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Abstract

We consider a discrete model of locally regulated spatial population with mortality selec-
tion, introduced by Bolker and Pacala, [2]. We first generalize this model by adding spatial
dependence, and give a pathwise description in terms of Poisson point measures. We then
show that different renormalizations may lead to different macroscopic approximations of this
model. We consider two specific cases. The first approximation is deterministic and gives
a rigorous sense to the number density; the second one is a measure-valued process already
studied by Etheridge [5]. Finally, we study in particular cases the long time behaviour of the
system and reasonnable equilibria for the deterministic approximation.

Key words: Interacting measure-valued processes, Regulated population, Deterministic macro-
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1 Introduction

We consider a spatial ecological system with mortality selection, where individuals, similarly to
perennial plants, can reproduce, dispersing their offspring locally, and die, with a rate depending
on their local density.

An approach to study this system was introduced in Bolker-Pacala [2] and consisted in modeling
spatial interactions by deriving approximations for the time evolution of the moments (mean and
spatial covariance) of distributions of individuals.

In this paper, we give a stochastic microscopic description of systems generalizing the one intro-
duced in [2] by adding a spatial dependence in all the rates and in the interaction potential. We
prove the existence and uniqueness of such systems thanks to a pathwise representation through
Poisson point measures. The main difficulty is to take into account the mortality selection which
appears as an interaction between the individuals, at the microscopic level.

Then, we refind in the Bolker-Pacala case the mean equation they intuitively obtained and give a
rigorous sense to the covariance terms formally defined in [2].

Next, we prove how the empirical measure of such systems, conveniently renormalized, converges
to the solution of a nonlinear partial integro-differential equation and we propose this as a rigor-
ous interpretation of the density number. We also show that with another renormalization, the
empirical measure of our system converges to the superprocess version of the Bolker-Pacala model,
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introduced and studied by Etheridge [5].

Finally, we study the long time behaviour of the system in specific cases. In Section 6, we prove
the extinction of the process in a compact case, and a partial result on survival conditions. In
Section 7, we are interested in the existence of non trivial equilibria in the Bolker-Pacala case. We
firstly consider the deterministic limiting equation and show that under restrictive assumptions on
the coefficients, there is a unique reasonnable equilibrium equal to the carrying capacity. In the
specific detailed balance case, or if the initial condition is closed to the equilibrium, we prove the
convergence to this equilibrium. Finally and again under the detailed balance condition, we exhibit
a nontrivial equilibrium for the Bolker-Pacala process. We end the paper by some simulations.

2 The model

We consider a spatial ecological process where individuals can reproduce, dispersing locally their
offspring and die, with rates depending on the position of each individual and on their local density.
These events occur randomly, in continuous time. All individuals are identical and motionless once
they have dispersed from their parents. As soon as they are born, as soon they disperse. Let us
now describe the parameters of the model.

2.1 Definition of the parameters and heuristics

We will consider the following model. The plants have there locations in the closure X' of an open
connected subset X' of R?, for some d > 1. We will denote by Mp(X) the set of finite nonnegative
measures on X, by P(X) the set of probability measures on X and by M the subset of Mp(X)
consisting in all finite point measures, that is

M= {25%" nZO,xl,...xneé\?} (2.1)

i=1

where d; denotes the Dirac mass at z. For any m = >, 8, € M, any measurable function f on
X, we will denote (m, f) = [5 fdm =1, f(z:).

Notation 2.1 For all x in X, we introduce the following quantities:

(i) p(z) € [0,00[ is the rate of “natural” death of plants located ot z,

(ii) v(z) € [0, 00[ is the rate of seed production of plants located at x,

(i1i) D(x,dz) is the dispertion measure of the seeds of plants located at x, it is assumed to satisfy,
foreachz € X, [, pa oy, cp D(@,dz) =1 and [, p. otogw D(@,dz) = 0.

(iv) a(z) € [0, 00[ is the rate of interaction of plants located at x,

and, for x, y in X,

(v) U(z,y) = Uy, z) € [0,00[ is the competition kernel.

The competition kernel U(z,y) describes the power of competition between plants located at z
and y, and thus can be thought of the form U(z,y) = h(|z — y|), for some nonincreasing function

h from Ry into Ry .

We will be interested in the evolution of the stochastic process vy, taking its values in M, and
describing the “distribution” of plants at time ¢t. We will write:

1(t)
ve=Y dx; (2.2)
i=1



I(t) € N standing for the number of alive plants at time ¢, and X}, ...,XtI ®) describing their loca-
tions (in X). The supposed dynamics for this population can be roughly resumed by:

(i) at the initial instant ¢ = 0, we have a (possibly random) distribution vy € M,

(ii) each plant (located at some z € X) has three independent exponential clocks: a “seed produ-
tion” clock with parameter v(z), a “natural death” clock with parameter u(z), and a “mortality
selection” clock with parameter a(x) Efitl) U(z, X)),

(iii) if one of the two “death” clocks of a plant rings, then this plant disappears,

(iv) if the “seed production” clock rings, then it produces a seed. This seed immediately becomes
a mature plant, at a location y = x + z, where z is chosen randomly according to the dispertion
law D(z,dz).

In [2], 7, u, @, and D were assumed to be space-independent. Making them space-dependent might
allow to take into account external effects, such relief, etc...

Note also that assuming that all these clocks are exponentially distributed, allows to set all the
clocks to 0 at each time that one clock rings.

We describe the process by the evolution in time of the empirical measure v. More precisely, we
are looking for a M-valued Markov process (14);>0 with infinitesimal generator L, defined for a
large class of functions ¢ from M into R, for all v € M, by

o) = [ vlan) [ 160+ ber) = 60))1@)D . d2) (23)

X

+ [ vlde) (9l - 62) - 0] {u(w) +a() | U(m)v(dy)} :

X

The first term is linear (in v) and describes the seed production and dispertion phenomenon, while
the second is nonlinear, and describes the death by oldness or competition. This infinitesimal
generator can be compared with formula (3) in Bolker-Pacala [2] p. 182.

2.2 Description in terms of Poisson measures

We will now give a pathwise description of the M-valued stochastic process (¢)>0. To this aim, we
will use Poisson point measures. For the sake of simplicity, we assume that the spatial dependence
of all the parameters is “bounded” in some sense.

Assumption (A): There exist some constants &, ¥ and ji such that for all z € X,

afz) <a, () <7, wa)<p (2.4)
There exist a constant C' > 0 and a probability density D on R? such that for all z € X,
D(z,dz) = D(z,2)dz with D(z,2) < CD() (2.5)

The competition kernel U is bounded by some constant U.

We will also introduce the following notation.
Notation 2.2 Let H = (H',...,H*,...) be the map from M into (RN defined by

H (Z?:l 5%) = (Z‘U(l), ceey :Ea(n) y 0, ...0, ) (2.6)

where To1) X ... R ZTy(ny, for some arbitrary order X on R? (one may for example choose the
lexicographic order).



This function H will allow us to solve the following purely notational problem: assume that a
population of plants is described by a point measure v € M. Choosing a plant uniformly among
all plants consists in choosing ¢ uniformly in {1, ..., (v, 1)}, and then in choosing the plant “number”
i (from the arbitrary order point of view). The location of such a plant is thus H¢(v).

Notation 2.3 We consider the path space T C D(]0,00), Mg (X)) defined by

_ Vi>0, peM,andI0 =ty < t; <t3 < ...,
T= {(Vt)tzo / lim, t, = oo and vy = vy, Vt € [ti, tiy1) } 2.7)

Heuristically, T 1is the set of “step-measures”. Note that for (v¢)i>0 € T, and t > 0, we can define
vi— in the following way: if t ¢ U{t;}, vi— = vy, while if t =t; for some i >1, v, =vy,_, .

We finally introduce the probabilistic objects we will need.

Definition 2.4 Let (2, F, P) be a (sufficiently large) probability space. On this space, we consider
the following four independent random elements:

(i) a M-valued random variable vy (the initial distribution),

(ii) a Poisson point measure N(ds,di,dz,df) on [0,00) x N* x R? x [0,1], with intensity measure

~ds (szI Ok (dz)) (Cﬁ(z)dz) do (the seed production Poisson measure),

(iii) a Poisson point measure M (ds, di,df) on [0,00) x N* x [0,1], with intensity measure

fds (Zk21 6k(di)) d@ (the “natural” death Poisson measure),

(iv) a Poisson point measure Q(ds,di,dj,dd,dd") on [0,00) x N* x N* x [0, 1] x [0, 1], with intensity
measure Udads (ZkZI Ok (dz)) (ZkZI Ok (dj)) dfde' (the “competition” death Poisson measure).
We also consider the canonical filtration (F;)i>0 generated by these processes.

We finally write the Bolker-Pacala model in terms of these stochastic objects.

Definition 2.5 Assume (A). A (F)¢>0-adapted stochastic process v = (v4)i>o belonging a.s. to
T will be called a Bolker-Pacala process if a.s., for allt >0,

Vt—V0+/// / Lii<(va ,1)}O(H (vae )+Z){ (Hi(vs_nD(Hl(vs_)z)} N(ds, di, dz, d6)
*JR4 50D (z)
/// Li<(va— 1)}0Hi (v, { it »} M (ds, di, df)
¢
— 1, 1, Opri 1 i i
/0/*/*/0 {i<(vs—, )} H{i<(vs— , 1)}OH (v5-) {a'gU(H (us_t)j,HJ(us_»}

1 {Ka(m(ﬁ_”}Q(ds,di,dj,de,dﬁ’) (2.8)

Although the formula is quite complicated, the principle is very simple, and describes exactely
the Bolker-Pacala model. The indicator functions involving § and @' are related to the “rates”
and appear when the parameters depend on the position variable. In the case where the rates are
constant, which is the case studied by Bolker-Pacala, the probabilistic model is simpler, since one
can cancel all the integrals and indicator functions involving 6.

Let us now show that if v is solution of (2.8), then it follows the dynamics we are interested in.

Proposition 2.6 Assume (A). Consider a solution (v;);>0 to equation (2.8). Then (v)i>o is a
Markov process with infinitesimal generator L, defined for all ¢ bounded and measurable from M
into R, all v e M, by (2.3).



Proof The fact that (v;);>0 solution of (2.8) is Markovian is obvious. Let us now consider a
function ¢ as in the statement. Recall that with our notations, vy = Z§;°1’1> O (1) Recall also
that Lo(vg) = OE [¢(ve)],—y- A simple computation, using the fact that a.s., ¢(v¢) = ¢(vo) +

Esgt[¢(Vs— + AVs) - ¢(Vg_)], shows that

i 1
o(ne) = (o) +/0/ /Rd/o [6(Vs— + O(ri(ve_y42)) — BWs)] Lii<(ua_ 1)}
1{9<,Y(Hi(ys_))D(Hi(Vs_),z) }N(ds, di, dz, dﬁ)

JCD(z)

t 1
+/0 ///0 [p(vs— = Omiqu,)) = (Ws-)] Lii<(u,_ 1)y Lii<ive_ 1)}

1{9’5 U vy ), H (vs)) } 1{0§ (i (v, ) }Q(ds, di,dj, dé, d@’)

t 1
[ ] 80 = )~ 6050)] Lot 1L o M)
0 *JO I3

U a

Taking expectations, we obtain

El¢(vi)] = E[¢(vo)]
(vs,1)

¢ = Hi(v,_))D(H(vs_),
R e M e (A RO}

¢ iy
+/0 dsE [ﬂ ; w [¢(vs— — Orri(n,_)) — ¢(st)]]

¢ (o) (val) iy i(v a(H (ve_
+[apvay, Y AL RLD 0D 4, gy, ) - 60,1

=1 j=1

@
= E[p(w)] + /OtdsE[/i} vs(dx)

d21()D(2,2) [$(vs + 8(ar)) = 9(15)] ]

Rd

t
+/ dsE[/_ vs(dz) [$(vs — 84) — d(vs)] {,u(m) +a(z) / ys(dy)U(m,y)} ]
0 & &
Differentiating this expression at ¢t = 0 immediately drives to (2.3). O

2.3 About simulation

This trajectorial definition of the Bolker-Pacala process leads to the following simulation algorithm:

Step 0: Simulate the initial state vy, and set Ty = 0.
Step 1: Compute the total “event” rate, given by m(0) = m1(0) + m2(0) + m3(0), with

m1(0) = O (v, 1) , ma(0) = (w0, 1) , m3(0) = al (v, 1)° (2.9)

Simulate S; exponentially distributed, with parameter m(0), and set Ty = Tp + S1. Set vy = v for
all t < Ty. Choose wether to go to Step 1.1, 1.2, or 1.3 with probability m1(0)/m(0), m2(0)/m(0)
and m3(0)/m(0). }

Step 1.1: choose i uniformly in {1,..., (vp,1)}. Choose z € R? according to the law D(z)dz. With

i v(H'(v0)) D(H* (o),
probability 1 — (170[)(2) 0

location H' (1) + z (i.e. set vy, = Vo + O( i (v)42))-

Z), do nothing (i.e. set vy, = 1p). Else, add a new plant at the



Step 1.2: choose ¢ uniformly in {1, ..., (vy,1)}. With probability 1 — @, do nothing (i.e. set
v, = 1p). Else, remove the i-th plant (i.e. set vr, = vo — 6rri(1y))-

Step 1.3: choose i and j uniformly in {1, ..., (g, 1)}?. With probability 1— U(Hi("o)[)]’H]("O))) a(H;("O)) ,
do nothing (i.e. set vy, = 1p). Else, remove the i-th plant (i.e. set vy, = vo — 0pi(y))-

Step 2: Compute the total “event” rate, given by m(T1) = m1(T1) + m2(T1) + m3(T1), with

ml(Tl) =C% <I/T1, ].) , mQ(Tl) = ﬂ(VTl, ].> s m3(T1) =alU <I/T1,1>2 (210)

Simulate Sy exponentially distributed, with parameter m(T}), and set To =Ty + S1. Set vy = v,
for all ¢t € [Th, T3], etc...

3 Existence and first properties
We now show existence, uniqueness, and some moment estimates for the Bolker-Pacala process.

Theorem 3.1 (i) Assume (A) and that E ({v9,1)) < oco. Then there exists a unique Bolker-
Pacala process (v)¢>0 in the sense of Definition 2.5. The law of this solution does not depend on
the chosen order (see Notation 2.2).

(ii) If furthermore for some p > 1, E ({vo,1)¥) < oo, then for any T < oo,

E (sup (v, 1)p> < oo (3.1)

[0,7]

Proof We first prove (ii). Consider thus a Bolker-Pacala process (v¢);>0. We introduce for each n
the stopping time 7, = inf {¢ > 0, (1,1) > n}. Then a simple computation using (A) shows that,
neglecting the nonpositive death terms,

w 1P <017+ [ [ [ 0 1y

[0,tATR]

o<

i<, ,1)}1{ 2 (Hi vy L)) DHE (v, 1), 2) }N(dsa di, dz, df)
5GB(2)

tATn 1
< (uo,l)P+c,,/ / /d/ [1 + (1/3_,1)”_1] L{i<(v._ 1y} N(ds, di, dz, df) (3.2)
0 *JR4J0O

for some constant C,. Taking expectations, we thus obtain:

E({ sup <us,1>p> < G GE ([ e[ DEd:ne1) + n 1))

0,tATR] Rd

IN

Cp+ C,E (/tds [1+ (Usarns 1)p]>
0 (3.3)

The Gronwall Lemma allows us to conclude that for any T' < oo, there exists a constant Cp(T),
not depending on n, such that E (sup[O’T,\Tn] (v, 1) ) < C,(T). Firstly, one easily concludes that

Tn tends a.s. to infinity. Then by Fatou’s theorem, we obtain (3.1).

Point (i) is a consequence of point (ii). Indeed, one can for example build the solution (v4);>0
using the simulation algorithm previously described, choosing the rates and acceptance-rejection
according to the Poisson measures N, M, and . One only has to check that the sequence
of (effective or fictitious) jump instants T, goes a.s. to infinity as n tends to infinity, which is a



consequence of (3.1) with p = 1. Uniqueness also holds, since one has no choice in the construction.
O

Let us observe that the existence of moments comes from the fact that the nonlinear terms, which
might lead to explosion, are all nonpositive (since they represent the death terms) and are then
neglected in the estimation.

We now prove a natural property: if there is initially at most one plant at each location, then this
property propagates.

Proposition 3.2 Assume (A), that E ({(v,1)) < co. Assume also that a.s., sup,cy vo({z}) <1
Consider the Bolker-Pacala process (v¢)¢>0. Then for allt >0, a.s.,

/ vi({z})ve(dx) = (v, 1), i.e. supy({z}) <1 (3.4)
X TEX

Proof Consider the nonnegative function ¢ defined on M by ¢(v) = [ v({x})v(dz)—(v,1). Then
note that a.s., ¢(vp) = 0, and that for any v € M, any z € supp v, p(v—08;) — ¢( ) < 0. Consider,
for each n > 1, the stopping time 7,, = inf {t > 0, (14,1) > n}. A simple computation allows to
obtain, for all ¢ > 0, alln > 1,

E[¢(wins)] <0+ E [ / ™ s / valda) [ D(a,dz)1(a) {9l0s +0e) = 90)} | (35)

One easily checks that the RHS term identically vanishes, since D(x,dz) has a density. Hence,
a.s., @(Vear,) = 0. Thanks to (3.1) with p = 1, 7, a.s. grows to infinity with n, which concludes
the proof. d

We carry on with another property, which deals with the absolute continuity of the expectation of
v;. For v a random measure, we define the deterministic measure E(v) by (E(v), f) = E((v, f)).

Proposition 3.3 Assume (A), that E[{(vg,1)] < oo, and that E(vy) admits a density ng with re-
spect to the Lebesgue measure. Consider the Bolker-Pacala process (vi)i>o. Then for all t > 0,
E(v;) has a density ny: for all measurable nonnegative function f on X, E[{v;, f =[:f P x)dx.

Proof Consider a Lebesgue-null subset A of R?. Consider also, for each n > 1, the stopping time
n =1inf {t >0, (v, 1) > n}. A simple computation allows to obtain, for all ¢ > 0, all n > 1,

Bl 101 = Bl 1) + B( [ ds [ uinn(o) [ dstato+ (e 2)

(| T s [ nidta@ (uo) + o) [Uenmian) ) 6o

By assumption, the first term in the RHS is null. The second term is also null, since for any
z € X, [padzla(z + 2)D(z,z) = 0. The third term is of course nonpositive. Hence for each n,
E({v¢nr,,14)) is nonpositive, and thus null. Thanks to (3.1) with p = 1, 7, a.s. grows to infinity
with n, which concludes the proof. O

We finally give some martingale properties of the process (v¢):>0.

Proposition 3.4 Assume (A), and that for some p > 2, E [(n,1)"] < co. Consider the Bolker-
Pacala process (v4)i>0, and recall that L is defined by (2.3).

(i) For all measurable function ¢ from M into R such that for some constant C, for all v € M,
|¢(v)| + |Lop(v)| < C(1+ (v,1)?), the process

t
(1) — Bvo) — /0 Lé(vs)ds 3.7)



is a cadlag L'-(Fy)i>0-martingale starting from 0.

(ii) Point (i) applies to any measurable ¢ satisfying |¢( )| <C+ ()7 3.

(111) Point (i) applies to any function ¢(v) = (v, f)?, with 0 < q < p— 1 and with f bounded and
measurable on M.

(iv) For any f bounded and measurable on X, the process

M{ = (w,f)- (. f /ds/ vs(dx)y dzf(a:+z)D(;c,z)

+ [ as /X v (d2) (@) [u(z) + o(a) /X U(x,y)uswy)] (38)

is a cadlag L?-martingale starting from 0 with (predictable) quadratic variation

wityi= [[as [ vian o) [ dere s 22 + 20 [ue) + @ [ U um))
(3.9)

Proof First of all note that point (i) is immediate thanks to Proposition 2.6 and (3.1). Points (ii)
and (iii) follow from fair computations using (2.3). To prove (iv), we first assume that E [(VO, 1)3] <

oo. We apply (i) with ¢(v) = (v, f). This yields that M/ is a martingale. To compute its bracket,
we first apply (i) with ¢(v) = (v, f)* and obtain that

v, 1)~ (v, / ds [ mdan@ [ d:D@ [P +2)+ 20+ 2) 0 )]
- / s [ vn(@n){ @) = 24(@) v 1) }[uw) + 0(@) [ Ul@pwitan] .10

is a martingale. Then we apply the Ité formula to compute (v, f)* from (3.8). We deduce that
v 1Y ~ (o, f / s [ v(dayy(o) [ DG 2)2f@+2) (v )

+ [ s [ wn(@er@) [u(w)+a(w) | vtwitap)] - ), (311)

is a martingale. Comparing (3.10) and (3.11) leads to (3.9). The extension to the case where only
E [(VO, 1)2] is finite is straightforward, noting that even in this case, E[(M7) ] < oo thanks to
(3.1) with p = 2. O

4 On the the Bolker-Pacala Moment Equations

Let us now come back to the specific Bolker-Pacala model, and let us give a sense to the mean
moment equation given in [2] formula (6). Note that in [2], one may be confused by the notation
between the discrete measure vy, its expectation E(v;) (defined by (E(v¢), f) = E({w, f))), and
a density measure n;(x) of which the definition is not clear (it does not seem to be the one we
defined in Proposition 3.3).

In this section we assume that

Assumption (B): The spatial space is X = R?, all parameters «, vy, u, and D of
the model are independent of z. Moreover the (bounded) competition kernel U(z,y)




has the form U(x — y), and both dispersal and competition kernels are symmetric
probability distribution functions, i.e. D(z) = D(-z2), U(z —y) = U(y — z), and
Jra D(2)dz = [,.U(2)dz = 1.

We moreover assume that E({vo, 1)2) < 00, and that initially, there is at most one plant at each
location. So (3.1) with p =1 holds and we can define for each time ¢ € [0,T]

n(t) = E((vs,1)). (4.1)

Using Proposition 3.4 (iv) (with f = 1), and taking expectations in (3.8), we obtain

Bl 1) = B, ) + [ (= wEe s —a [ B( [ 0l - pwatdetin) )

e (4.2)
Hence,
n(t) = n(0)+ (- / "n()ds — / E( N U(O)us<dx)us({w}>)ds
a /0 tE( /R o e Ul - y)us(dw)us(dy)) ds (4.3)

But thanks to Proposition 3.2, we know that for all ¢+ > 0, [,.U(0)v,(dz)vs({z}) = U(0)(vs,1).
We thus obtain

n(t) =n0)+ (y—p— ozU(O))/O n(s)ds — a/o E(/Rd o 12Uz — y)l/s(dx)l/s(dy)> ds(4.4)
Let us now explain the “covariance term” of Bolker and Pacala. Writing
aF ( /Rded 1{w¢y}U(m — y)vs(dz)v, (dy))
=aF ( /Rded 120Uz — y)vs(de) (1/5 (dy) — n(s)dy)) + an®(s) (4.5)
we obtain from (4.4)
¢ ¢
n(t) = n0)+(y—p-— ozU(O))/0 n(s)ds — a/o n?(s)ds
—a/o E ( /Rded 12 Uz — y)vs(de) (us(dy) - n(s)dy) ) ds (4.6)

That allows us to define, following the terminology of Bolker and Pacala, a covariance measure Cy
on R¢ for each time t as

Ci(dr) = E(/ 14201t © T:; (dr) ® v (dy)) —n?(t)dr (4.7)
yER?
defined for each measurable bounded function ¢ with compact support in R? by
o) = B( [ 1mde-pu@n) -0 [ ot
R4 RIQR4 R

B( [, toryila = vptdo) (v(ay) = n(try ) (49)

9



(The notation 7_, denotes the translation by the vector —y). By using these notations, we obtain
the mean equation obtained by Bolker and Pacala [2] (formula (6) p 183), with a rigorous sense
for the quadratic term.

dn(t)
dt

= n(®)(y — pi— an(t)) — aU(O)n(t) — a /R 1y U)Cidr). (4.9)

Let us at last remark that, following the same approach, we are able to obtain an evolution equation
for the covariance measure, by considering the quantities [, 1{,-0}¢(r)C;(dr) for measurable
bounded functions ¢ on R?, but we do not obtain the same equation as in [2] (formula (7) p 184).

5 Infinite particle approximations

Our aim in this section is to observe the effect of different renormalizations on this model. There
are essentially two asymptotic behaviours.

The first one consists in considering at initial time an infinite number of particles with infinitely
small masses, without changing the parameters of the dynamics, and we will show that in this
case the random measure (1¢);>o tends to a deterministic measure solution of a nonlinear partial
integro-differential equation. We propose this limiting object as a rigorous interpretation of the
“number density”.

The second renormalization consists in addition in accelerating the parameters in a convenient
way. Then (v4)¢>0 converges to a sophisticated random measure-valued process, which has been
introduced by Etheridge in [5] and called by her the superprocess version of the Bolker-Pacala
model.

Let us first consider the most general situation.
Notation 5.1 For each n € N*, we consider a set of parameters (tn, Yn, @n, Un, Dy) as in Nota-
tion 2.1, satisfying for each n Assumption (A), and an initial condition v] € M. Then, we denote

by (vf')t>0 the Bolker-Pacala process (see Definition 2.5) with the corresponding coefficients. We
consider the subset M™ of Mp(X) defined by

MM = l1/,1/6/\/1 5.1
{2 } (5.1)

We finally consider the cadlag M™-valued Markov process (X[*)i>o defined by X' = %u{‘.

The generator of (X;*);>o is then given, for any measurable map ¢ from M™ into R by

L) = [ 0lds) [ 3n@Dule, 2tz [oly + Lbs) - 60|

X

#n [ v(de) {ia(@) +nana) [ Uatoipwtdn | o = 200 - o). (52

Indeed, the generator L™ of (1")e>0 is given by (2.3), replacing (i, v, &, U, D) by (tbn, Yns @n, Un, Dy).
Hence,

L"¢(v) = OBy [$(X[)]—g = OrBny [B(v] /)] ,—g = L"" (nv) (5.3)

where ¢"(u) = ¢(u/n). The conclusion follows from a fair computation.
We now deduce the following martingale properties from Lemma 3.4.
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Lemma 5.2 Let n > 1 be fized, consider the process (X[')¢>o defined in Notation 5.1. Assume
that for some p > 2, E[(X{,1)?] < co.

(i) For all measurable function ¢ from M™ into R such that for some constant C, for all v € M™,
[6()] + L7 ¢()| < C(1 + (v, 1)), the process

B(XP) — H(X) — / Lrg(XT)ds (5.4)

is a cadlag L' -martingale starting from 0.

(i1) Point (i) applies to any measurable ¢ satisfying |p(v)| < C(1 +
(iii) Point (i) applies to any function ¢p(v) = (v, f)?, with 0 < q <
measurable on M.

(iv) For any f bounded and measurable on X, the process

(v, 1)),
p— 1 and with f bounded and

M= (XTL ) (X8 f) - /Otds [ X2() [ 2n@Da(o, )z 1o+ 2
+/0tds/XX§l(d$) {Hn(x) + nan(z) /A? Un(x,y)Xg(dy)} f(z) (5.5)

is a cadlag L?>-martingale with (predictable) quadratic variation
f 1/ 2
ey, = Las [ x000) [ n@Dute iz +2)

L ' ds [ X200 {5 +n0ae) [ e Xz} e 60

5.1 Convergence to a nonlinear partial differential equation

Let us now consider the case where the initial number tends to infinity, the parameters of seed
production and natural death stay unchanged, whereas the mortality selection parameter tends to
zero. We will show that the Bolker-Pacala process can be approximated by a deterministic nonlinear
partial differential equation, which might be a better (compared to the moment equations of [2])
deterministic way to account the model, as observed in Section 7. In particular, it allows to deal
with space-dependent parameters.

Assumption (C1):

1) The initial conditions X converge in law and for the vague topology on Mp(X) to
some deterministic finite measure & € Mp(X), and sup,, E({(XZ,1)?) < +oo.

2) There exist some continuous nonnegative functions «,~, 4 on X, bounded by @, 7, fi,
such that v, (z) = 7(z), pn(z) = p(z), an(z) = a(z)/n.

3) There exists a bounded nonnegative symmetric continuous function U on X x X
bounded by U such that Uy, (z,y) = U(z,y).

4) There exists a continuous nonnegative function D on X x R?, satisfying for each
2 €X, [ cpa pyrex D@ 2)dz =1, D(z,2) = 0 as soon as z + z ¢ X, and such that

D(zx,z) < CD(z) for a constant C' > 0 and a probability density D on R?. We set
Dy(z,2) = D(x, 2).

The first assertion of Assumption (C1) is satisfied for example if X§ = Ly i1 07 where the
random variables Z* are independent, with law &,. In this case, the number n can be seen as the
“volume” of particles at initial time, and the limit of X}* = %V? may then give a rigorous sense to
the number density, often introduced by the biologists without definition.
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Theorem 5.3 Assume (C1), and consider the sequence of processes X™ defined in Notation 5.1.

Then for all T > 0, the sequence (X™) converges in law, in ([0, T], Mp (X)), to a deterministic
continuous function (&)i>0 € C([0,T], Mp(X)). This measure-valued function & is the unique
solution, satisfying supjq (&, 1) < 00, of the partial differential equation written in its weak form:

for all bounded and measurable function f from X into R,
6 = @n+ [ (a@nae [ Dease ) i
¢
- [ (et 1@ {uo) +ato) [ Ui} )as (57)

Note that the link between (2.8) and (5.7) is the same as the one between the continuous-time
binary Galton-Watson process with birth rate v and death rate p and the deterministic differential
equation f'(t) = (v — p) f(?).

Proof We divide the proof in several steps. Let us fix T' > 0.

Step 1 Let us first show the uniqueness for the equation (5.7). We consider two solutions (&;):>0
and (&):0 of (5.7) satisfying supg 11 (& + &, 1) = Az < +00. We consider the variation norm
defined for p; and ps in Mp(X) by

i —poll = sup (=g - (5.8)
feL=(X), ||flle<1

Then, we consider some f € L (X) such that ||f||cc <1 and obtain

— t —
(e-&nl < [ <£S<dw) ~E,(da), () D(w7z)f(m+z)dz—u(w)f(w)> ds
0 Rd
t

; / <€s(dw) ~&,(d), ale) f(x) /X £s<dy)U(x,y)> ds
; / <€s(dy) - &), [ Es(dw)a(w)f(w)U(w,y)> ds (5.9)

But since ||f|loc < 1, for all z € X, fy(a:)/ D(z,2)f(x + z)dz — p(x) f(x)| < 7 + i while

Rd

a(z) f(x) /jfs(dy)U(m,y)‘ < aUAr, and ‘/(?f_s(dw)a(x)f(x)U(x,y)‘ < aUAr. We deduce that

t
[(& =&, )| < [v+m+2aUAr] /0 [1€5 — &|lds (5.10)

Taking the supremum over all functions f such that [|f|/cc < 1, and using then the Gronwall
Lemma, we finally deduce that for all t < T, ||& — &]| = 0. Uniqueness holds.
Step 2 Let us prove some moment estimates. By (C1), it is easy to prove that for all T' > 0,

sup E (sup (X7, 1)3> < 400 (5.11)
n (0,77
Indeed, recalling that X* = %I/ZL, one can prove, following line by line the proof of Theorem 3.1

(ii) with p = 3, that E[supy 1 (17, 1)°] < C(T)E[(v2,1)°], noting that the constant C(T') does
not depend on n. One easily concludes, using assumption (C1)-1. B
Step 3 To show the tightness of the sequence of the laws Q™ = L(X™) in P(D([0,T], Mr(X))),

it suffices, following Roelly [11], to show that for any continuous bounded function f on X, the
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sequence of laws of the processes (X™, f) is tight in ID([0,7],R). To this aim, we use the Aldous
criterion [1] and the Rebolledo criterion (see [6]). We have to show that

sup E(sup | (X, f) ) < oo, (5.12)
n [0,1]

and the tightness respectively of the laws of the martingale part and of the drift part of the
semimartingales (X", f}.

Clearly, since f is bounded, (5.12) is a consequence of (5.11). Let us thus consider a couple (S, S")
satisfying a.s. 0 < S < §' < S+ ¢ <T. Thanks to Doob’s inequality, using Lemma 5.2, we get

B[ pyf - up? || < B[y, - (end) ]
1/2

< COV§

S+
<FE

(7 + i+ al) / ((X;’, 1) + (X7, 1)2) ds

S

(5.13)

the last inequality coming from (5.11). The finite variation part of (X3, f) — (Xg, f) is bounded
by

S+0
| o+ m e +av o] ds <do
S

1+ sup(X7, 1)2] (5.14)
[0,7]

Hence, formula (5.11) allows us to conclude that the sequence Q™ = £(X™) in tight.
Step 4 Let us now denote by @ the limiting law of a subsequence of Q™ which we still denote by

Q™, in the space of probability measures on I([0,T], Mr (X)), and by X = (X¢)¢>0 a process with
law ). We remark that by construction, almost surely,

sup sup (XD, ) = (X, )1 < 1/n. (5.15)
4€10,7] FEL> (2),]|f] o<1

Then it is immediate to conclude that the process X is a.s. strongly continuous.

Step 5 Let us finally identify the limit (). We will show that for any f in Cy(X), equation (5.7) is
(almost surely) satisfied by X. Since moreover it is clear from (5.11) that E(supjg 7 (X¢, 1)) < +o0,
that will suffice to conclude the proof by uniqueness of the solution to (5.7).

For ¢t < T and v € I([0,T], Mr (X)), denote by

T(v) = v, f) = (v f) / <us<dwm<w) D(z,2)f(a + z)dz> ds

Rd
+/Ot <u3(da:),f(:c){,u(a:)+a(x)/A?U($ay)Vs(dy)}>d3- (5.16)

What we have to show is that for any ¢ < T (which we fix from now on),

Eq [|%:(X)[] = 0. (5.17)
What we know, from Lemma 5.2 and (C1), is that

MM = o (X™). (5.18)
A fair computation using Lemma 5.2, (C1), and (5.11) shows that

E(|M1] = E (M) ] < %E [ / t {1+xr1)} ds] < % (5.19)
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which goes to 0 as n tends to infinity. On the other hand, since X is a.s. strongly continuous,
since f is continuous and thanks to (C1), the function ¥, is a.s. continuous at X. Furthermore,

for any v € ([0, T, Mp (X)),

1T, (v)| < C. s sup (1 + (v, 1)2) . (5.20)
[0,¢]

Hence using (5.11), we see that the sequence (¥4(X™)),, is uniformly integrable, and thus

lim E (|2,(X™)]) = B (| %,(X)]). (5.21)

Associating (5.18), (5.19) and (5.21), we conclude that (5.17) holds and thus equation (5.7) is
satisfied for any continuous bounded function f on X. Then, it is not hard to generalize this
equation to measurable bounded functions f using an approximating sequence belonging to Cy(X).
The proof is finished. O

Proposition 5.4 Consider an initial condition & in Mp(X) having a density with respect to the
Lebesgue measure, and consider the associated solution (&)i>o0 to (5.7). Then for every t € [0,T],
the finite measure & has a density with respect to the Lebesgue measure.

Proof The proof is similar as the one of Proposition 3.3. We choose a neglectable Borel set A
included in X' and apply (5.7) with f = 14. The RHS expression is equal to 0 since the first term
is null by hypothesis, the second one is null since for all #, [,41s4.c4D(2,2)dz =0, and the last
term is nonpositive. O

Remark 5.5 (i) Equation (5.7) is the weak form of the following equation. For all x € X, all
t>0,

Bits(x) = /X &W)1(W) Dy, z — y)dy — p(2)E () — o) (z) /X U, p)t(w)dy  (5.22)

(ii) To come back to the Bolker-Pacala model, assume now that X = R?, that the competition
kernel is of the form U(zx,y) = U(z — y), and that D(x,z) = D(z) does not depend on x. Then
(5.7) is the weak form of: for all x € R, all t > 0,

9i&u(x) = v(2) [ + D] (x) — p(x)&e(x) — a@)&: (z) [& * U] (2) (5.23)

where for exemple, [ « D] (z) = [5. D(z — y)&(dy).

5.2 Convergence to a superprocess

We would like in this section to show the relation between the original Bolker-Pacala model (rigor-
ously written in Definition 2.5) and the superprocess version of the Bolker-Pacala model introduced
by Etheridge [5].

More precisely, we will show in this section that accelerating the rates of production and natural
death following the asymptotics n makes the Bolker-Pacala processes converge to a continuous
random measure-valued process which generalizes the one studied in [5].

Assumption (C2):

1) The space X = R?, the initial conditions X converge in law and for the vague topol-
ogy on Mp(R?) to some deterministic finite measure Xo € Mp(R?), and sup,, E((XZ,1)%) <
+00.
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2) There exist some continuous positive functions o(x), a(z), y(z), () on R* respec-
tively bounded by &,@,%, 8, a nonnegative symmetric continuous function U(z,y) on
R? x R? bounded by U, such that

Yn(@) = ny(x) + B(@), pn(x) = ny(x), an(z) = a(z)/n,
Un(z,y) =U(z,y)

Du(e,2) = (522)" exp (~nlef/20(a) (5.24)

Note that D, (z, z) is the density of the distribution of a centered vector of independent Gaussian
variables with mean 0 and variance o(x).

With these coefficients and when n tends to infinity, one has more and more seed production and
natural death, less competition, and the locations of producted seeds are more and more localized
around the “mother plant”.

Theorem 5.6 Assume (C2), and consider the sequence of processes X™ defined in Notation 5.1.
Then for all T > 0, the sequence (X™) converges in law, in D([0,T], Mr(R?)), to the unique (in
law) “superprocess” X € C([0,T], Mr(R?)), defined by the following conditions:

sup E [(Xt, 1)3] <0 (5.25)
0,71

and for any f € CZ(R?),
t
W= (Xef) = (oh) = [ (Xugovar)s

- [ (xutto). ) [0 - o) [ v xutan] s (5.26)

is a continuous martingale with quadratic variation
<Mf>t=/02<Xs7'yf>ds (5.27)

Proof We break the proof in several steps, which for many points, are similar to the different steps
of the proof of Theorem 5.3.

Step 1 Let us first prove the uniqueness of the solution of the martingale problem defined by
(5.25), (5.26) and (5.27), that is the uniqueness of a probability measure P on C([0,T], My (R?))
under which the canonical process X satisfies (5.25), (5.26) and (5.27). This result is well-known
for the superBrownian process (defined by a similar martingale problem, but with a = 8 = 0,
and oy = 1). As noted in [5], we may use the version of Dawson’s Girsanov transform obtained
in Evans-Perkins [4] to deduce the uniqueness in our situation, provided the condition below is

satisfied: , )
o ( / <Xs<dw), 50 - ato) [ U X (a0) >d> < +oo,

which is easily obtained from (5.25), since the coefficients are bounded.

Step 2 Next, we would like to obtain uniform three-order moment estimates. Here, the parameters
appearing in (5.2) for ¢(v) =< v,1 > depend on n and we can not neglect the death terms. A
fair computation, using Lemma, 5.2-(i) with ¢(v) = (v,1)* A A, taking into account the birth and
natural death terms, and using the fact that for all z > 0, € €]0,1], (z + €)® — 2® < Ce(1 + z?)

and |(z +¢€)° + (z — €)® — 22%| < Ce?(1 + ) leads to supjy | £ [(Xg‘, 1% A A] < Cr, the constant
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C7 not depending on A,n. On the other hand, we know from Theorem 3.1-(ii) that for each n,
E [SUP[O,T] (Xr, 1)3] < 00. We thus can make A tend to infinity and get

sup sup E [(Xt", 1)3] < o0, (5.28)
n [0,T)

As a consequence, using standard arguments and Lemma 5.2-(iv) (with f = 1), we obtain that
sup,, E(suppo 77 < M™' >;) < 400 and further that

sup E (sup (X7, 1)) < 0 (5.29)
n [0,7]

Step 3 Now, we prove the tightness of the sequence of the laws (£L(X™)),, in P(ID(]0, oo[, Mr (R?))),
following the same approach as in Theorem 5.3. First, we deduce from Step 2 that

sup,, £ [sup[om [(X™, f)]|| < oo, for any bounded f. We thus have to prove that for any f €

CZ(R?), the sequence (X7, f) satisfies the Aldous-Rebolledo criterion. Let us consider a couple
(S, S") satisfying a.s. 0 < S < S'<S+6§ <T. Using Lemma 5.2, (C2), Doob’s inequality and the

[ Do) f@ + 2)dz - 1(2)
Rd
independent of n such that

[ [ xra@diste [ as [ i@

S

fact that < 5||f"||oo/2n, we deduce the existence of a constant C

/ Doz, 2)f(z + 2)dz — f(z)
Rd

+ [ s [ Xranavisil [ X <c [ Ty oyt 60

S

Using now (5.6) and (C2), we deduce that for some constant C,

B [(M™)g, ,—(M™)g| <CE

/ s (xz 0+ (xz, 1)2)] (5.31)

S

Using the moment estimate (5.28), we finally obtain by that the laws of (M™/) and the laws of the
drift parts of (X™, f) are tight, and then, by Rebolledo’s criterion, the laws of (X™, f) are tight.
Step 4 Let us identify the limit. Let us call Q™ = £(X™) and denote by @ a limiting value of the
tight sequence Q™, and by X = (X;);>0 a process with law Q). Exactly as in the proof of Theorem
5.3, one can show that X belongs a.s. to C([0,T], Mp(R?)). We have to show that X satisfies the
conditions (5.25), (5.26) and (5.27). First note that (5.25) is straightforward from (5.28). Then,
we show that for any function f in C3(R%), the process M/ defined by (5.26) is a martingale (the
extension to every function in C,? is not hard). We consider 0 < 83 < ... < s < § < t, some
continuous bounded maps ¢1,...¢r on Mp(R?), and our aim is to prove that, if the function ¥
from D([0, T], Mr (R?)) into R is defined by

lII(V) = ¢1(V81)"'¢k(’/8k){ (Vt7f> - <V87f) _/ <I/u,’)/0'Af/2)d’U/

—/ (vu(dz), f(2)[B(z) — (vu(dy), a(z)U(z,y))]) dU} (5.32)
then

E(¥(X))=0 (5.33)
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We know from Lemma 5.2 that using (C2),

0=E [¢1 (XT)...k(XT) {Mt”’f - MS"*f}] = E[T(X")] + A, (5.34)
where A,, is defined as

an = B[ [ au[ x2a D d o)
o = B[ [ ] xra{son| [ puw i+ a1 - Fas)
+80) | [ Dale )i+ )z = 1) Jor(0)n (3] (5.35)
Rd
First, an easy computation using (C2), the fact that f is C3, and (5.28) shows that
14, < €Y / E[(X7,1)]du — 0 (5.36)

as n grows to infinity. Next, it is clear from assumption (C2), the fact that f is C}, and that Q
only charges the space of continuous processes, that the map ¥ is -a.s. continuous. Furthermore,
it is bounded up by

Bw)| < C (1 + (ve 1) + (v, 1) + /t (v, 1)? du) (5.37)

and one easily deduces from (5.28) that the sequence (|¥(X™)|),, is uniformly integrable. Hence,

lim B (J¥(X™)]) = Eq (|¥(X)]) - (5.38)

Associating (5.34), (5.36), (5.38) allows us to conclude that (5.33) holds, and thus M/ is a mar-
tingale.
We finally have to show that the bracket of M/ is given by (5.27). To this aim, we first check that

N/ = (X f)? - (Xo, f) /ds/X (dz)24(x) 12 (z)
t
- [20x.as [ Ko@) [ﬂ(x)—a(m) /. U(x,y)Xs(dy)]
t
- [2x. pds [ X @)30n@ar@) (5.30)
0 X

is a martingale. This can be done exactly as for ]\thf , making go to the limit the fact that, thanks
to Lemma 5.2-(iii) (with ¢ = 2),

NPT = (X = (X ) /ds/ X (dx)y [ Rdfz(:v+z)Dn(w,z)dz+f2(m)]
~[as i [ xian[se [ s+ 200w - ato) [ X000
/ds2 (X, f / X (dx)y [ Rdf(a:—}-z)Dn(a:,z)dz—f(a:)]
-2 /0 ds2 (X" f) / X2(d)B(a) [ 1o+ 2)Dala,2)d:

‘%/Otdsw / X3 (dw)a / X2(dy)U(w,9)*(x) (5.40)

17



is a martingale. Next, using the It6 formula in the definition (5.26) of Mtf , we deduce that
t
(Xe, )" = (Xo, )* — (M), — / 2(X,, /) ds / X, (dz) f () [B(w) — a(z) / U(m,y)xs(dy)]
0 X x

- [20x, pyas [ X@)30r@ar@ (5.41)
0 X

is a martingale. Comparing this formula with (5.39) allows to conclude that (5.27) holds. O

6 About extinction and survival

We first of all would like to recall a result of Ethridge, [5]. Consider the superprocess X obtained
in Theorem 5.6, assume that o, v, 8 and a are constant on R?, and that U(z,y) = h(|z — y|),
for some nonnegative decreasing function h on R, satisfying [; h(r)r®~'dr < oc. Then, if 8 is
sufficiently small, and « is sufficiently large, X does not survive: almost surely, there exists ¢ > 0
such that for all s > 0, X¢ys = 0.

One can also find a complementary result in [5], which shows non-extinction with positive prob-
ability for another model, the “stepping-stone version of the Bolker Pacala process”. Let us now
come back to the Bolker Pacala process, defined as the solution of (2.8). The techniques used in [5]
are specific to continuous processes and can not be generalized to the Bolker-Pacala discontinuous
process.

Before giving our results, let us point out the following obvious remark.

Remark 6.1 Assume (A), and that E[(v,1)] < co. Consider the Bolker-Pacala process (vt)i>o-
Assume also that there exist some constants vo < po such that for oll x € X, p(z) > po and
Y(x) <. Then (v)i>0 does a.s. not survive, that is P[3s > 0 (vs,1) = 0] = 1.

The proof of this remark is not hard, since in such a case, the process Z; = (14, 1) can be bounded
from above by a standard continuous time binary Galton-Watson process Y; with death rate po
and birth rate -, of which the extinction probability is one.

In this section, we will first prove almost sure extinction in a case where the state space X is
compact. Then, we will show non-extinction in the case of a discrete version of the Bolker-Pacala
process, with a specific (and quite not realistic) competition kernel U.

6.1 Extinction in the compact case

We will check a result which essentially says that if the state space X is compact, then the popu-
lation does almost surely not survive. Let us assume

Assumption (E):

(i) The maps a(z) and p(z) + a(z)U(z,z) are bounded below.

(ii) There exists a non-decreasing function ¢ : Ry — Ry, satisfying ¢(0) = 0, such
that lims () = oo, such that the map zp(z) is convex on [0, 00) and such that for
all v e M,

vevU)z@1)e(v,1)) (6.1)

Remark 6.2 Assumption (E)-(ii) holds if X is compact in R, and if there exist € > 0 and § > 0
such that U(x,y) > €l{j,_y|<s)
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Theorem 6.3 Assume (A), (E), vo € M and E ({vy,1)) < 00. Consider the corresponding unique
Bolker Pacala process (v¢)¢>o obtained in Theorem 3.1. Then there is almost sure extinction, that
means that P( 3t >0, (1,1) =0 ) =1.

Proof of Remark 6.2 First of all, we recover X with a family {At}iequ,...,.ry of disjoint cubes of
R?, with side §/v/d. Note that L is clearly finite and that for each I, each z,y € A, |z —y| < 6.
Recall the following consequence of the Cauchy-Schwarz inequality, which says that for all L > 1,

2 _
all {ag,...,ar} in R, Zle of > 1 [Elj‘zl al] . Hence for alln > 1, all 21, ...,z, € X,

n n .
Z U(Z'iamj) > Z 61{\$i—zj|§5} > € Z ZIAI (wi)IA, (1_])
wE W=l i,j=11=1
L n 2 1 L n 9 .
— . 1 | 1,

One immediately deduces that for any v € M, (v @ v,U) > €+ (v, 1)%. Hence (E)-(ii) holds with
@(n) = efn. O

Proof of Theorem 6.3 We break the proof in several steps.
Step 1 We first of all prove that

A =supFE ({1, 1)) < +oo. (6.3)
>0

To this aim, we set f(t) = E ({1, 1)), and we use Proposition 3.4 with ¢(v) = (v,1) to obtain

t
f)=70)+ /0 dsE [(vs,y — p) — (vs(dz) ®@ vs(dy), a(x)U(z,y))] (6.4)

Hence f is differentiable, and if we set 6 = ||y — p||oo and ag = inf 5 a(z), we deduce that for any
t>0,

f'() <0f(t) — a0 E (v ® v, U)) (6.5)
Using then assumption (E) and then the Jensen inequality, we obtain that

f'(#) < 0£(t) — aof (B)p(£(1)) (6.6)

Let now zo be the greatest solution of dzg = agzop(ze) (recall that ¢(z) is non-decreasing, goes to
infinity with z, and that ¢(0) = 0). Then one deduces from (6.6) that for any ¢ > 0, f(t) < f(0)Vx,.
This concludes the first step.

Step 2 We now check that almost surely,

lim inf (v, 1) € {0, 00} (6.7)

Since (14, 1) is N-valued, it suffices to check that for any M € N*, P [liminf; oo (v¢,1) = M] = 0.
But this is clear: if liminf;, o, (v,1) = M, then (14,1) reaches the state M infinitely often, but
reaches the state M — 1 only a finite number of times. This is (a.s.) impossible, because each
time (v, 1) reaches the state M, the probability that the next state is M — 1 is bounded below by
(€0 = inf p[u(z) + a(z)U(z,z)] > 0)

M€0 >
M~y + Mj+aUM?

0 (6.8)
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Step 3 We immediately deduce from (6.7), the fact that (v4,1) is N-valued, and that 0 is an
absorbing state, that almost surely, lim;_, o, (v, 1) exists and

Jim (1,1) € {0,00} (6.9)
Step 4 By Fatou’s lemma and Step 1,
E [tllrgo <ut,1)] —E [htrgiogf (n, 1)] <liminf B[(,1)] < 4 (6.10)

Hence lim; o, (14,1) < oo a.s., and we deduce from (6.9) that lim; . {(v¢,1) = 0 a.s. This
concludes the proof. O

6.2 Survival in a simplified case

Next, we would like to show that in some cases, the Bolker-Pacala process survives with positive
probability. We are not able to handle a proof in a general case, because the problem seems very
difficult. It actually looks much more difficult that the problem of survival for the contact process,
which has been studied by many mathematicians (see Ligget [8]). The only result we are able to
give is deduced from a comparison with the contact process.

Assumption (S):

(i) The state space X = Z¢.

(ii) The competition kernel U is pointwise, i.e. U(z,y) = 1{z—y)-

(iii) The dispertion measure D(z,dz) = D(dz) = & wEZ 4, ul=1 0u(dz).
(iv) v, u, and « are positive constants satisfying:

v2?
pu+ o

> 2 (6.11)

Note that X = Z¢ was not authorized in our construction. The adaptation is however immediate.

Proposition 6.4 Assume (S), assume that vg € M, {v9,1) > 1 almost surely, and that E [{vp,1)] <
0o. Consider the corresponding Bolker-Pacala process (v¢)i>o. This process survives with positive
probability. That means that P( infy>o (v4,1) > 1) > 0.

We do not handle a completely rigorous proof. One would have to build a rigorous coupling
between the contact process and the Bolker-Pacala process.

Proof We split the proof in two steps.

Step 1 Let us first recall definitions and results about the contact process (see [8] Chapter VI).
First, denote by M3 the set of nonnegative finite measures  on Z? such that for all z € Z¢,
n({z}) € {0,1}. The contact process, with parameters A\q > 0 and \,, > 0 is a Markov process
(m¢)¢>0, taking its values in M} and with generator K, defined for all ¢ bounded and measurable
from Mr(Z% into R, all n € Mp(Z?) by

Ko(n) = M /Zdn(dw) > larap=oy (S0 + 6ryu) — $(n)]

u€Z4,|u|=1
+Am /Z 1(d2)Lg(ga)=1) [¢(1 — d2) — ¢(n)] (6.12)

Consider a (possibly random) initial state 7o in M§ satisfying (no,1) > 1 a.s. Then it is known,
(see [8] Chapter VI), that the contact process (1;);>0 with parameters Ay > 0, A, > 0 and initial
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state 1y exists, is unique (in law), and that under the condition Ay > 2\, it survives with positive
probability.

Step 2 Consider now the Bolker-Pacala process (4);>0, which takes its values in the integer-valued
measures on Z? and denote by 7; = > zezd Lv.({z})>1}9z - Note that 7j; is always dominated
by v;. Then (7;);>0 is a process with values in M} and one can observe that (7;);>0 is a sort of
contact process with time and space dependent, random parameters \i(t,z,w) = y2~ 1V ({z})]

and Ap(t,2,w) = 1,,(1a})<1( + @) . Under (S), A4(t,z,w) is uniformly bounded from below
by A; =72~ while Ap(t,z,w) is uniformly bounded from above by A, = 1+ « . Hence, the
process (7j)¢>0 is bounded below by a contact process with parameters A\; and Am. Since under
our assumption, 2X,, <, , the conclusion follows from Step 1. |

Note that the previously described method can not apply to the “continuous-state” Bolker-Pacala
process, since we really need the interaction to be strictly local. In fact, the only case we could
treat by such a method is the case where the competition kernel is “completely local”, and can

not propagate: for example, X = R?, and U(z,y) < > opezala,(€)1a,(y), where, for p € VA
Ap = [P1,1D1 =+ 1] X ... X [pd:pd+ ].]

7 On equilibrium

An interesting question is that of the existence of non trivial equilibria for the Bolker-Pacala
process. Since this question seems very complicated, we will first try to give some results about the
deterministic equation (5.7). Then, we will exhibit a nontrivial equilibrium for the Bolker Pacala
process related to the carrying capacity, under a detailed balance condition which is unfortunately
very restrictive. In this specific case, or if the initial condition is closed to the equilibrium, we
prove convergence in some sense to this equilibrium. Finally and again under the detailed balance
condition, we exhibit a nontrivial equilibrium for the Bolker-Pacala process. We will finally show
some simulations. We will assume (B) (see Section 4) in the whole section.

7.1 Equilibrium of the deterministic equation

We first of all point out a trivial remark.

Remark 7.1 Assume (B) and that v < u, and consider a nonnegative finite measure & on R?.
Consider the corresponding unique solution (&)i>0 € C([0,00), Mp(R?)) of (5.7). Then & tends
to 0 as t grows to infinity, in the sense that (&,1) < (&, 1) e~ B=t,

This remark follows from a fair application of (5.7) with f = 1 and of the Gronwall Lemma.
We next generalize the existence of solutions to equation (5.7) to the case of possibly non integrable
initial conditions.

Proposition 7.2 Assume (B), and consider a nonnegative bounded measurable function & on R?.
1) There ezists a unique function (& ())i>0,ccra such that:

(i) for all t >0, all z € RY, &(x) >0,

(i1) for all T < 00, Sup¢jo 77,0era§t(T) < 00,

(ii) for all t > 0, all z € RY,

§i(z) = Go(x) + /O [v(&s * D) () — u&s(x) — aks(x) (€ *U)(x)] ds (7.1)

where, for exemple, [& x D] () = [p. D(z — y)&(y)dy.
2) For all x € R, the map t — &(x) is of class C* on [0,00), and for all T < oo, |0;&:(x)| is
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bounded on [0,T] x R%.
3) If furthermore [5, & (x)dx < oo, then for all T < 0o, sup;c(o,1) Jpa&t(®)dx < o0, and the finite
measure-valued function (& (x)dx)i>o is the unique solution to (5.7).

This proposition being quite unsurprising, we only sketch the proof.

Proof First note that point 2 is an immediate consequence of (7.1) and of the boundedness of
¢ obtained in (i) and (ii). Point 3 is also easily deduced from point 1. To check the uniqueness
part of point 1, it suffices to consider two solutions (& (2))¢>0 scr¢ and (&(2));>0.zera to (i), (ii),
(iii), both bounded by some constant Ar on [0,T] x R?, and to apply the Gronwall Lemma to the
function @(t) = sup,<; yega [€s(z) — &s(@)[, which can be shown to satisfy, for t < T,

6(t) < (v + u + 20A7) / o(s)ds (7.2)

The existence part follows from an “implicite” Picard iteration. Define &) (z) = & () and construct
by induction a sequence of functions (£');>0 such that for each z € R?, t — &(z) is of class C!
on RT and satisfying for n > 1,

77 (2) = &(2) + /0 [v(& * D)(2) — p&y ™ () — ol (2) (6 * U)(2)] ds (7.3)

One can moreover check at each step that " is well-defined, nonnegative and bounded on [0, 77 x
R? for each n, each T. A fair computation shows that for all ¢ > 0, sup,, sup,cga&f(z) <
sup,cga&o(z)e??, and next that for any 7', there exists a constant A7 such that for all ¢t < T,

t
sup &+ () — & (x)| < AT/O [sup &5 (@) = &' (2)] + sup |€ (z) — €77 (2)]| ds (7.4)
It follows that for all T,

sup £ (w) — £'(2)] < 00 (7.5)
n>1 tE[0,T]xRY

Hence, there exists a function (§(7));>0,0cre such that for any T, sup,cjo rjxre | (%) — & (2)]
tends to 0. One easily checks that this function satisfies points (i), (ii), (iii). O

We may now define the equilibria.

Definition 7.3 Assume (B). For f a nonnegative bounded continuous function on R?, define the
function Ff on R? by

L [f+D)(@)
PI@ = 0@ (7.6)

Then equation (7.1) can be rewritten as
¢
&(z) = &(z) + /0 (u+ alls xU)(2)(F&s(x) — & (x))ds (7.7)

This leads us to define the equilbria in the following sense. A continuous bounded nonnegative
function ¢ on R? is said to be a “reasonnable equilbrium” of equation (7.1) if for all x € R?,

c(z) = Fe(x) (7.8)
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This definition is slightly restrictive, but we may note that if D and U are continuous, then any
solution to (7.8) such that lim sup|,|_,[c* D](z)/[c* U](z) < oo will be continuous and bounded.

Remark 7.4 Assume (B), that v > u, and that o > 0. Then the constant function co(z) =
(v — )/ is a reasonnable equilibrium of (7.1). The constant function c¢(x) = 0 is also, of course,
a reasonnable equilibrium of (7.1).

Note that the quantity (v — ) /a appears in [2], and is called the carrying capacity, which can be
understood as a sort of “maximum number of plants per unit of volume”. We will use the following
estimate.

Lemma 7.5 Assume (B), that v > p and that o > 0. Define the signed function R on R? by
R(z) = D(z) + 12E(D(x) — U(x)). Then, for all bounded function f, all z € R?,

Fi(a) = Feo@) = sl = o) < Fl(2) (7.9)

This result is immediately proved, using simply the expression of F'. We now state an assumption
which ensures that R(x)dz is a probability measure, and hence that F' is a contraction around cg
in the space of bounded functions.

Assumption (C): v > p and for all 2 € R?, yD(2) > (v — p)U(z). This implies that
R(zx)dz is a probability measure on R?.

Let us now describe a situation for which the constant function c¢g is the unique nontrivial rea-
sonnable equilibrium.

Proposition 7.6 Assume (B), (C), that v > 2%u, and that o > 0. Suppose also that D(z) =
D(|z|), where the map D is nonincreasing on [0,00). (This hypothesis is physically reasonnable,
and appears in [2] where the usual example consists in choosing as dispersing kernel a bilateral
exponential). Then any nontrivial reasonnable equilibrium c of equation (7.1) identically equals co.

Proof Let thus ¢ be a nontrivial reasonnable equilibrium for (7.1).

Step 1 Since c is nontrivial, there exists zg such that ¢(xg) > 0. Since ¢ is continuous, we deduce
that ¢ is bounded below on a neighborhood of xo. Then (7.8) and the fact that D charges any
neighborhood of 0 (since it is nonincreasing) ensure that ¢ does never vanish.

Step 2 We now show that there exists a constant ¢y > 0 such that for all z € R¢, ¢(z) > eo.
To this aim, we first consider € > 0 such that v(1/2¢ — €¢) > pu, and then a > 0 such that
f[O,a]d D(z)dz > 1/2¢ — ¢, which is possible since D is radial.

Consider now any point £ = (z1,...,74) € R? and the box B = [z1,71 + a] X ... X [24,Ta + a].
Denote by m = infp ¢, which is positive since ¢ is continuous and does never vanish. Our aim is
to show that m > g(m), the C! function g being defined on [0, 00) by

g(u) = flu(1/2* =€) ; flu)= — (7.10)

B 1=p
,u+ozuu

This will conclude the proof of Step 2, since one may check that g'(0) = (1/2¢ —€)y/u > 1, so that
m > €y > 0, €9 being the smallest positive solution to u = g(u).

We thus check that m > g(m). Let y € B. Using (7.8) and (C), we deduce that ¢(y) > f([c*
D](y))- But f is nondecreasing, so that ¢(y) > f (m [ D(y — z)dz). Using the symmetry and the
nonincreasing properties of D, one easily deduces that sincey € B, [, D(y—z)dz > f[O,a] «D(2)dz >
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1/2¢ — €. Thus for all y € B, ¢(y) > f (m(1/2% — €)) = g(m), which ends Step 2.
Step 3 The conclusion is immediate: using (7.9), Step 2, and (C), we obtain

sup |e(z) — co| = sup |Fe(z) — Feo(z)| < K sup |c(z) — co (7.11)
Rd Rd M+ a€g R4

O

Although the above uniqueness result seems quite promising, we are not able to prove for the
moment that under the conditions of the previous proposition, any solution (;)¢>0 to (7.1) starting
from a non trivial initial condition converges to ¢y in some sense. One may however obtain two
partial results.

Assumption (DBC): a >0,7>0,u=0and D =U.

This assumption is a “detailed balance condition”. Indeed, under this condition, the equilibrium
¢o(z) = v/ ensures that for any couple of points z and y, the rate of appearance of plants at = due
to seed productions at y equals the rate of disappearance of plants at x because of competition of
plants at y. In other words, vD(z — y)co(y) = aco(z)co(y)U(z — y). Unfortunately, this condition
is very restrictive.

Proposition 7.7 Assume (B) and (DBC). Let & be a positive bounded and measurable func-
tion on R?. Consider the associated unique solution (&)i>o0 of (7.1) starting from & obtained in
Proposition 7.2. Then & tends to co = y/a as t grows to infinity in the sense that for all z, all t,

[gt(l') _ 00]2 < [50(11?) . 00]2672a[(€oAco)*D](z)t (7_12)

We will furthermore see in the proof below that the behaviour of & is quite simple: if & (z) < co,
then & (z) increases to ¢, while if &(z) > co, then & (x) decreases to cp.

Proof Since in this case, 0;&(x) = —a& * D(x)(&(x) — co), we easily show that for all ¢ > 0, all
xz € R?,

[ (x) — co)® = —2a&(z) — co]*[& * D](x) (7.13)

Since ¢ is nonnegative, we deduce that [£;(z) — ¢p)? is nonincreasing in ¢ for each z. Since fur-
thermore & (z) is continuous in t for each z, we deduce that for any t,z, &(z) > &(z) A co-
Hence

Bi[&u(x) — co]® < —2af&(z) — col*[(€0 A co) * D](x) (7.14)
from which the conclusion follows. O

We now treat quite a general case of coeflicients «, 7, u, U, D, but we consider an initial condition
which is only a “small perturbation” of cy.

Proposition 7.8 Assume (B), (C), that a > 0, and that U is bounded below by a positive contin-
uous function h on RY. Consider a nonnegative bounded measurable function & on R¢ such that
fRd[&) (#) — co]?dx < 0o. Consider the associated unique solution (&)i>o0 of (7.1) starting from &
obtained in Proposition 7.2. Then & tends to co as t grows to infinity in the sense that there exists
a > 0 such that for all t,

/Rd[ﬁt(w) — co]Pdx < e*“t/Rd[ﬁo(w) — co]dx (7.15)
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Proof A fair computation using Proposition 7.2-2, (7.7) and (7.9) shows that for all ¢ > 0, all
z € R?,

[6¢(2) — co]” = [§o(2) — co]® — 2/0 alés (@) — co’[6s * Ul(z)ds

t
—2/0 plés(2) — co] {[&s (2) — co] — [(&s(2) — co) * R(x)} ds (7.16)

Thanks to (C), R is a probability measure. We furthermore know that &, and thus & x U is
bounded on [0, 7] x R? for each T. Furthermore an application of the Cauchy-Schwarz and Young
inequalities yields to

[ J6@) = all(@) — o) + Rl < [ [6a) ol (7.17)
R4 R4

One easily deduces that for all T > 0, supjg 7} Jgal&: (%) — co)?dr < co. Hence equation (7.16) may
be integrated on x € R?, and we get that for all ¢t > 0,

o[ Je@) -l < [ —20(@) — el «V)a)da (7.18)

In particular, [;.[¢ () — co]?dz is nonincreasing, thus there exists a constant b < co such that for
all t >0, [oal{e, (z)<co/2ydx < b. But since U(x) > h(x), for some positive continuous function h,
there exists a constant d > 0 such that

inf U(z)dz > d (7.19)
AeB(RY), [, dz<b Jrd A

(indeed, choose any compact subset K of R? whose Lebesgue’s measure equals 2b, and set d =
binf,ecx h(z)). Hence, for all z, [§ * U](x) > dcg/2. We thus obtain, using 7.18 again,

o[ Jea) - ol < ~deae [ (o) - o] (7.20)

from which the conclusion follows. O

7.2 Equilibrium of the Bolker-Pacala process

We now would like to show that it might be possible to exhibit an equilibrium for the Bolker Pacala
processes. This is a first step to study the long time behaviour of the Bolker-Pacala process (v4);>0
defined in Definition 2.5 conditionned on non-extinction. We will unfortunately be able to treat
only the case where the detailed balance condition holds. Of course, such an equilibrium will be in-
finite (that is the number of plants is infinite). One may however state the following rigorous result.

We first of all denote by M the set of nonnegative (possibly infinite) integer-valued measures on
R?. We also denote by A the set of functions ¢ from M into R of the form ¢(v) = F((v, f)), for
some bounded measurable function F' on R and some function f with compact support on R?.

Proposition 7.9 Assume (B) and (DBC) (see Subsection 7.1), and that U(0) = 0. Consider a
Poisson measure m on R with intensity measure codx, where co = y/a. Then 7 is a stationnary
Bolker Pacala process, in the sense that for all ¢ € A, Lo(m) a.s. exists, belongs to L', and
E[L¢(w)] =0, where L is defined in (2.3).

25



Note that assuming (DBC') and that U(0) = 0 implies that there is no “natural death”. Remark
also that this result is somewhat surprising, since it suggests that at equilibrium, the plants lo-
cations are independent. Let us finally mention that a similar result without assumption (DBC)
would be much more interesting, however, the stationnary process = does not seem to be Poisson
in such a case.

The proof relies on the following lemma, known as Slivnyak’s formula in Moller [9] and also obtained
from Palm measure considerations (see Kallenberg [7], chap. 10).

Lemma 7.10 Let v be a Poisson measure on R? with intensity m(dx). Denote by {x;}i>1 the
points of v, that is v = ZiZl dz,. Then for all measurable function h from R? x M into R such

that / m(dz)E|h(z, v + 8,)[] < 00,
Rd

i>1 R¢

E [Z h(z;, u)] = [ m(dz)E[h(z,v + &;)] (7.21)

Proof of Proposition 7.9 Let ¢ belong to A. The fact that Lé(nw) a.s. exists and belongs to
L! for ¢ € A can be easily checked, using the explicit expression of L, and standard results about
Poisson measures. We thus only prove that E[L¢(7)] = 0. Denote by {z;};>1 the points of 7, that
is m = )",5; 0z,. Hence, we obtain, using (DBC),

E[Lé(r)] = ~E

) /R D()dz {0+ 60112) = ¢<w)}]

i>1

+aB |y {é(m —65,) — ¢(m)} D D(wi — wj)]
i>1 i>1
= 41 +ad (7.22)

where the last equality stands for a definition. We first use Lemma 7.10 with the function h; (z,v) =

Joa D(2)dz{¢(v + 0p42) — ¢(v)}.

A1 =FE

Z hi (s, W)] = /Rdcode [ IRdD(z)dz {d(m + 0 + 0p42) — d(m + dw)}] (7.23)

i>1

Next, with ha(z,v) = {¢p(v — 6;) — ¢(v)} {v(dy), D(z — y)), we obtain

A4, =E (Z hz<wi,w)) = /R CodsE({9(r) — 9 +5.)} (7 + 6)(dy), D —p)))  (7.24)

i>1

Since D(0) = U(0) = 0, we obtain, setting h%(y,v) = D(z —y) {¢(v) — d(v + d.)},

Ay = /R codsE (Z hqu(arj,w)) (7.25)

i>1

Using Lemma, 7.10 again, we obtain

A = / code / codyE [D(z — y) {6(m +6,) — $(m + 6, + 6,)}]
Rd Rd

- & / dz / d2E[D(2) {$(r + 62) — Bl + 65 + 8p1)}] (7.26)
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where we have used in the last equality the substitution (y,z) — (z,z + 2). Since act = vco, we
deduce that yA; = —aAs, wich ends the proof. O

7.3 Simulations

The previous results suggest that the Bolker-Pacala process, conditionned on non extinction, should
converge as time tends to infinity, to a random measure v, quite well-distributed (not far from
the Lebesgue measure), with (7 — u)/a plants per unit of volume in average. We would like to
show simulations about this fact.

We assume that X = R, that v = 5, 4 = 1, and o = 1. We consider the case where U(z,y) =
1{jz—y|<1/2} and D(z) = %1{‘2‘53}. Then we we compare the Bolker-Pacala process (v)¢>0 with
the stationnary solution ¢o(dz) = [(y — pu)/a]dz of (7.1).

On Figure 1, we assume that vg = §y. The boxes represent the empirical density of the Bolker-
Pacala process at times ¢ = 3 (1a) and then ¢ = 25 (1b), obtained with one simulation, while the
dotted line is the density of co, i.e. (y— u)/a. One checks that after some time, the Bolker-Pacala
process is quite well-approximated by cg.

6 8

5L — 4

4k 4

3k 4

2k 4

s 4

0 I I I I I I I I I 1 I I I I I I I I I
. =50 -40 -30 -20 -10 0 10 20 30 40 50 b « —50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 1: a. t =3, b. t =25

On Figure 2, we show the evolution in time of v([—5,5]) (full line), either starting from vy = do
(2a) or from vy = 609 (2b), and compare it with co([—5,5]) = 10(y — p) /e (dotted line).
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40 40
30 30

20 20
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0
a. o 5 10 15 20 25 30 b. 0 5 10 15 20 25 30

Figure 2: a. Vg = 50, b. vy = 6050

Finally, we would like to measure the power of competition. To this aim, we compare the evolution
in time of the rate of interaction of all particles on particles located in a ball, in the case of the
Bolker-Pacala process and in the case of ¢g.

We assume that vg = §. On figure 3a, is represented, in full line, the evolution in time of
(vi(dz)v(dy),1)z)<sU(z,y)), obtained by one simulation. The constant value (dotted line) is
(co(dz)co(dy), 15/<sU(x,y)) = 2% 5x[(y — p)/a]?. Figure 3b shows the same quantities replacing
5 by 50.
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Figure 3: Rate of interaction endured by all particles in [-5, 5] (a) or [—50,50] (b).

As a conclusion, one can say that on one hand, ¢g seems a good deterministic approximation of
the Bolker-Pacala process after a long time, but on the other hand, there are clearly stochastic
fluctuations around the deterministic approximation, that it could be interesting to study.

Acknowledgements The authors wish to thank Bernard Roynette for numerous fruitfull discus-
sions.

References

[1] Aldous, D.: Stopping times and tightness, Ann. Prob. 6, 335-340, (1978).

[2] Bolker, B.; Pacala, S.: Using moment equations to understand stochastically driven spatial
pattern formation in ecological systems, Theoretical population biology 52, 179-197, (1997).

[3] Bolker, B.; Pacala, S.: Spatial moment equations for plant competition: understanding spatial
strategies and the advantages of short dispersal, The American Naturalist 153 no 6, 575-602,
(1999).

[4] Evans, S.N.; Perkins, E.A.: Measure-valued branching diffusions with singular interactions,
Can. J. Math. 46, 120-168, (1994).

[5] Etheridge, A.: Survival and extinction in a locally regulated population, Preprint (2001).

[6] Joffe, A.; Métivier, M.: Weak convergence of sequences of semimartingales with applications
to multitype branching processes, Adv. in Appl. Probab. 18, 20-65,(1986).

[7] Kallenberg, O.: Random measures, Akademie-Verlag, Berlin (1975).
[8] Liggett, T.: Interacting particle systems, Springer, (1985).

[9] Moller, J.: Lectures on random Voronoi tesselations, L.N. in Statistics 87, Springer, (1994).

]
]
]
]

[10] Olivares-Rieumont P.; Rouault, A.: Unscaled spatial branching processes with interaction:

macroscopic equation and local equilibrium, Stoch. Anal. Appl. 8 no 4, 445-461, (1991).

[11] Roelly, S.: A criterion of convergence of measure-valued processes: application to measure
branching processes, Stochastics and Stoch. Reports 17, 43-65, (1986).

[12] Roelly, S.; Rouault, A.: Construction et propriétés de martingales des branchements spatiauz
interactifs, International Statistical Review 58 no 2, 173-189, (1990).

28



