tn : 

(3.3) ∫∫ −−−=
χ

ξξα )()()()( dydxyxUndbn tt& . 

With 1≡U , which amounts to the so-called “mean-field” assumption in population 

ecology, we recover the classical mean-field logistic equation of population growth: 

(3.4) 2)( nndbn α−−=& . 

Comparing Eq. (3.4) with the first-moment equation obtained previously (Eq. (2.7)) 

stresses out the “decorrelative” effect of the large system size renormalization: in Eq. 

(2.7), the correction term capturing the effect of spatial correlations in the population 

remains, even if one assumes 1≡U . 

From Eq. (3.1) the path towards adaptive dynamics is still largely unbeaten, but a 

natural step forward is to involve the timescale separation of mutation and selection. This 

can be done by accelerating birth and death (of the order of 1−ε , where ε  is small) and 

rescaling the mutation rate accordingly (of the order of ε ). Namely we write Eq. (3.2) in 

the general form: 

(3.5) εεεε ξξξρ
ε

ξ ttttt xxx M+=∂ )(),(1)(  
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where ( ))(,))(,(),( xUxdxVxbx ξξξρ ∗−∗=  stands for the population growth rate in the 

absence of mutation, and M  is the mutation operator given by 

(3.6) 
)).(,()()( ),())(,()()(       

))(,(])([)(),())(,(])([)(

xVxbxxdyyxyMyVybyy

xVxbxxdyyxyMyVybyy

ξµξξµξ
ε
ξεµξ

ε
ξεµξξ

χ

χ

∗−−∗=

∗
−−

∗
=

∫
∫M

 

As a first, preliminary step for the study of this equation when ε  goes to zero, Jabin and 

Mischler (unpublished) have considered the special case where 0=µ .  

3.2. Large-population limit with accelerated births and deaths 

Adaptive dynamics models proceed essentially by making mutations extremely rare 

in a very large population, and then by making the mutation step extremely small and 

rescaling time (see section 4). Since mutations are to be considered infinitesimal 

eventually, the alternative limit of accelerating the timescale of mutations can also be 

envisaged: it sounds biologically sensible to assume that mutations occur on the same 

timescale as birth, as long as their effects are extremely small. One merit of this approach 

is that it does not require to perform different renormalizations in a specific order. The 

limits of a large system size, accelerated birth and death (hence accelerated mutation), 

and infinitesimal mutation steps are taken all at once.  

Specifically, the trait space χ  is assumed to be the whole dR . The boundedness 

assumptions on the rates d, b, and on the interaction kernel U (cf. section 2) are 

maintained. Furthermore, the mutation step density is taken as the density of a centered 

vector of independent Gaussian variables with mean 0 and variance α

σ
K

x)(2

: 

])(2exp[
)(2

),( 22
2

2 xzK
x

KzxM
d

K σ
πσ

α
α

−







=  where )(2 xσ  is positive and bounded 

over χ , and ]1,0(∈α . Thus, as K goes to infinity, mutant traits become more 

concentrated around their progenitors’. We accelerate the pace of mutation by making 

birth more and more frequent as K increases. To keep the population demographic 

balance unaffected, the timescale of death is made accordingly faster. Namely, we write 

),()(),( ζζ α xbxrKxbK +=  and ),()(),( ζζ α xdxrKxdK += , where r is positive and 
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bounded over χ . As before (section 3.2), the interaction kernels U and V are 

renormalized by K. 

Let us assume that the initial condition 
K

X
K

K 0
0

ν
=  converges in law and for the 

weak topology on )( d
FM R  toward a finite measure )(0

d
FMX R∈ . When 1<α , one 

can show as in section 3.1 that for all 0>T , the sequence of processes 
N∈










K

K

K
ν  

converges in law in ))(],,0([ d
FMT RD  to a solution of the deterministic reaction-

diffusion equation: 

(3.7) ( ) ( )[ ] )()()()(
2
1)()(,)(,)( 2 xxrxxxxUxdxVxbx tttttt ξµσξξξξ ∆+∗−∗=∂ . 

This equation generalizes the Fisher equation known from classical population genetics 

(Burger 2000). 

When 1=α , the resulting model is a measure-valued (random) process. Fournier 

and Méléard (2003) show that for all 0>T , the sequence of processes N∈K
KX )(  

converges in law in ))(],,0([ d
FMT RD  to the unique (in law) “superprocess” 

))(],,0([ d
FMTCX R∈ , such that for any )(2 d

bC R∈ϕ  

(3.8) 

∫ ∫

∫ ∫∫∫
∗−∗−

∆−−=Λ

t

sss

t

stt

dsdxXxXUxdxXVxbx

dsdxXxxrxxdxXxdxXx

0

0

2
0

)(]))(,())(,([)(         

)()()()()(
2
1)()()()(

χ

χχχ

ϕ

ϕ

ϕµσϕϕ
 

is a continuous martingale with quadratic variation ∫ ∫=Λ
t

st
dsdxXxxr

0

2 )()()(2
χ

ϕ ϕ . 

The proof of this statement is in many respects similar to that of Eq. (3.1), with the 

additional use of specific results on superprocesses (Evans and Perkins 1994) to establish 

the uniqueness of the solution to the martingale problem. The superprocess characterized 

by Eq. (3.8) appears as a generalization of the model of spatially structured populations 

which was constructed by Etheridge (2001). Formally, Eq. (3.8) is the weak form of the 

stochastic partial differential equation 

(3.9) WXrXrXXUdXVbX ttttttt
&2

2
1)],(),([ 2 +∆+∗⋅−∗⋅=∂ µσ  
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where W&  is a space-time white noise, which reflects the demographic stochasticity of this 

fast birth-and-death process, that is, faster than the accelerated birth-and-death process 

which led to the deterministic reaction-diffusion approximation, Eq. (3.7). 

4. Renormalization of the monomorphic process and adaptive 

dynamics 

Metz et al. (1996) have proposed to approximate the polymorphic stochastic model 

of adaptive evolution with a monomorphic jump process describing evolutionary 

trajectories as “trait substitution sequences”. Dieckmann and Law (1996) have further 

developed insightful heuristics to achieve a deterministic approximation for the jump 

process, solution to the so-called “canonical equation of adaptive dynamics”. Metz’ 

notion of trait substitution sequences and Dieckmann and Law’s canonical equation form 

the core of the current theory of “adaptive dynamics”. In this section, we present the 

current status of the mathematical derivation of the monomorphic stochastic process from 

the individual point process—a derivation that is still incomplete; and we summarize how 

the deterministic process driven by the canonical equation can be recovered rigorously as 

an approximation of the jump process by means of appropriate renormalization. Detailed 

proofs are expounded in Champagnat et al. (2001) and Champagnat (2003a, b). The 

mathematical approach allows us to extend the standard canonical equation in several 

directions—most noticingly, to polymorphic populations in which the “invasion implies 

fixation” principle is enforced, that is, away from the so-called “branching points” and 

“extinction points” of the trait space. 

4.1. Process construction 

Heuristically, the monomorphic stochastic model assumes that the population state 

is described by a single trait value at any time. The trait may change instantaneously as a 

result of a “mutant invasion”. The model assumes that if a population where all 

individuals carry the trait value x is invadible by a mutant with trait y, then there is a 

positive probability that the population state jumps to y; otherwise the population state 

remains x, at least until the next invasion attempt occurs. The “trait substitution 

sequence” (Metz et al. 1996) so described by successive mutation-invasion events is 

stochastic in three ways: mutations occur at random times, mutational effects are random 
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(as prescribed by the mutation law M defined in section 2.1), and mutant success is 

subject to the stochasticity of birth and death in small populations. This in effect yields a 

Markov jump process in the trait space. 

We now proceed to the mathematical construction of this process. To this end, we 

keep using the notation introduced in sections 2.1 and 3.1, and add )(xn to the notation 

list, which is the “ecological population equilibrium” (see section 3.1) of a monomorphic 

population with trait x. The notion of an “ecological population equilibrium” can be 

understood in the context of large populations to which the deterministic modeling 

framework designed in section 3.1 applies. The term “ecological” refers to the absence of 

genetic effects on population dynamics. This means that no mutation occurs, i.e, 0≡µ . 

Thus, if only trait x is present at time 0=t , i.e. xxn δξ )(00 = , we can write 

x

K
t

K
t

K
xn

K
δν )(

=  for any time t, with )()( xn
K

xn
t

K
t →  when K goes to infinity. Hence 

xtt xn δξ )(=  at any time t, and Eq. (3.1) recasts in this case into 

(4.1) )())(,()( 1 xnxnxxn
dt
d

ttt ρ=  

where ))()0(,())()0(,())(,(1 xnUxdxnVxbxnx ttt −=ρ . The ecological population 

equilibrium )(xn  is then given as a putative stable equilibrium solution of Eq. (4.1), 

necessarily satisfying ))()0(,())()0(,( xnVxbxnUxd = . This definition of an ecological 

population equilibrium )(xn  allows us to construct the first steps of the jump process: 

 Start with a population with trait x (chosen possibly at random), characterized by the 

ecological population equilibrium )(xn .  

 After waiting an amount of time drawn from the exponential law with parameter 

( )xnxnVxbx ))()0(,()(µ , pick a mutant trait zxy +=  according to the law ),( dzxM . 

The next issue is to design an invasion rule. To this end, we formulate a 

deterministic model for the interaction of two populations, characterized respectively by 

trait values x and y. The model again stems from Eq. (3.1) with yx ynxn δδξ )()( 000 += , 

assuming no other mutation occurs. We define )(xnt  and )(ynt  for any t as before. Then 
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Eq. (3.1) yields a system of coupled ordinary differential equations for the dynamics of 

)(xnt  and )(ynt : 

(4.2a) )())(),(,,()( 2 xnynxnyxxn
dt
d

tttt ρ=  

(4.2b) )())(),(,,()( 2 ynxnynxyyn
dt
d

tttt ρ=  

where ))()0(,())()0(,(),,,(2 mvuUnUudmvuVnVubmnvu −+−−+=ρ . Notice that 

),()0,,,( 12 nunvu ρρ = . Assuming that )(xn  is well and uniquely defined by Eq. (4.1), 

and that )(yn  can be analogously defined, then the dynamical system Eq. (4.2) possesses 

two equilibria on the boundary of ∗
+

∗
+ ×RR , )0),(( xn  and ))(,0( yn , which must be stable 

in the horizontal and vertical direction, respectively. We then state as a rule that “y 

invades x deterministically” if the equilibrium )0),(( xn  of Eq. (4.2) is unstable in the 

vertical direction (for an example, see Fig. 2, panel I); this can be shown to occur if 

0))(,0,,(2 >xnxyρ  (Hastings 1985, Rand et al. 1994, Ferriere and Gatto 1995). Geritz et 

al. (2002) showed that for y sufficiently close to x, “invasion implies fixation”, that is, if 

0))(,0,,(2 >xnxyρ  then all orbits of the dynamical system (4.2) issued from sufficiently 

small perturbations of the equilibrium )0),(( xn  converge to ))(,0( yn —except in the 

neighborhood of special trait values called “branching points” of the trait space χ . 

Biologists view the quantity ))(,0,,(2 xnxyρ  as the “fitness of mutant y in a resident 

population of trait x at equilibrium” (Metz et al. 1992), and often use the notation ),( xyf  

for it—to which we will hereafter adhere and refer to as the “fitness function” defined 

over χχ × . 

To account for the stochasticity of individual birth and death, Dieckmann and Law 

(1996) have developed a heuristic argument to measure the probability that an initially 

small population of individuals with trait y actually invades trait x at ecological 

population equilibrium. They assume that if the criterion for deterministic invasion is not 

fulfilled, the probability that invasion actually occurs is zero; otherwise, they use 

elementary results on birth-and-death processes to obtain the probability 
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))()(,()],([ xnxyVybxyf −+  that invasion does occur. Thus, the next step of the jump 

process that we are constructing can be specified as follows. 

 The process jumps to state y with probability ))()(,()],([ xnxyVybxyf −+  (where 

0][ ∨=+ zz ), or stays in state x with probability ))()(,()],([1 xnxyVybxyf −− + ; the 

process then returns to the first step. 

Notice that at this stage the rigorous flow from a population microscopic model to 

the desired macroscopic approximation, has been disrupted by mixing the large system 

size approximation (3.1), needed to define the ecological population equilibrium and 

recover the invasion-implies-fixation principle, with a microscopic description of the 

growth of a finite mutant population. However, the jump process has been fully specified 

by now, and the search for a deterministic approximation can be pursued. 

To determine the infinitesimal generator L of the jump process, we need to extend 

the process to the boundary of χ , which we do by assuming that the process stays 

constant (no evolution) if it starts from or hits that boundary. The generator L is then 

given, for all )(χϕ bB∈ , by 

(4.3) ∫ +−+=
d

dzxMxzxgxzxxL
R

),(),())()(()( ϕϕϕ  

where ))()(,()],([)())()0(,()(),( xnxyVybxyfxnxnVxbxxyg −= +µ . Under the 

assumption that g is bounded on χχ ×  by a constant g , the generator L defines a unique 

semigroup, so that the process is unique in law. To prove the existence, we proceed as in 

section 2.1 by providing an explicit pathwise representation. To this end, we assume that 

),( ⋅xM  has finite and bounded third-order moments on χ , and is absolutely continuous 

w.r.t. the Lebesgue measure on dR : dzzxMdzxM ),(),( = , with the additional property 

that there exists a function RR →dM :  such that )(),( zMzxM ≤  for any χ∈x . 

Let us introduce the Poisson point measure ),,( dzdwdtQ  on [ ] dRR ××+ 1 ,0  with 

intensity dzdwdtgzMdzdwdtq )(),,( = . For 0x  being a random variable on χ , 

independent of Q, we define for any 0≥t  

(4.4) ∫∫∫ ××






 +

≤ −+−−
+=

d ssst
zM

zxM
g

xzxgw
t dzdwdsQzxx

R
1

]1,0[],0[
)(

),()],([0 ),,( . 
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The Markov process 0)( ≥ttx  is well defined thanks to the assumptions made on g and M. 

An application of Itô’s formula then straightforwardly establishes L as the infinitesimal 

generator of the process.  

4.2. Canonical equation and extensions 

In order to perform the “small mutation” renormalization of the jump process 

constructed in the previous section, we introduce a (small) parameter 0>ε  and substitute 

),( εdzxM  to ),( dzxM . Now let us define a family of random variables 100 }{ ≤<ε
εx  and a 

family of Markov jump processes 100}){( ≤<≥ ε
ε

ttx  with paths in )),,0([ χ∞D  such that 

(4.5) ∫∫∫ ××










 +

≤






+=

−+−−
d

ssst
zM

zxM
g

xzxgw
t dzdwdsQzxx

R
1

]1,0[],0[ 2
)(

),()],([0 ,,
ε

ε εεε ε
εε . 

As one can see, time is accelerated by a factor 2−ε ; this is required to avoid the process 

become constant in the limit 0→ε . The infinitesimal generator of 0)( ≥ttxε  is 

(4.6) ∫ ++−+=
d

dzxMxzxgxzxxL
R

),()],([))()((1)( 2 εϕεϕ
ε

ϕε . 

The same properties that were used to study the renormalizations of the individual 

point process (sections 3.1 and 3.2)—tightness and weak convergence of 

semimartingales—then allow us to prove the convergence result whereby the “canonical 

equation of adaptive dynamics” is recovered. To this end, the following additional 

assumptions are needed: 

 ),( xygy a  is 1C  on χ , and g1∇  is bounded and Lipschitz on χχ × . 

 )(xΣ , the covariance matrix of ),( ⋅xM , has Lipschitz entries on χ . 

Then, if the family of initial population states 100 }{ ≤<ε
εx  is bounded in )(1 χL  and 

converges in law to a random variable 0
~x  as 0→ε , the family of processes 

100}){( ≤<≥ ε
ε

ttx  converges when 0→ε  for the Skorohod topology of )),,0([ χ∞D  to the 

process 0)~( ≥ttx  with initial condition 0
~x , whose sample paths are given by the unique 

solution to the (deterministic) ordinary differential equation 

(4.7) ∫ +∇=
d

dzxMxxgzz
dt
xd

R
),~()]~,~([

~
1 . 
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In the case where ),( ⋅xM  is a symmetrical measure on dR  for all χ∈x , Eq. (4.7) 

recasts into the classical form of the canonical equation: 

(4.8) )~,~()~(
2
1~

1 xxgx
dt
xd

∇Σ= . 

This result has been extended to the case of asymmetrical mutation step 

distributions (Champagnat et al. 2001). Champagnat (2003a) also proved a similar result 

for polymorphic populations away from branching points. Thus, the scope of the 

canonical equation appears to be as broad as the “invasion-implies-fixation” principle can 

be. 

4.3. Higher-order approximation 

The large population assumption that goes along with the invasion-implies-fixation 

principle entails that adaptive change may only be directional—in the direction 

determined by ),(1 xxg∇ . However, in large yet finite populations, stochasticity may 

cause a mutant to invade even if its fitness is negative, so that adaptive evolution may 

proceed in any direction of the trait space. To account for this feature, we introduce a new 

model of adaptive dynamics in the form of a stochastic differential equation driving a 

diffusion process. The infinitesimal generator of this diffusion is a first-order 

approximation of the generator of the directional jump process, in the limit of small 

mutation jumps. Interestingly, the second-order differential operator obtained in this way 

possesses degenerate and discontinuous coefficients, rendering the classical theory of 

diffusion processes non applicable. The weak existence of solutions to this stochastic 

differential equation has been proved in Champagnat (2003a) under the additional 

assumptions that the function g is differentiable twice w.r.t. the first variable, with 

bounded derivatives, and that the mutation law ),( ⋅xM  has bounded third-order moments 

and satisfies some continuity properties. 

In the special case where R=χ  and ),( ⋅xM  is symmetrical, let )(2 xσ  be the 

variance of ),( ⋅xM , and ∫
∞

=
0

3
3 ),()( dzzxMzxM ; then the stochastic differential 

equation writes 

(4.9) ttttt dWXAdtXBXBdX )()]()([ 21
εεεε εε ++=  
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where ),,()(
2
1)( 1

2
1 xxgxxB ∂= σ  ),,(]),(sgn[)(

2
1)( 2

1132 xxgxxgxMxB ∂∂=  and 

),()()( 13 xxgxMxA ∂= . This formalism suggests to seek a large deviation principle for 

the sample paths of the diffusion in the limit 0→ε  (Wentzel 1976a, 1976b, Freidlin and 

Wentzel 1984). The difficulty lies in the fact that A is null at the evolutionary 

singularities and that 2B  is discontinuous at the same points. The large deviation 

principle has been obtained by Champagnat (2003b), and implies in particular that the 

paths of ε
tX  converge in probability to the solution of the canonical equation )(1 xBx =&  

when 0→ε . 

This result can be used to study the long-time behavior of the diffusion process 

when the dimension of the trait space χ  is greater than 2. In particular, let us consider 

the case of multiple attractive evolutionary singularities, i.e. the canonical equation 

possesses several locally stable equilibrium solutions. Then the time needed to exit the 

basin of attraction of any one of them can be shown (Champagnat 2003b) to be greater 

than ])(exp[ εδ−V  with probability converging to 1 when 0→ε , for any 0>δ ; here V 

is a constant called the quasi-potential of the basin of attraction, which depends on the 

parameters of the diffusion. Moreover, the exit occurs with probability converging to 1 in 

any neigbourhood of special points of the basin’s boundary where the quasi-potential is 

minimum. On the biological side, we hereby recover a quantitative model for the 

macroevolutionary pattern of punctuated equilibria (Stanley 1979; Rand and Wilson 

1993). The model generally predicts that the order of magnitude of the time spent in the 

neighborhood of evolutionary equilibria, between rapid evolutionary shifts, is the 

exponential of the inverse of the mutation step variance. Also, this theory permits to 

predict the sequence order of evolutionary singularities (equilibria or more generally, ω-

limit sets) that the evolutionary process is more likely to visit (Freidlin and Wentzel 

1984). 

5. Numerical analysis of adaptive dynamics: two examples 

We exemplify the numerical analysis of systems of ordinary differential equations 

involved in adaptive dynamics modeling (section 4), namely Eq. (4.2) describing the 
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dynamics of resident and mutant populations, and Eq. (4.8) governing trait’s adaptive 

dynamics. Following on from Marrow et al. (1992), Dieckmann and Law (1996) and 

Dercole (2002), Dercole et al. (2003) have provided a standard layout for such numerical 

analyses applied to regular models. The two examples that we review here go beyond that 

framework by including special difficulties with interesting mathematical features and 

far-reaching biological implications.  

5.1. Multiple ecological equilibria, adaptive reversal, and evolutionary 

cycling 

Dercole et al. (2002) have introduced and analysed a simple model for the evolution 

of competitive ability under asymmetrical competition within a single species. In this 

model, the ecological equilibrium )(xn  for Eq. (4.1) undergoes two fold bifurcation as 

trait x varies in ∗
+= Rχ . Thus, there is an interval of trait values χ⊂],[ hl xx  over which 

Eq. (4.1) possesses two positive, locally stable equilibrium solutions (that we call “low” 

and “high” ecological equilibria in the sequel). As a consequence, the uniqueness of an 

ecological equilibrium for the resident population – a critical assumption to properly 

define the jump process and derive the canonical equation Eq. (4.8) – does not hold over 

χ . In such a case, insights into the species’ adaptive dynamics can yet be gained from 

the numerical bifurcation analysis of the two-trait system Eq. (4.2). In fact, all possible 

outcomes of the x, y interaction governed by Eq. (4.2) can be classified by means of a 

bifurcation analysis w.r.t the traits x and y, carried out near the diagonal xy =  if we view 

y as a small mutant of x (Figure 4.2). 

The particular bifurcation structure of this model induces the remarkable behavior 

of adaptive reversal and evolutionary cycling. This happens because the “invasion-

implies-fixation” principle does not hold around lx  and hx , where fold bifurcations of 

the ecological equilibrium )(xn  occur (Fig. 2, transitions between regions II and III, and 

VI and VII, respectively). In fact, consider a point ),( yx  in region VI close to the 

diagonal, where the resident trait is still slightly smaller than hx  while the mutant trait is 

slightly greater than hx , and assume that the resident population is settled at its high 

ecological equilibrium. In this case, after an initial increase, the mutant population starts 
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declining and eventually goes extinct, while the resident population “swings” to the low 

ecological equilibrium (see panel VI in Fig. 2). Dercole et al. (2002) suggest that the 

resulting evolutionary dynamics never comes to a halt. The resident trait is expected to 

oscillate between a minimum ( lx ) and a maximum ( hx ) value, and the population should 

switch periodically between a low and a high ecological equilibrium. 

 

 
Fig. 2. Bifurcation analysis of the mutant-resident model for a population in which 
competitive ability evolves under asymmetrical competition (see Dercole et al. (2002)). 
The jump process underlying the population’s adaptive dynamics can be thought of as 
taking place along the diagonal. The existence of region VI violates the “invasion-
implies-fixation” principle: the far-right equilibrium is transversally unstable (hence 
invadable), yet the process of invasion causes the resident population to swing to its 
alternative equilibrium, which turns out to be resistant to invasion (transversally stable). 
As a consequence, the population experiences adaptive reversal. A similar phenomenon 
occurs when the adaptive dynamics reach region II from above. In the long term, 
successive evolutionary reversals drive the adaptive dynamics along a limit cycle. 
 

5.2. Slow-fast ecological cycles and evolutionary sliding 

Gragnani et al.’s (in prep.) investigates the co-evolutionary dynamics of two 

species, prey and predator. Each species is characterized by a single adaptive trait. 
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Monomorphic population dynamics (i.e. ecological dynamics) can be constructed as in 

section 4.1, which yields a system of two coupled nonlinear ODEs (one for prey number 

density, and one for predator). Solutions in ++ ×RR  are of three possible types, 

depending on the traits’ values (Fig. 3): convergence to a locally stable equilibrium on 

the boundary of ++ ×RR  (i.e. extinction the the predator) (outter light region in Fig. 3), 

convergence to a locally stable positive equilibrium (shaded region, denoted by E), or 

convergence to a locally stable limit cycle (inner light region, denoted by C). Thus, the 

biologically relevant trait space is )int( CE∪=χ . 

For trait values lying in region C, the construction of a fitness function (function f 

in section 4.1) and calculation of the probability of mutant fixation, are problematic: such 

trait values violate the assumption that the resident population settles at a point 

equilibrium (which should be solution to Eq. (4.1) or an appropriate extension thereof in 

the case of multiple species). Gragnani et al. circumvent the difficulty by focusing on the 

special case of a “slow-fast” ecological model: birth and death in the predator take place 

on a much slower timescale than in the prey. Then one can use the singular perturbation 

approach (Hoppensteadt 1974), to approximate cycles in monomorphic population 

dynamics with the so-called “singular cycle” (Rinaldi and Scheffer 2000) which can 

usually be constructed using simple geometric rules (Muratori and Rinaldi 1991). Once 

the singular cycle has been characterized, it becomes possible to derive the fitness 

function explicitly, hence the corresponding canonical equation Eq. (4.8). 

Because of the singular approximation, however, the fitness function turns out to be 

only piecewise differentiable on χ  – it is differentiable on Eint  and Cint , but not on χ . 

In such a case, the jump process converges to the canonical equation only on time 

intervals over which the solution to the canonical equation remains in Eint  or Cint . 

Thus, the canonical equation is a “piecewise smooth system”, also called Filippov system 

(Filippov 1988), formulated as follows 

(5.1) 






∈

∈
=
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&  

where ),( 21 xxx =  denotes the pair of prey and predator trait values. In words, two 

different vectors x&  are associated to each point x of the boundary B: one is )()1( xG , 
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tangent to the orbit obeying the equations valid in region E, and the other is )()2( xG , 

tangent to the orbit obeying the equations valid in region C. If the transversal components 

of these two vectors w.r.t. the boundary have the same sign, the orbit crosses B and the 

population switches from an equilibrium to a cyclic regime, or vice versa. On the 

contrary, if the transversal components of the two vectors are of opposite signs, i.e. if the 

two vector fields are “pushing” in opposite directions, the traits are forced to remain on 

the boundary and “slide” on it, i.e. the traits evolve in such a way that the populations 

remain pending for very long periods of time, if not forever, between equilibrium and 

cyclic coexistence. The ending points of segments of B along which sliding occurs can be 

determined precisely. 

Sliding segments play the biological role of “adaptive ridges” in the landscape of 

evolutionary dynamics. Adaptive ridges possess the remarkable property of canalizing 

evolutionary trajectories issued from various ancestral phenotypic states, resulting in the 

uniformization of these trajectories once they leave the adaptive ridge. On the 

mathematical side, although bifurcation analysis of Filippov systems is important in 

many applications in various fields of science and engineering, they are not yet fully 

understood: the classification of bifurcations of Filippov systems (called “sliding 

bifurcations”) is still incomplete, and effective numerical tools to detect them remain to 

be developped. However, promising steps have been taken by Dercole (2002) and 

Kuznetsov et al. (2003). 
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Fig. 3. A state portrait of the Filippov system Eq. (5.1) obtained by Gragnagi et al. (2003) 
as a model of slow-fast predator-prey coevolution. Trajectories represent orbits of 
adaptive trait dynamics. Outter light area, predator’s ecological dynamics converge to 
extinction; shaded area, predator-prey ecological dynamics converge to a stable positive 
equilibrium; inner light region, predator-prey ecological dynamics converge to a stable 
limit cycle. There are three equilibria for adaptive trait dynamics: a stable node (filled 
circle) and an unstable focus (open circle) in region E, and a saddle in region C; and one 
limit cycle (overlapping regions E and C). There are two attractors: the node and the 
cycle, and their basins of attraction are separated by the stable manifold of the saddle. 
There are three sliding segments: T1T2, T3T4 and T5T6. Predator evolutionary suicide, i.e. 
predator trait’s dynamics toward extinction, occurs in the dark region. 
 

6. Concluding remarks 

This review has opened and followed several mathematical directions for the 

analysis of stochastic individual processes of birth, mutation and death. The basic model 

takes the form of a point process, to which theoretical biologists often refer to as 

“individual-based model”. The mathematical construction of the model yields a rigorous 

algorithm for numerical simulations. Different renormalizations lead to different 

approximations, which write as non-linear integro-differential equations or stochastic 

partial differential equations. At this moment, we are in the situation where very little is 

known about the transitory and long-term behavior of these approximations. In contrast, 

although the link between “adaptive dynamics” models and the underlying individual 
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point process have not yet been fully established, numerical bifurcation analyses of 

adaptive dynamics models have unraveled the extreme richness of evolutionary 

dynamics. Lesson from this investigation is that rigorous mathematical modeling leads to 

the discovery of novel evolutionary phenomena: adaptive reversal, evolutionary suicide, 

evolutionary sliding along adaptive ridges, and a quantitative approach to “punctuated” 

evolutionary trajectories.  

6.1. The issue of evolutionary branching 

Among issues left opened by this review, one of uttermost biological relevance is to 

obtain a rigorous characterization of the so-called “evolutionary branching” phenomenon: 

the qualitative change in trait dynamics from attractiveness to disruption and divergence 

(Metz et al. 1992, 1996; Geritz et al. 1998; Doebeli and Dieckmann 2000). Evolutionary 

branching provides a powerful metaphor for evolutionary diversification driven by 

ecological forces which are internal to the population (e.g. Schluter 2000). Although 

adaptive dynamics models that have been analysed so far give a sense that evolutionary 

branching should be widespread, a better mathematical understanding of this 

phenomenon is urgent. Detecting evolutionary branching amounts to tracking the number 

of “modes” of the population’s trait distribution. To this end, we are envisioning two 

possible approaches: constructing a model for the dynamics of the support in trait space 

of the point process introduced in section 2; applying methods from signal processing 

(e.g. spectral analysis, wavelets techniques) to the integro-differential equations obtained 

from the renormalizations presented in section 3 (for a conceptually related approach, see 

Noest 1997). This work is currently under way. 

6.2. The notion of fitness 

The crux of constructing the adaptive dynamics approximation lies in the definition 

of the so-called fitness function, which determines the direction and magnitude of steps 

taken by the jump process in trait space (cf. section 4.1). Jumps correspond to successful 

invasion of the “resident” population by a “mutant” population originating as a single 

individual. The heuristics of adaptive dynamics assume a hybrid situation where a large-

population renormalization is applied to the resident population, whereas the growth of 

the mutant population follows a stochastic birth-and-death process, parametrized by the 



 31

resident population number density predicted from the renormalized model, Eq. (4.1). 

Fitness can then be derived from the probability of persistence (or, equivalently, of 

extinction in finite time) of the mutant population. Beyond the problem of making these 

heuristics rigorous, this already points out several extensions that will be worth pursuing. 

First, defining fitness along these lines has been made by Dieckmann and Law (1996) in 

the simplest possible case of a constant environment; what happens when there are 

fluctuations in the mutant parameters? Such fluctuations could arise as small random 

variations driven by the external environment; or as deterministic oscillations in the 

resident population number density. The latter case could result from the resident 

population being structured by physiological (e.g. individual age or size) or 

environmental (e.g. individual spatial location) variables. This calls for extending the 

whole framework further to the case of structured populations. 

6.3. General variation-transmission processes 

Another desirable extension of this framework should aim at capturing notions of 

variation and transmission broader that germ-line mutations and genetic heritability. 

Recombination, in particular, is a paramount source of genetic variation associated with 

sexual reproduction (in a broad sense: recombination may occur even in viruses). 

Recombination raises the need to complicate the basic models with “mating kernels”. 

From a biological perspective, such extensions are eagerly awaited for at least two 

motives. First, evolutionary branching provides a metaphor of speciation when occuring 

in sexual populations (Dieckmann and Doebeli 1999; Geritz and Kisdi 2000). Thus, the 

modeling framework presented here becomes a toolbox to investigate one of the deepest 

challenge of biology: understanding the ecological and genetic conditions for the 

formation of new species. Second, the further assumption that sexes are differenciated 

(into males and females) would allow to investigate another major question of 

contemporary evolutionary biology—that of conditions and scope for the evolution of 

sexual dimorphism, and its potential to being an alternative to speciation through 

evolutionary branching. 

Other types of genetic effects need be accomodated by a comprehensive 

mathematical theory of adaptive evolution (Ancel Meyers and Bull 2002). The dichotomy 

between germ-line mutations (between-generation inheritance) vs. somatic mutations 
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(within-organism inheritance) is suggestive of incorporating multi-level selection in the 

theory by developing new forms of slow-fast models – the fast timescale being that of 

mutation-selection among somatic cells within the organism, as a potential driver of the 

organism’s developmental process. Timescales themselves may also vary in the course of 

evolution. “Mutator” genes and “adaptive capacitors” have been discovered in a range of 

organisms, from bacteria to fruitflies (Rutherford and Lindquist 1998; Tenaillon et al. 

1999; see Imasheva and Loeschke 2004 for a review). At times when environmental 

conditions become adverse, such mechanisms lead to an elevated mutation rate in 

individual bacteria, or to the sudden expression of phenotypic variation in individual 

flies. Thus, mutation parameters can vary in time and respond to the population state (e.g. 

number density). This should affect the type of renormalizations that can be applied to 

mathematical models of the evolutionary process. 

6.4. More complex trait space topologies 

The current implementation of Darwinian mathematical models of evolution assumes that 

the phenotypic trait space is organized into a highly symmetric and regular space 

equipped with a metric (e.g. a Euclidian vector space). Recent computational work on 

molecular evolution suggests a different picture. By incorporating an explicit genotype-

phenotype map, Stadler et al. (2001) show that the resulting phenotypic space lacks a 

metric and is better formalized by a pre-topology. Qualitative consequences for 

evolutionary dynamics can be profound. Stadler et al. have introduced the mathematical  

concepts and tools necessary to formalize the notion of “accessibility pre-topology” 

relative to which one can speak of continuity in the genotype-phenotype map and 

evolutionary trajectories. Incorporating these notions into the quantitative framework 

presented here raises a major challenge, likely to enhance the nascent synergy of novel 

mathematics and advanced biological understanding. 
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