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Abstract

In this paper, we present an inverse estimation procedure which combines Fourier analysis
with wavelet expansion. In the periodic setting, our method can recover a blurred function
observed in white noise. The blurring process is achieved through a convolution operator
which can either be smooth (polynomial decay of the Fourier transform) or irregular (such as
the convolution with a box-car). The proposal is non-linear and does not require any prior
knowledge of the smoothness class; it enjoys fast computation and is spatially adaptive.
This contrasts with more traditional filtering methods which demand a certain amount
of regularisation and often fail to recover non-homogeneous functions. A fine tuning of
our method is derived via asymptotic minimax theory which reveals some key differences
with the direct case of Donoho et al. (1995): (a) band-limited wavelet families have nice
theoretical and computing features; (b) the high frequency cut off depends on the spectral
characteristics of the convolution kernel; (c) thresholds are level dependent in a geometric
fashion. We tested our method using simulated lidar data for underwater remote sensing.
Both visual and numerical results show an improvement over existing methods. Finally, the
theory behind our estimation paradigm gives a complete characterisation of the ’Maxiset’
of the method i.e. the set of functions where the method attains a near-optimal rate of
convergence for a variety of Lp loss functions.

1 De-convolution in white noise

Suppose we observe the random process Yn(.)

Yn(dt) = f ? g(t)dt + n−1/2W (dt), t = (t1, . . . , tn) ∈ T = [0, 1], (1)

where W (.) is a Gaussian white noise and

f ? g(t) =

∫

T
f(t− u)g(u)du . (2)

Our goal is to recover the unknown function f from the noisy-blurred observations (1). The
function g which drives the shape of the blurring through the convolution (2) is assumed to
be known. Further, we assume that the functions f and g are periodic on the unit interval T
and that g has a certain degree of smoothness. Our assumptions, illustrated Figure 2, are the
following:
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(A1) Ordinary smooth convolution; the Fourier coefficients of g decay in a polynomial fashion
i.e. there exists some positive constants C and ν such that gl ∼ C|l|−ν .

(A2) Irregular convolution (box-car); g(x) = 1
2a I[−a,a](x), where a is a Badly Approximable

(BA) irrational number (those includes quadratic irrationals like
√

5 see section 6.3).
Under assumption (A2) we will put as a convention (which will be justified later) ν = 3/2.

Our aim in this paper is to present a non-linear wavelet estimation method which, up to log-
factors, is minimax optimal for a wide class of target functions in various Lp-metrics. For
example, measuring the performance with respect to the mean integrated square error, our
proposal can recover the unknown function f with an accuracy of order :

( log n

n

)α
, where α =

2s

s+ ν + 1
2

. (3)

Here s plays the role of a smoothness index while n denotes the usual sample size.

Comments 1. Our proposal is ’adaptive’ that is regardless of the target function (taken in a
very large class which includes non-homogeneous functions (see section 2.4) it will achieve near
optimal rates such as (3), see section 4.1 for a detailed discussion.

2. Our method is computationally sound taking full advantage of the Fast Fourier and
Fast Wavelet Transforms available in matlab. A key ingredient in the implementation of our
procedure is the use of band-limited wavelet basis. Of particular relevance is the availability of
a fast algorithm to compute the periodised Meyer wavelet transforms, see Kolaczyk (1993).

3. Our assumptions (A1) and (A2) do not include the case of so-called super-smooth de-
convolution (exponential decay of the Fourier transform). Indeed our estimation procedure can
be applied in the latter case too. However, recent results of Fan & Koo (2002), obtained in
the density setting, show that in the super-smooth case non-linear wavelet estimators can not
improve upon linear estimators deriving a much poorer rate than that described at (3).

4. The smoother is the convolution the harder it is recover the original function f as seen
from the effect of ν in (3). This contrasts with the practical need for convolution kernels to
act as low-pass filters. In practice, Gaussian kernels are often used although theory shows that
only poor results can be expected then (see comment 3 above). In this light the box-car kernel
is interesting as it combines low-pass characteristics with good recovery rates (ν = 3/2).

5. If the box-car width is rational some frequencies are impossible to recover. This phe-
nomenon can be avoided by considering box-car with irrational support as in our assumption
(A2). In this case, Johnstone & Raimondo (2002) have shown that the best-possible recovery
rate in the case of a known smoothness s is only a log-term faster than (3) with ν = 3/2.

6. Box-car and ordinary smooth convolutions are often used to model motion blur in digital
images, Bertero & Boccacci (1998). While the methodology presented in this paper focuses on
1-d deconvolution model (1); it is worth mentioning that our proposal can be extented to the
deconvolution of 2-d objects such as blurred digital images. This work is currently in progress.

We begin in section 2 by presenting an application of statistical deconvolution to remote
sensing. It is followed by a short introduction on periodised Meyer wavelets, Besov spaces and
a review of wavelet shrinkage. In section 3, we introduce our inverse estimation paradigm which
builts on recent work of Fan & Koo (2002). After presenting our method into details we com-
pared its numerical performances to more classical filtering procedures. In the implementation
of our method choices of tuning parameters are driven by asymptotic minimax theory which is
discussed in Section 4. Proofs are summarised in section 5 and 6.
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2 Motivations and preliminaries

2.1 Application to remote sensing

Deconvolution is a common problem in many areas of signal and image processing, see e.g.
Jain (1989). Here we shall focus on lidar remote sensing applications as in Je Park et al.
(1997), Harsdorf & Reuter (2000). ’Lidar’ (LIght Detection And Ranging) is a laser device
which emits pulses, reflections of which are gathered by a telescope aligned with the laser. The
return signal is used to determine distance and position of the reflecting material. Accordingly,
the distance resolution is limited by the time resolution of the lidar. If the system response
function of the lidar is longer than the time resolution interval the measured lidar signal is
blurred and the effective accuracy of the lidar decreases. This loss of precision can be corrected
by deconvolution. In practice, measured lidar signal are corrupted by additional noise which
renders direct deconvolution impossible. Borrowed from Harsdorf & Reuter (2000) ([HR] in the
sequel), we have depicted an ideal lidar signal in Figure 1; this will be our target function f for
numerical illustrations throughout this paper.
The system response function of the lidar (denoted g(t) in (1)) should have a strong low-pass
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Figure 1: Ideal lidar signal as in [HR]; corresponds to data for an underwater lidar.

characteristic with a frequency cut-off at about 200 MHz. While [HR] uses a Gaussian shape to
model the system response function we shall use a Gamma or a Box-Car shape both with low-
pass characteristics, see Figure 2. The reason for such a choice is that a much better recovery
rate is achievable in the latter cases, see comments 3,4 in section 1. Finally, in Figure 3 we
depicted simulated lidar data for a combination a different noise levels and system response
functions.
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Figure 2: System response functions g (left panels) and their log-|spectrum| (right panels). Top: Gamma
shape g-based on the pdf of a Γ(10, 0.0065). Bottom: Box-car shape with a = 1/

√
353.

3



0 0.5 1
−1

0

1

2

3

0 0.5 1
−1

0

1

2

3

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

Figure 3: Simulated lidar signals (1) with ti = i/n, n = 2048 corresponding to the system response
functions of Figure 2. Top plots: Gamma shape blurring. Bottom plots: Box-Car blurring. From left to
right: low (sd=0.002)-medium (sd=0.02)-high (sd=0.2) noise level.

2.2 Periodised Meyer wavelet transforms

In this section we review some basic properties associated with the Meyer wavelet which plays
a key role in our procedure. Let (φ, ψ) be the Meyer scaling and wavelet function respectively,
see Meyer (1990). Recall that

ψκ(x) = ψj,k(x) = 2j/2ψ(2jx− k), k ∈ Z, j ∈ Z, (4)

is the dilated-translated wavelet at resolution level j and time position k/2j ; here and below κ
denotes the bivariate index (j, k). A basic property of wavelet functions is to defined a so-called
multi-resolution analysis of L2(R); for any f ∈ L2(R) the following expansion holds

f =
∑

k

αj0,kφj0,k +
∑

j>j0

∑

k

βj,kψj,k (5)

where

ακ =

∫

f φκ, βκ =

∫

f ψκ (6)

are the wavelet coefficients of f . Quite naturally, one can define a similar multi-resolution
analysis for periodic functions in L2(T ), T = [0, 1]. This is done by periodising the basis
functions

Φκ(x) =
∑

l∈Z

φκ(x+ l), Ψκ(x) =
∑

l∈Z

ψκ(x+ l). (7)

Here and in the sequel of the paper (Φ,Ψ) will denote the periodised Meyer scaling and
wavelet functions. Thus, for any periodic function f an expansion similar to (5) holds with
periodised basis functions (Φκ,Ψκ) and bivariate index κ restricted to the set I = {(j, k) : j ≥ 0
and k = 0, 1, . . . , 2j − 1}. Our main motivations for using this wavelet basis are the following:

• The Meyer wavelet is band limited. In particular, we have Supp(Fψ) = Supp(FΨ) =
{w : |w| ∈ [2π/3, 8π/3]}, where Ff denotes the Fourier transform of f .

• An efficient algorithm, due to Kolaczyk (1993), is available to compute the periodised
Meyer wavelet transforms. It requires only O(n(log(n))2) steps to compute empirical
version of the coefficients (6) from a sample of size n of f .
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Figure 4: Periodised Meyer scaling and wavelet functions. Left: Φ3,4; right: Ψ4,5

2.3 A wide class of target functions

Let us first introduce the standard Besov spaces of periodic functions B s
π,r(T ), s > 0, π ≥ 1 and

r ≥ 1. For this purpose, we define, for every measurable function f

∆εf(x) = f(x+ ε) − f(x)

then, recursively, ∆2
εf(x) = ∆ε(∆εf)(x) and identically, for N ∈ N∗, ∆N

ε f(x). Let

ρN (t, f, π) = sup
|ε|≤t

(

∫ 1

0
|∆N

ε f(u)|πdu)1/π.

Then for N > s, we define :

Bs
π,r(T ) = {f periodic : (

∫ 1

0
(
(ρN (t, f, π)

ts
)r
dt

t
)1/r <∞}.

(with the usual modifications for r or π = ∞.)
In the sequel, we shall also keep the standard notation : ψ−1 = φ. In this setting, we also

recall that the Besov spaces are characterised by the behaviour of the wavelet coefficients (as
soon as the wavelet is periodic and has enough vanishing moments). We have in particular, for
f ∈ Lπ(T ),

f =
∑

βj,kψj,k ∈ Bs
π,r(T ) ⇐⇒

∑

j≥0

2j(s+1/2−1/π)r [
∑

k≤2j

|βj,k|π]r/π <∞. (8)

The Besov spaces have proved to be a very interesting scale of spaces for studying the properties
of statistical procedures. ’s’ usually indicates the degree of smoothness of the function. But,
due to the effect of other parameters π and r, they are able to model very different kind of
smoothness features in a function including non homogeneous behaviour, see Donoho et al.
(1995).

2.4 Wavelet shrinkage

Wavelet shrinkage is now a well established statistical procedure used for non-parametric esti-
mation. A wavelet estimator of an unknown function f ∈ L2(T ) will be written as

f̂ =
∑

κ∈I0

α̂κI{|α̂κ|≥λj0
} Φκ +

∑

κ∈I1

β̂κ I{|β̂κ|≥λj}
Ψκ (9)
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where α̂κ, β̂κ are estimated wavelet coefficients and I0, I1 are set of indices. I0 = {(j0, k) : k =
0, 1, ..., 2j0 − 1} corresponds to a coarse resolution level j0 and I1 = {(j, k) : k = 0, 1, ..., 2j −
1, j0 < j ≤ j1} corresponds to details up to a fine resolution level j1 . Note that the procedure
(9) is non-linear since only statistically significant coefficients: |β̂κ| ≥ λj are kept; here λj is

a threshold parameter. Choices of parameters j0, j1, λj as well as estimators α̂κ, β̂κ depend on
the problem at hand. For deconvolution problem (1) this will be discussed in next section.

3 Deconvolution via Fourier for Wavelets

3.1 Inverse estimation paradigm

Due to the ill-posedness nature of the problem, wavelet coefficients (6) can not be recovered
directly and some Fourier analysis is required. One of the basic properties of the Fourier
transform is to interchange convolution and multiplication. Let el(t) = e2πilt, l ∈ Z and denote
fl = 〈f, el〉, gl = 〈f, el〉 the Fourier coefficients of f, g respectively. Letting h = f ? g we have

hl = 〈f ? g, el〉 = fl × gl. (10)

Calculating Fourier coefficients in (1):

yl = hl + n−1/2zl (11)

where yl = 〈Yn(dt), el〉 are observable Fourier coefficients and zl = 〈W (dt), el〉 zero-mean Gaus-
sian random variables. We denote Ψκ

l the Fourier coefficients of Ψκ i.e. Ψκ
l = 〈Ψκ, el〉; combining

(10) with Plancherel’s identity we obtain
∫

T
fΨ̄κ =

∑

l

flΨ̄
κ
l =

∑

l

(hl

gl

)

Ψ̄κ
l . (12)

Noting that Ψ̄κ = Ψκ, one can recover wavelet coefficients

βκ =

∫

T
fΨκ =

∑

l

(hl

gl

)

Ψ̄κ
l . (13)

Here gl and Ψκ
l are known Fourier coefficients but the hl’s are not directly observable; in (11)

we take yl as an (unbiased) estimator of hl and let

β̂κ =
∑

l

(yl

gl

)

Ψ̄κ
l (14)

be our estimator of βκ which can be computed from the observations (1). Of course, an estimator
α̂κ of ακ is defined in a similar fashion with Φ in place of Ψ.

3.2 Optimal tuning

Given some estimated coefficients α̂κ, β̂κ, the wavelet-based estimator (9) requires only three
input parameters: j0, j1 and λ; a fine tuning is required, however. This is particularly important
for the threshold parameter λ and the high frequency cut-off j1. Asymptotic minimax theory is
used to derive optimal choice of tuning parameters. For example, in direct estimation problems
Donoho et al. (1995) have shown that the following tuning was the ’best-possible’:

λj := λn = σ̂
√

(2 log n)/n (15)
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where σ̂ is an estimated scale from the data and

2j1 = O(log(n)/n). (16)

For deconvolution problems (1) we will use wavelet based estimator (9) with coefficients (14).
Our main result (proposition 1, section 4.1) states that the following tuning is the ’best-possible’
for a wide variety of target function (section 2.3)

λj := λn,j = η σ̂ τj
√

(log n)/n (17)

and
2j1 = O

(

(n/ log n)1/(1+2ν)
)

. (18)

where τj is a level-by-level scale which depends on the function g and η is a constant. Let |Cj |
denote the cardinal of Cj = {l : Ψκ

l 6= 0} and take

τ2
j = |Cj |−1

∑

Cj

g−2
l . (19)
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Figure 5: The WaveD-method. From top to bottom: Deconvolution of lidar signal of figure 3 (g =Box-
Car) in low-medium-high noise. Left panels: estimated wavelet coefficients (13). Middle panels estimated
wavelet coefficients (13) after shrinkage (17); right panels: reconstructed lidar signal.

3.3 The WaveD-method

We summarise the main steps of our Wavelet-Deconvolution procedure which are illustrated in
Figure 5. Here and in the sequel of the paper we refer to this method as the WaveD-method.

(a) Compute Fourier coefficients yl, gl,Ψ
κ
l and recover wavelet coefficients (14), see left panels

of Figure 5.

(b) Compute an estimate of the noise standard deviation, σ̂ say . For direct data, a commonly
used estimator is found in Donoho et al. (1995); here we applied this method to the set
of wavelet coefficients 〈Yn(dt),ΨJ,k〉, where J is the largest accessible resolution level.
Combining this with gl and (19) we compute the threshold λj := λn,j as shown in (17).
Note that for the Meyer wavelet we have |Cj | = 4π 2j . Numerical results for j = 5, 6, 7
and η = 1 are given in Table 1.
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Table 1: Level-by-level thresholds λj defined by (17) with η = 1 for different noise levels (Indicated in
brackets are the percentage of shrinked coefficients at the corresponding resolution level).

Noise level σ̂ j = 5 j = 6 j = 7

Low : sd = 0.002 0.0019 0.0018 (%12) 0.0106 (%79) 0.0118 (%100)
Medium : sd = 0.002 0.0185 0.0180 (%62) 0.1031(%100) 0.1146 (%100)

High : sd = 0.2 0.1898 0.1846 (%100) 1.0578 (%100) 1.1753 (%100)

(d) Apply thresholding |βκ| > λj, see middle panels of Figure 5. Finally, invert the wavelet
transform to obtain an estimate of f , see right panels of figure 5.

All computations were carried on the wavelab package on MATLAB, see Buckheit et al. (1995).
For information on the Meyer toolbox we refer to Kolaczyk (1993).

3.4 Competing approaches

Wiener filter Regularised Deconvolution (WiRD) is a commonly used method to recover
a function f from noisy-blurred observations (1). Denoting Fh the Fourier transform of the
function h, the WiRD-estimator of f is defined in the Fourier domain :

fα(ω) := Gα(ω)FY (ω) (20)

where

Gα(ω) :=
( 1

Fg(ω)

) |Fg(ω)|2|FW (ω)|2
|Fg(ω)|2|Fz(ω)|2 + ασ2

. (21)

Then we take f̂α = F−1(fα) as an estimator of f . Here α is a regularisation parameter
which balances noise suppression with signal distortion, see Galatsanos & Katsaggelos (1992).
Small values of α give an unbiased but noisy estimate whereas large values of α suppress the
noise but also distort the signal. For α = 1, this corresponds a Linear Time Invariant Wiener
Filter which is known to be optimal, in L2, provided that the input signal f is stationary in a
wide sense, see e.g. Jain (1989).

Table 2: Monte-Carlo approximations to E‖f̂ − f‖p
p. The results are based on 1000 independent simu-

lations of the model (1) with n = 2048 as in Figure 3 (box-car blurring). (?) for sd = 0.2 we reported
median values as both WiRD and WaRD means were highly affected by some very large values.

sd Method p = 1.05 p = 2 p = 5

0.002 WaveD 0.0301 0.0037 0.0002
0.002 WiRD 0.0441 0.0058 0.0002
0.002 WaRD 0.0383 0.0080 0.0005

0.02 WaveD 0.0761 0.0143 0.0007
0.02 WiRD 0.1502 0.0593 0.0219
0.02 WaRD 0.0870 0.0232 0.0206

0.2? WaveD 0.1643 0.0730 0.0316
0.2? WiRD 0.5648 0.4935 0.9829
0.2? WaRD 0.7563 0.8710 3.48
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Wavelet Regularised Deconvolution (WaRD) is an hybrid Fourier/Wavelet deconvolution
method, see Neelamani et al. (2000). The method is to first apply Wiener Filtering (20) deriving
an estimator f̂α of f . In a second step, one further smooth f̂α using direct wavelet thresholding
(9) as in Donoho et al. (1995). Here too α plays the role of a regularisation parameter which
balances noise level and signal distortion. The motivation behind WaRD is to remove the
remaining noise in a WiRD estimator. For typical non-homogeneous signals such as in Figure
1, the WaRD estimator has better visual quality and often a smaller mean square error than a
WiRD estimator.

3.5 Numerical performances

We compared the WaveD method to the WiRD and WaRD methods in an extensive simulation
study. Performances were recorded with respect to various Lp-metrics for different noise levels.
For each combination of noise level and Lp-metric we computed the Monte-Carlo approximation
to E‖f̂ − f‖p

p. For each simulation, the regularisation parameters α1 and α2 (of the WiRD
and WaRD method respectively) were chosen numerically to minimise the observed error i.e.
α̂ = arg minα∈(0,1000)

∑

i |f̂α(i/n) − f(i/n)|p. Of course, this is only possible when knowing
the target function f (in practice one could only approximate such a value). We used several
functions f, g and different sample sizes from n = 256 to n = 2048. We observed a pattern
similar to that of Table 2 where we summarised the results we obtained for the lidar example.
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Figure 6: From top to bottom: WaveD-WiRD-WaRD estimator; from left to right low (sd=0.002)-
medium (sd=0.02) -high (sd=0.2) noise level.

Comment on the results. The visual superiority of the WaveD-method, as seen Figure 6,
is confirmed by our simulation results (Table 2). While for low noise-level all methods behave
fairly well there are striking differences in medium to high noise level in particular for metrics
with p > 2. We see that the WaveD-estimator outperformed both the WiRD and the WaRD
methods in all cases but one. These are quite promising results given that the WaveD-method
does not required any choice of regularisation parameter. As seen in Table 1, the fraction of
shrinked coefficients automatically adjust to the noise level: for low noise level some wavelet
coefficients are kept up-to resolution j = 6 whereas for high noise level all wavelet coefficients
above j0 = 5 are shrinked resulting in a linear wavelet filter. In other words, the WaveD-method
provides an adaptive-non-linear-wavelet-filter which, unlike Wiener-Filtering, preserves sharp
features in the original signal while suppressing high level of noise.
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4 Asymptotic theory

4.1 Near optimality for a wide range of smoothness classes

The following proposition states the near optimal properties (up to logarithmic factors) of our
procedure. We refer to section 1 for assumptions (A1) and (A2).

Proposition 1. Suppose that we observe the random process (1) under assumptions (A1) or
(A2). Let p > 1 be an arbitrary number. If f belongs to Bs

π,r(T ) with π ≥ 1, s ≥ 1/π and

0 < r ≤ max( p(2ν+1)
2(ν+s)+1 ,

(2ν+1)p−2
2(s+ν)−2/π+1 ) then, for η large enough the wavelet based estimator (9)

with threshold (17) and maximum level (18), is such that :

E‖f̂ − f‖p
p ≤ C[n−1 log(n)]α, (22)

α =
2sp

1 + 2(ν + s)
, if s ≥ (2ν + 1)(

p

2π
− 1

2
) (23)

and

α =
2(s− 1/π + 1/p)p

1 + 2(ν + s− 1/π)
, if

1

π
− 1

2
− ν ≤ s < (2ν + 1)(

p

2π
− 1

2
). (24)

Remarks 1. There is an elbow in the rate at s = (2ν + 1)( p
2π − 1

2). ’Elbow’ phenomenon are
commonly observed for direct models; recently such effects have been observed in a deconvolu-
tion problem, see Johnstone & Raimondo (2002). We notice that the rates in the dense (23) and
sparse (24) cases are very comparable to those observed in the direct case, with the additional
presence of the parameter ν sometimes referred as the Degree of Ill-Posedness.

2. Concerning the rate for p = 2 and under assumption (A1), let us mention results similar
to (23) obtained by Pensky & Vidakovic (1999), Fan & Koo (2002) in the context of deconvo-
lution in a density model. Indeed, up-to-log factors, such results can not be improved by any
estimators.

3. Under assumption (A2) our result extends that of Johnstone & Raimondo (2002). It provides
an adaptive estimator which is near-optimal in various Lp-metrics.

4. Interestingly enough the implementation of our method bears elementary differences from
traditional wavelet estimators used in the direct case Donoho et al. (1995) or in the indirect
case Fan & Koo (2002). Particular features include: (a) the use of band-limited wavelets which
renders possible the computation of coefficients in the Fourier domain where the wavelets are
compactly supported; (b) the finest resolution level j1 depends on the Degree of Ill-Posedness
of the problem, see condition (18); (c) level-by-level thresholds depend on the system response
function g (and the wavelet) which allows fine tuning even for box-car deconvolution.

5. In practice, we used the threshold (17) with η = 1 which gave good results in our simulation
study. Small variation in the choice of η did not affect our results. As for the finest resolution j1,
we used a data-driven method: we took j1 to be first level j with %100 of shrinked coefficients.
For example in our simulation study this would corresponds to j1 = 5, 6 or 7 depending on the
level of noise (Note that these are smaller values than those used the in the direct case). This
is consistent with our condition (18) which suggests a smaller j1 for ill-posed problems. Since,
in every cases, the optimal level (i.e. the level where bias and stochastic terms are balanced) is
always smaller than j1, introducing unnecessary levels of resolution can only induce instability
in the estimator. This was confirmed by poorer numerical performances when we tested the
method with larger values of j1.
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4.2 The Maxiset-approach

Near-optimal properties of our proposal are direct applications of the following theorem bor-
rowed from Kerkyacharian & Picard (2000). This theorem gives the ’Maxiset’ (condition (29))
for a general wavelet estimator of the form (28). It will be applied directly to our procedure as
outlined in section 5. We refer to the appendix for condition (54) (known as the Temlyakov prop-
erty). First, we introduce some notation: µ will denote the measure such that for j ∈ N, k ∈ Z,

µ{(j, k)} = ‖σjΨj,k‖p
p = σp

j 2
j( p

2
−1)‖Ψ‖p

p

lq,∞(µ) =

{

f, sup
λ>0

λqµ{(j, k)/ |βj,k| > σjλ} <∞
}

Theorem 1. Let p > 1, 0 < q < p, { ψj,k, j ≥ −1, k ∈ N} be a periodised wavelet basis of L2(T )
and σj be a positive sequence such that the heteroscedastic basis σjψj,k satisfies property (54).
Suppose that Λn is a set a pairs (j, k) and cn is a deterministic sequence tending to zero with

sup
n

µ{Λn} cpn <∞. (25)

If for any pair κ = (j, k) ∈ Λn, we have

E|β̂κ − βκ|2p ≤ C (σj cn)2p (26)

P
(

|β̂κ − βκ| ≥ η σj cn/2
)

≤ C (c2p
n ∧ c4n) (27)

for some positive constants η and C then, the wavelet based estimator

f̂n =
∑

κ∈Λn

β̂κ ψκ I{|β̂κ| ≥ η σj cn} (28)

is such that, for all positive integers n,

E‖f̂n − f‖p
p ≤ C cp−q

n ,

if and only if :

f ∈ lq,∞(µ), and,

(29)

sup
n
cq−p
n ‖ f −

∑

κ∈Λn

βκψκ‖p
p <∞.

Remarks 1. Through condition (29) and in the light of section 2.3 the theorem gives the
’Maxiset’ of the method i.e. the set of functions where the method attains a given rate of
convergence. This way of measuring the performances of statistical procedures has been par-
ticularly successful in the non-parametric framework. It has often the advantage of giving less
arbitrary and pessimistic comparisons of procedures than the minimax approach.

2. We will prove (see section 6.1) that the Besov spaces Bs
π,r(T ) are included in the Maxiset

defined in (29) for the rate given in (22). In particular, we have :

‖f −
∑

κ∈Λn

βκΨκ‖p � ‖f − PVj1
f‖p (30)

where PVj1
denotes the projection on the space Vj1 of the multi-resolution analysis associated

to the wavelet basis. In this case it appears more clearly that the second part of (29) is in fact
directly linked to the well-known belonging of a standard Besov space. This part is responsible
of the condition s ≥ 1/π in the assumptions of proposition 1.
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5 Proofs

Outline of the proof of proposition 1. We will prove that proposition 1 follows from Theorem
1. For this purpose, we will consider the wavelet based estimator (9) with threshold (17) and
maximum level (18), that is to say

Λn = {(j, k), −1 ≤ j ≤ j1, 0 ≤ k ≤ 2j}, cn =

(

log n

n

)1/2

, 2j1 = O
( n

log n

)
1

1+2ν
. (31)

In this setting, and under assumptions (A1) and (A2), we will prove the following claims :

(C1): Inequalities (26) and (27) hold with σj = τj as in (19) and η large enough.

(C2): The basis (σjΨj,k) satisfies condition (54) (see section 6.2) as soon as there exists a
constant C, such that for any finite subset Λ of N :

∑

j∈Λ

2jσ2
j ≤ C supj∈Λ 2jσ2

j if 2 < p <∞ (32)

∑

j∈Λ

2jp/2σp
j ≤ C supj∈Λ 2jp/2σp

j if 1 < p < 2 (33)

Note also that for p = 2 condition (54) holds without any condition on σj.

(C3): If we take σj = τj as defined by (19) then conditions (32) and (33) are satisfied.

(C4): The condition (25) is verified as soon as we have σj � C2jν.

Assuming claims (C1),...,(C4) we see that theorem 1 applies to the wavelet based estimator
(9) with the setting (31). This combined with remarks following theorem 1 proves proposition
1. To complete the proof we shall now prove the claims.

Proof. (C1): First, we derive the bias and variance of β̂κ. Taking expectation in (11) we have

E β̂κ =
∑

l

(hl

gl

)

Ψκ
l = βκ (34)

Varβ̂κ = E
(

∑

l

(yl − hl

gl

)

Ψκ
l

)2
= E

(

n−1/2
∑

l

(zl
gl

)

Ψκ
l

)2
= n−1

∑

l

(Ψκ
l

gl

)2
. (35)

Note that Cj = {l : Ψκ
l 6= 0} and that |Ψκ

l | ≤ C 2−j/2 :

Varβ̂κ ≤ C n−1 2−j
∑

l∈Cj

( 1

gl

)2
.

Hence recalling the notation (19), we have :

Varβ̂κ ≤ C ′ n−1 τ2
j . (36)

As the β̂κ’s are Gaussian :
E|β̂κ − βκ|2p ≤ C2p[Varβ̂κ]p/2 (37)

12



which combined with (36)

E|β̂κ − βκ|2p ≤ c2

(τ2
j

n

)p/2
(38)

where c2 = C ′p/2C2p; hence proving inequality (26). As again, the β̂κ’s are Gaussian

P
(

|β̂κ − βκ| ≥ ησjcn

)

≤ 2

ηcn
exp

(

−2η2 log n

2C

)

Hence for η = ηγ large enough, we have, for any γ > 0

P
(

|β̂κ − βκ| ≥ λj

)

≤ c2n
−γ (39)

which proves inequality (27).

Proof. (C2): This is a direct application of theorem 2 (see appendix).

Proof. (C3): Clearly condition (32),(33) will be true will be true for any σj of the form 2jν . We
shall prove that for σj = τj as in (19) the latter condition holds. Recall that

τ2
j = |Cj |−1

∑

Cj

g−2
l .

Here Ψ is band-limited hence Cj = {l : 2j ≤ |l| ≤ 2j+r}, for some fixed r > 0. To simplify the
exposition we shall further assume that Cj = {l : 2j ≤ l ≤ 2j+r}; noting that, by symmetry,
bounds below hold for negative values of l too. Under assumption (A1): gl ∼ C|l|ν ,

τ2
j = |Cj |−1

2j+r
∑

l=2j

l2ν � 2−j2j(2ν+1) � 22jν , (40)

which proves (C3) under (A1). The proof under (A2) is a little bit more evolved as for the
box-car function the Fourier coefficients are given by

gl =
sinπla

πla
(41)

The behaviour of (41) is driven by Diophantine approximation

||la|| := inf{|la− p|, p ∈ N} , l = 1, 2, . . . (42)

where ‖x‖ denote the distance from x ∈ R to the nearest integer. Indeed, combining the periodic
behaviour of the sine function together with a first order (linear) approximation, we find

2

π

‖la‖
la

≤ gl ≤
‖la‖
la

. (43)

Although gl, l = 1, 2, .. behave in an erratic fashion (see Figure 2), the average behaviour is
much less susceptible to fluctuation and we shall prove that

τ2
j = |Cj|−1

2j+r
∑

l=2j

g−2
l � 23jν . (44)

Result (44) follows from (43) and the following lemma (see Johnstone & Raimondo (2002)). We
refer to the appendix for the notion of BA number.
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Lemma 1. Let p/q and p′/q′ be successive principal convergents in the continued fraction
expansion of a real number a. Let N be a non-negative integer with N + q < q ′. Then, for BA
number a,

N+q
∑

l=N+1

‖la‖−2 � q2 (45)

Starting at (19) and using (43), we see that

τ2
j � 2−j

∑

l∈Cj

( l

‖la‖
)2

� 2−j 22j
∑

l∈Cj

‖la‖−2 � 2j
∑

l∈Cj

‖la‖−2. (46)

Let m be the smallest index such that qm ≥ 2j . Recall that r is fixed and that Cj = {l :
2j ≤ l ≤ 2j+r}. The geometric growth of the denominators qn (compare (60)) implies that
qm+2r ≥ 2rqm > 2j+r, so that

Cj ⊂ N ∩ [1, qm+2r).

Introduce intervals D0 = N ∩ [1, qm) and Dτ = N ∩ [qm+τ−1, qm+τ ) for τ = 1, . . . , 2r which
together cover Cj . Since a is BA, there is an integer K = K(a) such that qn+1 ≤ Kqn for all n.
Hence there are at most K disjoint blocks of length qm+τ that cover Dτ . Apply Lemma 1 to
each of these blocks:

∑

l∈Dτ

‖la‖−2 � q2m+τ , 0 ≤ τ ≤ 2r − 1.

Since qm+τ ≤ Kτqm, we combine over τ to get

∑

l∈D1

‖la‖−2 ≤
∑

l∈Cj

‖la‖−2 ≤
2r−1
∑

τ=0

∑

l∈Dτ

‖la‖−2 ≤ Cq2
m

2r−1
∑

τ=0

Kτ+1.

Combining this with (46) and noting that qm ≤ Kqm−1 ≤ K2j, we recover (44):

τ2
j � 2j (2j)2 � 23j .

Proof. (C4): Since ν > 0, in the case where σj � C2jν we have

2j1

j1
∑

j=0

2jνp2j(p/2−1) � 2j1(νp+p/2).

Notice that for p > 1, pν + p/2 > 1 is equivalent to ν > 1/p− 1/2. Now by definition (18) of j1

2j1
p

2
(2ν+1) � c−p

n � (
n

log n
)p/2

which proves (25).
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6 Appendix

6.1 Embedding of Besov spaces

Our aim here is to investigate which particular periodic Besov space may be embedded in the
spaces lq,∞(µ) as well as imply the condition :

sup
n

cq−p
n ‖f −

∑

(j,k)∈Λn

βj,kΨj,k‖p
p <∞. (47)

Let us remind that we will concentrate on the case where

µ(j, k) = τp
j 2j(p/2−1), τj = 2jν , 2j1 =

( n

log n

)
1

2ν+1

, cn =
( log n

n

)1/2
.

First, we observe that (47) will be satisfied when f belongs to B
(ν+1/2)(1−q/p)
p,∞ (T ). Hence, we

only need to prove that Bs
π,r(T ) is included in the latter. To this aim we will use two types of

Besov embeddings, setting appropriate conditions on s, π, r and q :

• In the periodic setting, we have :

Bs
π,r(T ) ⊂ Bs

ρ,r(T ), if 0 < ρ ≤ π. (48)

• In the general case, we have the standard ’Sobolev embeddings’ :

Bs
π,r(T ) ⊂ Bσ′

ρ,r(T ), if ρ > π, and s− 1/π = σ′ − 1/ρ. (49)

To prove (47), we are interested in taking ρ = p. Hence for the case p ≤ π, we need to prove
(since s > 0 implies that only the dense case (23) can occur) that s ≥ (ν + 1/2)(1 − q/p) =
(ν + 1/2)2s/(1 + 2ν + 2s) (since, 1 − q/p = 2s/(1 + 2ν + 2s)). This is always true for s > 0.

For the case, p > π, we have to prove in the dense case (23) that σ ′ ≥ (ν+1/2)2s/(1+2ν+2s).
This is equivalent to 2s(σ′) + (1 + 2ν)(1/p − 1/π) ≥ 0. But in this case the left hand side is
greater than (1 + 2ν)(p/π − 1)(s − 1/π) ≥ 0. In the sparse case (24), we have to check that :
σ′ ≥ (2ν + 1)s′/(1 + 2ν + 2s′), but this is equivalent to (2ν + 1)p/[(2ν + 1)p− 2 + 2pσ ′] ≤ 1 or
s ≥ 1/π.

Now let us turn to the problem of embedding a particular space Bs
π,r(T ) into lq,∞(µ). First let

us mention that we will simplify the problem by considering the embedding into

lq(µ) = {f =
∑

jk

(
|βj,k|
τj

)qµ(j, k) <∞}.

Using Markov inequality : lq(µ) ⊂ lq,∞(µ). We observe that in the case where

s = (2ν + 1)(
p

2q
− 1

2
) (50)

we have
lq(µ) = Bs

q,q(T ).

Hence deriving the advertised rate of convergence since here p− q = 2sp
1+2(ν+s) .

It remains to study the more intricated cases where we have not π = r = q.
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Proposition 2. 1. Let q be defined by the relation (50), if 0 < r ≤ q and

s ≥ (2ν + 1)(
p

2π
− 1

2
) (51)

then
Bs

π,r(T ) ↪→ lq(µ) = Bs
q,q(T ).

2. Let q be defined by

p− q =
2s′p

1 + 2(ν + s′)
, s′ =

s− 1/π + 1/p

1 − 2/[(2ν + 1)p]
(52)

if 0 < r ≤ q and
1

π
− 1

2
− ν < s < (2ν + 1)(

p

2π
− 1

2
) (53)

then
Bs

π,r(T ) ↪→ lq(µ) = Bs′

q,q(T ).

Remark. The case (53) implies that

p >
2

1 + 2ν

For ν ≥ 1/2 this not a restriction, since we are considering 1 < p < ∞. Moreover, in this case
the first member of the inequality (53) is always true if we deal with 1 ≤ π, as 1

π − 1
2 − ν ≤ 0.

Proof. We have :

∑

j,k

(
|βj,k|
τj

)qµ(j, k) =
∑

j,k

(
|βj,k|
τj

)qτp
j 2j(p/2−1) =

∑

j,k

|βj,k|qτp−q
j 2j(p/2−1) =

∑

j,k

|βj,k|q2j((ν+1/2)p−νq−1)

recalling that q has been chosen in such a way that

lq(µ) = Bs
q,q(T ),

and using (8), we obtain the following characterisation of Bs
q,q(T ) :

∑

j,k

|βj,k|q2j(s+1/2)q−1 <∞.

We will now use embeddings (48) and (49) taking ρ = q :

1. If s ≥ (2ν + 1)( p
2π − 1

2), r ≤ q we have q ≤ π, hence using (48) :

Bs
π,r(T ) ↪→ lq(µ) = Bs

q,q(T )

(Let us observe in addition that p > q ⇐⇒ s > 0.)

2. If s < (2ν+1)( p
2π − 1

2), r ≤ q we will use (49) to find an embedding with a different order
of smoothness. This explains the our definition of q. Solving

s− 1

π
= s′ − 1

q
, s′ = (2ν + 1)(

p

2q
− 1

2
), π < q.

and using (49) gives :
Bs

π,r(T ) ↪→ Bs′
q,q(T ) = lq(µ).

We now have to check that p > q, but this is equivalent to : 1
π − 1

2 − ν < s.
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6.2 Temlyakov inequalities

Let us recall the Temlyakov property for a basis en(x) in Lp is the following : there exists
absolute constants c, C such that for all Λ ⊂ N,

c
∑

n∈Λ

∫

|en(x)|pdµ ≤
∫

(
∑

n∈Λ

|en(x)|2)p/2dµ ≤ C
∑

n∈Λ

∫

|en(x)|pdµ

or, equivalently :

c′‖(
∑

n∈Λ

|en(x)|p)1/p‖p ≤ ‖(
∑

n∈Λ

|en(x)|2)1/2‖p ≤ C ′‖(
∑

n∈Λ

|en(x)|p)1/p‖p (54)

Obviously the left hand side is always true for p ≥ 2 with c = 1, whereas the right hand
side is always true for p ≤ 2 with C = 1. In this section, we will prove the following result :

Theorem 2. Let φ be a scaling function of a multi-resolution analysis and ψ the associated
wavelet. Let us assume that

|φ(x)| + |ψ(x)| ≤ C

1 + |x|
If there exists a constant C <∞, such that for all A ⊂ N

(

∑

j∈A

(2j/2σj)
p∧2

)
1

p∧2 ≤ C ′
(

∑

j∈A

(2j/2σj)
p∨2

)
1

p∨2

(55)

then the weighted wavelet basis {σj2
j/2ψ(2jx − k) j ∈ N, k ∈ Z} ∪ {σ0φ(x − k)k ∈ Z} satisfies

Temlyakov property.

Proof. We start by proving the theorem for the Haar basis. Introducing the weighted Haar
basis (σj2

j/2hκ) where as usual hκ(x) = hj,k(x) = h(2jx− k), h(x) = 1[0,1](2x)− 1[0,1](2x− 1).

Let us suppose first that p < 2 and there exists C <∞, such that for all A ⊂ N,

(

∑

j∈A

(2j/2σj)
2
)1/2

≤ C
(

∑

j∈A

(2j/2σj)
p
)1/p

. (56)

Typically this is true when σj = 2jν . If (56) is true, we have for all Λ ⊂ N× Z, point-wise :

(

∑

κ∈Λ

|σj2
j/2hκ(x)|2

)1/2
≤ C

(

∑

κ∈Λ

|σj2
j/2hκ(x)|p

)1/p

so in this case
‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|2)1/2‖p ≤ C‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|p)1/p‖p.

Using (56) for p ≤ 2,

‖(
∑

κ∈Λ

|σj2
j/2hκ(x)|p)1/p‖p ≤ ‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|2)1/2‖p ≤ C‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|p)1/p‖p

Now we suppose that p > 2 and that there exists C ′ <∞, such that for all A ⊂ N,

(

∑

j∈A

(2j/2σj)
p
)1/p

≤ C ′
(

∑

j∈A

(2jp/2σj)
2
)1/2

. (57)
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then again we have point-wise, for all Λ ⊂ N× Z :
(

∑

κ∈Λ

|σj2
j/2hκ(x)|p

)1/p
≤ C ′

(

∑

κ∈Λ

|σj2
j/2hκ(x)|2

)1/2

so in this case
‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|p)1/p‖p ≤ C‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|2)1/2‖p

using (57) for p > 2 :

1

C ′
‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|p)1/p‖p ≤ ‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|2)1/2‖p ≤ ‖(

∑

κ∈Λ

|σj2
j/2hκ(x)|p)1/p‖p.

Now we will extend this result to a general wavelet using the Transfer lemma (below). For
any locally measurable function let us recall the definition of the Hardy-Littlewood maximal
function, let I denote an interval of R and |I| its Lebesgue measure, for all x ∈ R,

f∗(x) = sup
I,x∈I

1

|I|

∫

I
|f(y)|dy.

Lemma 2. (Transfer) Let us consider two sequences of functions (fn(x))n∈N, and (en(x))n∈N.
Suppose that the sequence (fn(x))n∈N satisfies the Temlyakov property and that there exists
A <∞ such that for all n ∈ N

|fn(x)| ≤ Ae∗n(x) a.e. and |en(x)| ≤ Af ∗n(x) a.e.

Then the sequence (en(x))n∈N satisfies also the Temlyakov property.

Theorem 2 follows from the lemma since for f = 1[0,1], f∗(x) � c(1 ∧ 1
|x|), and obviously,

for all x ∈ R, |f(x)| ≤ f ∗(x). Combining this with the assumption of theorem 2 we have
|ψ(x)| ≤ Ch∗(x) and |h(x)| ≤ Cψ∗(x).

To complete the proof we derive the lemma.

Proof. The key tool for deriving the Transfer lemma is the Fefferman-Stein inequality : for all
1 < p <∞, 1 < q ≤ ∞ there exists Cp,q <∞, such that

‖(
∑

n

|fn(x)|q)1/q‖p ≤ ‖(
∑

n

(f∗n)q(x))1/q‖p ≤ Cp,q‖(
∑

n

|fn(x)|q)1/q‖p.

Using our assumption and the previous inequality we have for all 1 < q ≤ ∞ and for all Λ ⊂ N

‖(
∑

n∈Λ

|fn(x)|q)1/q‖p ≤ A‖(
∑

n∈Λ

|e∗n(x)|q)1/q‖p ≤ ACp,q‖(
∑

n∈Λ

|en(x)|q)1/q‖p

≤ A2Cp,q‖(
∑

n∈Λ

|f∗n(x)|q)1/q‖p ≤ A2C2
p,q‖(

∑

n∈Λ

|fn(x)|q)1/q‖p

So for all 1 < q ≤ ∞
‖(

∑

n∈Λ

|fn(x)|q)1/q‖p � ‖(
∑

n∈Λ

|en(x)|q)1/q‖p

So using the previous computation for q = 2 and q = p, we have

‖(
∑

n∈Λ

|fn(x)|p)1/p‖p � ‖(
∑

n∈Λ

|fn(x)|2)1/2‖p

and so
‖(

∑

n∈Λ

|en(x)|p)1/p‖p � ‖(
∑

n∈Λ

|en(x)|2)1/2‖p
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6.3 Diophantine approximation

We recall some basic properties of continued fractions, referring to Lang (1966) and Khinchin
(1992) ([L] and [K] respectively, below) for further details. Any real number a that is not an
integer may be uniquely determined by its continued fraction expansion

a = [a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+ 1

a3+...

where a0 is an integer and a1, a2, . . . are strictly positive integers. The convergents pk(a)/qk(a),
k = 0, 1, ... of a are those rational numbers whose continued fraction expansion terminate at
stage k, thus p0/q0 = a0, p1/q1 = a0 + 1/a1, p2/q2 = a0 + 1/(a1 + 1/a2), and so on. The
convergents have the property of Best approximation: for n ≥ 1,

inf
1≤k≤qn

||ka|| = |qna− pn| = ||qna||, (58)

We recall the law of formation of the convergents:

qn = anqn−1 + qn−2 , pn = anpn−1 + pn−2

from which follow some basic properties of the convergents of all irrational numbers a:

(i) The denominators qn grow at least geometrically:

qn+i ≥ 2(i−1)/2qi, i = 2k + 1, k > 0 (59)

qn+i ≥ 2i/2qi, i = 2k, k > 0 (60)

(ii) For all n ≥ 0, an < qn/qn−1 ≤ an + 1

We say that an irrational number a is Badly Approximable (BA) if supn an(a) < ∞. The set
of all BA’s contains quadratic irrationals (e.g.

√
5).
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