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Abstract

We consider the problem of estimating an unknown function f in a regression setting
with random design. Instead of expanding the function on a regular wavelet basis, we
expand it on the basis {ψjk(G), j, k} warped with the design. This allows to perform a
very stable and computable thresholding algorithm. We investigate the properties of this
new basis. In particular, we prove that if the design has a property of Muckenhoupt type,
this new basis has a behavior quite similar to a regular wavelet basis. This enables us to
prove that the associated thresholding procedure achieves rates of convergence which have
been proved to be minimax in the uniform design case.
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1 Introduction
In this paper we consider the problem of estimating an unknown function f in a regression setting with random
design. We will consider the problem in the framework of wavelet thresholding. Of course, if the design is regular,
the procedures are now standard (see Donoho, Johnstone (1995) [16], Donoho, Johnstone, Kerkyacharian, Picard
(1994) [18]). In the case of irregular design, various attempts to solve this problem have been studied : see for
instance the interpolation methods of Hall and Turlach (1997) [25], Kovac and Silverman (2000) [30], the binning
method of Antoniadis, Gregoire and Vial (1997) [2], the transformation method of Cai and Brown (1998) [6],
the weighted wavelet transform of Foster [22] , the isometric method of Sardy et al (1999) [34], the penalisation
method of Antoniadis and Fan (2001) [3], the specific construction of ad hoc wavelets of Delouille et al (2001)
[11]...

Our aim here is to stay as close as possible to a standard WaveShrink. Doing this, means that we accept to
consider instead of the wavelet expansion of the function f its expansion on the basis {ψjk(G), j, k}, where
G is the distribution function of the design (or its estimation, when it is not known). This obviously creates
some difficulties since {ψjk(G), j, k} is no longer an orthonormal basis, but has also clear advantages : among
them, let us emphasize the fact that our procedure is computationaly very simple. Compared for instance, to the
transformation method of Cai Brown, which considers this point of view for the finest scale, but then project on
the regular wavelet basis, the calculation are more direct, but overall, doing this, we stabilize the variance of the
estimated coefficients which avoids using a thresholding rule that needs to be re-calculated (or estimated) for each
coefficient.

Adopting such a point of view obviously pushes the difficulty toward the analytic part since we need to study
the behavior of the family of ’warped wavelet basis ’ {ψjk(G), j, k}. Of course the properties of this basis truely
depends on the warping factor G. Obvioulsy, if G is uniform, then, {ψjk(G), j, k} is a regular wavelet basis.
We will prove that under a condition on G, it is ’almost’ the case e.g. for statistical purposes, we can use the
warped basis as a standard one. As expected, this condition is quantifying in a way the departure from the uniform
distribution and is associated to Muckenhoupt weights.

The Muckenhoupt weights have been introduced in [31] (see also [23] and[8]) and widely used afterwards in
the context of Calderon-Zygmund theory.

Our results will prove that under conditions mixing the regularity of f and the fact that G is not degenerating,
we find the rate of convergence of the procedures. For instance, in the case where the density g of G is bounded
above and below, we found exactly the same behavior as in the regular design except that here the conditions
of regularity are formulated on the function f ◦ G−1. In a way, this is strongly linked with the results about
the equivalences of experiments (see, for instance Brown, Cai, Low and Zhang (2002) [5]). The assumption of
boundedness above and below for g will not be required in full generality. In this case, the regularity of f will be
expressed in terms of ’warped’ Besov spaces.

2 Model, Warped bases, Estimation procedures

2.1 Regression with random design
Let us consider the following model: We observe Y1, . . . , Yn n independent variables with

Yi = f(Xi) + εi (1)

where Xi and εi are independent random variables, εi has a known distribution with density g0. The Xi’s are
observed, εi’s are not. Our aim is to estimate the function f . To simplify, in the sequel, we will assume that the
εi’s are normal variables with zero mean and variance σ2. σ2 will be assumed to be known or replaced by an
estimator. For sake of simplicity, in the sequel, we assume σ2 = 1. The Xi’s have a density g which may be
known or unknown. g is assumed to be compactly supported on the interval I = [a, b], as well as f .
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2.2 Wavelet shrinkage
Wavelet shrinkage is now a well established statistical procedure used for nonparametric estimation. A generic
wavelet estimator of an unknown function f is written as

f̂ =
∑

{I=(j,k),−1≤j≤J(n)}

β̂I ψI I{|β̂I |≥λ}
(2)

where {ψj,k, j ≥ −1, k ∈ Z} is a compactly supported wavelet basis (we recall that : ψ−1,k = φ0k) β̂I is an
estimator of the true wavelet coefficients

βI =

∫

f ψI (3)

Note that the procedure (2) is non-linear since only statistically significant coefficients (e.g. |β̂I | ≥ λ ) are kept.
Here λ, is a threshold parameter which depends on the problem at hand. This procedure has been investigated in
many cases. See for the regression with equispaced design Donoho Johnstone (1996) [17], where this estimator
has been proposed with the following estimators of the wavelet coefficients

β̂I =

n
∑

i=1

Yi ψI(i/n) (4)

In the case, with non equispaced but still fixed design, many adaptations of this first estimator have been
provided. Let us only mention here Cai and Brown (1998) [6] and Hall and Turlach (1997) [25], which are the
closest to the forthcoming discussion.

2.3 Warping the basis
The main idea developed in this paper is that instead of expanding the function on a wavelet basis and obtaining as
a consequence an estimator which is adapted to the basis but no so well adapted to the statistical problem, we are
going to adopt a different strategy : We will warp the wavelet in such a way that in this new basis, the estimates
of the coefficients will be more natural.

Let us devote the following lines to explain this idea : In the case where the design is fixed and equispaced,
the estimators of the coefficients βI appear to be in a natural way β̂I given in (4). If we follow this idea in the
random design case and suppose for a while that

G(x) =

∫ x

a

g(u)du

is a known function, continuous and strictly monotone from [a, b] to [0, 1], then

β̂I
∗

=
1

n

n
∑

i=1

ψI(G(Xi))Yi (5)

is a natural extension of (4).
We have :

E(β̂∗
I ) =

1

n

n
∑

i=1

E(ψj,k(G(Xi))(f(Xi) + εi)) = E(ψI (G(X))f(X))

=

∫ b

a

ψI(G(x))f(x)g(x)dx =

∫ b

a

ψI(y)f(G−1(y))dy := βI

where βI is now the coefficient of the new function f(G−1(y)) in the wavelet basis {ψI , j ≥ −1, k ∈ Z}. This
can be rewritten as

f(G−1(y)) =
∑

I

βIψI(y)
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or,

f(x) =
∑

I

βIψI (G(x)) (6)

and we can associate to this decomposition the following estimate :

f̂∗(x) =

J
∑

j=−1

∑

k∈Z

β̂∗
I I{|β̂

∗
I | ≥ κtn}ψI(G(x)) (7)

with,

tn = (
logn

n
)1/2, 2J ∼ t−1

n . (8)

Obviously, (6) considers an expansion of f in a new basis :

{ψj,k(G), j ≥ −1, k ∈ Z}.

Notice here, that the formula (5) is also a key tool in Cai and Brown [6], since it is the estimator which is used
at the highest level J ′ (2J

′

= n)), and then the wavelet coefficients are deduced by considering the projection of
φJ′,k(G) over each ψjk . In the present case, the calculation is very simple since starting from the same first step,
we just need to use the classical pyramidal algorithm, and as a consequence any wavelet software can be used to
perform the estimation.

Then one might ask what is to be done if G is not known, which is the most frequent case. The answer is
simple : Let

Ĝn(x) =
1

n

n
∑

i=1

I{Xi ≤ x}

be the empirical distribution function of the Xi’s. Let us define the new empirical wavelet coefficients :

β̂′
jk =

1

n

n
∑

i=1

ψjk(Ĝn(Xi))Yi.

And let us now consider the estimator :

f̂ ′′ =
J

∑

j=−1

∑

k∈Z

β̂′
jkI{|β̂

′
jk | ≥ κtn}ψjk(Ĝn(x)) (9)

With again:

tn = (
log n

n
)1/2, 2J ∼ t−1

n

The difference between the two estimators is the substitution of the empirical distribution function. Notice
however that this substitution makes the computation even easier.

The only calculation steps are :

1. Sort the Xi’s,

2. Change the numbering in such a way that Xi has rank i,

3. Calculate the highest level alpha-coefficients using the formula :

α̂J′k =
1

n

n
∑

i=1

φJ′k(i/n)Yi, (2J
′

= n)

4. Calculate the wavelet coefficients using the classical pyramidal algorithm

5. Perform a thresholding algorithm giving rise to β̃jk coefficients,
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6. Reconstruct the estimator, using again the standard backward pyramidal algorithm, and obtain

f̂ ′′ =
J

∑

j=−1

∑

k∈Z

β̃jkψjk(Ĝn(x))

which is a function especially easy to draw.

The aim of this paper will be to study the performances of the procedures f̂∗ and f̂” under conditions of
regularity which will take into account the regularity of the function f as well as the concentration properties of
the underlined design. It is interesting, at this step to notice that there is a slight difference here with the standard
setting in the fact that we set 2J ∼ t−1

n whereas, usually, we set 2L ∼ t−2
n , for the greatest level. This will be

commented below. It is also worthwhile to notice that for technical reasons, the results will be proved not exactly
for f̂”, but for a procedure which is a bit less direct from the computation point of view (but still very simple):
Instead of estimating G over the whole sample, we divide the sample into 2 (independent) parts and use the first
part (for i in {1, . . . , [n/2]}) giving rise to Ĝ[n/2](x). Then we estimate the wavelet coefficients using the other
part of the data :

β̂@
jk =

2

n

n
∑

i=[n/2]+1

ψjk(Ĝ[n/2](Xi))Yi.

And let us now consider the estimator :

f̂@ =

J
∑

j=−1

∑

k∈Z

β̂@
jkI{|β̂

@
jk| ≥ κtn}ψjk(Ĝ[n/2](x)) (10)

3 Muckenhoupt weight and warped bases

3.1 Muckenhoupt Weight
Let us first recall the following notion :

Definition 1. (Muckenhoupt weights) For 1 < p < ∞, 1/p+ 1/q = 1, a measurable function ω ≥ 0 belongs
to the Muckenhoupt class Ap if there exists 0 < C <∞ such that for any interval I included in R,

(

1

|I |

∫

I

ω(x)dx

)1/p (

1

|I |

∫

I

ω(x)−
q
p dx

)1/q

≤ C

For p = 1, the definition is modified in the following way : ω ≥ 0 belongs to the Muckenhoupt A1 class if there
exists 0 < C <∞ such that,

ω∗(x) ≤ Cω(x) a.e.

where ω∗(x) is the Hardy-Littlewood maximal function.
For p = ∞, we set

A∞ = ∪p≥1Ap.

Definition 2. (Maximal function)If B is the set of all the intervals of R and if f is a measurable function, then
the Hardy-Littlewood maximal function associated to f is

f∗(x) = sup
I∈B, x∈I

(
1

|I |

∫

I

|f(x)|dx.)

The concept of Muckenhoupt weight has been introduced in [31] (see also [23] and[8]) and widely used
afterwards in the context of Calderon-Zygmund theory. It is easy to observe that the Muckenhoupt spaces are
increasing. Many functions belong to one of these classes. Of course, if ω is bounded above and below, it belongs
to A∞, but ω can also approach zero. For instance w(x) = |x|a belongs to Ap for −1 < a < p− 1.

We see on the definition that this property somehow quantifies the way how ω is closed to a uniform weight,
where the function and its inverse are evenly charging each interval. Some of the important properties of these
functional classes will be recalled in Appendix I.

In the sequel we will assume the following condition :
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(Hp) y 7→ ω(y) = 1
g(G−1(y)) is a Muckenhoupt weight belonging to Ap([a, b])

This will be proved to be equivalent (see Proposition 9, Appendix I) to :
There exists C, such that for all interval I ⊂ [a, b],

(
1

|I |

∫

I

g(x)qdx)1/q ≤ C
1

|I |

∫

I

g(x)dx 1/p+ 1/q = 1.

Again, these conditions are obviously true when the design g is uniform or uniformly bounded above and
below. More generally they obviously quantify the usual assumption that the design gives enough mass to any
interval.

3.2 Properties of the warped wavelet basis
As is shown in formula (6), our construction builds on the new ’basis’ {ψjk(G(.)), j ≥ −1, k ∈ Z}.

Let us consider, the following Lp risk :

E‖f̂ − f‖pp = E

∫

[a,b]

|f̂(x) − f(x)|pdx.

As is proved in [27], generally speaking (but with a mathematical sense that will be detailed later) threshold-
ing methods are working especially well in Lp-risk, not only if one thresholds the wavelet coefficients but also
if one thresholds the coefficients associated to a ’well adapted basis’ {ei, i ∈ N}. In this context, being well
adapted precisely means the two following properties :

Shrinkage (or unconditional) property: There exists an absolute constant K such that if |θi| ≤ |θ′i| for all i,
then

‖
∑

i

θiei‖p ≤ K‖
∑

i

θ′iei‖p. (11)

Temlyakov property: There exist cp and Cp such that for any finite set of integers F we have :

cp

∫

∑

i∈F

|ei|
p ≤

∫

(
∑

i∈F

|ei|
2)

p
2 ≤ Cp

∫

∑

i∈F

|ei|
p. (12)

Let us now state the following theorem, borrowed from [29]:

Let 1 < p < ∞, ω ∈ Ap, and ψj,k be a compactly supported wavelet. Let T and S be two real measur-
able functions defined on R such that

S(T (x)) = x, a.e.; T (S(x)) = x, a.e. (13)

∀h ≥ 0, measurable function,
∫

R
h(T (x))dx =

∫

R
h(y)ω(y)dy (14)

Theorem 1. Under the conditions (13) and (14), the family {ψjk(T (.)), j ≥ −1, k ∈ Z} satisfies the properties
of shrinkage and p-Temlyakov.

Typically, these conditions are realized if we take T (x) = G(x), defined on ]a, b[ and if S = G−1 is a locally
lipschitz function on ]0, 1[. It is well known then that if S is almost everywhere differentiable, then the following
change of variable formula is true ( cf [24]) :

∀h ≥ 0, measurable function,
∫

R

h(x)ω(x)dx =

∫

R

h(T (y))dy

where ω is the Jacobian of S. i.e. ω(y) = 1
g(G−1(y)) . Then, we see that our assumption (Hp) precisely states that

(14) is realized, with ω ∈ Ap.
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3.3 Weighted Besov spaces
It is natural in this context, if we want to obtain a global rate of convergence in terms of Lp risk, to impose
regularity conditions taking into account the fact that the design is non equispaced. This is what we are going to
express in this section. Let us define, for every measurable function

∆hf(x) = f(x+ h) − f(x)

Then, recursively, ∆2
hf(x) = ∆h(∆hf)(x) and identically, for N ∈ N∗, ∆N

h f(x).
Let

ρN (t, f, ω, p) = sup
|h|≤t

(

∫

|∆N
h f(u)|pω(u)du)1/p

with the usual modification for p = ∞. and let us define the following modified Besov space :

Bs,p,q(ω) = {f : (

∫ 1

0

(
(ρN (t, f, ω, p)

ts
)q
dt

t
)1/q <∞}.

The only difference with the usual Besov spaces is the fact that the modulus of continuity ρN is calculated with
the weight ω that possibly leads to a space inhomogeneity.

One of the major advantages of Besov spaces is that they can be expressed in terms of wavelet coefficients. In
fact, if ω is a reasonable weight, one can show that it is still the case. The following proposition proves the direct
sense, which is the useful one in the context of this paper.

Proposition 1. For 1 ≤ p ≤ ∞, let us suppose that ω is in Ap, and let us put for every interval I ⊂ R

ω(I) =

∫

I

ω(x)dx

Then, if ψ is a real compactly supported wavelet, such that
∫

ψ(x)xkdx = 0, k = 0, . . . , N − 1

then for

f =
∑

j,k

βjkψj,k, Ij,k = [
k

2j
,
k + 1

2j
]

(

∫ 1

0

(
(ρN (t, f, ω, p)

ts
)q
dt

t
)1/q <∞ =⇒ [

∑

j

(2js2j/2(
∑

k∈Z

|βj,k|
pω(Ij,k))

1/p)q ]1/q <∞

with the usual modification if q = ∞.

This proposition is proved in Appendix I (see Theorem 6). We will use the following corollary, which will be
necessary since we are not expanding the function in the wavelet basis but in the warped basis. Let us define :

∆h(G)f(x) = f(G−1[G(x) + h]) − f(x).

As above, recursively, ∆2
h(G)f(x) = ∆h(G)(∆h(G)f)(x) and identically, forN ∈ N∗, ∆N

h (G)f(x), and again,

ρ̃N (t, f, G, p) = sup
|h|≤t

(

∫

|∆N
h (G)f(u)|pdu)1/p.

Notice that ρ̃N is defined with the standard uniform weight, the ’spatial inhomogeneity’ now lies in the definition
of ∆(G). Let us define the following spaces :

BGs,p,q = {f : (

∫ 1

0

(
(ρ̃N (t, f, G, p)

ts
)q
dt

t
)1/q <∞.}

Notice that in the particular case p = q = ∞, it is easy to prove that :

f ∈ BGs,∞,∞ ⇐⇒ f ◦G−1 ∈ Bs,∞,∞.

The following corollary concerns the representation of spaces BG
s,p,q in term of coefficients in the expansion

using the warped basis.
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Corollary 1. Under the conditions of Proposition 1, for

f =
∑

j,k

βjkψj,k(G), (i.e.
∑

j,k

βjk =

∫

[f ◦G]ψj,k)

we have

(

∫ 1

0

(
(ρ̃N (t, f, G, p)

ts
)q
dt

t
)1/q <∞ =⇒ [

∑

j

(2js2j/2(
∑

k∈Z

|βj,k|
pω(Ij,k))

1/p)q ]1/q <∞

with the usual modification if q = ∞.

The corollary is an obvious consequence of the previous proposition applied to f ◦ G−1 just observing that
ρ̃N (t, f, G, p) = ρN (t, f ◦G−1, ω, p).

4 Performances of the estimation procedures

4.1 Maxisets
The properties of the procedures f̂∗ or f̂@ will be expressed in two different ways. The first one is commonly
used: It consists in proving that we obtain minimax rates of convergence for a large variety of loss functions and
a wide class of regularity spaces (Theorem (2) and Proposition (2)).

The second way (Theorem (4) and Proposition (5)) consists in determining the maxiset of the procedures.
Let us quickly recall this notion. For a sequence of models En = {Pnθ , θ ∈ Θ}, where the P nθ ’s are probability
distributions, Θ is the set of parameters, we consider a sequence of estimates q̂n of a quantity q(θ), a loss function
ρ(q̂n, q(θ)) and a rate of convergence αn tending to 0.

Definition 3. We define the maxiset associated with the sequence q̂n, the loss function ρ, the rate αn and the
constant T as the following set:

Max(q̂n, ρ, αn)(T ) = {θ ∈ Θ, sup
n

E
n
θ ρ(q̂n, q(θ))(αn)−1 ≤ T}

This way of measuring the performances of procedures has been particularly sucessful in the nonparametric
framework (see for instance [9], [27], [33]). It has the advantage of giving less arbitrary and pessimistic compar-
isons of procedures. It also has the advantage of being very powerful at giving as subproducts the comparisons
of traditional types as quoted above; Here we will obtain the maxisets for the procedure f̂∗ (theorem 4). From
this result, we deduce the rates of convergence of f̂∗ over a large amount of regularity classes by proving their
inclusions into the maxiset. We will then deduce the results for the more general procedure f̂@ taking advantage
of the proximity of f̂∗ and f̂@, when n is large (theorem 2).

4.2 Properties of the procedures f̂ ∗ and f̂@:
Theorem 2. Assume that we observe the model (1), with the unknown function g satisfying the conditions (Hp),
where p > 1, π ≥ p are given real numbers. Let us suppose that f is bounded and let us take 0 < r ≤ p

2s+1 , the

two estimators f̂∗ and f̂@ defined in (7), (10), have the following rates of convergence :

E‖f̂∗ − f‖pp ≤ C[n/ logn]−α if f ∈ BGs,π,r, s ≥ 1/2 (15)

E‖f̂@ − f‖pp ≤ C[n/ logn]−αif f ∈ BGs,∞,∞, s > 1/2. (16)

where

α =
sp

1 + 2s
(17)
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Remarks and comments:
The rates of convergence obtained here for f̂∗ corresponds to the rates which were proved to be minimax in a
uniform design, up to logarithmic factors. Notice however, that we don’t observe the elbow, and the division
between a sparse and a dense zone as was the case for the uniform design. This is essentially due to the fact that
the Sobolev embeddings which are true with regular Besov spaces, no longer occur in the context of weighted
spaces.
The results on f̂@ are almost the same as for f̂∗, except that we need uniform conditions on the wavelet coeffi-
cients.
The limitation s ≥ 1/2 is standard in the regression setting. Let us observe that this restriction appear in our
choice of J . In standard thresholding (standard denoising or density estimation for instance) one usually set the
highest level L so that 2L ∼ n/ logn. Here we have to stop much sooner (2J ∼ (n/ logn)1/2). This is necessary
to obtain, in particular the exponential inequalities of Proposition 3.
We can also want to express the results in terms of ’regular’ Besov spaces. This can be done if we are ready to
more restrictive assumptions on the underlined design (e.g. its density is bounded above and below). We have the
following proposition :

Proposition 2. Assume that we observe the model (1), with the unknown function g satisfying 0 < m ≤ g ≤
M <∞, for p > 1, π ≥ 1 given real numbers, 0 < r ≤ p

2s+1 , the two estimators f̂∗ and f̂@ defined in (7), (10),
have the following rates of convergence :

E‖f̂∗ − f‖pp ≤ C[n/ logn]−α(s) if f ◦G−1 ∈ Bs,π,r, s ≥ 1/2 (18)

E‖f̂@ − f‖pp ≤ C[n/ logn]−α if f ◦G−1 ∈ Bs,∞,∞, s > 1/2. (19)

where

α(s) = α =
sp

1 + 2s
, for s ≥

p− π

2π
(20)

=
(s− 1/π + 1/p)p

1 + 2(s− 1/π)
, otherwise (21)

This proposition proves that, under the condition that g is bounded above and below (case already investigated
in Stone 1982 [36]), we observe exactly the same behavior as in the regular setting with the only exception that
the regularity is stated with the function f ◦G−1 instead of f .

The proof of theorem 2 will be given in the next section. It will be decomposed into the following items :
First we investigate the behavior of f̂∗. The first step takes advantage of the following theorem 3 borrowed from
[27].
The aim of theorem 3 is to determine the ’maxiset’ of the thresholding method for a completely general basis. We
refer to [27] for its proof. This theorem will be applied to obtain Theorem 4, which is determining the maxiset of
the particular procedure f̂∗. The proof of Theorem 4 is given in the first part of the next section.
The second step (proving (15)), consists then in proving that the spaceBG

s,π,r is included into the maxisetMax(q)
with q properly chosen to obtain the prescribed rate of convergence (α = (p− q)/2). This is done in Appendix II.

When the result is established for f̂∗, we just need to transfer it to f̂@ by proving that the two estimators are
reasonably close. This is done in the following section, part 3.

We need now to introduce the following notations : Let { ejk, j ≥ −1, k ∈ N} be a set of functions in Lp(R),
ν will denote the measure such that for j ∈ N, k ∈ Z,

ν{(j, k)} = ‖ejk‖
p
p,

and we define the following functions spaces :

lq,∞(ν) =

{

f =
∑

βjkejk, sup
λ>0

λqν{(j, k)/ |βjk | > λ} <∞

}

.
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Theorem 3. Let p > 1, 0 < q < p. Suppose that { ejk, j ≥ −1, k ∈ N} satisfies the shrinkage and p-Temlyakov’s
properties (11) and (12). Suppose that c(n) is a sequence of real numbers tending to zero and Λn is a set of pairs
(j, k) such that :

sup
n
ν{Λn}c(n)p <∞. (22)

We suppose in addition that, for any pair (j, k) in Λn we have an estimator β̂jk, such that, the two following
inequalities hold :

E|β̂jk − βjk|
2p ≤ Cc(n)2p (23)

P
(

|β̂jk − βjk| ≥ κc(n)/2
)

≤ Cc(n)2p ∧ c(n)4. (24)

Then, the thresholding estimator (25)

f̂ =
∑

(j,k)∈Λn

β̂jkI{|β̂jk| ≥ κc(n)}ejk (25)

is such that there exists C > 0

∀n ∈ N
∗, E

n
f ‖f̂n − f‖pp ≤ Cc(n)p−q .

if and only if,

f ∈ lq,∞(ν), and,

sup
n
c(n)q−p ‖ f −

∑

(j,k)∈Λn

βjkejk‖
p
p <∞.

Remarks and comments:

1. Rephrasing the theorem is saying that the maxiset of the procedure f̂ ,

Max(q) = {f, E‖f̂∗ − f‖pp (c(n))(q−p) <∞}

= lq,∞(ν) ∩ {f =
∑

βjkejk sup
n
c(n)q−p‖f −

∑

(j,k)∈Λn

βjkejk‖
p
p <∞}.

2. This theorem will be applied to obtain the following theorem 4 with

ejk = ψjk ◦G, f̂ = f̂∗, Λn = {(j, k); |k| ≤ D2j , −1 ≤ j ≤ J}

The basis satisfies the shrinkage and Temlyakov properties because of condition (Hp) and the Theorem
(1).

3. The estimators of the coefficients will be taken to be β̂∗
jk It will be proved in Proposition 3 (see section

5.1) that inequalities (23), (24) hold with

c(n) = tn =

(

logn

n

)1/2

and 2J ∼ c(n)−1 (26)

4. It will be proved in Appendix I (see Theorem 5) that condition (Hp) implies that ν{(j, k)} = ‖ejk‖
p
p =

‖ψjk‖
p
Lp(ω) ∼ 2jp/2ω(Ijk). Then the condition (22) is verified as soon as we have :

J
∑

j=−1

2j(p/2)
∑

k

ω(Ijk)c(n)p <∞ (27)

This is obviously true as soon as ω belongs to L1 and 2Jc(n)2 is bounded, which is the case under our
assumptions.
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Hence, as a consequence, we obtain the following theorem.

Theorem 4. Let p > 1, 0 < q < p. Under the condition (Hp), the maxiset of the estimator f̂∗

Max(q) = {f, E‖f̂∗ − f‖pp

(

logn

n

)(q−p)/2

<∞} (28)

can be expressed in the following form if ν{(j, k)} = 2jp/2ω(Ijk),

Max(q) =







f =
∑

I

βIψI ◦G, sup
λ>0

λqν{(j, k)/ |βjk| > λ} <∞, sup
l≥0

‖
∑

j≥l, k

βjkψjk ◦G‖
p
p2
l(p−q) <∞







(29)

5 Proofs
In this section we will first prove Theorem 4. As a consequence of Theorem 3 and the remarks above, we only
need to prove inequalities (23) and (24). This is done in subsection 5.1. Then, we prove inequalities (15) and
(18) by inclusion, in subsection 5.2, which is very short since we rejected all technicalities about Besov classes in
the Appendix I. Subsection (5.3), is devoted to prove that f̂@ and f̂∗ are close enough, at least under regularity
conditions on the unknown function. This will be done in two steps reflecting the fact that the difference between
f̂@ and f̂∗ is decomposable into two parts with different level of difficulties : 1-replacing β̂∗ by β̂@. 2- replacing
G by Ĝn/2 in ψI (G).

5.1 Proof of Theorem 4
We begin with the following proposition :

Proposition 3. if f is bounded, there exist constants Cp, C ′
p, and for any γ > 0 there exists a constant κ0, with

:

E(|β̂jk − βjk |
p) ≤ Cp

(1 + ‖f‖p∞)

np/2
, for 2j ≤ n (30)

P (|β̂jk − βjk | > κ

√

logn

n
) ≤ C ′

pn
−γp for κ ≥ κ0, 2

j ≤ (
n

logn
)1/2 (31)

Remark : Let us observe that (35) implies (23), and choosing γ large enough will obviously ensure (24).

5.1.1 Proof of the Proposition

1. Using Rosenthal inequality (see [26] p. 241), for p ≥ 2,

E(|β̂jk − βjk|
p) ≤ C(

E|ψj,k(G(X))Y |p

np−1
+

(E|ψj,k(G(X))Y |2)p/2

np/2
)

E|ψj,k(G(X))Y |p = E|ψj,k(G(X))(f(X) + ε)|p ≤ 2p−1(E|ψj,k(G(X))f(X)|p + E|ψj,k(G(X))ε|p)

But,

E|ψj,k(G(X))f(X)|p =

∫

|ψj,k(G(x))f(x)|pg(x)dx ≤ ‖f‖p∞

∫

|ψj,k(G(x))|pg(x)dx

= ‖f‖p∞

∫

|ψj,k(u)|
pdu ≤ ‖f‖p∞2j

p−2
2

∫

|ψj,k(u)|
2du = ‖f‖p∞2j(

p
2−1)

11



Furthermore,

E|ψj,k(G(X))ε|p = E|ψj,k(G(X))|pE|ε|p = E|ε|p
∫

|ψj,k(G(x))|pg(x)dx ≤ Cp2
j( p

2−1)

So :
E|ψj,k(G(X))Y |p ≤ Cp(1 + ‖f‖p∞)2j(

p
2−1)

So : if p ≥ 2,

E(|β̂jk − βjk |
p) ≤ Cp(

(1 + ‖f‖p∞)2j(
p
2−1)

np−1
+

(1 + ‖f‖p∞)

np/2
)

So obviously if 2j ≤ n ( and a fortiori if 2j ≤
√

n
logn ) we have

E(|β̂jk − βjk|
p) ≤ Cp

(1 + ‖f‖p∞)

np/2
)

The same is obviously true for 0 < p < 2, using Jensen inequality :

E(|β̂jk − βjk |
p) ≤

(E|ψj,k(G(X))Y |2)p/2

np/2

2.

1

n

∑n
i=1 ψj,k(G(Xi))(f(Xi) + εi) − βjk

= (
1

n

n
∑

i=1

ψj,k(G(Xi))(f(Xi) − E(ψj,k(G(X))f(X))) +
1

n

n
∑

i=1

ψj,k(G(Xi))εi

Hence

P (|β̂jk − βjk| > κ

√

logn

n
)

≤ P (|
1

n

n
∑

i=1

ψj,k(G(Xi))(f(Xi) − E(ψj,k(G(X))f(X))| > κ/2

√

logn

n
)

+ P (|
1

n

n
∑

i=1

ψj,k(G(Xi))εi| > κ/2

√

logn

n
)

• Let us observe that conditionally to (X1, ..., Xn) = (x1, ..., xn) we have

1

n

n
∑

i=1

ψj,k(G(Xi))εi ∼ N(0,
1

n2

n
∑

i=1

ψ2
j,k(G(xi)))

So

P (|
1

n

n
∑

i=1

ψj,k(G(Xi))εi| > κ/2

√

logn

n
)

≤

∫

...

∫

exp−
κ logn

8
n

∑n
i=1 ψ

2
j,k(G(xi))

g(x1)..g(xn)dx1..dxn

≤ P (|
1

n

n
∑

i=1

ψ2
j,k(G(Xi)) − 1| > α) + exp−

κ logn

8(1 + α)

Using Hoeffding inequality (see [26] p. 241), we have, using the fact that ψ2
j,k(G(Xi)) are i.i.d.

variables bounded by 2j‖ψ‖2
∞, and such that Eψ2

j,k(G(Xi)) = 1:

P (|
1

n

n
∑

i=1

ψ2
j,k(G(Xi)) − 1| > α) ≤ 2 exp−

2n2α2

n‖ψ‖2
∞22j

≤ 2n−2α2/‖ψ‖2
∞ (32)
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if 2j ≤
√

n
logn .

Hence, we can easily fix α and then κ large enough in such a way that

P (|
1

n

n
∑

i=1

ψj,k(G(Xi))εi| > κ/2

√

logn

n
) ≤ Cn−γ ,

if 2j ≤
√

n
logn .

• Using Bernstein inequality :

P (|
1

n

n
∑

i=1

ψj,k(G(Xi))(f(Xi) − E(ψj,k(G(X))f(X))| > κ/2

√

logn

n
)

≤ 2 exp−
n2(κ/2

√

logn
n )2

2/3(3σ2 +Mκ/2
√

logn
n )

where

M = ‖ψj,k(G(X))(f(X) − E(ψj,k(G(X))f(X))‖∞ ≤ 22j/2‖ψ‖∞‖f‖∞

σ2 = E|ψj,k(G(X))(f(X) − E(ψj,k(G(X))f(X))|2 ≤ E|ψj,k(G(X))(f(X)|2 ≤ ‖f‖∞.

Furthermore,

2 exp−
n2(κ/2

√

logn
n )2

2/3(3σ2 +Mκ/2
√

logn
n )

≤ 2 exp−
3κ2 logn

4‖f‖∞(3 + 22j/2κ/2
√

logn
n )

≤ 2 exp−
3κ2 logn

4‖f‖∞(3 + κ( logn
n )1/4)

if 2j ≤
√

n
logn .

Hence, we find that for any γ, there exists κ large enough such that

P (|
1

n

n
∑

i=1

ψj,k(G(Xi))(f(Xi) − E(ψj,k(G(X))f(X))| > κ/2

√

logn

n
) ≤ C ′n−γ .

5.2 Proof of inequalities (15) and (18)
To prove these inequalities we only need the following proposition :

Proposition 4. For all p > 1, π ≥ p, s ≥ 1/2, r ≥ p/(1 + 2s), for q such that : p − q = 2sp/(1 + 2s), we
have,

BGs,π,r ⊂Max(q).

Furthermore, if 0 < m ≤ g ≤M <∞,
Bs,π,r ⊂Max(q).

This proposition is proved in Appendix II.
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5.3 Behavior of the estimator f̂@

5.3.1 Maxiset for an intermediate estimate

Let us consider an intermediate estimate (which will only be used for the convenience of the proof).

f̂ ′(x) =

J
∑

j=−1

∑

k∈Z

β̂@
jkI{|β̂

@
jk| ≥ Ktn}ψjk(G(x))

f̂ ′ is intermediate between f̂@ and f̂∗. The difference between f̂@ and f̂ ′ only lies into the basis system
which is (as for f̂∗ ) ψjk(G(x)) for f̂ ′ whereas it is a random system for f̂@.

Our first concern consists in investigating the behaviour of f̂ ′ by proving the following proposition, using a
technology similar to the one used for f̂∗.

Proposition 5. Let p > 1, 0 < q < p. Under the condition (Hp), the maxiset of the estimator f̂ ′

Max′(q) = {f, E‖f̂ ′ − f‖pp

(

logn

n

)(q−p)/2

<∞} (33)

is such that,

Max′(q) = Max(q) (34)

The proof of this result completely mimic the proof of the result concerning f̂∗. The only involving problem
consists in showing that we have a result similar to Proposition 3, if we replace the estimates β̂∗ by β̂@.

Proposition 6. if f is bounded, there exist constants Cp, C ′
p, such that for any γ > 0 there exists κ0 :

E(|β̂jk
@
− βjk |

p) ≤ Cp
(1 + ‖f‖p∞)

np/2
, for 2j ≤ n (35)

P (|β̂jk
@
− βjk | > κ

√

logn

n
) ≤ C ′

pn
−γp for κ ≥ κ0, 2

j ≤ (
n

logn
)1/2 (36)

Here will appear the fact that dividing the sample in 2 sets obviously simplifies a great deal the proof. We
will mimic the proof of Proposition 3, just arguing conditionally to the first part of the sample (i.e. conditionally
to Ĝ[n/2]).

We easily obtain :

E[(|β̂jk
@
− βjk |

p) | Ĝ[n/2]] ≤ C(
E[|ψj,k(Ĝ[n/2](X))Y |p |Ĝ[n/2]]

np−1
+

(E[|ψj,k(Ĝ[n/2](X))Y |2 |Ĝ[n/2]])
p/2

np/2
)

P (|
1

n

∑n
i=[n/2]+1 ψj,k(Ĝ[n/2](Xi))εi| > κ/2

√

logn

n
|Ĝ[n/2])

≤

∫

...

∫

exp−
κ

8

logn

n

1
1
n2

∑n
i=1 ψ

2
j,k(Ĝ[n/2](xi))

g(x1)..g(xn)dx1..dxn

P (|
1

n

∑n
i=[n/2]+1 ψj,k(Ĝ[n/2](Xi))(f(Xi) − E(ψj,k(Ĝ[n/2](X))f(X) |Ĝ[n/2])| > κ/2

√

logn

n
|Ĝ[n/2])

≤ 2 exp−
3κ2 logn

4‖f‖∞(3 + 22j/2κ/2
√

logn
n )

To finish the proof as above, we just need the following lemma: Let us define

εjk(l) = E[|ψj,k(Ĝ[n/2](X))|ph(X) |Ĝ[n/2]] −

∫

|ψj,k(G(x))|l|h(x)g(x)dx

14



Lemma 1. For l ≤ 1, h uniformy bounded, if 2j ≤ (n/ logn)1/2, we have

E|εjk(l)| ≤ C2j(l/2−1) (37)

∀ γ > 0, ∃λ, P (|εjk(2)| ≥ λ) ≤ Cn−γ (38)

Proof of the lemma : Let us recall the following inequalities (see for instance the review on the subject in
Devroye Lugosi [?] section 12.) : For any r > 0, λ > 0, there exist constants C1, C2, such that:

E‖Ĝ[n/2] −G‖r∞ ≤ C1n
−r/2 (39)

P (‖Ĝ[n/2] −G‖∞ ≥ λ) ≤ C24n exp−nλ2/32 (40)

The proof of the lemma consists in using these inequalities and the following bound : Let us put

Rn = ‖Ĝ[n/2] −G‖∞

If N is the size of the wavelet support, we have

|εjk(p)| ≤ p

∫

(2j/2‖ψ‖∞)p−1(23j/2‖ψ′‖∞)RnI{G(x) ∈ [k/2j −Rn, (k +N)/2j +Rn]}g(x)dx

≤ C2j(p+2)/2Rn

[
∫

I{G(x) ∈ [(k −K)/2j, (k +N +K)/2j ]}g(x)dx+ I{Rn ≥ K2−j}

]

≤ C2j(p+2)/2Rn

[
∫

I{y ∈ [(k −K)/2j , (k +N +K)/2j ]}dy + I{Rn ≥ K2−j}

]

≤ C ′2jp/2Rn + C2j(p+2)/2RnI{Rn ≥ K2−j}

Then, obviously, we get :

E|εjk(p)| ≤ C ′[2jp/2n−1/2 + 2j(p+2)/2n−1/2−γ/2]

P (|εjk(2)| ≥ λ) ≤ P (Rn ≥ C ′λ2−(j+1)) + P (Rn ≥ K2−(j+1))]

≤ C[n−C′2λ/64+1 + n−K2/64+1]

To finish the proof of Proposition 6, we just have to replace (32), by

P (
1

n
|
∑n
i=[n/2]+1 ψ2

j,k(Ĝ[n/2](Xi)) − 1| ≥ α)

≤ P ( 1
n |

n
∑

i=[n/2]+1

ψ2
j,k(Ĝ[n/2](Xi)) −

∫

ψ2
j,k(Ĝ[n/2](x))g(x)dx| ≥ α/2) + P (|εjk(2)| ≥ α/2)

≤ Cn−γ

using Hoeffding inequality for the first part, as in (32) and the lemma for the second one.

5.3.2 Evaluating the difference f̂@ − f̂ ′

The second part of the proof consists in evaluating the difference

f̂@ − f̂ ′.

Proposition 7. Under the conditions of Theorem 2, if f ∈ BG
s,∞,∞, s > 1/2,

E‖f̂@ − f̂ ′‖pp ≤ C((log n/n)
sp/2

(logn)p−1 ∧ n−p/2)
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The end of this subsection will be devoted to proving the proposition. Let us observe that the Proposition
proves inequality (16) since it is not difficult to verify that under the condition s > 1/2, the quantities of order
(logn/n)

sp/2
(logn)p−1 will always be negligeable compared to the rates that we are expecting, in theorem 2.

Notice also that we will need the condition BG
s,∞,∞ as is clear in the following lemma where we will need a

uniform condition on the wavelet coefficients.

Lemma 2. Since g is compactly supported, if there exists s > 0, such that |βjk| ≤ C2−j(s+1/2), for all j ≥
0, k ∈ Z, for

∆jk(x) := ψjk(Ĝ[n/2](x)) − ψjk(G(x))

we have the following bound as soon as ljk ≤ 1 is random or fixed,

E‖

J
∑

j=−1

∑

k∈Z

βjkljk∆jk‖
p
p ≤ (b− a)pCpC1((logn/n)

sp/2
(logn)p−1 ∧ n−p/2) (41)

Proof of the lemma:
It will be useful to remark than if

Rn = ‖Ĝ[n/2] −G‖∞

is smaller than 1/2j+1, we can affirm that if G(x) belongs to the support of ψjk , then it belongs to only a finite
number of supports of other ψjk′ ’s and the same is true for Ĝ[n/2](x). More generally, if G(x) belongs to the

support of ψjk , then ψjk(Ĝ[n/2](x)) may not disappear only for a number of k which is proportional to 2jRn.
Hence, we can write :

‖
∑

k∈Z

βjkljk∆jk‖∞ ≤ K sup
k

|βjk|2
j/2‖ψ‖∞2jRn (42)

where K only depends on the length of support of ψ. Hence, using (42), and (39)

E‖
∑

j≤J

∑

k∈Z

βjkljk∆jk‖
p
p ≤ (b− a)E‖

∑

j≤J

∑

k∈Z

βjkljk∆jk‖
p
∞

≤ (b− a)Jp−1
∑

j≤J

E‖
∑

j≤J

∑

k∈Z

βjkljk∆jk‖
p
∞

≤ C1(b− a)Jp−1
∑

j≤J

sup
k

|βjk|
p23jp/2‖ψ‖p∞ERpn

≤ CpC1(b− a)Jp−1
∑

j≤J

2jp(1−s)n−p/2

≤ (b− a)pCpC1((logn/n)
sp/2

(logn)p−1 ∧ n−p/2)

We write for
H =

∑

J≥j≥−1

∑

k∈Z

βjkI{|βjk| ≥ Ktn/2}∆jk
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f̂@ − f̂ ′ =
∑

J≥j≥−1

∑

k∈Z

β̂@
jkI{|β̂

@
jk| ≥ Ktn}∆jk

=
∑

J≥j≥−1

∑

k∈Z

β̂@
jkI{|β̂

@
jk| ≥ Ktn}∆jk(I{|βjk| ≥ Ktn/2}+ I{|βjk| < Ktn/2})

−
∑

J≥j≥−1

∑

k∈Z

βjkI{|βjk| ≥ Ktn/2}∆jk(I{|β̂
@
jk| ≥ Ktn} + I{|β̂@

jk| < Ktn}) +H

=
∑

J≥j≥−1

∑

k∈Z

(β̂@
jk − βjk)I{|β̂

@
jk | ≥ Ktn}I{|βjk| ≥ Ktn/2}∆jk

+
∑

J≥j≥−1

∑

k∈Z

(β̂@
jk − βjk)I{|β̂

@
jk | ≥ Ktn}I{|βjk| < Ktn/2}∆jk

+
∑

J≥j≥−1

∑

k∈Z

βjkI{|β̂
@
jk| ≥ Ktn}I{|βjk| < Ktn/2}∆jk

−
∑

J≥j≥−1

∑

k∈Z

βjkI{|βjk| ≥ Ktn/2}I{|β̂
@
jk| < Ktn})∆jk +H

= a1 + a2 + a3 + a4 +H

We have :

E‖f̂@ − f̂ ′‖pp ≤ 5p−1[E‖H‖pp + E‖a1‖
p
p + E‖a2‖

p
p + E‖a3‖

p
p + E‖a4‖

p
p] (43)

Using lemma 2, we get

E‖H‖pp + E‖a3‖
p
p + E‖a4‖

p
p ≤ C((log n/n)

sp/2
(logn)p−1 ∧ n−p/2). (44)

Let us now investigate the terms a1.

E‖a1‖
p
p ≤ Jp−1(b− a)

∑

J≥j≥−1

E‖
∑

k∈Z

(β̂@
jk − βjk)I{|β̂

@
jk | ≥ Ktn}I{|βjk| ≥ Ktn/2}∆jk‖

p
∞

Notice that if js is such that 2js ∼ n
1

1+2s , we observe that for j ≥ js the terms in the right hand side disappear
since there is no k’s with |βjk | ≥ Ktn/2. Hence, using (42) and (39) and for 1

r1
+ 1

r2
= 1,

E‖a1‖
p
p ≤ Jp−1(b− a)

∑

js≥j≥−1

E‖
∑

k∈Z

(β̂@
jk − βjk)I{|β̂

@
jk| ≥ Ktn}I{|βjk| ≥ Ktn/2}∆jk‖

p
∞

≤ KJp−1(b− a)
∑

js≥j≥−1

E sup
k∈Z

|β̂@
jk − βjk|

p23jp/2‖ψ‖p∞R
p
n

≤ KJp−1(b− a)
∑

js≥j≥−1

23jp/2
E[sup
k∈Z

|β̂@
jk − βjk|

pr1 ]1/r1E[Rpr2n ]1/r2

≤ KJp−1(b− a)
∑

js≥j≥−1

23jp/2[
2j

npr1/2
]

1
r1 [

1

npr2/2
]

1
r2

≤ Kn
3p/2+1/r1

1+2s −p

As s > 1/2 we can choose r1 such that this term is not significant either.
The term a2 is even simpler :
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E‖a2‖
p
p = E‖

∑

j≥−1

∑

k∈Z

(β̂@
jk − βjk)I{|β̂

@
jk| ≥ Ktn}I{|βjk| < Ktn/2}∆jk‖

p
p

≤ CJp−1
∑

J≥j≥−1

23jp/2[E sup
k∈Z

|β̂@
jk − βjk|

pr1 ]
1

r1 [P{sup
k∈Z

|β̂@
jk − βjk | ≥ Ktn/2}]

1
r2

≤ Jp−1C
∑

J≥j≥−1

23jp/2[
2j

npr1/2
]

1
r1 [

2j

nγ
]

1
r2

≤ CJp−1n
p
4 + 1

2−
γ
r2 ≤ Cn−p/2

if we choose γ large enough. We have used (36).

6 Appendix I: Muckhenhoupt weights, Besov spaces

6.1 Definitions
The definition of a Muckhenhoupt weight has been given in subsection 2.4. There are several equivalent definitions
which are well known (see [35]). We give here another important one together with the very helpful ’doubling
property’.

Proposition 8. If I denote a bounded interval of R, and |I | its Lebesgue measure, for 1 ≤ p <∞ and q such that
1/p+ 1/q = 1, ω a non-negative locally integrable function, the following statement are equivalent :

1. ω ∈ Ap i.E.

∀I, (
1

|I |

∫

I

ω)1/p(
1

|I |

∫

I

ω−q/p)1/q ≤ C <∞, (45)

(with the obvious modification if q = ∞, p = 1.)

2.

For any measurable function f, (
1

|I |

∫

I

|f |) ≤ C(
1

ω(I)

∫

I

|f |pω)1/p (46)

(where ω(I) =
∫

I ω.)

Moreover, the measure ω(A) =
∫

A
ω(x)dx satisfies the following ’doubling’ property :

If I = [a− h, a+ h] and 2I = [a− 2h, a+ 2h] then

ω(2I) ≤ (2C)pω(I) (47)

Proof: (46) implies easily (45) taking f = ω−q/p. To prove that (45) implies (46), we apply Hölder inequality to
|f | = (|f |ω1/p)(ω−1/p) :

(
1

|I |

∫

I

|f |) ≤ (
1

|I |

∫

I

|f |pω)1/p(
1

|I |

∫

I

ω−q/p)1/q ≤ C(
1

|I |

∫

I

|f |pω)1/p(
1

|I |

∫

I

ω)−1/p

Applying now (46) with 2I instead of I and f = 1I we get (47).
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6.2 Muckhenhoupt weight and densities.
here we prove the following proposition :

Proposition 9. Let 1 ≤ p < ∞, let g be a density on [a, b] and G(x) =
∫ x

a g(s)ds be the associated repartition
function. Let us suppose that G is strictly increasing from [a, b] to [0, 1]. The following statements are equivalent

1. 1
g(G−1(t)) ∈ Ap([0, 1]) i.e. for any I subinterval of [0, 1]

(
1

|I |

∫

I

1

g(G−1(t))
dt)1/p(

1

|I |

∫

I

(
1

g(G−1(t))
)q/pdt)/q ≤ C

2. For q such that 1/p+ 1/q = 1, for any J subinterval of [a, b], we have

(
1

|J |

∫

J

g(s)qds)1/q ≤ C(
1

|J |

∫

J

g(s)ds

Proof:
Since G is strictly increasing from [a, b] to [0, 1], we have a bijection between the intervals of [a, b] and those

of [0, 1]. So if I = [α, β] ⊂ [0, 1] then [α, β] = [G(u), G(v)]. And if then J = [u, v], we have 1I(G(s)) = 1J(s),
or 1I(t) = 1J(G−1(t)). In addition, as for any non negative measurable function Φ :

∫

[0,1]

Φ(G−1(t))dt =

∫

[a,b]

Φ(s)g(s)ds

|I | = G(v) −G(u) =

∫

[u,v]

g(s)ds =

∫

J

g(s)ds

So

(
1

|I |

∫

1I(t)
1

g(G−1(t))
dt)1/p(

1

|I |

∫

1I(t)g(G
−1(t))q/pdt)1/q ≤ C

is obviously equivalent to

1

|I |
(

∫

1I(G(s))ds)1/p(

∫

1I(G(s))g(s)q/p+1ds)1/q ≤ C

or

(
1

|J |

∫

J

g(s)qds)1/q ≤ C
|I |

|J |
= C

1

|J |

∫

J

g(s)ds

6.3 Weighted spaces, wavelets and approximation
In this section φ is a compactly supported scaling function of a multiresolution analysis and ψ an associated
compactly supported wavelet. We fix the notations in the following way :

supp(φ) ⊂ [0, L]; supp(ψ) ⊂ [0, L].

φ̂(ξ) = m0(ξ/2)F(φ)(ξ/2) (48)

ψ̂(ξ) = m1(ξ/2)F(φ)(ξ/2) (49)

where ĝ denotes here the Fourier transform of g and m0(ξ) and m1(ξ) are trigonometric polynomials.
As usual for k, j in Z and any function g, we put gj,k(x) = 2j/2g(2jx− k). We put

Ij,k = [
k

2j
,
k + 1

2j
]), Ĩj,k = [

k

2j
,
k + L

2j
],

So that supp(φj,k) ⊂ Ĩj,k , supp(ψj,k) ⊂ Ĩj,k. For a measurable function f we define:

αj,k =

∫

f(x)φj,k(x)dx; βj,k =

∫

f(x)ψj,k(x)dx

Pjf =
∑

k

αj,kφj,k = PVjf ; Pj+1f − Pjf = PWjf =
∑

k

βj,kψj,k
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6.3.1 Linear approximation in Lp(ω)

The following theorem express the equivalence of the Lp(ω) norms of functions in Vj or Wj in terms of wavelet
coefficients. Notice however that here the weight ω is appearing in the sum.

Theorem 5. Let 1 ≤ p <∞, and suppose ω belongs to Ap(R), then

1. There exists C only depending on φ, ψ and ω, such that :

1

C

∑

k

|αj,k|
pω(Ij,k) ≤ 2−jp/2‖

∑

k αj,kφj,k‖
p
Lp(ω) ≤ C

∑

k

|αj,k|
pω(Ij,k) (50)

1

C

∑

k

|βj,k|
pω(Ij,k) ≤ 2−jp/2‖

∑

k βj,kψj,k‖
p
Lp(ω) ≤ C

∑

k

|βj,k|
pω(Ij,k) (51)

2.

∀j ∈ Z, ‖Pjf‖Lp(ω) ≤ C2‖f‖Lp(ω) (52)

lim
j→∞

‖Pjf − f‖Lp(ω) = 0 (53)

3. Let 0 < q ≤ ∞, and f ∈ Lp(ω),

[
∑

j

(2js‖Pjf − f‖Lp(ω))
q ]1/q <∞ ⇐⇒ [

∑

j

(2js2j/2(
∑

k∈Z

|βj,k|
pω(Ij,k))

1/p)q ]1/q <∞ (54)

with the usual modification if q = ∞.

This theorem is the consequence of the following lemmas.

Lemma 3. Let ω be inA∞(R). Let θ a be bounded function, whith support in [0, L] and θj,k(x) = 2j/2θ(2jx−k).
Then for 0 < p <∞,

‖
∑

k∈Z

λj,kθj,k(x)‖Lp(ω) ≤ C ′2j/2(
∑

k∈Z

|λj,k |
pω(Ij,k))

1/p

and p = ∞,

‖
∑

k∈Z

λj,kθj,k(x)‖L∞(ω) ≤ C ′2j/2(sup
k∈Z

|λj,k |)

Proof of the lemma: The main tool of this proof is the doubling property (47) of the measure ω(x)dx.

1. p = ∞ is obvious.

2. 1 < p <∞.

As θ is a bounded function, with support in [0, L], θj,k in supported in Ĩj,k. Hence there exists C < ∞
such that

∑

k |θ(x − k)| ≤ C. Hence,

|
∑

k∈Z

λj,kθj,k(x)|
p ≤ 2jp/2(

∑

k∈Z

|λj,k|
p|θ(2jx− k)|)(

∑

k∈Z

|θ(2jx− k)|)p/q

≤ Cp/q2jp/2(
∑

k∈Z

|λj,k|
p|θ(2jx− k)|)

∫

|
∑

k∈Z

λj,kθj,k(x)|
pω(x)dx ≤ Cp/q2jp/2(

∑

k∈Z

|λj,k|
p

∫

Ĩj,k

|θ(2jx− k)|)ω(x)dx

≤ Cp/q‖θ‖∞2jp/2(
∑

k∈Z

|λj,k |
pω(Ĩj,k)

We finish the proof using the doubling property (47), since it implies :

ω(Ĩj,k) ≤ c ω(Ij,k).
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3. 0 < p ≤ 1.

∫

|
∑

k∈Z

λj,kθj,k(x)|
pω(x)dx ≤

∑

k∈Z

|λj,k|
p

∫

Ĩj,k

|θj,k(x)|
pω(x)dx

≤
∑

k∈Z

|λj,k|
p‖θ‖p∞2jp/2ω(Ĩj,k)

≤ c‖θ‖p∞2jp/2
∑

k∈Z

|λj,k |
pω(Ij,k)

Lemma 4. For 1 ≤ p ≤ ∞, ω ∈ Ap,

2j/2(
∑

k

|

∫

fφ̄j,kdx|
pω(Ij,k))

1/p ≤ C‖f‖Lp(ω)

(with the obvious modification if p = ∞.)
The same inequality is true if we replace φ by ψ.

Proof: The main tool is here property (46).

2jp/2
∑

k

|

∫

fφ̄j,kdx|
pω(Ij,k) ≤ 2jp/2

∑

k

(

∫

Ĩj,k

|f ||φj,k|dx)
pω(Ij,k)

≤ C2jp/2
∑

k

1

ω(Ĩj,k)

∫

|fφj,k|
pω(x)dx ω(Ij,k) |Ĩj,k|

p

≤ C ′2−jp/2
∫

|f(x)|p
∑

k

2jp/2|φ(2jx− k)|pω(x)dx

≤ C”

∫

|f(x)|pω(x)dx

Using |Ĩj,k | ∼ 2−j and the doubling property (47). Of course φ and ψ can be exchanged.

Remarks :

1. From the two previous lemma we deduce (50) and (51).

2. Using these lemmas we deduce (52) :

‖Pjf‖Lp(ω) = ‖
∑

k

∫

f(y)φj,k(y)dyφj,k‖Lp(ω)

≤ C2j/2(
∑

k

|

∫

fφj,kdx|
pω(Ij,k))

1/p ≤ C2‖f‖Lp(ω)

3. Now, to prove (53), it is enough to prove that the family {φk, ψj,k} is total in Lp(ω). But this is obvious
since if g ∈ Lp(ω)∗ = Lq(ω) and

∫

gφkω =
∫

gψj,k′ω = 0 for all k, k′, j then gω = 0 a.e. so g =
0 ω. a.e.. (It is clear that if g ∈ Lq(ω) then gω is locally Lebesgue integrable.)

3
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It remains to prove (54). But for f ∈ Lp(ω),

‖PWjf‖Lp(ω) ≤ ‖Pj+1f − f‖Lp(ω) + ‖Pjf − f‖Lp(ω)

and

‖Pjf − f‖Lp(ω) ≤

∞
∑

l=j

‖PWl
f‖Lp(ω)

Hence :
[
∑

j

(2js‖Pjf − f‖Lp(ω))
q ]1/q <∞ ⇐⇒ [

∑

j

(2js‖PWjf‖Lp(ω))
q ]1/q <∞

We have used the following well known convolution lemma:

Lemma 5. Let (aj)j∈Z and (bj)j∈Z two sequence and

a ? bk =
∑

j

ak−jbj .

then

‖a ? b‖lq(Z) ≤ ‖a‖lq∧1(Z)‖b‖lq(Z) (55)

Moreover, using (4) we get :

[
∑

j

(2js‖PWjf‖Lp(ω))
q ]1/q <∞ ⇐⇒ [

∑

j

(2js2j/2(
∑

k∈Z

|βj,k|
pω(Ij,k))

1/p)q ]1/q <∞

6.4 Weighted Besov spaces and wavelet expansions
Using the notations of section 3.3, we shall prove the following theorem :

Theorem 6. Let ω ∈ Ap, 1 ≤ p <∞
Let φ and ψ be defined as above and let us suppose in addition that :

∫

xkψ(x)dx = 0, k = 0, 1, .., N − 1

Let

βj,k =

∫

R

f(x)2j/2ψ(2jx− k)dx.

Then,

(

∫ 1

0

(
(ρN (t, f, ω, p)

ts
)q
dt

t
)1/q <∞ =⇒ [

∑

j

(2js2j/2(
∑

k∈Z

|βj,k|
pω(Ij,k))

1/p)q ]1/q <∞

with the usual modification if q = ∞.

We will use the standard following lemma.

Lemma 6. The following statements are equivalent :

1. There exists θ ∈ L1(R) such that
ψ(x) = (−1)N∆N

−1/2θ(x)

2. There exists γ ∈ L1(R) such that
ψ(x) = (DNγ)(x)

3.
∫

xkψ(x)dx = 0, k = 0, 1, .., N − 1
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4.
m1(ξ) = O(|ξ|N )

5. There exists a trigonometric polynomial m̃ such that

m1(ξ) = (1 − exp−iξ)Nm̃(ξ)

Moreover, supp(θ) ⊂ [0, L], supp(γ) ⊂ [0, L].

For the reader’s convenience we give a very short proof of this lemma.
Proof:

1. 1 =⇒ 2 The hypothesis is equivalent to

ψ̂(ξ) = (1 − exp−iξ/2)N θ̂(ξ)

So

ψ̂(ξ) = (1 − exp−iξ/2)N θ̂(ξ) = (iξ)N exp−iNξ/4
1

2N
(
sin ξ/4

ξ/4
)N θ̂(ξ)

And obviously exp−iNξ/4 1
2N ( sin ξ/4

ξ/4 )N θ̂(ξ) is the Fourier transform of an integrable function.

2. 2 ⇐⇒ 3 This is standard using Taylor formula.

3. 2 =⇒ 4
(iξ)N γ̂(ξ) = ψ̂(ξ) = m1(ξ/2)φ̂(ξ/2)

implies, as |φ̂(0)| = 1,
m1(ξ) = O(|ξ|N )

4. 4 ⇐⇒ 5 This is due to the following lemma .

5. 5 =⇒ 1 we have
ψ̂(ξ) = m1(ξ/2)φ̂(ξ/2) = (1 − exp−iξ/2)Nm̃(ξ/2)φ̂(ξ/2)

Lemma 7. Let m(ω) be a trigonometric polynomial . The following statements are equivalent.

1.
m(ω) = (1 − exp−iω)Nm̃(ω)

with m̃ a trigonometric polynomial.

2.
m(ω) = O(|ω|N ) .

Proof:
1 =⇒ 2 is obvious.
2 =⇒ 1 : Let us put

m(ω) =

M
∑

k=0

ak exp ikω

If N = 1, we have to find a a trigonometric polynomial
∑

k bk exp ikω such that

M
∑

k=0

ak exp ikω = (1 − exp iω)
∑

k

bk exp ikω

So
M
∑

k=0

ak exp ikω =
∑

k∈Z

(bk − bk+1) exp ikω
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Let us put ∆bk = (bk − bk+1) = ak, so that bk =
∑

j≥k aj . But, by hypothesis

m(0) = 0 =

M
∑

l=0

al

So bk = 0 for k < 0 and k > M. We can now finish the proof using a recurrence on N.

The following corollary of lemma 6 is now clear :

Corollary 2. let ψ a compactly supported wavelet satisfying one of the previous equivalent properties of lemma
6. Let f a locally integrable function, and :

βj,k =

∫

f(x)ψj,k(x)dx = 2j/2
∫

f(x)ψ(2jx− k)dx.

then

βj,k = (−1)N2j/2
∫

∆N
2−(j+1)f(u)θ(2ju− k)du (56)

and if DNf exists

βj,k = (−1)N2−jN2j/2
∫

DNf(u)γ(2ju− k)du (57)

Proof :

βj,k = 2j/2
∫

f(x)ψ(2jx− k)dx = 2j/2
∫

f(x)

N
∑

l=0

ClN (−1)lθ(2jx− l/2− k)

= 2j/2
∫ N

∑

l=0

ClN (−1)lf(u− l2−j−1)θ(2ju− k)

= (−1)N2j/2
∫

∆N
2−(j+1)f(u)θ(2ju− k)du

One can prove simply (57) using integration by part.

6.4.1 Proof of theorem 6

For ω ∈ Ap, using (56), (46) and(47), we have :

|βj,k|
p ≤ 2jp/2(

∫

Ĩj,k

|∆N
2−(j+1)f(u)||θ(2ju− k)|du)p

≤ C2jp/2
|Ĩj,k|

p

ω(Ĩj,k)

∫

Ĩj,k

|∆N
2−(j+1)f(u)|p|θ(2ju− k)|pω(u)du

So

2jp/2|βj,k|
pω(Ij,k) ≤ C ′

∫

Ĩj,k

|∆N
2−(j+1)f(u)|p|θ(2ju− k)|pω(u)du

and

2j/2(
∑

k∈Z

|βj,k|
pω(Ij,k))

1/p ≤ C”

∫

R

|∆N
2−(j+1)f(u)|pω(u)du ≤ C”ρN (2−(j+1), f, ω, p) (58)
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7 Appendix II: proof of Proposition 4
We will only prove the first part. For the case where g is bounded above and below, it is enough to notice that we
are reduced to the general case with ω(Ijk) ∼ 2−j .

Let us recall that we are going to consider the following spaces :

BGs,π,r = {f : (

∫ 1

0

(
(ρ̃N (t, f, G, π)

ts
)r
dt

t
)1/r <∞}.

Let us recall that corollary 1 proves that under the condition (Hπ), then, for Ij,k = [ k2j ,
k+1
2j ]), and f =

∑

j,k βjkψj,k(G), we have

f ∈ BGs,π,r =⇒ [
∑

j

(2js2j/2(
∑

k∈Z

|βj,k|
πω(Ij,k))

1/π)r]1/r <∞

with the usual modification if r = ∞.
As Max(q) is the intersection of 2 conditions, we will have to prove the inclusions of BG

s,π,r into the two
following sets :

L1 =

{

f =
∑

I

βIψI ◦G, sup
λ>0

λqν{(j, k)/ |βjk | > λ} <∞

}

(59)

L2 =







f =
∑

I

βIψI ◦G, sup
l≥0

‖
∑

j≥l, k

βjkψjk ◦G‖
p
p2
l(p−q) <∞







(60)

Let us remind that we will concentrate on the case where

ν(I) = ‖ψI ◦G‖
p
p ∼ 2jp/2ω(Ijk)

and let us introduce the following besov bodies :

bGs,π,r =







f =
∑

I

βIψI ◦G, [
∑

j≥−1

2jsr2jr/2(
∑

k∈Z

|βj,k|
πω(Ij,k))

r/π]1/r <∞







(61)

with the usual modification if r = ∞. Our aim is to reduce the proof of Proposition 4, to the embeddings of Besov
bodies which are quite simple as is shown just below.

7.0.2 Embeddings of the Besov bodies

Because of the fact that ω is a finite weight, the following inclusions are obvious.

bGs,π,r ↪→ bGz,ρ,r, if 0 < ρ ≤ π, z ≤ s. (62)

7.0.3 Condition (59)

Now, let us turn to the problem of embedding a particular body bGs,π,r into

lq,∞(ν) =

{

f =
∑

I

βIψI ◦G, sup
λ>0

λqν{(j, k)/ |βjk | > λ} <∞

}

.

We will simplify the problem by considering the embedding into

lq(ν) = {f =
∑

I

βIψI ◦G,
∑

jk

|βj,k|
q2jp/2ω(Ijk) <∞}

since, using Markov inequality, obviously lq(ν) ⊂ lq,∞(ν). Let us remark that choosing s = p/2q−1/2, we have

lq(ν) = bGs,q,q .

Then we have the following proposition.
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Proposition 10. Let us define q by the relation (63)

s = (
p

2q
−

1

2
) (63)

then

if 0 < r ≤ q, bGs,π,r ↪→ bGs,q,q

Proof:
We will use the embeddings (62), taking ρ = q. As we have q ≤ π, (since p > q ⇐⇒ s > 0), using (62),

we get, if moreover r ≤ q, :
bGs,π,r ↪→ bGs,q,q

7.0.4 Condition (60)

Using Theorem 5, we have:

‖
∑

j≥l,k

βj,kψj,k ◦G‖p2
lp−q

p ≤
∑

j≥l

‖
∑

k

βj,kψj,k ◦G‖p2
l p−q

p

≤ C
∑

j≥l

2j/2(
∑

k

|βj,k|
pω(Ij,k))

1/p2l
p−q

p

Hence, if f ∈ bG(1−q/p),p,∞, condition (60) obviously holds. Hence the problem remaining to us is to check

whether bGs,π,r is included into bG(1−q/p),p,∞. Now, if we use the embeddings (62), with ρ = p, and we only need
to check that s ≥ 2s/(1 + 2s) = 1− q/p, with q chosen as in (63), which is always true for s ≥ 1/2. Hence, (60)
will always hold if s ≥ 1/2, for p ≤ π.
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