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Abstract

We present non linear wavelet methods to compute simultaneous confidence intervals for f(x)
when f is a functional parameter issued from a non parametric model. The levels of the intervals
are at least γ, and we prove that they achieve the minimum diameter up to a logarithmic term. The
procedure is data-driven and the adaptation is made via the Lepski’s algorithm.

1 Introduction

To study the problem of computing confidence intervals, the statistician has to deal with the following
two choices:

• Either he searches for a confidence interval with an exact level γ which minimizes the coverage
error,

• or he searches for the shortest interval of level at least γ.

In the statistical literature, both points of view have been studied in the non parametric framework. For
the first point, in the case of the problem of pointwise confidence intervals, see (among many others) Hall
(1992a, 1992b), Neumann, (1995), Picard and Tribouley (2000), Tribouley (1999). These methods require
good approximations of the empirical repartition function of the considered estimators and, consequently,
are difficult to generalize to more complex problems, such as simultaneous confidence intervals.

In this paper, we deal with the construction of simultaneous confidence intervals. More precisely, if
[A,B] is the support of interest and γ is a confidence level, we search a collection I(x) satisfying

P (f(x) ∈ I(x),∀x ∈ [A,B]) ≥ γ, (1)

where f is a function issued from a regression model or a density model. The simultaneity is an interesting
property, for instance when some information on the shape of f is desired (for example, monotonicity,
maxima or minima). Moreover, it provides some knowledge on the variance of the local estimation (see
for example, Härdle and Marron, (1990)). Let us remark that our aim is not to control in probability
the quantity ‖f̂ − f‖∞ (f̂ is an estimator of f) because our simultaneous confidence intervals may have
a diameter varying with the position x. For confidence L∞balls, you may see Loader and Sun (1994)
for the linear regression model, and for confidence L2 balls, Iouditski and Lacroix-Lambert (2000), and
Hoffmann and Lepskii (2002).

Adopting the second point of view, Hall and Titterington (1988) build simultaneous confidence inter-
vals through a linear interpolation of pointwise confidence intervals. The discretisation scheme is such
that it is adapted to the regularity of the unknown function f . Moreover, Hall and Titterington (1988)
prove that their confidence intervals are optimal for the diameter criterion. More precisely, among the
family of considered functions (by instance C1 functions with bounded derivatives), no other procedure
can produce confidence intervals of level at least γ with a smaller diameter. The results are satisfying
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in practice, but, as it is usual for non parametric estimation, the method requires to work with regular
functions (at least C1) and with the a priori knowledge of the regularity index. This index allows them
to choose the adequate discretisation path. In addition, Hall and Titterington (1988) asks for the knowl-
edge of a bound for the first derivative of f (or of the second derivative if we are interested by second
order methods). Somehow it is the more restrictive constraint on the procedure because, in practice, the
diameter of the intervals depends strongly on this bound. Härdle and Marron (1990) adopt a similar
point of view, using bootstrap methods and assuming that f is twice differentiable.

In this paper, we propose to follow Hall and Titterington (1988), considering a wavelet basis instead
of a kind of Shauder basis. Using wavelets, for a given x, only a small number of coefficients has to be
estimated. Hence, the variance term does not explode, and this gives intervals I(x) well located in x.
Moreover, it is possible to give intervals for functions less regular than C1 functions.

The resolution level used to build the confidence intervals is fixed by a standard trade-off between
the bias term and the variance term. More precisely, we choose the multiresolution index j such that the
bias term becomes negligible with respect to the variance term. Therefore, no correction is required in
order to take the bias term into account. We minimize the variance term, which is equivalent to minimize
the diameter of the interval. An optimal confidence interval (in the sense that the order of the diameter
is equal to the optimal order given in Hall and Titterington (1988)) is then obtained. This procedure
is not yet adaptive because the smoothing index j depends on the regularity of f . Thus, we provide an
interval for which the construction does not (or only slightly) depends on the unknown function f . The
adaptation is obtained choosing the multiresolution index by Lepski’s algorithm (Lepski, (1991)). This
algorithm provides a statistic which under-estimates the optimal index. This phenomenon may have no
importance for the estimation problem, but, for some specific situations, leads to a slower estimation rate
than the optimal one. This is the case here: the diameter of the simultaneous almost adaptive confidence
intervals loses (in order) a log factor with respect to the optimal diameter given in Hall and Titterington
(1988).

In order to prove results concerning coverage and diameter, we need assumptions similar to Picard
and Tribouley (2000), and to Tribouley (1999) for the problem of the pointwise confidence interval built
according to the first point of view (minimization of the coverage error). We assess that the wavelet
coefficients of the function correctly indicate the regularity index. We quantify this adaptation capacity
thanks to a parameter ρn and our procedure depends on this parameter. Hence, our procedure is almost
adaptive since this parameter is a priori unknown.

The paper is organized as follows. In Section 2, we introduce the models and assumptions. In Section
3, we describe the construction of the simultaneous confidence intervals and we give the results about
the coverage and the diameter. In Section 4, some preliminary results are stated and the proofs of the
theorems of Section 3 are postponed to Section 5.

2 Models and Assumptions

2.1 Models and Notation

We consider the usual nonparametrical models. The Gaussian regression model is defined by

Yi = f

(
i

n

)
+ σ εi, i = 1, . . . , n

where σ > 0, and the ε’s are independent standard Gaussian variables. In the density model, X1, . . . , Xn

denote the n independent variables with common density f . For each model, the parameter of interest
is f . We suppose that f is compactly supported and, without loss of generality, we denote [0,M ] the
support (with M = 1 in the regression model). We are interested by finding confidence intervals I(x)
for any x ∈ [A,B] strictly included in [0,M ]. These confidence intervals have to be simultaneous in the
sense of (1).
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Comments

• In the regression model, the normality hypothesis is not necessary and may be replaced by an
assumption on the moments of the errors (see Picard and Tribouley, (2000)). However, this simplifies
the proofs (no Edgeworth expansion is required). Also, for the sake of simplicity, we suppose that
the variance σ2 of the errors is known. But, as usual for the regression model, it can be estimated,
with no consequence on the others results.

• The compactness and the knowledge of the support of f in the density case is a strong assumption.
However, it is not a restriction in practice since the number of data is finite and we always restrict
ourselves to the interval [minXi,maxXi].

Let N be a fixed positive constant. Let φ and ψ be a scaling function and an associated wavelet function.
We assume that these functions are compactly supported on [0, 2N − 1] and that the q-th moment of the
wavelet ψ vanishes for q = 0, . . . N . See for example the Daubechies’s wavelets (Daubechies, (1992)). For
any function h, we denote by hj,k(x) the function 2j/2h(2jx− k).

In the sequel, we use the following notations: O(un) is a quantity tn such that limn→∞ |tn|/un ≤ C
for a positive constant C and o(un) is a quantity tn such that limn→∞ |tn|/un = 0.

2.2 Estimation of f

For any j, k, the scaling and wavelet coefficients of the function f are defined respectively by

αj,k =
∫
φj,kf and βj,k =

∫
ψj,kf.

which are estimated by their empirical counterparts

α̂j,k =
1
n

n∑
i=1

φj,k(Xi) and β̂j,k =
1
n

n∑
i=1

ψj,k(Xi)

in the density model and by

α̂j,k =
1
n

n∑
i=1

φj,k(
i

n
)Yi and β̂j,k =

1
n

n∑
i=1

ψj,k(
i

n
)Yi

in the regression model. Motivated by the following expansion of f on the wavelet basis

∀j ≥ 0, ∀x, f(x) =
∑

k

αj,kφj,k(x) +
∞∑
l=j

∑
k

βl,kψl,k(x), (2)

we consider the family
j ≥ 0, f̂j(x) =

∑
k

α̂j,kφj,k(x)

of estimators of f(x).

2.3 Functional assumptions

Let us describe the class of functions we consider. Let s,M1,M2,mf be some positive real and (ρn) a
sequence of positive numbers.
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• Assumption A1(M1, s). f belongs to the space defined thanks to the wavelet coefficients by{
f, ∀j, k, |βj,k| ≤M1 2−j(s+1/2)

}
.

• Assumption A2(M2, s, ρn). Under the assumption A1(M1, s), for any n ≥ 2, there exists j between
js − ρn and js such that

∃k, |βj,k| ≥M2 2−js(s+1/2),

where js is (up to a logarithmic term) the optimal parameter for the estimation problem (the order
of 2js is (n/ log n)1/1+2s).

• Assumption A3(mf ). For any x in the interval of interest [A,B], f(x) ≥ mf .

Comments

• If s is not an integer, A1 holds for Lipschitz functions. More precisely, the functions in

Ls(M1) =
{
f : R→ R; ∀(x, y) ∈ R2, |f ([s])(x)− f ([s])(y)| ≤ cM1|x− y|α,

where s = [s] + α, 0 < α ≤ 1}

satisfy A1. The Besov norm and the Lipschitz norm are linked thanks to the constant c > 0.

• A2 is obviously satisfied for large ρn, but becomes more restricting when ρn is decreasing. The
sequence ρn gives a measure of the capacity for f to be adaptively estimated. Let us remark
that we link this capacity to the number of data n: the more data are available, the stronger the
condition can be. In the sequel, we consider functions f such that A2 holds for ρn ≤ O(log2 log n).

• A3 is required for the density model: it is a standard assumption in order to bound from below the
variance term. If A3 does not hold, we restrict the interval [A,B] of the study.

For more details about the assumptions A1, A2, we refer to Picard and Tribouley, (2000).

3 Construction of the confidence interval

3.1 Simultaneous confidence interval for the coefficients

Let us recall that N is the number of vanishing moments of the wavelet ψ and M is the length of the
support of f . We consider some index j ≥ log2((2N + 1)/M). We restrict the study to the coefficients
such that k is varying in

Kj = {0, . . . , 2jM − (2N + 1)}. (3)

At some given level j, the number of coefficients is denoted by Kj = 2jM − 2N . The expectation and
the variance of the empirical coefficients are respectively

µj,k = αj,k and σ2
j,k =

1
n

[(∫
φ2

j,kf

)
−
(∫

φj,kf

)2
]
,

for the density model, and

µj,k = αj,k + rn and σ2
j,k =

σ2

n2

n∑
i=1

φ2
j,k(

i

n
)
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for the regression model. The Riemann approximation term is given by

rn =

[
1
n

n∑
i=1

φj,k(
i

n
)f(

i

n
) −

∫
φj,kf

]
.

For the case of the density model, we estimate the variance by

σ̂2
j,k =

1
n2

n∑
i=1

φ2
j,k(Xi)−

1
n2(n− 1)

n∑
i 6=l=1

φj,k(Xi)φj,k(Xl).

Let γ ∈ [0, 1] be the minimal confidence level and dj be the sequence satisfying N (dj) = 1 − (1−γ)
2Kj

, N
being the repartition function of the standard Gaussian random variable. By the standard large deviation
theory,

dj =

√
log(

2
(1− γ)

Kj) = 0(
√

log 2j). (4)

We propose the family of confidence intervals Ij(k) = [α̃1
j,k, α̃

2
j,k] with extremities given by

α̃1
j,k = α̂j,k − djvj,k

α̃2
j,k = α̂j,k + djvj,k (5)

where the quantity v2
j,k denotes either σ2

j,k (for the regression case) or σ̂2
j,k (for the density case). These

intervals are simultaneous confidence intervals for the coefficients {(αj,k), k ∈ Kj} in the sense of the
following proposition.

Proposition 1 Let us define j0 and j∞ by

2j0 = log n, 2j∞ =
√

n

log n

for the density model and,

2j0 = n
1

1+2N , 2j∞ =
√

n

log n

for the regression model. Let j be in {j0, . . . j∞}.
For the density case, we assume that f is bounded from below on the interval [(2N−1)2−j ,M−(2N−

1)2−j ]. For the regression case, we assume that there exist s ≥ N
1+2N and M1 > 0 such that A1(M1, s)

holds. We have

P (αj,k ∈ Ij(k),∀k ∈ Kj) ≥ γ − o(1).

Comments.

• For the regression case, the choice of j0 and the condition s ≥ N
1+2N are necessary to keep the

Riemann approximation rn negligible. For the density case, the constraint on j∞ is due to the
Gaussian approximation for the law of the empirical coefficients. Similarly to the regression model,
it leads us to consider some function f at least 1/2− regular (in the sense of A1).

• We do not consider all the non zero coefficients αj,k. In particular, we do not compute the coefficients
needed to synthesize f near the extremities of its support. This implies that the simultaneous
confidence interval will be built for x belonging in [A,B] strictly nested in the support of f . The
distances needed between [A,B] and [0,M ] are given in Theorem 1 and Theorem 2.
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3.2 Simultaneous confidence interval for the function f .

Let p ≥ 1 and a > 0. Motivated by the expansion (2), we propose a family of confidence intervals

Ij(x, p) = [f̃1
j (x), f̃2

j (x)] (6)

with extremities given by

f̃1
j (x) = f̂j(x)− (1 + a)dp

j

∑
k

vj,k|φj,k(x)|

f̃2
j (x) = f̂j(x) + (1 + a)dp

j

∑
k

vj,k|φj,k(x)|

for j varying between j0 and j∞ defined in Proposition 1. Let us set the following constant

b(a) =
M2

1 (2N)3‖ψ‖2∞
a2φ(x0)2C2

v

, (7)

where Cv is the constant depending on mf given in (10) or (11) and x0 is an integer such that φ(x0) 6= 0.
We have the following results concerning the coverage probability of the simultaneous intervals.

Theorem 1 Let s > 1/2 and M1,mf > 0. We suppose A1(s,M1) holds. Moreover, for the density
model, we suppose that A3(mf ) is true. Let js be defined by

2js =
(
b(a)

n

log n

) 1
1+2s

.

Then, for any j varying between js and j∞, p = 1 and a > 0, we get

P (f(x) ∈ Ij(x, p),∀x ∈ [A,B]) ≥ γ + o(1)

as soon as
(2N − 1)

2j
≤ A < B ≤M − (2N − 1)

2j
.

Theorem 2 Let M2 > M1. We suppose in addition that A2(M2, s, ρn) holds for some ρn ≤ O(log log n).
Then, for p ≥ 1 + (1 + 2N)ρn(log2 log n)−1 and a > a0(M1,M2), if A,B verify

2N − 1
2j0

≤ A < B ≤M − 2N − 1
2j0

,

we have
P (f(x) ∈ Î(x, p),∀x ∈ [A,B]) ≥ γ + o(1)

where ̂ is computed in the following way

̂ = sup

(
j = j0, . . . j∞, ∃k ∈ Kj , |β̂j,k| ≥ T

√
log n
n

)
.

The threshold constant T satisfies T1 ≤ T ≤ T2 where

T1 =
M1

b(a)
+ 2‖ψ‖2σ

√
N,

T2 =
M2

b(a)
− 2‖ψ‖2σ

√
N,

a0(M1,M2) =
2
√
σ(2N + 1)7/4‖ψ‖3/2

∞

Cv|φ(x0)|
M1√

M2 −M1
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for the regression model and

T1 =
M1

b(a)
+
‖ψ‖∞

6

(
1 +

√
1 + 36

‖f‖∞
‖ψ‖∈fty2

)
,

T2 =
M2

b(a)
− ‖ψ‖∞

6

(
1 +

√
1 + 36

‖f‖∞
‖ψ‖∈fty2

)
,

a0(M1,M2) =

(
1 +

√
1 + 36

‖f‖∞
‖ψ‖∈fty2

)1/2

(2N + 1)3/4‖ψ‖3/2
∞√

3Cv|φ(x0)|
M1√

M2 −M1

for the density model.

Comments

• Using Proposition 1, we easily obtain a bound on the coverage probability when Ij is interpreted as a
confidence interval for the expectation of f̂j . Theorem 1 explains how to choose the multiresolution
level j such that the bias term becomes negligible and then to obtain a simultaneous confidence
interval with bounded coverage probability for f . Let us remark that in Theorem 1, the constant
a used in the construction of Ij may be chosen arbitrarily small and p = 1 is convenient.

• Contrary, in the adaptive procedure, the parameters p and a are useful because we overestimate
the bias term. We need to increase the variance term (by a constant thanks a and by a logarithmic
term thanks to p) such that the bias term becomes negligible in order.

• We determine a0 such that the constrains on the threshold constant are compatible i.e. T1 < T2.
But, in practice, we choose the quantity a as small as we wish; Theorem 2 is valid for functions
satisfying the assumptions for M1 < h(a)M2 where h is a function depending on N,φ, ψ, σ,mf , s.

Theorem 1 and Theorem 2 give a collection of simultaneous confidence intervals of level at least γ. Among
the collection, we have now to exhibit the interval with the shortest diameter (in order). We denote by
|I| the diameter of I.

Theorem 3 Under the assumptions of Theorem 1, Ijs is the shortest interval among the family of in-
tervals described above and, in the regression case

sup
x∈[A,B]

|Ijs
(x, 1)| ≤ O

(
(
n

log n
)−

s
1+2s

)
.

In the density case, the diameter is random and

lim
n,C−→+∞

P

(
inf

x∈[A,B]
|Ijs(x, 1)| ≥ C(

n

log n
)−

s
1+2s

)
= 0.

Theorem 4 Under the assumptions of Theorem 2, we have

lim
n,C−→+∞

P

(
inf

x∈[A,B]
|Î(x, p)| > C (log n)

p−1
2 (

n

log n
)−

s
1+2s

)
= 0.

Comments

• The diameters given in Theorem 3 are of the same order than the optimal diameter of Hall and
Titterington (1988). The interval Ijs

(x, 1) is then optimal among all simultaneous confidence inter-
vals of level at least γ. The (near) adaptive interval Î(x, p) is (near) optimal (up to a logarithmic
factor).

• The loss of a logarithmic factor in Theorem 3 is due to the property of simultaneity and this is
unavoidable (see Hall and Titterington, (1998)). In Theorem 4, another logarithmic factor appears,
due to the property of adaptivity.
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4 Preliminaries

4.1 Exponential inequalities

First, we recall the Bernstein inequality and next we state large deviation inequalities for the wavelet
coefficients and the random smoothing index ̂.

Lemma 1 Let Z1, . . . Zn be n independent random variables such that, for i = 1, . . . n, EZi = 0, V (Zi) =
v2 and |Zi| < +∞. Then

∀λ > 0, P (
1
n

∑
i

Zi ≥ λ) ≤ exp
(
− nλ2

2(v2 + λ/3|Z|∞)

)
.

Let us define

γ(x) = x2(8N‖ψ‖22σ2)−1 (8)

in the regression case and

γ(x) = x2(2‖f‖∞ + 2x/3‖ψ‖∞)−1 (9)

in the density case. Let us recall that js is defined by 2js =
(
bn (log n)−1

) 1
1+2s for some b > 0.

Lemma 2 In the regression model, we assume that A1(M1, s) holds for some s ≥ N/(1 + 2N) and some
M1 > 0. Let T be some positive constant. Then there exists C > 0 such that, for any δ ≤ γ(T ),

∀j ≤ log2(
n

log n
), P

(
|β̂j,k − βj,k| ≥ T

√
log n
n

)
≤ Cn−δ.

Lemma 3 Let s > 0 (s ≥ N/(1 + 2N) in the regression model) and M1 > 0. Let us assume that
A1(M1, s) holds. Then, as soon as the threshold constant T satisfies T > M1b

−1, there exists C > 0 such
that, for any δ ≤ γ(T −M1b

−1),

P (̂ ≥ js) ≤ Cn−δ

Lemma 4 Let M2 > 0 and ρn > 0. Under the same assumption as in the previous lemma and if
A2(M2, s, ρn) holds such a way that M1 < M2, then, as soon as the threshold constant T satisfies M1b

−1 <
T < M2b

−1, there exists C > 0 such that, for any δ ≤ γ(T −M1b
−1) ∧ γ(M2b

−1 − T ),

P (̂+ (1 + 2N)ρn ≤ js) ≤ Cn−δ

Proofs. The proofs are very usual in the wavelet framework. In the density model, Lemma 2 is an
application of Lemma 1. In the regression model, we first have to bound the bias term and then to apply
another kind of Bernstein inequality (see by instance Petrov, (1995), page 57). Lemma 3 and Lemma
4 are consequences of Lemma 2 and of the definition of ̂. For more detailed proofs, see Picard and
Tribouley (2000) in the regression case and Tribouley, (1999), in the density case.

4.2 Edgeworth expansion (density case)

Lemma 5 Let us denote µ(3)
j,k = E(φj,k(X)−

∫
φj,kf)3 and µ(2)

j,k = E(φj,k(X)−
∫
φj,kf)2. For all n, j > 0,

P (
αj,k − α̂j,k

σj,k
< x) = N (x)− 1√

n

µ
(3)
j,k

6(µ(2)
j,k)3/2

(x2 − 1)N ′(x) +O

(
2j

n

)
uniformly in x.
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Proof. We follow the lines of Feller, (1966): we prove a second order Edgeworth expansion and we
bound the term of second order with the evaluation of

|µ(3)
j,k| ≤ 2j/2+3‖f‖∞(‖φ‖33 + 2−2j‖φ‖31) ≤ O(2j/2),

µ
(4)
j,k ≤ 2j+4‖f‖∞(‖φ‖44 + 2−3j‖φ‖41) ≤ O(2j).

On the other hand, because f is lower bounded on [(2N − 1)2−j ,M − (2N − 1)2−j ] (say by mf ) and
because we consider only the coefficients such that k = 0, . . . , 2j−(2N−1) (hence the support of φj,k1[0,M ]

always contains the interval [0, 2N − 1]), we get

µ
(2)
j,k ≥

(
mf − 2−j‖f‖∞

)
≥ O(1). (10)

4.3 Accuracy of the variance estimation (density case)

Lemma 6 For any constant C larger than (18‖f‖∞‖φ‖44 +Cv‖φ‖∞)1/2C−1
v , there exists a positive con-

stant c not depending on C and n such that,

∀j, k, P

(
|σ̂j,k − σj,k| ≥ C

2j/2

n
(log n)1/2

)
≤ c n−1.

Proof. There exists some constant Cv (depending on mf ) such that σ2
j,k ≥ C2

vn
−1 (see the bound

(10)). Then, for any 0 < u < σj,k, we have

P (|σ̂j,k − σj,k| ≥ u) = P (
σ̂j,k

σj,k
≥ 1 +

u

σj,k
) + P (

σ̂j,k

σj,k
≤ 1− u

σj,k
)

≤ P (|σ̂2
j,k − σ2

j,k| ≥ 2uσj,k + u2) + P (|σ̂2
j,k − σ2

j,k| ≥ 2uσj,k − u2)

≤ 2P (|σ̂2
j,k − σ2

j,k| ≥
Cv u√
n

).

Let us remark that

σ̂2
j,k − σ2

j,k =
1
n2

∑
i

(
φ2

j,k(Xi)−
∫
φ2

j,kf

)
+

2
n2

∑
i

(
φj,k(Xi)

∫
φj,kf − (

∫
φj,kf)2

)
+

1
n2(n− 1)

∑
i 6=l

(φj,k(Xi)−
∫
φj,kf)(φj,k(Xl)−

∫
φj,kf)

To bound the first and second term, we apply Lemma 1 with

Zi = φ2
j,k(Xi)−

∫
φ2

j,kf, V (Zi) ≤ 2j‖f‖∞‖φ‖44, |Zi| ≤ 2j‖φ‖∞, λ =
Cvu

√
n

3

and with

Zi = φj,k(Xi)
∫
φj,kf − (

∫
φj,kf)2, V (Zi) ≤ 2−j‖f‖2∞‖φ‖1, |Zi| ≤ ‖φ‖2∞‖f‖∞, λ =

Cvu
√
n

6
.

There exist c > 0 and c′ > 0 (c = C2
v/9(2‖f‖∞‖φ |44 + Cv‖φ‖∞/9)−1) such that

P

(
1
n2

n∑
i=1

(φ2
j,k(Xi)−

∫
φ2

j,kf) ≥ Cv u

3
√
n

)
≤ exp−cn2u22−j
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and

P

(
2
n2

∑
i

(
φj,k(Xi)

∫
φj,kf − (

∫
φj,kf)2

)
≥ Cv u

3
√
n

)
≤ exp−c′n2u2.

For the last term, let us put

Zi = φj,k(Xi)−
∫
φj,kf, EZi = 0, EZ2

i ≤
∫
φ2

j,kf ≤ ‖f‖∞.

Observing that

E(
∑
i 6=l

ZiZl)2 =
∑
i 6=l

EZ2
i EZ

2
l ≤ O(n2),

and using Chebychev inequality, we deduce that,

P

 1
n2(n− 1)

∑
i 6=l

(φj,k(Xi)−
∫
φj,kf)(φj,k(Xl)−

∫
φj,kf) ≥ Cv u

3
√
n

 ≤ O(u−2n−3).

Choosing u = C2j/2
√

log nn−1 with C ≥ c−1/2 (which is possible because j ≤ j∞), we get the result.

4.4 Technical lemma

Lemma 7 Let Xn be a sequence of random variables admitting the Edgeworth expansion

P (Xn < t) = N (t) + pn(t)N ′(t) +O(un)

with some polynomials pn of bounded order with bounded coefficients. We assume that the sequence Yn

of random variables satisfies

P (|Yn| > vn) ≤ wn.

Then

P (Xn + Yn < t) = P (Xn < t) +O(un + vn + wn).

Proof. The result follows immediately from the inequalities

P (Xn < t+ vn)− P (|Yn| > vn) ≤ P (Xn + Yn < t) ≤ P (Xn < t+ vn) + P (|Yn| > vn)

and the Lipschitz equicontinuity of the functions N (t) + pn(t)N ′(t).

5 Proofs

5.1 Proof of Proposition 1

5.1.1 Regression case

Let us fix j in {j0, . . . , j∞} and k in Kj . Because the number of terms in the sum is

#{i, φj,k(
i

n
) 6= 0} = (2N − 1)n2−j ,

there exists a constant Cv such that

10



v2
j,k ≥ C2

v

1
n
. (11)

Thanks to the regularity assumption on f , we get

|rn| ≤
n∑

i=1

∫ i
n

i−1
n

∣∣∣∣φj,k(
i

n
)− φj,k(x)

∣∣∣∣ |f(x)| dx+
n∑

i=1

∫ i
n

i−1
n

∣∣∣∣f(
i

n
)− f(x)

∣∣∣∣ ∣∣∣∣φj,k(
i

n
)
∣∣∣∣ dx

≤ O

(
n−(s∧1)2−j/2 +

2j/2

n

)
(12)

which is bounded by O
(

2j/2

n

)
as soon as s ≥ N

1+2N . Combining (12) and (11), we obtain:

|rn| ≤ O

(
(
2j

n
)1/2 1

dj

dj√
n

)
= O

(
2j/2

n

)
.

Since

P

(
|µj,k − α̂j,k

σj,k
| < dj −

|rn|
σj,k

)
≤ P

(
|αj,k − α̂j,k

σj,k
| < dj

)
,

and, thanks to the definition of dj ,

P

(
|µj,k − α̂j,k

σj,k
| < dj −

|rn|
σj,k

)
≥ 1− 1− γ

Kj
− O

(
|rn|
σj,k

exp−d2
j/2
)
−O

(
j

n2

)
≥ 1− 1− γ

Kj
−O

(
(2jn)−1/2

)
,

we obtain the bound

P (Ek) ≥ 1− 1− γ

Kj
−O

(
(2jn)−1/2

)
where we set Ek = {

∣∣∣αj,k−α̂j,k

vj,k

∣∣∣ ≤ dj}. We finish the proof observing that

P (∩k∈Kj
Ek) = P (∪k∈Kj

Ek) ≥ 1−
∑

k∈Kj

P (Ek) ≥ γ − o(1).

5.1.2 Density case

Let us fix j in {j0, . . . , j∞} and k in Kj . Using Lemma 6 and Lemma 7, we obtain

P (|αj,k − α̂j,k| ≤ dj σ̂j,k) = P (|α̂j,k − αj,k| ≤ djσj,k + dj(σ̂j,k − σj,k))

= P (|αj,k − α̂j,k

σj,k
| ≤ dj) +O

(
dj

2j/2

n
(log n)1/2 + n−1 +

2j

n

)
.

Applying now Lemma 5 with |µ(3)
j,k| ≤ O(2j/2) and µ(2)

j,k ≥ O(1) (see (10)), it follows

P

(
|αj,k − α̂j,k

σj,k
| ≤ dj

)
≥ 1− 1− γ

Kj
−O

(
2j/2

√
n

exp−(d2
j/2) d2

j +
2j

n

)
.

11



and then, we conclude that

P (|αj,k − α̂j,k| ≤ dj σ̂j,k) ≥ 1− 1− γ

Kj
− 1
Kj

O(εj)

for

εj = Kj

(
2j

n

)1/2

exp−(d2
j/2) d2

j +Kj
1
n

+Kjdj
2j/2

n

√
log n+Kj

2j

n
.

Since dj = O(
√

log 2j), Kj = O(2j) and j ≤ j∞, we have εj ≤ o(1). We finish the proof as in the
regression model.

5.2 Proof of Theorem 1

Let us fix j ≥ j0 and let x be in [A,B] for A,B such that (2N − 1)2−j ≤ A < B ≤ M − (2N − 1)2−j .
Using the regularity assumption for f , we bound the bias term:

|Bj(x)| ≤ |
∑
l≥j

∑
k

βj,kψj,k(x)|

≤ M1(2N − 1)‖ψ‖∞ 2−js. (13)

On the other hand, thanks to (4) and (10), we have the following bound for the variance term

Vj(x) = dj

∑
k

vj,k|φj,k(x)|

≥ (log
2

(1− γ)
Kj)1/2 Cv√

n
2j/2 |φ(x0)|

≥ |φ(x0)|Cv

(
2j log 2j

n

)1/2

, (14)

where x0 = 2jx − k for some k chosen in {2jx − (2N − 1), . . . , 2jx} such that φ(x0) 6= 0. Note that x0

does not vary with x. We deduce from (13) and (14), that, if js is given by 2js = (b(a)n(log n)−1)1/(1+2s)

for some constant a > 0 and where b(a) is defined in (7), then for any j ≥ js, we have

|Bj(x)| ≤ aVj(x).

We apply now Proposition 1, combining with Expansion (2),

γ ≤ P (− djvj,k|φj,k(x)| ≤ (αj,k − α̂j,k)φj,k(x) ≤ djvj,k|φj,k(x)|, ∀k ∈ Kj , ∀x ∈ [A,B])

≤ P

(
− dj

∑
k

vj,k|φj,k(x)| ≤
∑

k

(αj,k − α̂j,k)φj,k(x) ≤ dj

∑
k

vj,k|φj,k(x)|, ∀x ∈ [A,B]

)
= P

(
− Vj(x) +Bj(x) + f̂j(x) ≤ Pjf(x) +Bj(x) ≤ Vj(x) +Bj(x) + f̂j(x), ∀x ∈ [A,B]

)
≤ P

(
−(1 + a) Vj(x) + f̂j(x) ≤ f(x) ≤ (1 + a)Vj(x) + f̂j(x), ∀x ∈ [A,B]

)
.

Since we can choose a arbitrary small, we get the result in the non adaptive case.

5.3 Proof of Theorem 2

We follow the same way as in the non adaptive case. In view to bound the bias term, we use the definition
of ̂ and the bound (13).

|B̂(x)| = |B̂(x)|1{̂≤js} + |B̂(x)|1{̂≥js}

12



≤
js∑
̂

∑
k

|βj,kψj,k(x)|1
{|β̂j,k|≤T

√
log n

n }
+ 2|Bjs

(x)|

≤
js∑
̂

∑
k

|βj,kψj,k(x)|1
{|βj,k|≤2T

√
log n

n }
+ 2|Bjs

(x)|

+
js∑
j0

∑
k

|βj,kψj,k(x)|1
{|β̂j,k−βj,k|≥T

√
log n

n }

≤ C

(
2js log n

n

)1/2

+ Z.

Using Markov Inequality and Lemma 2, we prove that the variable

Z =
js∑
j0

∑
k

|βj,kψj,k(x)|1
{|β̂j,k−βj,k|≥T

√
log n

n }

satisfies

P (|Z| ≥ n−δ1) ≤ nδ1E

js∑
j0

∑
k

|βj,kψj,k(x)|1
{|β̂j,k−βj,k|≥T

√
log n

n }

≤ C

js∑
j0

2−jsnδ1P

(
|β̂j,k − βj,k| ≥ T

√
log n
n

)
≤ O(n−δ2)

for any δ1 > 0 and any δ2 ≤ γ(T )− δ1 where the functional γ(.) is defined in (8) or (9). Next, we give a
lower bound for the variance term. Let us put τn = (2N + 1)ρn.

V̂(x) = dp
̂

∑
k

v̂,k|φ̂,k(x)|
(
1{̂+τn≥js} + 1{̂+τn≤js}

)
≥

(
2(js−τn)(log 2(js−τn))p

n

)1/2

1{̂≥js−τn}

≥
(

2js log n
n

)1/2(2−τn(log 2(js−τn))p

log n

)1/2

− Z̃

where

Z̃ =
(

2(js−τn)(log 2(js−τn))p

n

)1/2

1{̂+τn≤js}.

Using Markov Inequality and Lemma 2, we prove that Z̃ satisfies

P (|Z̃| ≥ n−δ̃1) ≤ nδ̃1

(
2js(log n)p

n

)1/2

P (̂+ τn ≤ js)

≤ O(n−δ̃2)

for any δ̃1 > 0 and any δ̃2 ≤ γ(T −M1b
−1) ∧ γ(M2b

−1 − T ) + 1/2 − 1/(2 + 4s) − δ̃1. If p is chosen
such that p ≥ 1 + τn(log log n)−1 then |B̂(x)| ≤ aV̂(x) + Z̃ − Z for any constant 0 < a. Choosing now
δ1 = δ̃1 = 1/2 and δ2 = δ̃2 > 0 (which is possible because of the constraint on the threshold constant T ),
we finish the proof as previously.
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5.4 Proof of Theorem 3

Let us recall that js is defined by 2js =
(
b(a) n

log n

)1/1+2s

for b(a) given in (7). In the regression case, we
have, for any j varying in {js, . . . j∞}

∀x ∈ [A,B], |Ij(x, 1)| = 2dj

∑
k

vj,k|φj,k(x)| ≤ 0
(

log(2j)
2j

n

)1/2

which is minimum in order for j = js and then

inf
j∈{js,...j∞}

sup
x∈[A,B]

|Ij(x, 1)| ≤ O

(
n

log n

)− s
1+2s

.

In the density case, we have, for any j ≥ js and p ≥ 1

∀x ∈ [A,B], |Ij(x, p)| = Z(j) + Z̃(j)

where

Z̃(j) = 2dp
j

∑
k

σj,k|φj,k(x)| and Z(j) = 2dp
j

∑
k

(σ̂j,k − σj,k)|φj,k(x)|. (15)

Let us take p = 1. We observe that, for some C > 0,

P

(
∀x ∈ [A,B], Z(j) ≥ C

(
2j log 2j

n

)1/2
)

≤ P

(
sup

k
|σ̂j,k − σj,k| ≥ C(2N − 1)−1‖φ‖−1

∞
1√
n

)
Using now Lemma 6 and since j ≤ j∞, we obtain for C large enough

P

(
inf

x∈[A,B]
|Ij(x, 1)| ≥ C

(
log 2j 2j

n

)1/2
)

≤ O(n−1),

and then, the shortest confidence interval is Ijs
(x, 1) which diameter is of the order of ( n

log n )−
s

1+2s .

5.5 Proof of Theorem 4

Let vn > 0 and C > 0. We recall that js is defined by 2js =
(
b(a) n

log n

)1/1+2s

for b(a) given in (7). Let c
be some positive constant which does not depend on n or on C and which may change from line to line.
In the regression model, we have

P

(
inf

x∈[A,B]
|Î(x, p)| ≥ C vn

)
≤ (C vn)−1 sup

x∈[A,B]

(
E|Î(x, p)|1{̂≤js} + E|Î(x, p)|1{̂>js}

)
≤ (C vn)−1c

((
log 2js

)p/2
(

2js

n

)1/2

+
(
log 2j∞

)p/2
(

2j∞

n

)1/2

P (̂ > js)

)

Using Lemma 3, there exists some δ ≤ γ(T −M1/b) (the functional γ(.) is defined in (8)) such that

P

(
inf

x∈[A,B]
|Î(x, p)| ≥ C vn

)
≤ c

C

(
1 +

(
n

log n

) s
1+2s

n−e. lta
)
.
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as soon as vn = (log n)
p−1
2 ( n

log n )−
s

1+2s . Because of our constraint on the threshold constant T , it is
possible to choose δ such that

s

1 + 2s
≤ δ ≤ γ(T − M1

b(a)
)

and we deduce that

lim
C,n−→+∞

P

(
inf

x∈[A,B]
|Î(x, p)| ≥ C vn

)
= 0.

In the density model, we split |Î| in the same way as in (15)

∀x ∈ [A,B], |Î(x, p)| = Z(̂)(1{̂+τn≤js} + 1{̂+τn≥js}) + Z̃(̂)(1{̂≥js} + 1{̂≤js}).

Obviously, we bound the last term

Z̃(̂)1{̂≤js} ≤ (2N + 1)‖φ‖∞‖f‖1/2
∞

(
2js(log 2js)p

n

)1/2

(16)

and then, vn is again of the order of (log n)
p−1
2 ( n

log n )−
s

1+2s . Using Markov Inequality and Lemma 3, we
get

P (∀x ∈ [A,B], Z̃(̂)1{̂≥js} ≥ Cvn) ≤ (Cvn)−1(2N + 1)‖φ‖∞‖f‖1/2
∞

(
2j∞(log 2j∞)p

n

)1/2

n−δ̃, (17)

for some δ̃ ≤ γ(T −M1/b(a)) (the functional γ(.) is defined in (9)). In the same way, using Lemma 4 and
bounding σ̂j,k by 2j/2n−1/2‖φ‖∞ , we get

P (∀x ∈ [A,B], Z(̂)1{̂+τn≤js} ≥ Cvn) ≤ (Cvn)−14(2N + 1)‖φ‖3/2
∞ (log 2j∞)p/2 2j∞

n1/2
n−δ, (18)

for some δ ≤ γ(T −M1/b(a)) ∧ γ(M2/b(a)− T ). For the first term, we have

P
(
∀x ∈ [A,B], Z(̂)1{̂+τn>js} ≥ Cvn

)
≤

j∞∑
j=js

P

(
sup

k
|σ̂j,k − σj,k| ≥ C

(
log 2j 2j

n2

)1/2

εj

)

for εj = vn

(
log 2js−τn

)−p/2 2−(js−τn)/2
(
log 2j 2j

n2

)−1/2

. Let us remark that the assumption s > 1/2
implies that εj ≥ 1 for any j ≤ j∞. It follows from Lemma 6 that

P (∀x ∈ [A,B], Z(̂)1{̂+τn≤js} ≥ Cvn) ≤ O

(
log n
n

)
. (19)

Since we have

P

(
inf

x∈[A,B]
|Î(x, p)| ≥ C vn

)
≤ P

(
inf

x∈[A,B]
Z(̂)1{̂+τn≤js} ≥ 3C vn − Z̃(̂)1{̂≤js}

)
+P

(
inf

x∈[A,B]
Z̃(̂)1{̂≥js} ≥ C vn

)
+ P

(
inf

x∈[A,B]
Z(̂)1{̂≥js} ≥ C vn

)
,

we combine (16), (17), (18) and (19) and we obtain the result if we can choose

s

1 + 2s
− 1

4
≤ δ̃ ≤ γ(

M2

b(a)
− T ) and

s

1 + 2s
− 1

2
≤ δ ≤ γ(T − M1

b(a)
)

which is possible under the constraint on T .
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