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Abstract

In dimension one, it has long been observed that the minimax rates of conver-
gences in the scale of Besov spaces present essentially two regimes (and a boundary):
dense and the sparse zones. In this paper, we consider the problem of denoising
a function depending of a multidimensional variable (for instance an image), with
anisotropic constraints of regularity (especially providing a possible disparity of the
inhomogeneous aspect in the different directions). The case of the dense zone has
been investigated in the former paper [5].

Here, our aim is to investigate the case of the sparse region. This case is more
delicate in some aspects. For instance, it was an open question to decide whether
this sparse case, in the d dimensional context has to be split into different regions
corresponding to different minimax rates. We will see here that the answer in
negative: we still observe a sparse region but with a unique minimax behavior,
except, as usual, on the boundary.

It is worthwhile to notice that our estimation procedure admits the choice of its
parameters under which it is adaptive up to logarithmic factor in the ”dense case”
([5]) and minimax adaptive in the ”sparse case”. It is also interesting to observe
that in the ”sparse case”, the embedding properties of the spaces are fondamental.

Key words and phrases: nonparametric estimation, denoising, anisotropic smoothness,
minimax rate of convergence, curse of dimensionality, anisotropic Besov spaces

1 Introduction

Our aim in this paper is to complete the study introduced in the former paper [5]. In this
paper, we provided a procedure of nonparametric denoising constructed on a pointwise
kernel estimation with a local selection of the multidimensional bandwidth parameter.
More precisely our model was and still will be:

Xε(dt) = f(t)dt + εW (dt), t = (t1, . . . , td) ∈ D.

( d = 2 is precisely the case of an image with an additional noise.) As we will not discuss
of special boundary effect, D will be chosen equal to [0, 1]d.
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We consider a kernel estimation of the form
∫

D

1

h1 . . . hd
K

(
x1 − t1

h1
, . . . ,

xd − td
hd

)
Xε(dt)

K is a kernel with good approximation properties in each direction and our aim is to
provide a selector of the muldimensional parameter h = (h1, . . . , hd) depending on the
point x = (x1, . . . , xd) and using the data Xε.
Our method is a generalization of the Lepski’s method of adaptation [6], [7], which roughly
consists in choosing the ”coarsest” bandwidth such that the estimated bias is negligible.
However, this notion becomes more delicate in a multidimensional setting.

We shall again focus on functions with inhomogeneous smoothness properties and
especially providing a possible disparity of the inhomogeneous aspect in the different
directions. Specifically we shall consider the anisotropic classes of Nikolskii, consisting of
functions f(x1, . . . , xd) with regularity si in the direction i, in Lpi

norm, for i = 1, . . . , d.
In the former paper we investigated the following zone of parameters:

1 −
d∑

i=1

1

pisi
> 0,

d∑

i=1

[
1

si
(
p

pi
− 1]

]

+

< 2

In this region (dense case) the minimax rate of convergence, associated to the Lp

norm is ε
2s̄

1+2s̄ , where s̄ is defined by 1/s̄ =
∑d

i=1 1/si.

In the present paper, we’ll investigate the following region :

1 ≤ pi ≤ p < ∞, ∀ i 1 −
d∑

i=1

1

si

1

pi
> 0,

d∑

i=1

1

si
(
p

pi
− 1) ≥ 2.

This region corresponds in the one-dimensional case to the sparse case where a minimax
rate of convergence different from the dense case is observed. It was an open question to
decide whether this sparse case, in the d dimensional context has to be split into different
regions corresponding to different minimax regimes. We will see here that the answer in
negative : we still observe a sparse region but with a unique minimax behavior, except,
as usual, on the boundary. In this region, we have the following rate of convergence :

{
[log ε−1]1/2ε

}b
, b =

[1 − ∑d
i=1

1
si

( 1
pi
− 1

p
)]p

1 − ∑d
i=1

1
si

( 1
pi
− 1

2
)

with an additional logarithmic term on the boundary. This rate of convergence coincides
with the rate observed in dimension 1 (see for instance [12], [1], [10]). Another important
remark is that the estimation procedure does not depends on the parameters (s1, . . . , sd)
and (p1, . . . , pd) of the Nikolskii’s class. It means that our estimator is not only mini-
max one but minimax adaptive w.r.t the family of Nikolskii’s classes described by the
parameters (s1, . . . , sd) and (p1, . . . , pd) belonging to the sparse region. It is worthwhile
to notice that the same procedure is adaptive up to logarithmic factors in the dense zone
[5].

It is also interesting to observe that in the ”sparse case”, the embedding properties of
the spaces are fondamental, and this is the reason of our limitation to the case 1 ≤ pi ≤
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p < ∞ since we have not been able to find embedding theorems in the literature when
this condition is not valid.

The paper will be organized as follows. The second section recalls the anisotropic
Besov conditions, and the procedure of estimation. This section is concluded by two
theorems. The first one states the upper bound for the risk of the procedure. The second
theorem states the lower bound. In particular, the two theorems together prove that our
procedure attains the minimax rate of convergence simultaneously for all values of the
parameters (s1, . . . , sd) and (p1, . . . , pd) belonging to the sparse zone, in other words, it is
minimax adaptive in the ”sparse case”. The third section concerns the proof of the upper
bound theorem. We first recall the embedding and approximation properties which will
be needed in the sequel. Then we give a rapid summary of essential tools appearing in [5].
The last part, is devoted to the main part of the proof. Section 4 concerns the proof of the
lower bound theorem. The proof of this theorem follows a general type of construction
for lower bounds which is used in various domains of nonparametric statistics: estimation
([3], [9]), adaptative estimation ([8]), hypotheses testing ([4], [11]). This is the reason
why we chose to give the construction in full generality and to obtain our lower bound
result as a particular case of this construction. There is at least two advantages to this
construction : first, it is general enough to be applied in a lot of models, secondly, one of
the assumptions directly contains the rate of convergence. In the particular case of the
white noise (which is the framework of this paper), our approach leads to the verification
of four simple assumptions. Thus instead of giving a direct (and rather standard) proof
of Theorem 2, we deduce the rate of convergence by verifying the four assumptions
mentioned above.

2 Adaptive procedure for anisotropic conditions.

2.1 Anisotropic Besov Balls

Let us recall the following definition of the Besov space B
(s1,... ,sd)
(p1,... ,pd),∞ (see [13]).

Let f be a measurable function defined on R
d. For y ∈ R

d, we define :

∀x ∈ R
d, ∆yf(x) = f(x + y) − f(x).

If l ∈ N then ∆l
y is the l−iterated of the operator ∆y. (Of course ∆0

y = Id.)
We have the following properties :

1. Let l ∈ N :

∆l
yf(x) =

l∑

j=0

Cj
l (−1)j+lf(x + jy) Especially :

(−1)l+1∆l
yf(x) =

l∑

j=0

Cj
l (−1)j+1f(x + jy) =

l∑

j=1

Cj
l (−1)j+1f(x + jy) − f(x)

2. If k ∈ N, m ∈ N
∗, 1 ≤ p ≤ ∞; f ∈ L

p(Rd), we obviously have :

‖∆k+m
y f‖p ≤ 2m‖∆k

yf‖p.
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3. Less obviously, one can prove Marchaud inequality : Let k ∈ N, m ∈ N
∗. 1 ≤ p ≤

∞; f ∈ L
p(Rd) :

‖∆k
yf‖p ≤ a(k, m)

∞∑

j=0

(j + 1)m−12−kj‖∆k+m
2jy

f‖p.

Definition 1. Inhomogeneous Besov spaces.

1. Let e1, ....ed the canonical basis of R
d,. For 0 < si < ∞; 1 ≤ pi ≤ ∞, we say

that f belongs to Bsi
pi,∞

if and only if there exists l ∈ N, si < l ( resp. for all l ∈
N, si < l), and C(si, l) < ∞, such that :

∀h ∈ R, ‖∆l
hei

f‖L
pi(Rd,dx) ≤ C(si, l)|h|si.

2. B
(s1,... ,sd)
(p1,... ,pd),∞ = ∩d

i=1B
si
pi,∞

Remarks:

• Thus, we are considering functions having regularity si in the direction i quantified
in Lpi

in the sense mentioned above. The proposition below proves that the func-
tions having this regularity can be approximated using appropriated kernels with
the rate of convergence hsi in Lpi

norm.

• The condition ∃l ∈ N, si < l can be replaced by ∀l ∈ N, si < l in such a way that
one can choose indifferently an integer l, as soon as l > si.

Let us finally define the following Besov ball Bs
p,∞(M), s = (s1, . . . , sd) and p =

(p1, . . . , pd) as the set of functions supported on D, and such that all the constants
C(si, l) appearing in the definition above are less than M .

2.2 Construction of the estimator.

2.2.1 Kernel.

Let g(t) be an integrable, bounded, compactly supported function such that
∫
R

g(u)du =
1. Following Nikolskii [13], we define :

gl(u) =
l∑

k=1

Ck
l (−1)k+1k−1g (u/k) .

It is easy to verify :
∫
R

gl(u)ukdu = δ0,k, for k = 0, 1, ..., l − 1. Let us put:

K(t1...td) = gl(t1) . . . gl(td).

For t = (t1, . . . , td), K(t) is a compactly supported, bounded kernel (i.e. there exist
a > 0, K > 0 such that K(t) = 0, ∀t /∈ [−a, +a]d and sup |K(t)| ≤ K).
We denote

‖K‖ ,

(∫

Rd

K2(t)dt

)1/2

.

and obviously, we have for 0 ≤ ki < l,
∫
Rd K(t)tk1

1 ...tkd

d dt = δ0,k1..δ0,kd
.
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2.2.2 Family of kernel estimates with dyadic bandwidths.

Let us define jM(ε) in N, by: 2−(jM (ε)+1) ≤ ε2 ≤ 2−jM(ε), and restrict our attention to
the following set of dyadic:

I := I(ε) = {j = (j1, . . . , jd), 0 ≤ ji ≤ jM(ε), ∀i}

We consider the following family of kernel estimates :

f̂j = 2
∑d

i=1 ji

∫

D

K(2j1(t1 − u1), . . . , 2jd(td − ud))Xε(du1, . . . , dud), j ∈ I(ε) (1)

2.2.3 Estimation procedure.

Let us define the following ordering in Nd:

j, m ∈ Nd, j << m ⇐⇒
d∑

i=1

ji ≤
d∑

i=1

mi.

Admissible j’s. Let us introduce the following ”local rate”:

λ(j, ε) := ‖K‖2
∑d

i=1 ji/2∆, ∆ = ε(1 + d log ε−1)
1
2 (2)

where j is in Nd. Let us put

M = 2d + (8 + 8dp)1/2, σ(j) := Mλ(j, ε).

For all j, m ∈ Nd, let us define j∧m = (j1∧m1, . . . , jd∧md) and j(ε) = (jM(ε), . . . , jM(ε)).
For j ∈ I, we say that j belongs to the set A = A(t) of “admissible” j’s at the point t, if

either j = j(ε) or, for all m >> j, m ∈ I, |f̂j∧m(t) − f̂m(t)| ≤ σ(m) (3)

where f̂j is defined in (1).
Now, let ĵ ∈ A such that

ĵ << j, ∀j ∈ A (4)

Notice that ĵ exists but is not necessarily uniquely defined. If it is not unique, let
us make an arbitrary choice. If we consider A as the set of admissible j’s in the sense
that their bias is within acceptable limits, ĵ is corresponding to the coarsest scale (largest
multi-bandwidth) among admissible.

Locally adaptive estimator. Finally, let us put:

f ∗
ε (t) := f̂ĵ(t)

We observe then that f ∗
ε (t) is a classical kernel estimator taken with the multi-

bandwidth 2−ĵ(t) which depends on the data Xε(.) and on the time t. We call it “locally
adaptive estimator”.
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2.3 Minimax rates over anisotropic besov balls

2.3.1 Upper bounds.

We have the following theorem :

Theorem 1. Let Bs
p,∞(M), be defined as above, with s = (s1, . . . , sd), p = (p1, . . . , pd) ∈

Rd
+ and such that:

1 ≤ pi ≤ p < ∞, ∀ i ∈ {1, . . . , d} (5)

1 −
d∑

i=1

1

si

1

pi
> 0, (6)

Set δ =
[

2
p
− ∑d

i=1
1
si

( 1
pi
− 1

p
)
]
. If δ ≤ 0, (’sparse zone’) then, for

L =

[
1 −

d∑

i=1

1

si

(
1

pi

− 1

2
)

]
, K =

[
1 −

d∑

i=1

1

si

(
1

pi

− 1

p
)

]

sup
Bs

p,∞(M)

Ef

∫

[0,1]d
|f ∗

ε (t) − f(t)|pdt ≤ C5(p)
{
[log ε−1]1/2ε

}Kp

L [log ε−1]dI{δ=0} (7)

where C5(p) is an absolute constant.

This theorem leads to the following remarks.

• Let us first note that the behaviour of the estimator f ∗
ε if δ > 0 (’dense zone’)

has been investigated in the former paper [5] (Theorem 4). In particular we deduce
from [5] that if the inequalities (5) and (6) of Theorem 1 are verified and δ > 0
then

sup
Bs

p,∞(M)

Ef

∫

[0,1]d
|f ∗

ε (t) − f(t)|pdt ≤ C5(p)
{
[log ε−1]1/2ε

} 2s̄p

(2s̄+1) [log ε−1]d−1 (8)

where C5(p) is an absolute constant, s̄ is defined by 1/s̄ =
∑d

i=1 1/si.

In [5] this result was treated as adaptive since the estimator does not depend on the
parameters of the besov ball. Actually, the estimator f ∗

ε is not minimax adaptive
if δ > 0: the upper bound given by (8) and the minimax rate of convergence found
in [5] (Theorem 3) differ by the factor {log(1/ε)}b, where b = s̄p

(2s̄+1)
+ d− 1. In this

situation one usually speaks on ”adaptation up to a logarithmic factor”. However,
if δ < 0 our estimator f ∗

ε is minimax adaptive (see Remark after Theorem 2).

• Notice here that when 1 − ∑d
i=1

1
si

1
pi

> 0, then K > 0,

hence
∑d

i=1
1
si

( 1
pi
− 1

p
) < 1, furthermore δ ≤ 0 implies

∑d
i=1

1
si

( 1
pi

− 1
p
) ≥ 2

p
. We

deduce that, in the sparse zone, necessarily p > 2.

As a consequence L ≥ K > 0.
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• We observe a phenomenon which is the equivalent in d dimension of the famous
’elbow’ observed for d = 1 , leading to essentially 2 regimes for the minimax rates
of convergence. Notice that for d = 1, the rate

Kp

L
=

2(s − 1
p1

+ 1
p
)p

2(s − 1
p1

) + 1

is exactly the rate observed in this situation. (see [12], [1])).

• As in dimension 1, the following lemma proves that the rate in the sparse zone is
smaller than in the dense region.

Lemma 1. Under the conditions of the theorem, if δ ≤ 0, then

2s̄

1 + 2s̄
≥ K

L
(9)

with equality if and only if δ = 0.

The proof of the lemma is just observing that

K

L
− 2s̄

1 + 2s̄
=

δ

L(1 + 2s̄)

and, obviously, L = K +
∑d

j=1

1

sj
( 1

2
− 1

p
) > 0.

• We can also observe in the following lemma, that, for the sparse case, as well as
the dense case, the rates are strictly decreasing with the dimension.

Lemma 2. Under the conditions of the theorem, if {i1, . . . , il} ⊂ {i1, . . . , im}, then

if s̄(i1, . . . , im)−1 =

l∑

r=1

1

sir

, s̄(i1, . . . , im) ≤ s̄(i1, . . . , il) (10)

if K(i1, . . . , il) = [1 −
l∑

r=1

1

sir

(
1

pir

− 1

p
)], L(i1, . . . , il) = [1 −

l∑

i=1

1

sir

(
1

pir

− 1

2
)],

then

K(i1, . . . , il)

L(i1, . . . , il)
≥ K(i1, . . . , im)

L(i1, . . . , im)
(11)

and equalities in (10) or (11) only occur if the two sets are equal.

(10) is obvious. (11) is obtained by induction : Using the symmetry of the problem, we only need
to calculate :

K(1, . . . , d)

L(1, . . . , d)
− K(1, . . . , d − 1)

L(1, . . . , d − 1)
=

( 1

2
− 1

p
)[1 − ∑d

i=1

1

si
( 1

pi
− 1

pd
)]

L(1, . . . , d)L(1, . . . , d − 1)
.

Now, as pi ≤ p, K > 0 implies that [1−∑d

i=1

1

si
( 1

pi
− 1

pd
)] ≥ K > 0, as well as K(i1, . . . , il) > 0, for any

l ≥ 1.

Moreover, obviously, L(i1, . . . , il) = K(i1, . . . , il) +
∑l

j=1

1

sij

( 1

2
− 1

p
) > 0.
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2.3.2 Lower bounds.

In this section, we state the following lower bound result.

Theorem 2. Let L and K be the constants defined in Theorem 1. Then for ε > 0 small
enough,

inf
f̃

sup
f∈Bs

p,∞(M)

Ef

∫

[0,1]d
|f̃ ε(t) − f(t)|pdt ≥ C6(p)

{
[log ε−1]1/2ε

}Kp

L , (12)

where C6(p) is an absolute constant and the infimum is taken over all possible estimators.

Remark : Let us note that this lower bound is valid for a standard Besov ball without
any restriction on its parameters. However, the bound is effective only for δ < 0. For
δ = 0, the upper and lower bounds differ by a logarithmic factor. As is obvious, this
lower bound is correct but not sharp for the case δ > 0 (’dense zone’) and in particular,
another proof has to be used see [5]. 3

Remark :

1. We deduce from Theorem 1 and 2 that the estimator f ∗
ε is minimax adaptive in the

sparse zone δ < 0.

2. We have from Theorem 1, Theorem 2 and inequality (8) that our estimator is
adaptive up to a logarithmic factor w.r.t to the family of besov balls Bs

p,∞(M) with
s and p satisfying (5) and (6).

3. It is an open question how to construct an estimator being minimax adaptive w.r.t
to the family of besov balls Bs

p,∞(M) with s and p satisfying (5) and (6).

3

3 Proof of the upper bound result.

3.1 Embeddings and approximation properties for anisotropic

Besov spaces.

3.1.1 Embeddings

As in dimension 1, for the sparse zone, the embeddings are an essential tool. We quote
here Theorem 6.9, p.252 in [13] :

Proposition 1. If

1 ≤ pi ≤ r ≤ ∞, ∀ i ∈ {1, . . . , d}, (13)

Kr =

[
1 −

d∑

i=1

1

si

(
1

pi
− 1

r

)]
> 0, (14)
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are satisfied and if we put

Kj =

[
1 −

d∑

i=1

1

si

(
1

pi
− 1

pj

)]
, (15)

s′i =
siK

r

Ki
(16)

then the space B
(s1,... ,sd)
(p1,... ,pd),∞ is embedded in the space, B

(s′1,... ,s′
d
)

(r,... ,r),∞

Notice that for all i, because of pi ≤ r, we have Ki ≥ Kr > 0. This proposition
will be used in two situations : for r = p, then Kr = K, and r = ∞, where we see the
importance of the condition 1 − ∑d

i=1
1
si

1
pi

> 0.

3.1.2 Approximation properties.

The following proposition is proved in [5], and shows that the approximation properties
in the Besov spaces are driven by the regularity parameters si’s:

Proposition 2. Let f ∈ B
(s1,... ,sd)
(p1,... ,pd),∞

Let g(t) an integrable function defined on R,
∫
R

g(t)dt = 1. Let

gl(t) =

l∑

k=1

Ck
l (−1)k+1k−1g (t/k) .

Let us also define
K(x1, . . . , xd) = gl(x1) . . . gl(xd).

For h and y ∈ Rd, and i arbitrary in {1, . . . , d}, let

[y.h] = (y1h1, . . . , ydhd) ; [y.h]i = (y1h1, . . . , yi−1hi−1, 0, yi+1hi+1, . . . , ydhd).

∥∥∥∥
∫

Rd

K(y)[f(x + [y.h]) − f(x + [y.h]i)]dy

∥∥∥∥
Lpi

(Rd,dx)

≤ L|hi|si (17)

3.2 Essential results from [5]

Let us now recall the following ingredients of the proof in [5], which will be useful here :

3.2.1 Dyadic directional modulus of approximation.

Let us define the following dyadic modulus of approximation:

D̃i(2−ji) =
{

(δ12
−j′1, . . . , δd2

−j′
d), δj ∈ {0, 1}, 0 ≤ j ′l ≤ jM(ε), ∀l 6= i, ji ≤ j ′i ≤ jM(ε)

}

g̃i(2
−ji)(t) , sup

y∈D̃i(2−ji )

∣∣∣∣
∫

Rd

K(x)
[
f(t + y.x) − f(t + [y.x]i)

]
dx

∣∣∣∣ (18)

We shall restrict to functions having a minimal regularity: For 0 < ν ≤ 1, 0 < Lν <
∞, 0 < L < ∞, we say that the function f belongs to F0 = F0(ν, Lν, L, [0, T ]d) if
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• supt∈[0,T ]d |f(t)| ≤ L

• ∀t, t′ ∈ [0, T ]d, |f(t) − f(t′)| ≤ Lν (|t1 − t′1|ν + . . . + |td − t′d|ν)

Notice that Proposition 1 implies that under the condition 1 − ∑d
i=1

1
si

1
pi

> 0, we

necessarily consider functions belonging to a set F0(ν, [0, T ]d), with ν eventually small
enough but positive.

3.2.2 Local rate of convergence.

Let us recall :
λ(j, ε) := ‖K‖2

∑d
i=1 ji/2∆, ∆ = ε(1 + d log ε−1)

1
2

The following proposition is proved in [5] and describes the behaviour of the optimal
multiscale bandwidth if we restrict the choice to dyadics.

Proposition 3. For any arbitrary f ∈ F0, 0 < ε <
(

‖K‖
Lν

∫
|K(x)||x|νdx

) 1
ν

,

1. There exists j̄ = j̄(t) = (j̄1, ..., j̄d) ∈ I(ε) solution of the following problem :

(a) If j̄i = 0, then g̃i(2
−j̄i)(t) ≤ λ(j̄, ε).

(b) If jM(ε) ≥ j̄i > 0, then g̃i(2
−j̄i)(t) ≤ λ(j̄, ε), and g̃i(2

−(j̄i−1))(t) ≥ λ(j̄−1, ε),
where j̄ − 1 = (j̄1 − 1, ..., j̄d − 1).

2. Let j̄ = (j̄1, ..., j̄d) and j̄ ′ = (j̄ ′1, ..., j̄
′
d) in I(ε) be two solutions of the previous

problem . Then :

either

d∑

k=1

j̄ ′k ≤
d∑

k=1

j̄k ≤
d∑

k=1

j̄ ′k + d, or

d∑

k=1

j̄k ≤
d∑

k=1

j̄ ′k ≤
d∑

k=1

j̄k + d.

The last sentence of the proposition shows that if the solution j̄ is not unique, then
two solutions will satisfy:

d∑

k=1

j̄ ′k − d ≤
d∑

k=1

j̄k ≤
d∑

k=1

j̄ ′k + d.

In the sequel, we will consider j̄ a particular solution of the previous proposition, no
matter which one it is since all our bounds will only depend on

∑d
k=1 jk.

3.2.3 Local risk.

The following result is proved in [5] (Theorem 1). It gives a bound for the local risk.

Proposition 4. Let F be included into F0(ν, Lν, L), then for all f ∈ F , for any ε > 0,
t ∈ [0, 1]d,

Ef |f ∗
ε (t) − f(t)|p ≤ C2(p)λ(j̄(t), ε)p (19)

The constant C2(p) is explicitly given in [5].
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3.2.4 Risk for δ > 0.

The following result is also proved in [5] (Theorem 4). It gives an upper bound of the
risk, in the case where δ > 0 , i.e. proves (8).

Proposition 5. Under the conditions of Theorem 1, if δ > 0, then if µ denotes the
Lebesgue measure,

Ef

∫

[0,1]

|f ∗
ε (t) − f(t)|pdt ≤ C2(p)

∑

j=(j1,...jd)∈ I

λ(j, ε)pµ{t ∈ [0, 1]; j̄i = ji, ∀ i ∈ {1, . . . , d}}

≤ C5(p)
{
[log ε−1]1/2ε

} 2s̄p

(2s̄+1) [log ε−1]d−1 (20)

3.3 Proof of Theorem 1.

The proof of inequality (7) heavily builds as above on the following decomposition : Using
(19), we get:

Ef

∫
|f ∗

ε (t) − f(t)|p ≤ C2(p)
∑

j=(j1,...jd)∈ I

λ(j, ε)pµ{j̄i = ji, ∀ i ∈ {1, . . . , d}} (21)

Lemma 3. For f ∈ Bti
qi,∞

, (j1, . . . , jd) ∈ N, if ji ≥ 1, then

µ{j̄i = ji, ∀ i ∈ {1, . . . , d}} ≤ λ(j, ε)−qi2−jitiqi

Proof of lemma 3: Using propositions 3 and 2, we have , for ji ≥ 1 :

µ{j̄i = ji, ∀ i ∈ {1, . . . , d}} ≤ µ{t ∈ [0, 1]; g̃i(2
−(ji−1)(t) ≥ λ(j, ε)}

≤ λ(j, ε)−qi‖g̃i(2
−(ji−1)(.)‖qi

Lqi
(dt)

≤ λ(j, ε)−qi2−jitiqi

As can be observed in the preceding lemma, we have to distinguish between the cases
where ji = 0 and ji ≥ 1. Hence the bound in (21) can be rewritten as:

d∑

m=0

∑

ji1
,...jim∈{1,... ,jM(ε)}

λ(j, ε)pµ{j̄il = jil , ∀ l ∈ {1, . . . , m}, j̄il = 0, ∀ l /∈ {1, . . . , m}}

(22)

First, let us observe that the term corresponding to m = 0 is bounded by ∆
p

2 and is
not significant compared to the rate announced in the theorem.

To simplify the notations, we shall omit in the sequel the indication j̄il = 0, ∀ l /∈
{1, . . . , m} and introduce the following quantities, for i ∈ {1, . . . , d} :

ri =
p − pi

2
, qi = pisi

11



in such a way that δ = 2
p
(1 − ∑d

i=1
ri

qi
), so

δ ≤ 0 ⇐⇒
d∑

i=1

ri

qi
≥ 1.

Now, let us observe that because we are going to consider only a part of the d dimen-
sions, we have to distinguish between the 2 following cases :

• (i1, . . . , im) ∈ C+ = {(i1, . . . , im),
∑m

l=1

ril

qil

< 1}

• (i1, . . . , im) ∈ C− = {(i1, . . . , im),
∑m

l=1

ril

qil

≥ 1}

In such a way that (22) (omitting the term corresponding to m = 0) may be replaced
by:

d∑

m=1




∑

(i1,... ,im)∈C+

∑

ji1
,...jim∈{1,... ,jM(ε)}

λ(j, ε)pµ{j̄il = jil , ∀ l ∈ {1, . . . , m}}

+
∑

(i1,... ,im)∈C−

∑

ji1
,...jim∈{1,... ,jM(ε)}

λ(j, ε)pµ{j̄il = jil , ∀ l ∈ {1, . . . , m}}


 (23)

3.3.1 Bound for the C+-terms :

Using (20) we get:

d∑

m=1

∑

(i1,... ,im)∈C+

∑

ji1
,...jim∈{1,... ,jM(ε)}

λ(j, ε)pµ{j̄il = jil , ∀ l ∈ {1, . . . , m}}

≤
d∑

m=1

∑

(i1 ,... ,im)∈C+

C5(p)∆
2ps̄(i1,... ,im)

1+2s̄(i1,... ,im) (log ε−1)m−1 (24)

where
1

s̄(i1, . . . , im)
=

m∑

l=1

1

sil

Using Lemmas 1 and 2, we get,

d∑

m=1

∑

(i1,... ,im)∈C+

C5(p)∆
2ps̄(i1,... ,im)

1+2s̄(i1,... ,im) (log ε−1)m−1

≤
d∑

m=1

∑

(i1,... ,im)∈C+

C5(p)∆
2ps̄

1+2s̄ (log ε−1)d−1 ≤ 2dC5(p)∆
pK

L (log ε−1)dI{δ=0} (25)

12



3.3.2 Bound for the C−-terms :

Let us now concentrate on the indices lying in C−. Using again lemma 2, we only need,
as above, to prove the result for the full set of indices.

Now, we will establish the following lemma :

Lemma 4.
∑

j1,...jd∈{1,... ,jM (ε)}

λ(j, ε)pµ{j̄l = jl, ∀ l ∈ {1, . . . , d}}

≤
∑

j1,...jd∈{1,... ,jM (ε)}

min{[λ(j, ε)p−pi2−jisipi ∧ 2−jis′ipi], i = 1, . . . , d} (26)

where the s′i’s are given in Proposition 1, see (16).

This lemma is a consequence of lemma 3, which is applied once with q = pi, ti = si,
and a second time with q = p, ti = s′i using proposition 1.

Now, let us introduce the following quantities :

Zi = [‖K‖∆]
Ki
Lsi ∀ i ∈ {1, . . . , d} (27)

2−j∗i ≤ Zi ≤ 2−j∗i +1, ∀ i ∈ {1, . . . , d} (28)

We have the following lemma :

Lemma 5. The following assertions are true at least for ε small enough:

0 ≤ j∗i ≤ jM(ε) ∀ i ∈ {1, . . . , d} (29)

(‖K‖∆)p−pi

d∏

i=1

Z
pi−p

2
i Zpisi

i = Z
ps′i
i = (‖K‖∆)

Kp

L ∀ i ∈ {1, . . . , d} (30)

Note that

• (30) is a simple calculation involving the definitions of K; L; Ki; s′i and using the
following identity:

d∑

i=1

Ki

si
=

1

s̄
. (31)

• (29) follows from Ki

Lsi
≥ 0, and the fact that (using (31))

Ki

si
≤ ∑d

i=1
Ki

si
= 1

Ls̄
< 2 since Ls̄ = 1

2
+ s̄(1 − ∑d

i=1
1

sipi
) > 1

2
.

Hence, putting together lemma 4 and lemma 5, we get :
∑

j1,...jd∈{1,... ,jM (ε)}

λ(j, ε)pµ{j̄l = jl, ∀ l ∈ {1, . . . , d}}

≤ (‖K‖∆)
Kp

L

∑

j1,...jd∈{1,... ,jM(ε)}

min
i=1,... ,d

[
2

∑d
l=1(jl−j∗

l
)

p−pi
2 2−(ji−j∗i )sipi ∧ 2−(ji−j∗i )s′ipi

]

≤ (‖K‖∆)
Kp

L

∑

j1,...jd∈{−jM (ε),... ,jM (ε)}

min
i=1,... ,d

[
2

∑d
l=1 jl

p−pi
2 2−jisipi ∧ 2−jis′ipi

]
(32)
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3.3.3 Barycentering.

Thus we obtain a sum where all possible configurations of signs appear. We will in-
vestigate a standard configuration. To simplify, let us put λi = s′ip and recall that
ri = p−pi

2
, qi = pisi. Then a standard configuration of the previous sum can be written

and bounded in the the following way :
∑

j1,...js∈{0,... ,jM(ε)}

∑

js+1,... ,jd∈{−jM(ε),... ,0}

min
i=1,... ,p

[
2

∑d
l=1 jlri2−jiqi ∧ 2−jiλi

]

≤
∑

j1,...js∈{0,... ,jM(ε)}

∑

js+1,...jd∈{−jM (ε),... ,0}

d∏

i=1

2−jiλiαi

d∏

i=1

2(−jiqi+ri

∑d
l=1 jl)βi (33)

For a collection αi, βi of non negative real numbers such that
∑d

i=1 αi + βi = 1.
Let us choose

αs+1 = . . . = αd = 0

βi =
1

Rqi
, i ∈ {1, . . . , d}

R and α1, . . . , αs will be chosen later. If we denote by R the set of indices considered
above : {j1, . . . js ∈ {0, . . . , jM(ε)}, js+1, . . . jd ∈ {−jM (ε), . . . , 0}}. Then, we get using
(33):

∑

R

min{[2
∑d

l=1 jlri2−jiqi ∧ 2−jiλi], i = 1, . . . , d}

≤
∑

R

∏

i≤s

2
−ji(λiαi+[1−

∑d
i=1

ri
qi

] 1
R

)
∏

i≥s+1

2
−ji([1−

∑d
i=1

ri
qi

] 1
R

)
(34)

As we observed δ < 0 ⇐⇒ ∑d
i=1

ri

qi
> 1.

Hence, in this case, the last d − s terms are affected with a positive power, whereas
if we choose αi = [ui − 1 +

∑d
i=1

ri

qi
] 1
Rλi

with ui > 0, then the first s terms are affected
with a negative power, in such a way that the sum is convergent. It remains to show that
this combination can be done together with the constraint

∑d
i=1 αi + βi = 1. But this is

equivalent to :

1

R
[(ui − 1 +

d∑

i=1

ri

qi
)

1

λi
+

d∑

i=1

1

qi
] = 1

which is always possible by choosing R in an appropriated way.
It remains to see that in the case where δ = 0, then

∑d
i=1

ri

qi
= 1, and the sum may

only bounded by : (log ε−1)d−s.

4 Proof of Theorem 2

4.1 Some general results

The proofs of the results presented in this section are absolutely standard and for this
reason are given with a short proof.
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4.1.1 Lower bound for an abstract model

Let
(
Ωε, V ε, P ε

f , f ∈ F
)

be a sequence of statistical experiments generated by the ob-

servation X (ε) and let G : F → Λ be the functional to be estimated. Here Λ is some
normed vector space and let ‖ · ‖ be the corresponding norm. Let us suppose that the
following assumptions are fulfilled :

For any ε > 0 there exist an integer Nε and a set of parameters fi = f
(ε)
i , i = 0, . . . , Nε

such that
a. {fi, i = 0, . . . , Nε} ⊂ F .

b. ||G(fi) − G(f0)|| = aε, ∀ i = 1, . . . , Nε.

c. lim infε→0 supτ∈[0,1] E
ε
f0

min [τZε, 1 − τ ] , K > 0.

Here Eε
f is the expectation with respect to probability mesure P ε

f and

Zε =
1

Nε

Nε∑

i=1

zi

(
X(ε)

)
, zi

(
X(ε)

)
=

dP ε
fi

dP ε
f0

(
X(ε)

)
.

Proposition 6. Suppose that the assumptions a, b and c are fulfilled, then for all q > 0

lim inf
ε→0

inf
G̃

sup
f∈F

Eε
f

(
a−1

ε ||G̃ − G(f)||
)q

≥ K min (21−q, 1),

where the infimum is taken over all mesurable functions ( with respect to X (ε)) and with
values in Λ.

Proof of the proposition. Set for arbitrary G̃

Rε(G̃) = sup
f∈F

Eε
f

(
a−1

ε ‖G̃ − G(f)‖
)q

;

T = Tε = a−1
ε ‖G̃ − G(f0)‖.

Using the triangular inequality and assumptions a, b we have ∀τ ∈ [0, 1]

Rε(G̃) ≥ (1 − τ)Eε
f0

(
a−1

ε ‖G̃ − G(f0)‖
)q

+
τ

Nε

Nε∑

i=1

Eε
fi

(
a−1

ε

∥∥∥|G̃ − G(f0)‖ − ‖G(fi) − G(f0)‖
∣∣∣
)q

= (1 − τ)Eε
f0

(T )q +
τ

Nε

Nε∑

i=1

Eε
fi
|T − 1|q

= Eε
f0

[(1 − τ)(T )q + τZε|T − 1|q]
≥ Eε

f0
{[(T )q + |T − 1|q] min [τZε, 1 − τ ]}

≥
(

inf
x≥0

[xq + |x − 1|q]
)

Eε
f0

min [τZε, 1 − τ ]

≥
(
min

(
21−q, 1

))
Eε

f0
min [τZε, 1 − τ ] .
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Now, the right side of the last inequality does not depend on G̃, τ is an arbitrary real
number in [0, 1] and applying assumption c we arrive at the statement of the proposition.
2

Remark : The same proof remains valid for q = 0 if one understands T 0 as I{A} and
|T − 1|0 as I{A(c)}, where A is a random event belonging to the σ-algebra generated by

the observation X (ε). This type of risks corresponds to the hypothesis testing problem.
3

Let us now brefly discuss how to check the assumption c.

Corollary 1. Suppose that the following condition is fulfilled.

c′. Zε → 1 in P ε
f0

-probability as ε → 0.

Then the assumption c is verified and K = 1
2
.

This statement is obvious. The optimal choice of the parameter τ is τ = 1/2.

Corollary 2. Suppose that the following condition is fulfilled.

c′′. lim supε→0 Eε
f0

(Zε − 1)2
, Ω < ∞.

Then the assumption c is verified and K ≥ 1
2

(
1 −

√
Ω

Ω+4

)
.

Remark : Note that Ω = 0 implies the assumption c′ and the bounds given by
Corollary 1 and Corollary 2 coincide. 3

Proof of Corollary 2. Note that

min [τZε, 1 − τ ] =
1

2
(τZε + 1 − τ − |τZε − (1 − τ)|) ,

therefore

Eε
f0

min [τZε, 1 − τ ] =
1

2

(
1 − Eε

f0
|τ(Zε − 1) − (1 − 2τ)|

)
.

Set Ωε = Eε
f0

(Zε − 1)2. Obviously,

Eε
f0
|τ(Zε − 1) − (1 − 2τ)| ≤

√
τ 2Ωε + (2τ − 1)2

Minimizing the right hand side of this inequality w.r.t. τ ∈ [0, 1] and letting ε tend to
zero, we arrive at the statement of the corollary. 2

Let us now return to the Gaussian White Noise (GWN) model.

4.1.2 General lower bound for GWN model

It is remarkable that for the GWN model we have a simple explicite condition allowing to
check the assumption c′′ and, therefore, in view of Corollary 2 to check the assumption
c. Also, in this section we will assume that Nε → ∞, ε → 0. It is worthwhile to mention
that all the results remain valid without this condition and that only some constants
might be changed. Moreover, the case Nε → ∞, ε → 0 is the most important one.

Remark : Remind that the definition of the GWN model requires to suppose that
F ⊂ L2(D), D ⊆ Rd. 3
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Proposition 7. Let
(
Ωε, V ε, P ε

f , f ∈ F ⊂ L2(D)
)

be the GWN model.

I. Ω = lim supε→0
1

N2
ε

∑Nε

i,j=1 exp

{
1
ε2 〈fi − f0, fj − f0〉

}
− 1.

II. Suppose that there exist fi, ∈ F , i = 0, . . . , Nε such that the following conditions
are verified.

c1. sup{i,j=1,...Nε, i6=j}〈fi − f0, fj − f0〉 ≤ Mε2, where M is a constant independent on
ε and 〈, 〉 is inner product.

c2. supi=1,...Nε
‖fi − f0‖2 ≤ ε

√
ρ ln Nε, where 0 < ρ < 1 is independent on ε and ‖ · ‖2

is L2-norm.

Then the assumption c′′ is fulfilled and Ω ≤ eM − 1

Remarks :
If M = 0 then Ω = 0 and one can use the lower bound given by Corollary 1.
If Nε 9 ∞, ε → 0 then Ω ≤ eM. 3

Thus, combining the statements of Proposition 6, Corollary 2 and Proposition 7 we
arrive at the following result for the GWN model.

Proposition 8. Let
(
Ωε, V ε, P ε

f , f ∈ F
)

be the GWN model. Suppose that the follow-
ing assumptions are fulfilled. For all ε > 0 there exists an integer Nε, Nε → ∞, ε → 0
and fi = f

(ε)
i ∈ L2(D), i = 0, . . . , Nε such that

a. {fi, i = 0, . . . , Nε} ⊂ F .

b. ‖G(fi) − G(f0)‖ = aε, ∀i = 1, . . . , Nε.

c1. sup{i,j=1,...Nε, i6=j}〈fi − f0, fj − f0〉 ≤ Mε2, where M is an absolute constant.

c2. supi=1,...Nε
‖fi − f0‖2 ≤ ε

√
ρ ln Nε with 0 < ρ < 1,

then for any q > 0

lim inf
ε→0

inf
G̃

sup
f∈F

Eε
f

(
a−1

ε ‖G̃ − G(f)‖
)q

≥
(

1 −
√

eM − 1

eM + 3

)
min (2−q, 2−1),

where the infimum is taken over all mesurable functions ( with respect to X (ε)) with values
in Λ.

Remark : There exist examples where the assumptions c1 and c2 are not verified but
Ω is still finite. In such situations one has to calculate directly the expression given by I
in Proposition 7. 3

Proof of Proposition 7. Since we deal with the GWN model, ∀i = 1, . . . , Nε

zi

(
X(ε)

)
= exp

{
1

ε2

∫

D

(fi − f0)Xε(dt) − 1

2ε2

[
‖fi‖2

2 − ‖f0‖2
2

]}

= exp

{
1

ε2

∫

D

(fi − f0)(Xε(dt) − f0dt) − 1

2ε2
‖fi − f0‖2

2

}
,
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where for any function g ∈ L2(D)

∫

D

(g − f0)(Xε(dt) − f0dt) ∼ N
(

0, ε2‖g − f0‖2
2

)
w.r.t P ε

f0
− probability.

Remind also that Eε
f0

zi

(
X(ε)

)
= 1, ∀i = 1, . . . , Nε.

Thus, we find that

Eε
f0

(Zε − 1)2 =
1

N2
ε

Nε∑

i,j=1

exp

{
1

ε2
〈fi − f0, fj − f0〉

}
− 1

and , therefore, I is proved.
Using the assumptions c1 and c2, we obtain

Eε
f0

(Zε − 1)2 ≤ Nρ−1
ε +

Nε − 1

Nε

eM − 1.

Taking into account that ρ < 1 and Nε → ∞, ε → 0 we arrive at the statement II of the
proposition. 2

4.2 Proof of Theorem 2

We will construct the family fi = f
(ε)
i ∈ L2(D), i = 0, . . . , Nε, where Nε → ∞, ε → 0,

satisfying the assumptions a,b, c1, c2 of Proposition 8.
Remind that in our problem

• D = [0, 1]d and F = Bs
p,∞(M).

• G(f) = f and ‖ · ‖ = ‖ · ‖p, where ‖ · ‖p is Lp-norm on [0, 1]d.

Let us fix some function F : R → R such that

• supp(F ) ⊂ [−1, 1];

• ‖F‖∞ ≤ 1;

• F ∈ H(β, 1), where β = maxj=1,... ,d sj and H(β, 1) is a Hölder ball.

Let us define Fd : Rd → R as Fd(x) =
∏d

j=1 F (xj), x = (x1, . . . , xd) ∈ Rd.

Set δ = cε
√

ln 1/ε, hk = δak , k = 1, . . . d, Aε = δa, where the constant c will be
chosen later. Below, we will give explicite expressions for the real numbers a > 0 and
ak > 0, k = 1, . . . d. Now, let us set ã = mink=1,...d ak and let b > 0 be an arbitrary real
number strictly less than ã. Set Mε = ε−b (without loss of generality we will assume that
Mε is an integer).

Let B := {um = i/Mε, m = 1, . . . , Mε − 1, } and let Bd =
⊗d

j=1 B. Bd is obviously a

net in [0, 1]d and Nε := card(Bd) = (ε−b − 1)d.
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Finally, let us define fi : [0, 1]d → R, i = 0, . . . , Nε as follows:

f0(t) ≡ 0, fi(t) = MAεFd

(
t − ti

h

)
, t ∈ [0, 1]d, ti ∈ Bd,

where h = (h1, . . . , hd).
Let us make several remarks.

1. Clearly Nε → ∞ when ε → 0 and the number ln Nε which appears in the assumption
c2 is ”∼ bd ln 1/ε”.

2. In view of the choice of the function F and the net Bd we have for all ε > 0 small
enough

[fi(t) − f0(t)] [fj(t) − f0(t)] ≡ 0, ∀i 6= j, i, j = 1, . . . , Nε.

Thus, assumption c1 is fulfilled with M = 0.

3. In view of the choice of the family fi, i = 0, . . . , Nε, assumption b is fulfilled for
all ε > 0 small enough and we find that

aε := ‖fi − f0‖p = Aε

( d∏

k=1

hk

) 1
p

M‖Fd‖p

= M‖Fd‖pδ
(a+ 1

p

∑d
k=1 ak).

4. In view of the choice of the function F it is easy to see that assumption a is fulfilled
(i.e. (fi, i = 1, . . . , Nε) ⊂ Bs

p,∞(M)) if

Aε

(∏d
k=1 hk

) 1
pj

h
sj

j

= 1, ∀j = 1, . . . , d.

This leads to the following system of equations for the numbers a > 0 and ak >
0, k = 1, . . . d.

a +
1

pj

d∑

k=1

ak − ajsj = 0, ∀j = 1, . . . , d.

5. Fix ρ ∈ (0, 1) and set c =
√

ρbd/M . In view of the choice of the family
(fi, i = 0, . . . , Nε) we obtain ∀i = 1, . . . , Nε and for all ε > 0 small enough

‖fi − f0‖2
2 = ‖Fd‖2

2M
2A2

ε

d∏

k=1

hk ≤ M2δ2a+
∑d

k=1 ak .

If the real numbers a > 0 and ak > 0, k = 1, . . . d satisfy

2a +

d∑

k=1

ak = 2

then ∀i = 1, . . . , Nε and for all ε > 0 small enough

‖fi − f0‖2
2 ≤ M2δ2 = ρbdε2 ln 1/ε = ρε2 ln Nε.

Thus, assumption c2 is fulfilled.
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It remains to find the real numbers a > 0 and ak > 0, k = 1, . . . d, in order to calculate
the rate aε. To do this, one has to solve

a +
1

pj

d∑

k=1

ak − ajsj = 0, ∀j = 1, . . . , d,

2a +
d∑

k=1

ak = 2.

The solution is

aj = 2

[
1

sjpj
+

a

sj

(
1

2
− 1

pj

)]
, a =

1 − ∑d
j=1

1
sjpj

1 − ∑d
j=1

(
1
pj

− 1
2

)
1
sj

.

From here we obtain that a + 1
p

∑d
k=1 ak = K/L and hence aε = M‖Fd‖pδ

K/L.

Finally, we find that aε � M
L−K

L

(
ε
√

d ln 1/ε
)K

L

as ε → 0. 2
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