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Abstract

We consider a semiparametric convolution model of an unknown signal with
supersmooth noise having unknown scale parameter. We construct a consistent
estimation procedure for the noise level and prove that its rate is optimal in the
minimax sense. For identifiability reasons, the noise has to be smoother than
the signal in this problem. T'wo convergence rates are distinguished according
to different smoothness properties for the signal. In one case the rate is sharp
optimal, i.e. the asymptotic value of the risk is evaluated up to a constant.
Moreover, we construct a consistent estimator of the signal, by using a plug-in
method in the classical kernel estimation procedure. We establish that the esti-
mation of the signal is deteriorated comparatively to the case of entirely known
noise distribution. In fact, nonparametric rates of convergence are governed by
the rate of estimation of the noise level. We also prove that those rates are
minimax (or nearly minimax in a few specific cases). Simulation results bring

new ideas on practical use of our estimation algorithms.
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Let us consider the observations Y;, ¢ = 1,...,n such that
Y;' = XZ + gg;,

where X; and ¢; are independent and identically distributed real valued random
variables, the two sequences {X;} and {e;} being independent of each other. Two
components are unknown in this model: the common law of X; having probability
density f (with respect to the Lebesgue measure on R) and characteristic function ®
and the scale parameter o > (0. Variables ¢; have a known supersmooth distribution,
that is a known density function f¢ having a Fourier transform ®¢ such that, for large
enough |ul,

be 1" < |®F (u)| < Be ¥, (1)

for some known s > 0 and fixed constants b, B > 0.

In the more classical deconvolution problem the noise is supposed entirely known
(the law as well as the scale parameter). In this case, minimax rates of convergence are
described in the literature for various associations of smoothness classes for the signal
(Holder, Sobolev, Besov or analytic functions) and global behaviours of the errors’
law. Even if the noise law is entirely known, estimators behave differently whether
the characteristic function of the noise decays polynomially asymptotically (ordinary
smooth noise) or exponentially (supersmooth noise). There is a huge amount of
literature since the work by Caroll & Hall (1988). For detailed reviews see recent
papers by Pensky and Vidakovic (1999) and Butucea and Tsybakov (2002).

Here, the signal and the scale parameter of the noise are unknown. In a first part,
we are interested in recovering the scale of the noise ¢ > 0. Indeed, the assumption
of entirely known noise is rather unrealistic from a practical point of view. Therefore,
evaluating the scale parameter of the noise can relax this restraining assumption.
Moreover, in a second part, we use it as a preliminary step in the nonparametric
deconvolution problem of estimating the signal when the scale is unknown.

The estimation of the scale parameter and of the signal was already considered
by Matias (2002) in the case of Gaussian errors and a large collection of signal func-
tions, signals “without Gaussian component”. The estimators of the scale parameter
were based on Fourier, respectively Laplace, transform and they were proven to be
consistent over some subclasses. Lower bounds of order 1/logn were found for both
estimation problems. It was already noted there that estimation of the signal is more
difficult (larger lower bounds of order 1/logn) when the scale parameter is unknown

than in the classical deconvolution problem.
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This problem has been formulated by Matias (2002) in relation with error-in-
variables non-linear regression. More generally, in physics and biology one needs to
study models with main data which are not directly observed but mixed with noise.
We suggest to use deconvolution with unknown scale parameter for the noise.

A similar problem was considered by Lindsay (1986) for mixture of exponential
families with applications to Bayesian statistics. Among other results, he considers
an infinitely divisible mixing density, with unknown parameters which are recovered
via least-squares estimation. This problem is similar to noise-level evaluation in our
model where the main signal is in a parametric exponential family. Thus, our results
extend this estimation to nonparametric main signal.

Similarly to Zhang (1990), we can regard this model as a mixing model of location
families. Zhang (1990) consider location (in ¢) families f¢(- — #) with mixing density
f(0). The observations Y;,4 = 1,...,n have density [ f¢(-—0)f(0)df and the mixing
density f is estimated. More generally, in our model, the location families have an
unknown scale parameter o: f¢((- — 6)/0)/o that we estimate together with the

mixing density f.

In this paper, we propose a new estimation algorithm for the scale parameter,
prove its consistency and compute the upper bounds of its mean squared error in
several different setups. Moreover, we prove that these rates are optimal by giving
the corresponding minimax lower bounds.

We solve the problem of estimating the noise level in two possible setups:

Assumption (A) We suppose that the signal belongs to the class A(c,r) of densi-

ties whose Fourier transform is not decaying asymptotically faster than an exponential
@ (u)| > ce ", |u| large enough,
with known parameters a > 0 and r € (0, s), and some arbitrary constant ¢ > 0;
respectively,

Assumption (B) The signal is in the class B (B) of densities having Fourier trans-

form not decaying asymptotically faster than a polynomial
@ (u)| > clu|™, |u| large enough,

with known parameter B > 1 and an arbitrary constant ¢ > 0.
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Under one of these assumptions, the model becomes identifiable since, considering

®Y | the Fourier transform of the distribution of the observations, we get:

S

log |2 (w)| _ log|®(w)| _log|@%(ow)|

wle Jul lul*  jul—oo

Let us remark that information on the nonparametric signal as well as on the
unknown noise level must be retrieved from the same sample of Y;’s. We know that
more regular (in the sense of smoother) is the noise, more difficult is to recover
information on the signal, that means slower become the rates of convergence of the
minimax estimators. On the contrary, more information will be left for the noise scale
parameter. Indeed, our results agree to this heuristics and give faster rates when the
noise is significantly smoother than the signal and slower rates when the noise is
smooth but behaving similarly as the signal. We note that if the signal becomes
smoother than the noise the parameter becomes non identifiable.

These rates are overall slower when compared to classical parametric estimation.
This is not surprising in this semiparametric model where we distinguish apart a
parametric component from a nonparametric unknown function. We note that the

rates are sharp minimax under Assumption (A) and nearly sharp under Assump-
tion (B).

In a second part, we study the rates of convergence for the estimation of the signal,
in the presence of unknown noise level, regarded as a nuisance parameter. These rates
are significantly slower than the rates obtained in classical deconvolution problem, and
are governed by the rates of estimation of the noise level. The estimators attaining
the upper bounds are classical kernel estimators where we plug-in the estimated value
of the underlying parameter. In the risk, this implies a study of uniform empirical
processes explaining the loss of performance of this estimator. The corresponding
lower bounds show that this loss is unavoidable. As in the classical nonparametric
minimax theory, we construct particular parameters as far apart as possible so that
the resulting models be close in some distance (the x? -distance in our case). Note
that the choice of the parameters is natural for our problem and it was made on the
simplest basis possible (see Section 4). Note also that these results agree with the
lower bounds established by Matias (2002) in the case s = 2 and are more precise as
we study here the rates of convergence when the signal belongs to the classes A(a, )
(with 0 < r < s) and B(8) (8 > 1), whereas Matias’s lower bounds concern every

signal with non-gaussian component.
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In the rest of the paper, we define the estimation method for the scale parameter
and study its consistency, for the defined parameters @ > 0 and s > r > 0 under
Assumption (A), respectively § > 1 and s > 0 under Assumption (B) (Sections 1.1
and 1.2).

Then, using a plug-in method combined with the natural kernel deconvolution
technique, we construct an estimator of the signal and study its rates of conver-
gence (Section 1.3). In order to establish its rates of convergence, we need to add
assumptions on the least smoothness the estimated signal may have as in classical de-
convolution problem. Moreover, because of the plug-in method (unknown parameter
is replaced by its consistent estimator), we also need the expression of the whole func-
tion ®¢(-). For simplicity of notations, we decide to fix the noise exactly distributed
according to a stable law (described in Section 1.3) which corresponds to parameter
s belonging to the interval (0,2]. This assumption is not very restrictive since most
encountered examples are in this range of parameters, and could be relaxed at this
point.

Next, we prove the optimality from a minimax point of view of the constructed
estimators (for the noise level as well as for the signal, Section 2). In order to construct
optimal paths proving these lower bounds we need specific density functions with
known behaviour and explicit Fourier transform. Then, we also deal with stable laws
for the noise. Proofs are presented in Sections 3 and 4.

In Section 5, we implement the algorithm for estimating the noise level. We
use our proofs of the upper bounds to suggest implementation technique. We find

Monte-Carlo results close to the asymptotic theoretical rates.

1 Estimation methods

1.1 Noise level evaluation algorithm

The estimator we propose is defined implicitly via the following criterion. Let us first
estimate the characteristic function of the observed variables ®Y (u) = IE [exp (iuY')]

by using the given sample:
n

1 .
@Z (u) — Ezequk'
k=1

Remark that in the following IP, IE and Var denote, respectively, the probability IP, ;
the expectation IE, ; and the variance Var, s with respect to the probability when
the underlying unknown parameters are 0 > 0 and some signal f in the class.
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Let us consider next the function
E, (1,u) = ®F (u) el
for 7,u > 0 and fixed known s > 0. Our estimator o,, of o is defined by

Gn =G Vi, Vo) = inf {| By (r,un) | > 1} (2)

7>0

for some positive sequence u,, — oo well-chosen, as described later.

This construction is based on the observation that |F}, (7, u) | is an unbiased esti-
mator of

|F (r,u)| = |@ (u) [el™ = O(1)|@ (u) [,

the last equality being valid for large enough |u|. This quantity converges, when
u — 00, either to 0 when 7 < ¢ or to oo when 7 > 0.

Note that, for the convergence of this estimation method it is sufficient to assume
(1), but we prove the convergence of the plug-in estimator for f (Section 1.3) and of

the lower bounds (Section 2) only when the noise has a stable distribution.

1.2 Consistency and rates

Theorem 1 Fiz oy > 0, 6 > 0 arbitrarily small and a vicinity V (0p) = Vs (00) =
(09 — 0;00 + 0). Under Assumption (A), consider the sequence of parameters u, =
(00 + 26) " (logn/2)"* and the rate

B g (JO + 26)1—7‘—{—3 IOg’fL r/s—1
Prd = (o9 — 6)* 2 '

Then, for all o € V (0y), for all f € A(a,r), and large enough n, we have

20 log n r/s 1 1—0%/(00+26)%
(o0 +26)" \ 2 n '
Moreover, consider the rate

_a  (logn r/s=1
e\ 2 !

limsup sup sup ¢, °IE(|5, —o*) <1+
n—oo  o€V(og) fEA(a,r)

P (50 — 0] 2 ¢us) < O(1) exp

then
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Theorem 2 Fiz oy > 0, 6 > 0 arbitrarily small and a vicinity V (0o) = Vs (0q) =
(o9 — 0;00 + 0). Under Assumption (B), consider the sequence of parameters u, =
(00 + 26)7 (logn/2)"/* | and the rate

y 28 (09 + 20)**! loglogn
n,o — o

2 (09—0)* logn
Then, for all 0 € V (0y), for all f € B(B) and large enough n, we have
1 ) 1—0°/(00+26)°

P (52 — 0l > ng) < O(1) (log )™ (5

Moreover, consider the rate

_ 2fBagloglogn
52 logn

Un

then
limsup sup sup ¢ ’IE(|5, —o?) <14+6.
n—o0o  ge€V(og) fEB(B)

The proofs can be found in Section 3.

1.3 Plug-in deconvolution density estimator

Our estimator &, of the noise level, defined by (2), leads to a natural estimator of
the signal, using a kernel estimator combined with a plug-in method. In this part,
we establish the rate of convergence of this estimator, which we prove to be optimal
in Section 2. In the following, C > 0 denotes a large enough constant.

We consider noise ¢ having stable distribution denoted S(1,s, v, u), with self-
similarity index s € (0, 2], symmetry parameter v € [—1,1] and location p € R.
In our model the noise is multiplied by an unknown scale parameter ¢ > 0. By

Zolotarev (1986), oc has also a stable law whose explicit Fourier transform is given

by
& (o) exp{—0o® |u|’ (1 — tvsgn (u) tan (ws/2)) + iuou} ,s# 1
ou) =
exp{—o |u| (1 +ivsgn (u) 2/7log|u|) + iuo(u — v2/mlogo)} ,s=1.
(3)
Note that |®(ou)| = e~*"l*. Moreover, a sum of independent, copies of a stable

law with the same self-similarity index s is distributed as a stable law with the same
parameter s. Indeed, for o1,09 > 0,

¢ (01u) D¢ (09u) = B (ou)e™,
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for any values of the parameters s and v, where o} 4+ 05 = ¢® and

:{,LL(O'1+02—0) ,s# 1
2/mv (o1 log(o1/o) + o9log(oa/0)) ,s=1.

Define moreover the parameter

. sv1 ifpu#0,
S =
s if u=0.

This parameter will be useful as it is related to the behaviour in a vicinity of zero of
the stable law ®¢(o-). Its role will be clearer in the proofs of the following theorems.
Note that when the location parameter u differs from 0, we can write the model
as Y = X + o(ep + p), with noise ¢y having stable law located at 0, which means
centered if it has finite expectation (s > 1). This expression shows that the role of
the known location parameter u can not be neglected, as the model does not simply
write Y = X + ogo + p.

We will now describe the estimation procedure. Consider the kernel k,, defined

by its Fourier transform
o (u) = & (h,'u) ™ Jusy, (4)

where h,, is some positive sequence of numbers decreasing to zero. The kernel esti-

mator of the signal f is given by

o) = oE S (B55). 0

noyhy, — onhy,

In order to get an upper-bound for the pointwise risk of our estimator, we need
to restrict ourselves to signals belonging to bounded function spaces: analytic classes

or Sobolev balls. Let us denote, respectively
S(,R,L) = {f; f is a density and /\@(u)\262°‘l|“Rdu < L2} :
and W(g', L) = {f; f is a density and /|<I>(u)|2(1 + [u*)du < L2} ,

where o/, R, L. > 0 and ' > 1/2.

Three cases occur, distinguishing whereas the signal f belongs to A(«, r)NS(c/, R, L),
which is nonempty for R < 7 or {R = r and o < «a }; or the signal f belongs
to A(a,r) N W(B',L); or it belongs to B(8) N W (g, L), which is nonempty when
B > '+ 1/2. Note that in the third case, we automatically get that § > 1. Note
also that the intersection B(3) N S(a/, R, L) is always empty.
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Theorem 3 Under the assumptions and notations of Theorem 1, consider the kernel
estimator f, s, (z) defined by (4) and (5) with bandwidth

(0'()+5)R (0'0+5)R1

h, = p (1 — g) loglogn — -

2R

R ~1/R
_ logloglog n] .
«

Then, for all o in'V (0y), for all f in A(a,r)NS(e/, R, L) (nonempty if R < r or if

R=r and o/ < «) and any x in IR, we have:

limsup sup sup 0 °IE (|fnan (x) — f(:r)|2> <C < .
n—oo  g€V(og) f€A(a,r)NS(o’,R,L)

Theorem 4 Under the assumptions and notations of Theorem 1, consider the kernel
estimator f, 5. (z) defined by (4) and (5) with bandwidth h, precised later. Then, for
all o in 'V (0y), for all f in Ala,r) "W (B, L) (with 8’ > 1/2) and any x in R, we
have for v, as described later:

limsup sup sup v, & (\fnan (x) — f(:z:)|2) < C < o0.
n—oo  geV(og) feA(a,r)NW(5',L)

1) If ' > §+1/2, take h, = (logn)2/s=D/C8'=1) and then v, = ¢,.

2) If B < §+1/2, and assuming that if s = 1 then v = 0 (symmetric noise), take

)(r/sq)/g (26'~1)/25

h, = (logn and then v, = @y,

Theorem 5 Under the assumptions and notations of Theorem 2, consider the kernel
estimator f, 5. (z) defined by (4) and (5) with bandwidth h,, precised later. Then, for
allo in'V (0y), for all f in B(B)NW (B, L) (nonempty if B > '+1/2), with 8’ > 1/2,
and any x in IR, we have for v, as described later:

limsup sup sup v, 2IE (|f,wn (x) — f(ac)|2) < C < o0.
n—oo  o€V(o0) fEB(B)NW(B',L)

1) If ' > 5§+ 1/2, take h, = (loglogn/ logn)Q/(wlfl) and then v, = .

2) If p' < 5+ 1/2, take h,, = (loglogn/ logn)1/§ and then v, = (28-1)/25

The second parts of these two last theorems give a more precise result in the
particular case of ' < §+41/2, and if s = 1 then v = 0 (symmetric noise).To all
previous theorems correspond optimality results below (lower bounds for the maximal
risks). Some other specific cases, that are not covered by lower bounds, are studied
in Subsection 1.4.
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When the noise distribution is s—supersmooth and entirely known, minimax esti-
mation of the deconvolution signal belonging to S(¢/, R, L) was done in Butucea and
Tsybakov (2002). Sharp rates were obtained in particular for the case R < s and they
were faster than for the plug-in deconvolution estimator constructed here. Estimation
of the Sobolev signal (belonging to W (3, L)) with s—supersmooth noise and entirely
known has been done adaptively with faster rates too, by Goldenshluger (1999).

Here, we use the same kernel estimators as in Butucea and Tsybakov (2002) and
plug, into the o—dependent bandwidth, the preliminary estimator &,. Fortunately,
the deconvolution kernel can be made free of o and we finally obtain a kernel estimator
with data-dependent bandwidth. Thus, we prove that the global estimation risk is
at most that of the estimation of the noise level (the slowest).

The proofs can be found in Section 3. They are based on the convergence of 7, to
o. We evaluate the uniform risk for some parameter in a neighbourhood of o using
maximal inequalities for empirical processes in order to treat the uniform stochastic
term. Next, we prove that the probability that &, is outside the neighbourhood of o
is small enough to make this part of the risk even smaller. This idea was previously
used by Butucea (2001) for a density estimator adaptive to the unknown smoothness
of the density.

1.4 Specific cases

Particular cases to Theorems 4 and 5 are treated here in Table 1. Indeed, in some
specific cases, we get a loss of order loglog n at some power in the rates of convergence
of our estimator fn,&n due to the particular choice of stable distributions. The proofs
of these results are immediate consequences of the expressions appearing in the term
denoted by 77; in the respective proofs of Theorems 4 and 5 and are omitted.

Remember that the parameter § = s if the noise is located at y =0 but s =sV 1
if u#0.

Note also that in the border case of 5’ = 5+ 1/2, optimal bandwidths coincide
in Theorem 4, respectively in Theorem 5. The rates are lowered by log(1/h,) =
C'loglogn at some power, in this cases, where C' > 0 is some constant.

2 Minimax optimality

We give in this section the minimax lower bounds for the estimation of the scale

parameter ¢ and of the signal density f.
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p'=35+1/2 B <§+1/2

(s=1v#0) | @2log* (ib) | v2tog® () | w2tog? (i%) | w2108” (i)

s#lor(s=1Lv=0)| ¢;log (,%) 7 log (,%)

Table 1: Upper bounds for the quadratic pointwise risk when f € A(a,r) N
W, L) | feBB)NW(B, L), respectively.

We first present the results concerning parametric and nonparametric estimation
under Assumption (A) (Section 2.1) and then under Assumption (B) (Section 2.2).
Under Assumption (B) we assume 3 > 1 in order to be able to choose corresponding
Fourier transforms in L; (R). Note that it was already the case when estimating the
signal over the class B(8)NW (', L). In the following, ¢ > 0 denotes some convenient
fixed constant.

2.1 Optimality under Assumption (A)

Theorem 6 Under Assumption (A) and notations of Theorem 1, for all oy > 0, we
have, for any neighbourhood V(o)

liminf inf sup sup ¢,%E(|o, — o) > 1,
N0 On GV (gg)fEA(a,r)

where the infimum is taken over arbitrary estimators o, of 0.

Theorem 7 Under Assumption (A) and notations of Theorems 1 and 3, for all

oo > 0 and for any neighbourhood V(oo) of 0o, we have

liminf inf sup sup 07 E (|falz) — f(z)]?) > ¢> 0,
n—=oo  fn o€V(og) feEA(a,r)NS(e’,R,L)

where the infimum is taken over arbitrary estimators f, of f.

Theorem 8 Under Assumption (A) and notations of Theorems 1 and 4, for all
oo > 0 and for any neighbourhood V(oy) of oy, we have, if ' > §+1/2

liminf inf sup sup o7 E (| fo(z) — f(@)) > >0
n0 fa geV(op) fEA(ar)NW(B,L)

and, if 1/2 < ' <5+1/2

liminf inf sup sup o P -VBE (| fulz) = f(@)*) > >0
n=00 fu geV(op) fEA(ar)NW (L)

where the infimum is taken over arbitrary estimators f, of f.
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2.2 Optimality under Assumption (B)

Theorem 9 Under Assumption (B) and notations of Theorem 2, we have, for any
B > 1 and for for any neighbourhood V(oy)

—11\?
liminf inf sup sup ¥, 2E(|o, —o]?) > (1 — M) ’
N0 On geV(og) fEB(B) 20

where the infimum is taken over arbitrary estimators o, of o.

Remark that in this case, the rate is minimax but the associated constant is
slightly smaller than the optimal one (see Theorem 2).

Theorem 10 Under Assumption (B) and notation of Theorems 2 and 5, for § >
B'+1/2, for all 5y > 0 and for any neighbourhood V(o) of 0y, we have, if ' > §+1/2

liminf inf sup sup U ’IE (| fu(z) = fF(2)]?) > ¢>0
n=00 fu geV(oo) FEB(B)NW(S,L)

and, if 1/2 < B <5+1/2

liminf inf sup sup Y- -VIE (|fu(z) = f(2)]*) > >0
nmee fn gev(oo) FEB(BNW(H,L)

where the infimum is taken over arbitrary estimators f, of f.

2.3 Tools

The proofs of all these theorems are based on suitable choices of two models with con-
venient parameters being as far from each other as possible, such that the convolution
models are close in y2-distance.

The following proposition is the main tool in the proof of our lower bounds and
it can be found in Butucea and Tsybakov (2002). The notation x?*(P, Q) denotes the
x2-distance between the probabilities P and Q

v | 1) i

+00 otherwise.

Proposition 1 Let Pg = {IPy;0 € ©} be a family of models. Assume that there
exists 61 and 0y in © with |y — 61| > 2s, > 0 such that the probability measures
P, = 1Py, and IPy = Py, satisfy

P, <P, and x*(IPY" PS") < K? < o0,
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Then we have

lim infinf s, max{IE: (|0, — 6,%), Ez(|6, — 6]} > (1 — K)*(1 — VK)?,

where the infimum is over any estimator én of the underlying parameter and this

bound is actually arbitrary close to 1 for K small enough.

Now, the previous lower bounds are established by the construction, in each dif-
ferent case (signal in A(w,r) or B(8)), of two particular models IP; = IP,, 5, and
P, =1P,, j,, with x? distance converging to zero. Since we have

sup sup s, E(|6, —o|?) > s ?max{E(|6, — 01|%), Ex(|6n — 02|*)}
g

Sup Sup s E(fu(@) = f@)P) > sp?max{E(f (@) = fi (@) ), Ea(Ifa (2) = f2 (@) [)}

respectively, for the particular models constructed in the proof, Proposition 1 entails
the results. Note that the different rates of convergence s, correspond to half of
the distance between the parameters o; and o9, when estimating the scale; and the

parameters fi(x) and fo(z), when estimating the signal.

3 Proofs-upper bounds

Lemma 1 For any 0 > 0 and f in A(«a,r) (respectively B(53)) in the described

model we have for all T,u >0

eQ(Tu)s

E (ﬁn(r, u)) = F (1,u) and Var (l?’n(T, u)) < -

Proof of Theorem 1.
Consider the probability of the event {|o,, — 0| > ¢, s} and split it into two terms:

P(60 — 0] > Pns) = PG > 0+ Pns) + P(Gn < 0 — gng) = T + T
By definition of the estimator ,, we bound the first term:

Ty < P(|FL(0 + @ngy tn)| < 1) S P(IF(0 + Ongytn)| < 1+ M)+ Ay, (6)
for some arbitrary M > 0 and A, defined as:

Au = P(|Fn(0 + ¢ un) = F(0 + pns, un)| > M).
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Note that:

1 ~
Ay < W]E < Fn(a +§0n,6:un) - F(0+ (pn,éaun)

2) = %Var <ﬁn(o + (pn,daun)) .

But Lemma 1 leads to:
eZ(U’—Hpn’(;)Su%

Ay <
M = nM?

(7)

Note also that:

P (|F(0+ ¢ng,un) <1+ M) = P (|2 (un)| exp{(o + pns)*ui} <1+ M)
= P (|2(un)| exp{[(0 + ¢ns)* = 0°Jup} <1+ M)
= IP (|®(un)| exp{spns0° "us (1 +0(1))} <1+ M) .
With no loss of generality, we have restricted here oourselves to the case |®°| = e~*I°,
for large enough |u|. A slight adaptation in the following choice of the parameter M

is needed in a more general context. Since Assumption (A) ensures that for large

enough n, |®(u,)| > cexp{—ouy}, we get that
P (|[F(0 + @ngs,un)| <14 M) <P (cexp{—au + spns0° 'ui(l+0(1))} <1+ M).
With our choice of the parameters u,, and ¢, 5, we have:

Jim (=}, + 50" 03 (1 +0(1))) = +o0,

then we choose
s—1, s

1
M = §cexp{—04uf1 + 5pn 60" Uy },

and get that IP (|F (o + ¢ns,un)| <1+ M) is null for large enough n. Combining
this with (6), (7) and the choice of M, we get that, for large enough n,

4 s 8 T s—1 K]
Ty < 2 exp{2(c + (Pn,d) u, + 20u, — 2s0 Qpn,éun}
4
< 3 exp{20°u; + 2au;, + o(pnsu,)},

which converges to zero with our choice of the parameters u, and ¢, ;.

>1),

Consider now the second term:

T2 = IP(an S o — QDn,J) S P ( ﬁn(o-_ (Pn,éaun)

by definition of the estimator &, ; and note that:

2

~

TQ < IE Fn(O' - Qpn,daun)

~

= Var (Fa(0 = ¢ns,tn) ) + [F(0 = Gng, )
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Since
[F(0 = ¢ng, un)| = |@(un)| exp{—0 up+(0—pns)*un} < exp{—s0""" gy guz(1+0(1))},
and using that by Lemma 1,

exp{2(0 — ¢ns)us}
n b

Var (ﬁn(a — Qn.s, un)> <

our choice of the parameters u, and ¢, ; gives that T, converges also to zero as n
tends to infinity and even faster than the upper bound of 77. In conclusion, the
quantity

. 4(1 + o(1
P, — 0| > png) < o)

- nc?

o ° o logn T
< o1 1 -1
o2 e () )

converges to zero as n tends to infinity. Moreover, note that for all o in V (o), and

exp{20°u; + 20u; + o(pnsu;)}

large enough n,

“+00
E(6, — o]?) = : P(|5, — 0| > t)dt

‘Pi,g 2(0'0+6)2
- / P([5, — of? > t)dt+/ P([5, — of > )dt
0 en s

< @25+ 2(00 + 0)’P(|6n — 0| > pny).

By the previous statement, the second term on the right-hand side is negligible in
front of 902,5- Finally, ¢, 6/¢n — 1, when 6 — 0 and we get the desired result. m

Proof of Theorem 2

The beginning of the proof follows the same lines and we establish that
]P(‘an - 0| > wn,é) = ]P(an >0+ wn,é) + ]P(an <o-— wn,d) - Tl + T2a

with

62(U+wn,5)s’u‘$¢

T, < P(|F s Un)| <14+ M
LS PP+ g ua) <1+ M)+

Assumption (B) ensures that for large enough n,

(@ (un)| > ¢ fun| ™7,
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so that we get:
P(|F (0445, up)| < 14+M) < P (cexp{—Blogu, + s¢, 50" "ul (1 +0(1))} <1+ M).
With our choice of the parameters u,, and v, 5, we have:
lim —Bloguy, + st s0°'ul (1 + 0(1)) = 400,
n—,oo
then we choose
C _
M= ) eXp{SllJn,(sO'S 1“; - ﬁlogun}a
and get that IP (|F (o + ¥ns,u,)| <1+ M) is null for large enough n. Combining
with the bound on 7} we get that, for large enough n,
4 _
T, < e exp{2(0 + Yn.s)*us, — 2505~ "4, sus + 28logu, }
< iex {—logn + 20°u’ + 2Blog u, + o(Wnsus)}
< g exp gn + 20°u,, g Upn + 0(Vn su,) }
which converges to zero with our choice of the parameters u,, and 1, 5.

The rest of the proof is exactly the same as in the preceding theorem. m

Proof of Theorem 3.
Fix o0 in V (0p) and f in A(c,7)NS(c/, R, L). Denote the following neighbourhood of
o by U(0) = (0 — ¢ns;0 + ¢ns). The idea of the proof is that 7, being convergent
to o we study separately the uniform behaviour of the kernel estimator when &,
is in a neighbourhood of the true value or not. For the first part we use the bias-
variance decomposition and treat the uniform variance with maximal inequality for
empirical processes. Then we prove that the small probability of 7, being outside
the neighbourhood makes the global estimation risk even smaller. We split the risk

of our estimator into two terms:
E (|faon(@) = F@F) =T (| fusa (@) = F@) loeun)
+ B (|fnn (@) = f@)Plouguin)) =T + T (8)

We consider the first term:

TEU(0)

T < IE(sup \fn,f(fﬂ)—f(-’r)?)

~ 2 ~ ~
< 2 sup |[Ef,,(z)— f(z)] +2IE ( sup |fur(x) —IEf, - (2) 2)
TEU(0) TEU(0)

< 9Ty, + 2T, 9)




Semiparametric convolution model 17

The term Ty, is the maximal bias term over U (o). Note that

Ef, . (z) = % / kn (“T;x) £ (w)du = % / B (7 hyt)e D (1) B (ot dt,

(remember that E is a shorted notation for E, ; the expectation when the unknown

parameters are o and f) so that we get:

2

1 .
Tn = sup Z—/e”t@(t) ((Dg(Tt)il(DE(O't)]{ﬂSl/(Thn) — 1) dt
TEU(0) ™
1 ! /
< —2( / |D(t)[2e> |tht> sup / e 21" 9% (rt) 1% (at) — 1[2dt
4m reu(o) J 1t|<1/(rhn)

1 2
+ sup —; (/ \<I>(t)|dt) .
reu(o) 47 \J > 1/(rhn)

By assumption f belongs to S(¢/, R, L) so that:

2 _ _
, L2T1 Rhl R —20/'
\@(t)ldt) <L’ / e Mdt < =1 exp ( ) (1+o(1)),
(A»l/(rhn) [t|>1/(7ha) o'R TRhR

so that

L? /
Tn, < — sup e~ 20 " ‘@g(Tt)_lég(at) - 1‘2 dt
472
TeU(o) J[t|<1/(Thn)
L'k | . W
+47r20z’Rh" P (URhR> (1+o(1)).

n

According to Formula (3), the quantity ®°(7¢)~'®*(ot) equals
exp{(7® — o°)|t|*(1 — ivsgn(t) tan(ws/2)) — itu(r — o)} ifs#1

exp{ (T — 0)[t|(1 +ivsgn(t)2log|t|) — itu(r — o) +itv2(rlogT —ologo)} if s =1
Write 7 = 0 +a with |a| < ¢, 5 and |t| < 1/(Th,) such that a|t|* = o(1). We get that

exp{sac*~'[t|*(1 + o(1))(1 — ivsgn(t) tan(ms/2)) — itua} if s#1
exp{(alt|(1 + ivsgn(t)2/m log |t|) — itpa + itv2a)(1 4+ o(1))} if s =1,

¢ (1)1 d%(ot) = {

which leads to

O(1)pns|t]® + OV pnsult) = O(N)puslt]  if s #1

: (10)
O(1)gnslt|(1 +vlog|t]) if s =1.

|0 ()" ®% (ot) — 1| = {
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Returning to the upper-bound on 77, we get that

] , —2d/
25 2_-2a'|t|R 2 1-R
I < 0Q) ( [ 15+ viog e dt) #ns = O exp(aRh;;)'

The bandwidth h,, is the largest possible such that 77, is not larger than the inevitable
(large enough) loss of 90721,5- We see later that all other terms in the decomposition of

Ty and 75 in (8) are much smaller, because R < 1 < s. We get:
Ti1 < O(¢ny)- (11)

Return now to inequality (9) and consider the second term:

A A 1
Tio = E( sup |fur(2) = Efar(2)*) = ~E( sup [G(kn,ra)l*),
TEU(o) n TEU(0)

where G is the empirical process associated to the measure IP = IP, ;, which means
that G(g) =n /237, (9(¥;) — IPg) and the function &y, equals (7hy) kn(52).

Now we use a maximal inequality to control the norm of the empirical process.
The following notation can be found in more details in van der Vaart and Wellner
(1996). We consider the class of functions F, defined by {k, ,.;7 € U (0)}. Note
that this class has an envelope function equal to the constant

10| 1 / h=s ul® Loy e
K= < nul dy = —— g5l M1 1)).
Th, — 2nTh, \u|g1e Y s " e (1 +o(1))

The complexity of this family stands in its entropy defined through the bracketing
numbers for this class. Theorem 2.7.11 in van der Vaart and Wellner (1996) applies
in our context as there exists some positive constant C; (depending only on the fixed

point z) such that for all 7, in U (o),
\kn oy 2(0) = Ky z ()] < Clh,:lel/h%h'l — 7.

This theorem asserts that the bracketing numbers for the class F,, (that means the
minimal number of brackets of size € needed to cover F,,) are controlled by the covering
numbers of U (o) (i.e the minimal number of balls of radius € needed to cover U (o)):

V(26 Fos 12(@) < N (o st 01311
1

where () is any probability measure. But it is easy to bound the covering numbers
for U (o)

S 20 8
N ihne_l/"";l/{ (0);]-]) < —lhﬁlel/h"%a-
Ch € ’
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So that we obtain the following control on the bracketing numbers for the class F,

2C s
Nij(26 Fus L2(Q) < —hy'e Mo,

and the control on the covering numbers for 7,
2C s
N6 Fui L2(Q)) < = hy e g (12)

Let us define the entropy of this class by the formula:

J(1,F,) = sup /1{1 +log N(eK, fn,LQ(Q))}I/Qde, (13)
Q Jo

where the supremum is taken over all discrete probability measure (). Then, Theorem
2.14.1 in van der Vaart and Wellner (1996) applies and gives that

TEU(T)

2
IE ( sup |G(kn,r,m)|> < CK?J(lafny’

where ¢ is an absolute constant. Combining with the definition of the entropy (13),
with inequality (12) and the expression of K, we obtain that there exists some con-

stant x such that

2
; ( iy s |Gn(kn,ww)|> < whi* Ve |log(pn.s) — slog(hn)| (1 + 0(1)).

TEU(0)

Returning to the definition of the term 7},, we get:
o)

Ty, = ——2h372e*/M0 loglog n. (14)
n

Combining inequalities (9), (11) and (14), and the definition of the rate ¢, 5 we get:
T, < O(e2,). (15)

Return to the expression of the risk (8) and consider the second term:

2

TQZ]E<

@) = 1) gt
< 2 [( a2 + 1712 Tougrto)

But we know that:

A 1
[zl < 73 X — (1+0(1)),
‘On‘
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and that
1 1.
B ( gloasun ) = P U@+ 1),
where
rl = 0’P(6a ¢ U(0) " [E[(6,% = 07%) buguio)] |
< o’El6,? — o2
< o’F [&;4 65—02\2].

But 6, converges in probability to o > 0, so that 6, is bounded in probability and
finally:

r|=0(1) Elo, — o”” = o(1).

We get:

m25202

hi(s—l)ez/h;
T, <2 (7(1 +o(1)) + ||f||§o) P(6n ¢ U (0)).

As f belongs to A(a, r), result of Theorem 1 gives that

9 1 r/s 1 1-0°%/(00+26)°
T, < O( )h25 1) 2/hn exp ( - (Ogn) ) <_> ) (16)

(oo +20)" \| 2 n
Combining inequalities (8), (15) and (16), we get the desired result. m

Proof of Theorem 4.
Fix o in V (0¢) and f in A(a,7) " W(S', L). We only sketch the proof as it follows
the same lines and notation than the proof of Theorem 3. Here, the term 77; writes

1 2
T, = Sup / _Mt@(t) (@5(O't)(I)E(Tt)_l]lMSl/(Thn) — 1) dt
TEU(o
< (/ D(t)[2(1 + [t )dt) sup / (14 [t]2)71 8% (o) ®° (t) ™ — 1|%dt
TEU(0) J|t|<1/(Thy)

2
+ sup — (/ \@(t)\dt) .
reu(o) 47 \Jjy>1/(rhn)

But here f belongs to W(f', L) so that:

2
2
(/ |‘b(t)|dt> < Lz/ (1442t < — = L2726 ~1p26=1(140(1)).
[t|>1/(Thn) [t|>1/(Thy) 26" —1
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In the same way as we established the bound (11) using the expressions given in
equality (10) we get

t1?5(1 + vlog [t|1,-,)?
noso, [ Mgl

6<1/(7hn) 1+ [t[*
In case ' > §+1/2, we bound [, /., [t[**(1+vlog|t])?/ (1+ [t[*?") dt, by the
constant limit. The choice of the bandwidth h, = (logn)*"/*="/@# =Y ig the largest

such that

dt + O(1)h2P' 1,

T < O(p; ) = O (1) (logn)*"/*7Y.

In case ' < §+1/2, and when s = 1 then v = 0, we evaluate the rate of divergence
of the integral in the bound of 7}; and obtain a global slower rate of convergence.
Here,

Ty <OM)RF 51 s+ 0(1) R

)(T/S—l)/g

This bound is optimised for h, = (logn giving the global rate of order

T, <0(1) (%,5)(2/3’—1)/5 —0(1) (logn)(r/s—l)(Z,B’—l)ﬁ.

More generally, when 3 < 5§+ 1/2, we can evaluate the rate of divergence of the
remaining integral in every cases, which gives the more precise results presented in
Subsection 1.4. The rates obtained differ from the previous one only by powers of
log logn.

The controls of the terms T and T5 remain valid and they are much smaller than

71, giving the global rate, and we automatically get the different results. m

Proof of Theorem 5.
Fix o in V (09) and f in B(8) N W(', L). The first part of the proof of Theorem 4
applies and we we just replace ¢, ; by ¥y, 5

[t/2(1 + vlog [t[1,=)?
61/ (rha) 1+ (¢

Following the same discussion, in case 8’ > §+ 1/2, we bound the previous
2/(28'-1

T <Oy 4 dt +O(1)h" .

integral by its constant limit and choose h, = (loglogn/logn) ) the largest

possible such that
log log n) 2

T <0 (Y,) =0 (1) ( logn

In the other cases, a loss in rate is inevitable. When ' < §+1/2 and if s =1

then consider only v = 0, we get

Ty <O Q)R> 12 s+ 0 (1) R
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The optimal bandwidth is h,, = (loglogn/log n)l/ 5 giving a slower risk of order

loglogn)(wl)/g

More generally, evaluating the rate of divergence of the integral appearing in the
bound of T; gives the remaining cases.
The control of the term 775 remains valid. The control of the last term, 75 follows

the same lines till we get that

hi(s—l) 2/hs,

T, <2 (nfnzo + 1 +o<1>)) P(6, ¢ U (o).

m28202

As f belongs to B(f), result of Theorem 2 gives that

1\ 1-0°/(o+20)°
Ty, < O(1)R2E DM (1og n)?P/s (—)
n

Y

and we get the desired results. Indeed, under the respective hypothesis with chosen

bandwidths, 775 and 75 converge to 0 faster than 77;. =

4 Proofs-lower bounds

We construct two models having parameters far enough from each other, which are
nevertheless close enough in x? - distance. They are used all through the proofs
of the lower bounds with suitable choices of signals and scale parameters, under
Assumptions (A) and (B), respectively.

Let us fix the scale parameter oy and a symmetric density f; in the needed
class having Fourier transform ®;. The first model has signal density f; and scale
parameter o; = (1 4 ¢)'/%0y. In this model, observations Yi,...,Y;, have density
fY(z) = fi *[f¢(-/o1)/o1](z) and Fourier transform @Y (u) = ®;(u)®°(o1u). Recall
that the noise has stable density of parameters S (1, s, v, u).

Consider next a perturbation of this model, having scale parameter oo = (1 —

t)'/0y and a signal density f, defined by its Fourier transform

By (u) = By (u) [cbf((zt)l/saou)e—imk* (%) + (1 s (%))] . an

for the auxiliary function k& having Fourier transform k*, M being some sequence of
positive numbers and the real valued function d; is defined by the relations:
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5, = { 7 (02 + (2t)1/5 00 — 01) , ifs#1 (18)

—vooZ (1 —t)log (}52) + (L+t)log (), ifs=1.

Indeed, by (3) and a simple computation,
F (09u) D°((2t) 2 ogu) = B (oyu)e™.

We denote in this case f3 () = fo * [f¢(-/02)/02)(z) and @Y (u) = Py (u)D®(09u).
This construction is actually based on Fourier transforms ®;, which have the
same behaviour for large values of u, so that they belong to the same class of signals.
Moreover, the resulting models @{2 coincide (in absolute value) on a large interval
around 0 in order to get close models in x2-distance. By Proposition 1, the rate of

convergence is given, for small ¢, by

2
loy — 09| = % t (1+0o(1)),

when we estimate the scale parameter o, and by the difference

1)~ o) = | [ 5 @1~ 23) ()

when we are interested in pointwise estimation of f(z).

Let us proceed to the proof of the lower bounds via some auxiliary result.

Lemma 2 Let g and h be two nonnegative functions such that g has a unique mode
and h is such that [ h(z)dz = ¢ > 0. Then the convolution product g * h satisfies:

g*h(z) > gmin {9z +A),g(z - A)},

for some large enough A > 0.
Remark that if g is symmetric the lower bound becomes g (|z| + A) ¢/2.

Proof of Lemma 2.
It is immediate to note that for some A > 0 large enough LAA h(u)du > ¢/2 and

g * h(zx) > / g(x — u)h(u)du > min {g(x + A),g(x — A)} /A h(u)du,

—A

which concludes the proof. m
Throughout this section C' denotes a positive constant which values may change
along the lines.
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4.1 Signals in the class A(q,r)

We now particularize the choice of the function f; to deal with the case of signals

belonging to A(a, ).

Lemma 3 Consider the function ®,(u) = e~*"" which is the Fourier transform of

a symmetric stable density fi in the class A(a,r). There exists a kernel k such that
a) k is an even function,
b) the Fourier transform k* has a support included in [—2;2],
¢) for all u in [—1;1], k*(u) = 1.
d) k* is four times continuously differentiable on R, (i.e. C*).

Consider the function ®y defined by (17). Then ®4 is the Fourier transform of a
density fo included in A(a,r) for all large enough M and small enough t > 0.

Proof of Lemma 3.
Without loss of generality, we assume that oy = 1.

Let us construct a function k£ with desired properties. Consider the function
g(z) = sinz/(mx), with g*(u) = 1j4<1. Next we consider successive convolutions of

*32 having support on [—32,32] and being 4-times continuously

g* with itself, say ¢
differentiable, corresponding to a positive density function ¢g3?(z). Let us rescale this

function G*(u) = ¢**?(u/32)/32 and finally split G* to get what we need, as follows

1, jul <1
E*(u) =¢ G*(u—1), uell,2];
G*(u+1), uvel-2,-1].

Remember that f, denotes the function

1
o

£ (@) / e, (u) du.

Since ®5(0) = 1, we know that [ fo(z)dz = 1. Our purpose is to establish that f, is a
positive function (and then a density function). The fact that fo belongs to the class
A(a,r) is a direct consequence of the construction of ®, (see equation (17)), since
the kernel k£ has a Fourier transform boundedly supported.

The argument for the positivity of fs consists in two steps. First, we prove that

the uniform distance ||fo — fi1||co converges to zero as t tends to zero and M tends
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to infinity, and then (f; being strictly positive, see Zolotarev (1986) Remark 4 after
Theorem 2.2.3), for all fixed compact K in IR, small enough ¢ and large enough M,
we get fo(x) > 0 for all z in K. The second step is to establish that for large enough

||, we have
C O(1)
+

fa(z) > [ Tz

(19)

for some constant C' > 0, and since r < s < 2, we conclude that, for large enough
|z|, the function f, is positive.
Let us establish the first step. Note that

u

Dy (u) = B, (u)@°((2t)*u)e ™ + &, (u) (1 e (M)> (1- @5((215)1/3“)641@) ’

and consequently

= 1+ () 5

+ % e, (u) (1 e (%

)) (1 — @°((26)/*u)e~ ™) du. (20)
Using that the kernel £ satisfies:
u
()] < e

the second term in the right hand side of the previous equality is bounded by

< l/ e ol gy,
T Jlul>m

which is O (M'~"e=*M") | uniformly in z, and then converges to zero as M tends to
infinity. Now, let us denote by ff the scale transformed function (2t)~1/% f¢((2¢)=/%.)

so that the first term in (20) is the convolution between the continuous and bounded

o [ e ) (1= (§7)) (L= 8 (@) u)e ) du

function f; with f7, combined with a translation by ;. We get that

[fi* fi(-+6) = fillo < Nfixfi = fillo +llfo % ff = frx (4 00)loo
= o)+ |[fixfi = fix fi (- +00)|l s 5

as t tends to zero, by properties of approximate convolution identities. Now using
that §; — 0 (see definition on Equations (18)) and that ff (and then the convolution
product too) is continuously differentiable, with uniformly bounded derivative, we

have

1o % fi = fi* fi (- + 61)lloo = O(6:) = o(1),
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as t tends to zero. Returning to (20), we get that:
Ifo — filleo = 0(1), as M — oo and t — 0.

Denote by ¥ the function

V() = &, (u) (1 s (%)) (1 — ©°((2t)You)e %),

in such a way that according to (20)

fa(z) = (fr* fi) (@ +6:) + %/e_i”‘ll(u)du.

Using that W is three times continuously differentiable, identically equal to zero on
[—2M;2M] and vanishes at infinity such as its derivatives, an integration by parts
establishes that:

-| /e,«wwu)du‘ _on)

(=iz)* ] o

‘ / e " (u)du

since we have ||U®)||; < co. It means that

o)

jzf?

folz) = (fr* f7) (x +6) +

Now we apply Lemma 2 with the densities f; and f;, the first one being a symmetric
function, with unique mode in zero, which gives

0(1)

1
fo(z) > §f1(|f5| +A) + TP

for some large enough A > 0. Since ®;(u) = e~*" with r < 2, we know that the
asymptotic behaviour of fi(z) is C/|z|"*! for some positive constant C (if r = 1,
this is the Cauchy distribution, if r # 1, see Zolotarev (1986) Equations (2.4.8) and
(2.5.4)). Finally, we get equality (19) and conclude the proof. m

Proof of Theorem 6.

Consider, for arbitrary small € > 0, the sequences of positive numbers

r/s—1 i 1/s
t:tn:\/l——e(g <logn) T sloglogn) and M = M, — (logn) .

o} 2 s logn 20§

(21)
According to Lemma 3, the densities f; and fo constructed in this lemma with the

preceding choice of parameters belong to the class A(q,r) (for large enough n),
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and then applying Proposition 1, we need to control the distance x?(IP$", IPS™) =

nx*(fi' fy). Write:
UYL ) /|f1 o f2 Ol "
and use Lemma 2 and the relation f) (z) = fi * [f(-/01)/01](x) to bound this ex-

pression:
() — fy ())?
nx*(fl fy) < / dy,
b fi |y|+A

for some large enough A. Now, split this integral into two terms and use that f; is a

strictly positive function, with behaviour O(1/|z|"™) at infinity, to get that:

V(YL 1Y) < nCy / Y () — £ () Pdy + nC / WY ) — £ () Pdy

ly|<A ly|>A
(22)
for some positive constants C; and Cy. Consider the first term on the right-hand
side:
Y 2 ”Cl Y Y (12
T = nC, | |<A|f1 (v) = f> W)Pdy <nCy | [f () - 2 (v)dy = o 121 = 2 [f2-
y|<

By definition,

B (u) = By (u) D (0u) = B (u) [cps((zt)l/saou)e*w&tk* (%) F1-k (%)] &F (0011,

and
@?(U) = @1(u)(1)6(01u) = (1)1(u)(I)E((215)1/50'0’&)(1)6(O'Qu)e_imst,

so that we get:

O (W)~ @ ()] = | @)@ (o2u) (1 -k (7)) (1= B((20)*oqu)e%)

< 9e-elul—(-toglul

(23)
1{u|>M~

Returning to the first term 77:

27101
™

T, < / €—2a|u|7‘—2(1—t)08|u\sdu =0 (an—se—QaMT—Q(l—t)USMS) ]
|u|>M

But M = (logn/20§)'/* and by our choice of ¢ given in (21) we have T} = o(1).
Let us deal with the second term appearing on the right-hand side in (22):

T2=n02/| A|ylr+1|f1Y( y) —fr (y )|2dy<n02/|y| i (y) = £ (y)Pdy.
y|>
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By Parseval’s equality and since (®} — ®3) (u) is C* on its support: {|u| > M}
T2<"—C2/|<I>Y o))" (u)|” du,

and according to the expression (23) of the difference ® — ®), we bound this term
by:

_ r_ _ s s _ _ r_ _ sArs
T, < TLC;/ |U|6€ 2a|u|"=2(1—t)o§ |u| du=0 (’I’LM7 Se 20M" -2(1-t)o§ M ) ,
|lu|>M

and we conclude exactly in the same way that 75 = o (1).
Then, using Proposition 1, we get
1nfmaXE [|on — oy ]

infsupy2E G, — ol > (1-— on 1= >1—c¢,
nfsupe, (16w —0l"] 2 (1—¢) oiloT

for arbitrary small € > 0, hence the theorem. m

Proof of Theorem 7.
The proof uses the same construction as for the Theorem 6. So, we use the same
notations and reasoning starting with Lemma 3. We apply again Proposition 1 for
functions f; and f;. Indeed, ®;(u) = exp(—«a|u|") and thus f; belongs to A(«x, )N
S ,R,L)if R<rorif R=r and o < a. We already saw that f, is in A(a, 7).
Let us remark that |®5(u)| < |®(u)| and then f; belongs to S(o/, R, L), too.

As we already checked that nx?(fY, fY) = o(1), when n — oo, for ¢t and M
given by (21) it is enough (by Proposition 1) to get a lower bound of |f;(z) — fao(x)|.

Without loss of generality we can evaluate:
1O =20 = 5| [ @100) - ) an

|/ ‘Mu)k*( j}) (1 — *((20) *aqu)e") du

Using the definition of the characteristic functions of stable laws, we get that the real

part
Re(D°((2t)Y4oqu)e %) = e 2984 cos(R(t, u)),

for some function R(¢,u). This leads to the lower bound
1 r 8 8
11(0) = (0)] > — / el ( ) [1— e 2o81° cos(R(t, u))]du

_/ fa\u|’“k,* ( i 72t08|u\5)du

(/ e_o‘|“|r(1 — e 2glul) gy, +/ e (1 - e_gtgg)du) ;
21 \Jju<a 1<lu/<M

v

v
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as k* is a positive function and for large enough M. Finally, write that both terms

above are of order O (?) :

1

21 Jju<1

T 2t s T
e " 2tad lul*du(l + o(1)) + % / e " dy
27 1<|u|<M

|f1(0) — f2(0)] >

> Ct>C(logn)*™,
which achieves the proof. m

Proof of Theorem 8.
The same construction of functions f; and f, remains valid for the model. Indeed,
the signals are analytic so that they belong to the Sobolev class W (4, L) as well.
Thus we get the lower rate of convergence ¢, whatever the value of 3’ is. But this
rate is too small (this bound is too low) in the case 8’ < § + 1/2, where the optimal
rate is (pgﬂlfl)/%.

In order to solve the case §' < §+ 1/2, consider as main signal f; , in (27) with ¢
given in (21), which fulfils Assumption (A) as well. The same lines as at the end of

the proof of Theorem 10 apply in this case to give the result. =

4.2 Signals in the class B(3)

Those proofs will follow the same lines as the ones concerning signals in A(«, ). We
choose a new function f; belonging to the class B(S) such that the resulting function

fo (defined via its Fourier transform ®, and equation (17)) also belongs to the set

B(p).

Lemma 4 Let ®;(u) = (1/2)(1 +u?) 7?2 + (1/2)e /2, with 8 > 1. This function
is the Fourier transform of some density fi in the class B(B). Use the kernel k
constructed in Lemma 8 and define the function ®y by Equation (17). Then ®q is the
Fourier transform of a density fo included in B(B) for small enough t > 0 and large
enough M.

Proof of Lemma 4.
First, let us prove that the function f; defined by

f@) =5 [ efif"”q’l(U)du = 3(91(2) + g2(2))

21 (1+u2)ﬂ/2du and  gy(z) =

where g;(z) = =
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is a positive and integrable function, and then is a density, as by Parseval’s equality
[ fi(z)dz = ®,(0) = 1. Indeed, g, is the density of the Cauchy law, and we have

1 [t cos(ux)
0o =1 [ G

Using Formulae 3.771.2, 8.432.3 and 8.334.3 in Gradshteyn and Ryzhik (2000), we
get that for any = > 0, g; is given by

n@ = 0@ (5) [ e e -y

and then is a positive function on R*, which is also an even function. Moreover,
according to Formulae 3.771.2 and 8.451.6 in (Gradshteyn & Ryzhik 2000), we have

g1(z) ~ Cafl* e,
+o0

for some positive constant C', and then is an integrable function. This establishes
that f; is a density function on R.
The rest of the proof follows the same lines as the one for Lemma 3. Establishing

the positivity of fy, the first step involves a bound on the quantity

%/eim@l(u) (1 e (%)) (1 N (1)6((2t)1/su)e*iu6t) du

™

1 1
< — (1+u?)™P2du+ — e 2 dy
27 Jjui>m 27 Jiuizm
which is O(M~#+1) and converges to zero, uniformly in z, as M tends to infinity (and
for § > 1). The second step is proved exactly in the same way, as the asymptotic

2

behaviour of f; is given by the Cauchy density g, and it is of order 7 'z~2. m

Proof of Theorem 9.
Here, the notations are the one used in Lemma 4, and the proof follows the same
lines as for the proof of Theorem 6. Indeed, for arbitrary small ¢ > 0, consider the

parameters

28 — |s — 1| logl
=izl sz lloslogn i ar = flogn/20t) e, (24)
S logn
and the functions f; and f, corresponding to this choice, in Lemma 4.
According to this lemma, the functions f; and f; belong to B(3) (for large enough
n). The control of the x? distance between the laws induced by f; and f5 is established
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exactly in the same way as in Theorem 6, where now the asymptotic behaviour of
the function f; is O(z~2). The first term T} is controlled by O (n) ||[®} — @g”; and

(@) — o)) ()] < o<1>(11“% exp (— (1 - 8) o3 ul").

This gives
T1 =0 (77,) M—2/3’+1—s€—208M3+2t08M3. (25)

On the other hand, T, = O(n) [, 4 [y/* |£Y (v)— £} (v) Py = O (n) | (@) — @Y’
We write first

2

(B — @) (u) = By (u) (2° (o1u) — B (0o)) (1 e (%)) ,

to see that the function is continuously differentiable on its support {|u| > M}. Now,

u
(@ —0) ()| < 00) @ (w)] (@ (o1w) — & (@20))| (1~ k" (7))
< (1)|u|‘5+(3—1)+6_(1_ )UO‘U|81|U|>M:

where a, denotes the positive part of a real a. Then

T, = O(n)/ ‘u‘—2,8+2(5—1)+6—2(1—t)08\u|sdu _ O(M—2ﬁ+2(s—1)++1—se—2(1—t)08Ms)
|u|>M

(26)
From (25) and (26) we deduce that

n2(fY, fY) < O (n) M—26+1s=1l=20-005M°,

Finally, the y?-distance goes to 0 when n — oo, for M and ¢ in (24). Thus

s—1\? 1nfm<'1;u2<E [1Gn — 03]?]
infsupy,, °E [[6, — a|2} > (1—¢) (1 Y ) Ont

o fo (0t /s)”
> (1-¢ (1—%>2,

for arbitrary small € > 0 and this ends the proof. m

Proof of Theorem 10.
We use the construction in Theorem 9. As in the previous proof, nx?(fY, fo ) goes
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to 0 when n — oo, for M and ¢ in (24). Then, we need to bound from below, as in
(7):

1
2T

|f1(0) - f2(0)| =

/@ﬂ@ﬁ(%)@—@%@ﬂWMew%du

_ o 2tof|ul®

1 *(u>1 e d
2 M (1+U2)'B/2 u

Ct/ _ ﬂ/QdquC’/ _ tdu —
lui<1 (1 + u?) 1<ful<m (1 4 u?)

> (Ct>Clognlogn/logn

v

v

and the integrals are convergent whenever 8 > '+ 1/2.
This bound is too low if 5’ < § + 1/2. For this particular case consider as main
signal

frn(@) = fu(z) (1 = BFHY2) 4 pP 12, (x/h), (27)
@1y (u) = @1 (u) (1 — K H2) + B 20, (hu)

where h = /¥ — 0 when n — oo, t is given by (24) and g, is defined by its Fourier
transform in Lemma 4.

Then f, ) is a density having the needed properties as fi;. Moreover, define f;
and its Fourier transform ®, ), through ®, 5, and Equation (17). Then, as in the proof

of Theorem 7, we get

1 u — U-S uS
‘fl,h(o) - f2,h(0)| > %/‘(I)l’h(’u,)k* (M) (1 —e 2t ul )du
1 hB+1/2

> ——
21 J<mr (1 + (hu)2)?

_ S |8
— e 2to’O'“‘ )du

|u‘sh,6’+1/2 h,@’+1/2
li<t/n (1 + (hu)?) 1/h<iul<M (1 + (hu)?)

‘U|5h’8’_s_1/2 B —1/2
<t (14 0?) 1<ppl<hm (1 4 v2)

where the second integral converges as 5 > 1 and hM — oo, when n — oco. The first

term is of order A% +t5-5-1/2 which is always smaller than A% /2. We finally get

| £10(0) = f2n(0)| > CRZ =12 = Cyplf ~1/2)%,
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5 Simulation results

For practical implementation we actually use an immediate consequence of Theo-
rem 1 (respectively Theorem 2). This is a global version of the minimax upper
bounds, where the unknown parameter is supposed to belong to some interval and
the estimation algorithm is based only on a strict upper bound ¥ for the true unknown

parameter o.

Corollary 1 Suppose o is in some bounded set ©, o > 0 and sup{o,0 € O} < X.
Under Assumption (A) consider

= logn\"/* and , (%) = o [(logn\"**
"\ 2% on sl \ 2% ’

then we have for all o € © and f € A(a,r)

limsup sup sup ¢,% () E(|5, —of’) < 1.
n—oo 0€O feAla,r)

Corollary 2 Suppose o is in some bounded set ©, ¢ > 0 and sup{o,0 € O} < .
Under Assumption (B) consider

logn\"/* 2% loglogn
n — d i, (X) = )
" <225> and gn (2) s?05=t logn

then we have for all o € © and f € B(p)

limsup sup sup ¢, () E(|5, —of*) < 1.
n—oo  0€O feB(p)

We simulated a sample of size n = 1000 of X having a Cauchy distribution (o = 1,
r = 1) as a signal convoluted with a Gaussian noise (s = 2) normalised such that
its characteristic function becomes ®° (u) = exp(—u?). For o = 1, we construct the
sample Y = X + oge. We compute the estimator o,, described in Section 1.1 for
different values of ¥ € {1.5,2,10,20,100}. It is an algorithm starting with a very
small value 7 = 0.05 which tests whether the estimated function F}, (7, u,) is less
than 1. If this condition is satisfied then 7 is incremented by step = 0.05 (unless
specified), otherwise it stops and provides 37(3) = 7. We actually remark that the
issue of the algorithm strongly depends on the initial value of the upper bound ¥ we
use at the very beginning. Therefore, we reinitialise the estimation algorithm with
¥ =5 and obtain a second estimator 7% and so on. In a very few steps (3to 7

steps) the estimator doesn’t vary anymore, as can be seen in Table 2.



34 C. Butucea and C. Matias

G Y=15|X=2|2=10|2=20| X =100
1% iteration 1.3 1.45 2.45 3.2 7.4
2n¢ jteration 1.2 1.3 1.6 1.7 2.25
37 jteration 1.15 1.2 1.35 1.4 1.55
4th iteration 1.15 1.15 1.25 1.25 1.35
5th jteration 1.15 1.15 1.2 1.2 1.25
6" iteration 1.15 1.15 1.15 1.15 1.2
7t iteration 1.15 1.15 1.15 1.15 1.15

Table 2: Values of 6,: f is Cauchy, s =2, 0 =1 and step = 0.05.

Indeed, in the proof of Theorem 1 (respectively Theorem 2) wee see that with
much higher probability we overestimate the true o. Moreover, the estimator is
convergent and we expect with high probability to get closer and closer to the true
value and attain the local minimax rate of convergence ¢,.

Next, for a Monte Carlo study, we simulated m = 50 samples of size n = 1000
of X having a Cauchy distribution (¢« = 1, r = 1) as a signal convoluted with
a Gaussian noise (s = 2) normalised such that its characteristic function becomes
¢ (u) = exp(—u?). We compute Y = X + ge, for different values of o € {0.1,0.5,1}.
(Note that for large values of o estimation is very good, so we don’t study them in
detail. Moreover, noise level is often expected to be small, in practice.) Then we
estimate o on each sample respectively, reinitialising the procedure each time as it

was previously described. We give here the mean square error over m = 50 samples:
1 m
= — E O'n k— O'
T m
k=1

We compare this value to the minimax (theoretical) rate of convergence ¢2 of E,  [(G,, — 0)2}
in Table 3. Remark that for 7 = 1 the minimax rate of convergence ¢? doesn’t depend
on the true o and it’s value in this setting is 2 = 0.0723824.

Remark that for small values of o we can refine our results by starting with the
closest ¥ possible and by decreasing the value of the step (see the case 0 = 0.1 in
Table 3).

As for the case (B) we considered another m = 50 samples of size n = 1000 of
a Laplace distribution (having Fourier transform: & (u) = (1+u?) ', 8 =2) and a
Gaussian noise (s = 2). For Y = X +0¢ with ¢ = 1, we obtain estimators 7, ranging
from 0.8 to 1.45 (X = 1.5). The results are presented in Table 4.
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Y. =1.5 (step = 0.05) | ¥ =1 (step = 0.01) | ¥ = 0.5 (step = 0.02)
c=0.1 MC = 0.2908 MC = 0.232528 MC = 0.188488
02 = 0.07238 02 = 0.07238 ¢2 = 0.07238
o=0.5 MC = 0.12415 MC = 0.09611
02 = 0.07238 02 = 0.07238
oc=1 MC = 0.0963
02 = 0.07238

Table 3: MC square risk versus ¢2: f is Cauchy, s=2, m = 50 samples of size
n = 1000.

Y=1.5 ¥ =10 YX=15
oc=1| MC=0.06295 ||oc=5| MC=0.4296 || 0 =10 | MC= 1.748
Y2 = 0.0782763 2 = 1.95961 Y2 = 7.82763

Table 4: MC square risk: f is Laplace, s=2, m = 50 samples of size n = 1000 and
step= 0.05.

A last example is constituted of Laplace distribution (8 = 2) convoluted with a
Cauchy law (s = 1) in Table 5.

N=15 Y=1
o=05| MC=0.8947 | MC = 0.4609
P2 =0.3133105 | 2 = 0.3133105
o=1 | MC = 0.93475
P2 = 1.25242

Table 5: MC square risk versus 2: f is Laplace, s=1, m = 50 samples of size
n = 1000.

Remark again that there is way to improve a lot the global estimation by choosing
the closest upper bound possible for the unknown estimated o.

As we can expect from the minimax rates of convergence, the estimation is better
under Assumption (B) than under Assumption (A). The results are good and we

indicated practical ways for improving the estimation.
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