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Abstract

We test whether two independent samples of i.i.d. random variables X1,..., X, and Yi,...,Yn
having common probability density f and, respectively, g are issued from the same population.
The null hypothesis f = g is opposed to a large nonparametric class of smooth alternatives f and
g. We consider several problems, according to the distance between the populations’ densities:
pointwise, interval-wise, L2 and Ls norms. We propose test procedures that attain parametric
rates in some cases. In other problems, the procedures adapt automatically to the smoothnesses
of the underlying densities. After a numerical study of these tests, we prove their theoretical

properties in the classical minimax approach.

Keywords Nonparametric test, Homogeneity Test, Wavelet estimator, Minimax rates, Adaptivity.

1 Introduction

Let Xi,...X,, n ii.d. variables with density f, and Y7,...Y,,, m i.i.d. variables with density g,
be two independent samples. We study in this paper nonparametric tests for deciding whether the
samples are issued from the same probability law. Thus, the null hypothesis is

Hy: f=g. (1)

The test problem is well posed when the alternative is given. In this paper, we consider a large
nonparametric class A, ,, consisting of couples of density functions f and g of some given regularity
which are far enough from each other in terms of some distance (or semi-distance). The alternative

writes
Hy: (f,9) € Aun(C) = RN S (C). (2)

The space R is a class of regularity allowing to derive optimality properties. The space Sy m(C)
gives the geometry of the problem and is defined with some loss function for the difference of the two
densities I(f — g):

Sn,m(C) = {f, g densities, [I(f —g)| > Crpm}



for a constant C' > 0 and a sequence 7, ,, > 0 tending to 0 when n Am — oc. This sequence measures
the rate of separation between the test hypotheses Hy and Hi. This space is essential for the test
procedure because the test statistic is built with estimators T'(X7, ..., Xy, Y1,..., YY) of I(f —g) using
the two samples. For some particular distances, we may use nonparametric estimators of both densities
and plug them into the distance, that is use Tj(d) = l(fj,n — §j,m) where j is the smoothing parameter
of the estimation method varying in J. Nevertheless, this is not always an optimal estimator since it
can be highly biased, in the case of L, distances, 1 < p < oo for example. We describe here a family
{T;(d)};jes of wavelet estimators of the quantity I(f — g) for particular losses I. For each smoothing
parameter j € J, we define the test statistic comparing the estimator T;(d) to a critical value,
tinm >0

D(d) _ 0 if |Tj(d)| < tj,n,m
J Lif |T(d)] > tjmm.-

which means that we decide Hy if |1;(d)| < tjn,m and H; otherwise. The smoothing parameter j
and the critical value t;, , have to be chosen such that the test statistic D;(d) is the best among the
family {D;(d)};es. Roughly speaking, the best test statistic minimizes the separating rate 7, , at
fixed probability errors of first type and second type. As usual in non parametric setting, the optimal
parameter j and thus the optimal critical value depends on the space R via the indices of regularity
of the densities f,g. In view of practical applications, we need data driven procedures. When these
indices are unknown, we build an adaptive test statistic
D(d) = max D; (d)

where J is a set of indices only depending on n and m. This consists to accept Hj if, for every level
j € J, the decision given by D,(d) is to accept Hy.

Such tests are known in the minimax and adaptive literature for the one sample problem of
goodness-of-fit tests. In goodness-of-fit tests we compare the given sample to a entirely known dis-
tribution. This problem was solved for different regularity classes (Holder or Sobolev or Besov)
associated with various geometries that we shall also consider for our problem: pointwise, quadratic
and supremum norm. For fixed smoothness of the unknown density, i.e. minimax testing, there is a
rich literature summed-up in Ingster [5] and in Ingster and Suslina [7]. Optimal test procedures in-
clude orthogonal projection, kernel estimates or x? procedure. Goodness-of-fit tests with alternatives
of variable smoothness, into some given interval, were introduced by Spokoiny [15], for L distance, in
the Gaussian white noise model and generalized by Spokoiny [16] to L, distances. Ingster [6] proved
that a collection of x2 tests attains the adaptive rates of goodness-of-fit tests in L, distance as well
for a density model.

To our knowledge, nonparametric comparison of different samples is known only for the regression
model. We refer to Munk and Dette [12] and references there in for testing that two or more regression
functions are equal, in Ly distance. Their method is based on an asymptotically normal estimator of
the squared Ly norm. The power of this test is approximated theoretically and evaluated empirically.
Nonparametric methods for comparing two or more regression functions were introduced in Dette and
Neumeyer [3]. Three test statistics were proposed and their asymptotic normality allowed evaluation
of the test errors. No optimality properties were studied in the minimax approach. In the case of the
density framework, the most famous comparison tests are based on the distribution functions: see by
instance the Kolmogorov-Smirnov test and the Cramer-Von Mises test. Special tables are computed
allowing to choose the critical values in view to keep the first type error bounded. Generally, the
alternative is not explicitly given and results on the power of the tests can be given if the alternative

is restricted to a small family of densities like the Gaussian family.



We present in this paper several results. Four loss functions I(f — g) are considered to quantify
the distance between the densities:

(f - 9)(x0). /A (f —9). /(f—g)2 andsup|f = gl(o),

where xg is a given point and A is a given interval. In the sequel, we refer to these loss functions as
point wise, interval wise, quadratic or supremum problems. Our test procedures are based on wavelet
decompositions. We first give data-driven procedures which means that no a priori knowledge of
unknown quantities is required. The critical values are chosen by bootstrap methods. We study the
empirical qualities of our procedures concerning the errors of first and second type. These qualities
are varying with the procedures. To sum up, if the choices of zg or A are lucky, the point wise
and the interval wise procedures are excellent: the prescribed levels o are generally respected and
the empirical powers are high. These tests are able to detect differences between densities which
are not detectable by the classical tests build on the repartition functions (by instance, for oscillating
densities). The procedure based on the L., norm gives good results but they have to be improved using
better estimation methods of the quantile of the test statistic. The study of a bootstrap procedure
will be the subject of a further work. Our opinion on the quadratic procedure is not really positive.
First, from a practical point of view, the usual wavelet algorithm can not be employed because the
test statistic is a U— statistic and therefore the procedure is quite untractable for large n,m. Next,
the test is very conservative. In view to give explanations on these differences between procedures,
we study each procedure from a theoretical point of view. We exhibit the optimal (for the rates)
procedures in minimax approach in each setup. We give full proofs of how the procedures attain the
testing rates and of the optimality of these rates. We stress that there is an important difference with
goodness-of-fit tests where we can simply transform the sample via the distribution function under
the null hypothesis and then fit a uniform density. Indeed, no density is available under Hy and such
a transform is unknown. Moreover, this implies that the test statistics are not free under Hy. Next,
we study in a theoretical way the data-driven procedures. We prove that our procedures achieve the
optimal rates up to an extra loglog term. Generally, adaptivity to smoothness implies a small loss
in the minimax rates. We believe that these losses are also the least possible as the adaptive lower
bounds seem to confirm. This will be the subject of further scientific communication.

The paper is organized as follows. In Section 2, we present our test procedures. In Section 3, we
give empirical results based on experiments. We focus in Section 4 on theoretical results. Theorem
1 and Theorem 2 provide optimality results for the rates in minimax approach and Theorem 3 gives
rates for the adaptive procedures. These results about optimality are proven in Sections 6 for the
upper bounds and Section 7 for the lower bounds. Section 5 is devoted to a discussion on particular
points: we compare the empirical results with the theoretical results, we comment the difference
between the rates of estimation and the rates of test. In the proofs of our theorems, we use three
results concerning the control of the bias terms, the asymptotic distributions of the test statistics and
exponential inequalities for these statistics, see Section 6. The proofs of these results are postponed

to Appendix A.

2 Test procedures

We propose different test procedures, each of them being associated with different separation spaces
Sn,m. We focus on four distances measuring how far apart the density functions are. We restrict
ourselves to the usual distances in the non parametric setting: pointwise, interval-wise, Ly and L.

distances. In each context, we suggest different estimators T; of I(f — g) based on wavelet expansions,



Jj being the tuning parameter of the method. Next, we derive families of tests statistics {D;(d)}; as
explained in the introduction.

Let ¢ and ¥ be a scaling function and an associated wavelet function compactly supported. For
any function h, we denote by h; () the function 29/2h(2/x — k). For any j, k, the scaling and wavelet

coefficients of the functions f and ¢ are defined respectively by

k= /¢j,kfv Bik = /%‘,kf, ajk :/¢j,k97 bjk = /%‘,kg

and the scaling coefficients are estimated by their empirical counterparts

. 1 mn . 1 m
Qjg = — > dik(Xa), agk = p- > 6ik(Yi)
i=1 =1

We fix j* > 0. Let z¢ be a given point. Motivated by the wavelet expansion

flwo) = g(wo) = > (ajer —ajer) djen(o) + D D (Bik — bjk) i (wo)-
k j=i* k

the low frequencies part is estimated by
Tj(z9) = Z(dj*k — Gjr1) Pk (T0). (3)
k

The test statistic D;«(xq) based on T} (o) leads to consider fixed point alternative for which the
separation space is
Snm(C) = {f, g densities, |f(zo) — g(x0)| > Crpm}-

Let A be a given interval. We get

o

/Af—/Ag = zk:(aj*k_aj*k)A¢j*k+ Z Z(ﬁjk—bjk)/A%ka

Jj=j* k
and we propose the test statistic D;-(A) based on the estimator
Tj-(A) = > (G — der) /A Djvk (4)
k

which leads to consider interval-wise alternative for which the separation space is

Sn,m(C) = {f, g densities, \/ f- / gl > Crpm}.
A A

Since the wavelet basis is orthonormal, the expansion holds

IF=gl3 = > (ager—air)’+ D> (B —
k

k J=j*
leading to the following estimator

nAmn/Am

(L) = (n/\m)(n/\m )—1) ZZ fatz (5)

11 17.2 1

where

Uiliz = Z (¢j*k(Xi1) - ¢j*k(}/i1)) (¢j*k(Xi2) - ¢j*k:(Y:i2)) 1{7;17éi2}'

k



We consider the test statistic Dj«(Ly) based on Tj«(Ls); the quadratic alternative is associated

with the separation space

Sn,m(c) = {fag denSitiesv ||f - g”% 2 C’I“n,m}.

Motivated by the above expansion on the wavelet basis

k Jj=3*

1F=glloe = sup, | Y (ajek = ajer) djen(@) + > Y (Bjk — bik) k(@)
k

IN

27"/ supaajer = agerl |8lloc +sups | D7 D7 (Bik = bi) sn()|.
o k

Px

J=J

we consider the over estimator defined by

Tj+(Leo) = sup|Tjrk
k
for
Tjep = Gjogp — Qjeg. (7)

The test statistic Dj«(Loo) is based on Tj- (Lo ); the supremum alternative is associated with the
separation space

Sn,m(c) = {fag densities, Hf - gHOO Z C"nn,m}-

Note that we can easily generalize the results to an alternative

Snm(C) = {f, g densities,

/‘I’(f - g)’ > Crym s

based on a smooth functional ® (at least 4 times continuously differentiable). Indeed, it is enough to
develop this functional around fixed f — g at order 3 ( f and ¢ are preliminary estimators) and then
estimate successively the norms up to the order 3 (see Kerkyacharian and Picard [9] and Tribouley
18)).

We study in the next section the experimental qualities of the four families of tests {D;«,j* > 0}
built with the estimators T}j= (o), Tj=(A), Tj=(L2) and Tj+ (Loo).

3 Numerical study

3.1 Presentation

This part is a joint work with Y. Misiti . We test the four adaptive procedures described in Section 2
with n = m = 500 and using D B3 for the pointwise alternatives, quadratic alternatives and supremum
alternatives. For the interval-wise alternative, the Haar basis is used. We fix the probability error of
first type: a = [10%, 5%, 1%] and we compute the empirical probability to choose the alternative.
The empirical mean is computed with 100 repetitions of the algorithm.

Let us present the procedure. We denote N = (n~! erfl)f1 and we choose the set J =

{Jo,---1joc } Of tuning parameters as follows

2Jo =1, 2J~ = N or 2/~ = N? in the quadratic problem.

TURA CNRS 743, Université Paris XI



For each tuning parameter j varying in J, we compute the estimator 7} (d) and compare with a critical
value to ;. If |Tj(d)| > to,; for at least one level j, we accept Hy. Otherwise, we accept Hy. The
difficulty is to choose the critical value. We decide to use the normal approximation in the case of the
point-wise, interval-wise, quadratic alternatives and we estimate the variance o of the statistic |7;(d)|
using bootstrap methods. We take then ¢, ; = ¢; \/&7]2 where ¢; is the (a/#J)-quantile of the standard
normal distribution and 6]2 is the bootstrap estimator of UJQ-. In the case of the supremum alternative,
the normal approximation fails and we directly estimate by bootstrap method the (a/#.J)-quantile.
The usual method fails and we use over resampling with b, = glog(q)~!, ¢ = n,m. For the estimation
of the variance, the size of the resampling is B = 100 and for the estimation of the quantile, B = 400.

We compare our test procedures with the Kolmogorov-Smirnov test and with the Cramer von
Mises test with the same n, m. See the lines K.S and C'M in the tables.

3.2 Empirical results

First, we deal with standard unimodal densities: G denotes the Normal density function, C' is the
Cauchy density, t5 is the Student with 5 freedom degrees and E is the Laplace density (symetrized
exponential density). These densities are translated by 0.5 to avoid problems with the wavelet function
in 0 (0 is the extremity of the support of the mother of the wavelet function). For the procedure
associated with a pointwise alternative, we consider three specific points zg: zo = 0.5 is the mode of
the densities; zo = 2 is an extremal quantile and zg = 1.5 is a generic point. For the interval wise
problem we consider a 'modal’ interval A = [0, 1] and a ’tailed’ interval A = [—4,—2]. The empirical
powers are given in Table 5 and the empirical first type errors are given in Table 6. In the problem of
testing f against g, 7) is the empirical power of the test, &; (respectively és) is the empirical level of
the test f against f (respectively g against g).

The results concerning the pointwise procedure are relatively good: the empirical power is generally
high while the empirical level is a good estimator of the prescribed level a. Obviously, the results are
depending on the point zg at which we evaluate the test statistic. The graphs of the densities above
those tables point out that the studied densities have significant differences which are localized at the
mode and at the tails and no difference at the generic point zqg = 1.5. Hence, it is expected that
the test built with the generic point is less powerful than the test build with the modal point. Any
way, remark that the power is large. By instance, in the problem of testing the Cauchy against the
Laplace, we obtain, for a prescribed level o = 0.10

6&1 = 0.13, dg =0.14 and ﬁ = 0.91.

Observe that, for the same test problem, the results obtained with procedures based on the repartition
function are poor.
&1 =0.01,45 =0.14 and =049

for the KS test. The procedure gives excellent powers when z( is a mode. But, we observe that, in
this case, the error of the first type is over estimated. For instance, when testing the Laplace against
the Gaussian, we get

&1 =0.16,62 =0.13 and 7 =1.00

The pointwise test is disappointing when zg is a tail point. For the comparison between the Gaussian
and the Laplace, we have
&1 =0.06,62 =0.06 and 7 =0.42.

It is probably due to the fact that the number of data is too small (because the estimator is localized
on the tails) and the test statistic itself, and even more significantly, the variance estimator, are not
accurate enough estimators in this case.



The results concerning the interval wise procedure are excellent. This procedure allows to use
more data than in the previous procedure: this explains the results on the test built with the tail
interval. In the previous example, we improved a lot the empirical power with no degradation of the

empirical error of first type
&1 =0.05,62 =0.13 and 7 = 1.00.

The power obtained when we compare the Gaussian density with the Student t5 density is good:
in fact, this is the only procedure which detects a difference between these two densities, and the

empirical error of first type is almost equal to the prescribed theoretical error as well

a1 =0.09,60 =0.13 and 7 =0.64.

Observe that even the CM test does not succeed to separate these densities

&1 =0.09,62 =0.14 and 7 =0.22.
The results obtained with the modal interval are also very good. In the same way than for the pointwise
procedure, the estimated power depends on the interval A (chosen by the user). The advantage of
this procedure is that it is easier to choose a tail interval or a modal interval than a mode point (with
a rough estimation of the densities).

Observing the graphs of the densities, it is expected that the test Laplace/Cauchy and the test
Gaussian/Cauchy are the best suited for the procedure using the supremum distance. The results in

both cases are excellent. We give the results when comparing the Laplace and the Cauchy densities:
a1 =0.04,45 =0.09 and 7 =0.94.

We think that this procedure gives in some cases less satisfying results because of the difficulty to
estimate correctly the quantiles of the test statistic T} = supy, |T)|.

At last, the procedure associated with the quadratic alternative gives bad results. From an algo-
rithmic point of view, this method has to be rejected for two reasons. First, since the test statistic is
based on U —statistics, we can not apply Mallat’s algorithm to compute the statistics and the practical
interest of the wavelets methods is precisely the use of this fast algorithm. Secondly, the number of
levels we have to take into account is considerable. For instance, for our simulations, all the proce-
dures (except the quadratic one) use #.J = 7 levels while the quadratic procedure needs twice as many
levels. We do not use all the levels: we stop at j = 10. To consider so many levels implies that the
test is very conservative: the decision is always Hg. For instance, when testing the Laplace against
the Cauchy, the results are similar to those concerning the KS test or the CM test (except for ds)

0.41.

G1 = 0.00,40 = 0.00 and 7

The test concerning the Gaussian and the Cauchy gives the worse results of our study

&1 =0.09,42 =0.00 and 7 =0.45.

Since the empirical level is always zero although it is not required, we decide to modify the procedure.
We stop at j = 6 (hence #J = 7) and we compute the critical value using the a quantile of the
standard normal distribution instead of the /7 quantile. The results are given in the last lines of
the tables (refered as Lo (bis)). We remark that the empirical powers are larger while the estimations
of the prescribed levels are better. In the case of the test between the Gaussian and the Cauchy, we
obtain

&1 =0.11,42 =0.10 and 7 =0.99



which is excellent.

Now, we consider mixtures of densities: G3 is a mixture of Gaussian variables with small variance
and Fs3 is a mixture of Laplace variables. We choose these particular hypotheses so that the KS
test and the CM test fail, see Table 7. The pointwise and the interval wise procedures give excellent
results. The empirical levels (except for xg = 1) are generally good estimators of the prescribed level.

The empirical powers can be high. By instance, for xo = 2.5 and @ = 0.1, we get
&1 =0.07,62 =0.08 and 7 =0.52.

The tests associated with the supremum distance and to the quadratic distance are very conservative
and therefore they are not more powerful than the KS test or the CM test. The second method for

the quadratic problem improves a lot the results
&1 =0.01,60 =0.02 and 7 =0.23.

Note that the prescribed level is under estimated.

We decide to explore the differences between the quadratic procedure (with no modifications)
and the supremum problem in very simple situations. Since the considered densities are regular, we
decide to restrict ourselves to a smaller number of indices j: we take #J = 6. First, we test the
Gaussian N (0,1) against the Gaussian A (m,1) for m varying between 0 and 1. Next, we test the
N(0,1) against the Gaussian A/(0,02) for 02 varying between 1 and 1.4. Obviously, the usual tests
(Kolmogorov-Smirnov and Cramer von Mises) give excellent results because the first test (respectively
the second) consists in testing a location parameter (respectively a scaling parameter). We do not
give the results for these tests because our aim is to compare the behaviour of both procedures (the
quadratic procedure and the supremum procedure) The empirical powers are given in Fig.1 and Fig.2.
We observe again that the quadratic procedure is very conservative: the prescribed level is @ = 0.1
estimated by & = 0. In the translation problem, the quadratic procedure is the best while the

supremum procedure gives better results in the scaling problem.



3.3 Simulation results

E VS C E VS G G VS C G Vs ts

Q 10% 5% 1% || 10% 5% 1% || 10% 5% 1% || 10% 5% 1%

KS 49 16 03 99 89 52 100 100 100 17 08 01
CM 54 24 02 98 89 41 100 100 100 22 09 03
z=0.5 98 97 94 100 100 100 || 100 100 100 35 27 10
z=15 91 81 63 86 67 51 100 98 86 23 11 01
r= -2 11 05 02 69 33 17 42 33 17 15 08 01
A=10,1] 100 100 99 100 100 100 84 75  5b 10 08 02
A=[-4,-2] 13 09 03 100 100 99 100 100 100 64 54 27
Lso 94 89 75 73 55 29 100 100 100 11 04 03
Lo 41 28 06 57 35 03 45 27 03 01 01 00

Ly (bis) 99 94 67 97 88 37 98 89 42 11 02 00

Table 5: Empirical power (in %) associated with tests of prescribed levels a = 10%, 5%, 1% for testing
f = g when actually f is the Laplace against g the Cauchy, the Laplace against the Gaussian, the

Cauchy against the Gaussian and the Student t5 against the Gaussian, respectively.

E vs K C VS C G Vs G ts vs 5

Q@ 10% 5% 1% || 10% 5% 1% || 10% 5% 1% || 10% 5% 1%

KS 01 00 00 14 09 02 14 06 02 05 02 00
CM 00 00 00 11 04 00 09 06 00 14 07 03
r=0.5 12 03 01 16 11 01 13 09 01 21 13 01
r=15 13 04 01 14 06 01 15 08 03 13 07 01
T =2 09 06 01 06 01 00 06 04 01 06 01 00
A=10,1] 06 02 00 08 04 01 06 05 03 07 06 02
A=[-4,-2] 04 02 00 05 03 01 13 02 01 09 04 01
Lo 04 03 00 09 05 02 14 12 05 03 03 02
Lo 00 00 00 00 00 00 01 00 00 00 00 00

Lo (bis) 05 02 00 11 03 01 10 01 00 05 02 00

Table 6: Empirical error of first type associated with tests of prescribed levels o = 10%, 5%, 1% for
testing f = ¢ when indeed f = g¢ is the Laplace, the Cauchy, the Gaussian and the Student t5,

respectively.




0.7

0.6

051

0.4r-

031

0.2

011

Gg VS E3 Gg A Gg E3 VS E3

a 10% 5% 1% || 10% 5% 1% || 10% 5% 1%
KS 00 00 00 02 00 00 00 00 00
CM 00 00 00 02 00 00 00 00 00

z=1.0 87 74 48 11 02 00 21 08 03
x=-0.5 35 27 08 06 03 01 08 04 00
z=0.0 26 17 08 10 05 01 12 09 01
r =25 52 38 14 07 02 01 08 05 01

A=[-2-1] || 97 91 69| 10 05 01| 00 00 00
A=[-0202 | 8 75 47| 06 01 00 | 07 03 01
A=[0812 || 19 12 05| 04 02 01| 04 02 00

L 08 07 05 00 00 00 00 00 00
L, 04 00 00 00 00 00 00 00 00
Ly (bis) 23 14 05 01 00 00 02 00 00

Table 7: The first column gives the empirical power (in %) associated with tests of prescribed levels
a = 10%, 5%, 1% for testing the Gaussian mixture against the Laplace mixture; the other columns give
the empirical error of the first type (in %) associated with tests of prescribed levels a = 10%, 5%, 1%
for testing the Gaussian mixture against the Gaussian mixture and the Laplace mixture against the

Laplace mixture.
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Fig 3: Comparison of the N'(0,1) with the A'(m,1),m = 0,0.1,...1. The powers (in %) of the tests
are given: the quadratic alternative with the solid line, the supremum alternative with the dashed

line. The prescribed level is @ = 10%.
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Fig 4: Comparison of the A/(0,1) with the N'(0,0%),0% = 1,1.05,...1.4. The powers (in %) of the
tests are given: the quadratic alternative with the solid line, the supremum alternative with the dashed

line. The prescribed level is a = 10%.

3.4 Conclusion

The procedures associated with the pointwise distance and the interval wise distance are excellent
and give good results even when the usual KS test fails. For the pointwise procedure the point z has
to be chosen carefully. The interval wise procedure answers partially to this constraint. Moreover,
it improves the performances of the pointwise procedure on the tails of the densities. However, the
interval A has to be short to generalize the point wise procedure. The procedure associated with the
supremum alternative is interesting and could be improved by using a more accurate estimation of
the quantiles. It can detect differences which are not seen by the Ly type procedures (our quadratic
procedure and the KS test). The quadratic procedure gives reasonably good results, if we decide to
modify the procedure (i.e. to use only the first levels j and to take the a quantiles instead of the

11



a/#J quantiles). But we we are still sceptical about the practical interest of this procedure: it does
not, use the advantages of the wavelet methods and the computation times are very long.

To conclude, our prescriptions are the following: if one has an a priori idea on the points where the
densities are different, one chooses the point wise procedure; if one thinks that the tails are not similar,
one takes the interval wise procedure; if one knows that on a small interval the densities are very far
apart (like in the example of the scaling parameter for Gaussian densities), one uses the supremum
procedure. If the quantities f(z) and g(z) are almost equally distant from each other when x walks
along the support (like in the example of the shifted parameter for Gaussian densities or in the case
of the mixtures), one takes the quadratic procedure.

In the next section, we study the theoretical properties of the procedures in order to explain these

contrasting results.

4 Theoretical results

In the previous section, we focused on the probability errors of the test procedures. In this section,
the point of view is quite different. Given the sum of probability errors, say -y, we study the separation
rate r,, ,, between the null hypothesis and the alternative. Roughly speaking, we want to answer the
question: ” How far must be f from g to be able to detect a difference between them both?”. First,
we define the optimality criterion for the separation rate. Next, we give the regularity assumptions
on the densities f et g. This allows us to define entirely the alternative of the test problem giving the

space R. For each test problem
Ho:f=g against Hj:(f,9) € Apm(C)=RNS,m(C) (8)

we give the best rate r, ,, separating Ho and H;. The optimal choice of the tuning parameter j*
of our method and the critical value ¢+ ,, ,, are given and this allows us to construct explicitly the
optimal test procedure Dj-. Finally, we consider the adaptive procedures D = max;cs D; and we
study their rates.

4.1 Definition of the optimality criterion

Let 0 < v < 1. A sequence 7,,, is a minimax rate of testing for the problem (8), at level v, if

both statements are satisfied:

1. there exists a constant C* > 0 and a test statistic D* = D;x, called rate optimal, such that

limsup ( Po[D=1]+ sup Ppy,[D=0]) <~v (9)
NAM—00 £,9€A 5, m (C)
for all C > C*;
2. there exists a constant C, > 0 such that
liminf inf ( Py [V =1]+ sup Prg[V=0]] >~ (10)
nAm—oo V F29€A L, m (C)

for all C' < C, where the infimum is taken over all test statistics V.

12



4.2 Assumptions

We complete the definition of each considered alternative giving the smoothness classes where the
density functions belong to. Remark that under the alternative, densities may have different smooth-
nesses. Obviously, the spaces R and S,,,,(C) are related because the distance d measuring how far
apart the density functions are has an effect on the required regularity.

Roughly speaking, we assume that the densities belong to a ball of either a Sobolev space or a
Holder space. In order to unify the notation and because we deal with wavelet methods, we express
the regularity assumptions in terms of Besov spaces. For more details about the Besov spaces, see
e.g. Triebel [18]; a characterization in terms of wavelet coefficients is given later on, in Relation (12).
For the interval wise problem, we consider the Haar basis and put DB = 1. In all other problems, we
assume that the scaling function and the wavelet function are compactly supported on [0,2DB — 1]
for DB large enough and that the g-th moment of the wavelet v vanishes for ¢ = 0,...,DB. We
assume also that there exists a point  such that ¢(z) # 0 and ¢(x) # 0. By instance z = 1 for DB3,
see the Daubechies’s wavelets (Daubechies, [1]).

Let 0 < s¢,5 < DB and R > 0. For p > 1, we define the collection of smoothness classes:

R(p) = {f€Byk(R).g€ B (R)}

and we consider p = 2 for the quadratic alternative, respectively, p = oo for the pointwise, interval-
wise and supremum alternatives. Moreover, for the L., problem, we suppose that the densities have
bounded (by L > 0) supports. In the Ly problem, we add the assumption that the densities f, g are

uniformly bounded.

4.3 Main results

Theorem 1 Let 0 <y < 1 be the prescribed risk of the test. Denote by

1 1\ !
5=5f N\ sg, N=<n+m> .

Then, for j*, the corresponding estimator Tj- defined in (3), (4), (5) or (6), and the critical value
tj* n,m provide a test statistic

Dj(d) = IfiTyu et}
which achieves the rate r;, ., of testing in each setup, respectively.

The quantities j*,tjx nm, Ty, m are described in Table 1, the constant c is depending on ||¢||co, || |l

or || f1l2-

! 2 ti=nm Tm Restrictions
1 -
zg | N#wFT (2;\7 ) fyi Nzt f, g bounded away from
[zo — QDQ?II,:EO + %]
1 1 1 1 Sk
A | Nom N=zy7z N-z Al > 27
A C (supp(f) Nsupp(g))
1
L2 NTz‘Fl (%—2)2 f\/fé Niﬁ
L ( N )ﬁ (J'*Jrlogz(L/"r))% ( N >72SST
o0 log N N log N

Table 1: Optimal parameters, critical values, minimax rates and restrictions
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In other words, Theorem 1 ensures that (9) is satisfied for D;«(d) and 7}, ,,. We have now to
prove that (10) is satisfied by the rates .m0 each setup, respectively. This is done in the following
Theorem.

Theorem 2 Let vy be the prescribed risk of test.

In the pointwise problem, we consider a point xg such that f and g are bounded from below on
Iy = [zg — zl(jjjgj(gN)l, o+ zl(l?g?N)l} In the interval wise problem, we consider an interval A nested in
supp(f)Nsupp(g) and such that |A| > N~1/2,

Then, the rates ry, ., given in Table 1 are minimax rates of testing.

This means that no other test can achieve faster separating rates than our testing procedures and
therefore we have the corollary

Corollary 1 The procedures described in Theorem 1 are optimal.

Unfortunately, the procedures D;«(d) depend on the extra parameter s = sy A s, which is generally
unknown. Remark that the critical value depends also on unknown quantities. We propose data
driven procedures in the sense that the test statistic is data driven. We have seen in the simulation
part that the critical value has to be estimated by other methods (bootstrap, ...) Anyway, it does not
affect the rates of testing. The rates of these procedures are stated in the following theorem.

Theorem 3 Let 0 < v < 1 be the prescribed risk of the test. We consider the set of indices J =
{Jo,---Joo} where

N/log N,

2J0 = log N, 27> = , 11
& { N2/log3 N, in the quadratic problem. (11)

For tjn,m given in Table 2 and ¢ > 0 constant depending on ||¢|loc, || flloc o7 ||f]l2, the test statistic

D(d) = I{maXJ‘eJ(lle_c &j,n,m ) >0}

achieves the rate 7y .

l f T, restrictions
T
To (2] log logN) ’ (\/W) f, g bounded away from 0 on
2DB—1 2DB—1
[£0 — Toarny  ¥0 + Toermy ]
T T
3 3
A <loglogN) (\/W) AcC Supp(.f) n Supp(g)
|A| > N—1/2
L 29 \/log log N
2 \/log log N
T _ s
2s+1
Loo (]+log2 Llog N) ) (1 )

Table 2: Critical values, adaptive rates and restrictions

Such test procedures are commonly known in the minimax literature as adaptive to the smoothness:
the test statistic D(d) does not depend on the indices of regularity unlike the optimal test Dj«(d) .
There is usually a small loss in the rate due to generality of the class where the unknown functions
belong.

Corollary 2 The adaptive procedures studied in Section 3 are mearly optimal. In particular, for the

Loo setup the procedure is adaptive to the smoothness and rate optimal, i.e. without any loss in rate.

14



5 Discussion

We want to stress again the fact that the applied approach in our simulation study and the theoretical
approach giving minimax and adaptive rates of testing are substantially different. In the first approach,
we fix densities we want to compare and estimate empirically the probability errors of our testing
procedure. In the theoretical part, we study our estimation procedure at fixed sum of errors, v, and
over very large, non parametric, classes of possible densities to test on. The rate of testing is expressed
in terms of increasing sample sizes n and m. These rates are interpreted as the minimal separation
distances between the null hypothesis and the alternative so that the test can still be performed.
The testing rates are evaluated asymptotically. Therefore, the constants associated with these
rates and/or procedures are rather large in the exponential inequalities given next, in Section 6. This
is especially the case for the Lo problem, possibly explaining the bad simulation results in this case.
Nevertheless, it is impossible to use theoretical critical values as they are issued from our proofs.
The theoretical results show the empirical results in a different light. Simulation results are quite
good for interval-wise problem, where almost parametric rates of convergence are expected in theory.
Pointwise and supremum results are quite encouraging as well. We think that the Ly procedure fails
because the behaviour of the test statistic is different under Hy and under Hy (see Lemma 2) which is
not the case for the other procedures. We show in the proofs that the test statistic T (L) is degenerate
under Hy and non degenerate under Hy. It could explain the fact that the test is so conservative.
We conclude with a comment on the difference between the test problem and the estimation
problem. We note that the test statistic is an estimator of the loss function I(f — g). A priori, the
testing rate seems related to the estimation rate of f — g with loss function {. This is indeed the case
for pointwise and L., problems, where we test at the same rate as we estimate the function (f — g).
This is not the case for the Ly problem, where testing is easier than estimating (f — g). Indeed, the
testing rate N —*/(4s+1) is much faster that the estimating rate N—=25/(2st1)_ But, we remark that the
testing rate is the same as the rate for estimating || f — g||3 (on the non parametric side). In adaptive
estimation of such functionals a loss in the rate is unavoidable due to the generality of the class
where the unknown functions belong. The loss is known to be of order log N. In the goodness-of-fit
problems, Spokoiny [15] showed first that the loss in adaptive testing is of order y/loglog N and it
is much smaller than for the adaptive estimation. The same phenomenon happens for pointwise and

interval-wise loss functions. No additional loss appears for L., problem.

6 Proof of the upper bounds

The sketch of the proof of the upper bound results of type (9) is the following. First we give an upper
bound of the first-type error by using the Chebychev Inequality or an exponential inequality. We
choose the critical value t;,, n in such a way that the first-type error is upper bounded by /2. Next,
we find an upper bound of the second-type error. In order to do this, we give the asymptotic law of
our estimator T};. As usual, the balance between bias and variance allows us to compute the optimal
level 5* in the estimators expression. Finally, the minimal separation distance between hypotheses Hy
and H; is chosen such that the second-type error is bounded by /2 as well.

First, in Lemma 1, we evaluate the estimation bias. Then, Lemma 2 gives the asymptotic law of
the estimator T;. Under the null hypothesis Hy, the exponential inequalities are stated in Lemma 3.
Finally, we study first and second-type errors. The proofs of Lemma 2 and Lemma 3 are postponed
to Appendix A.

In the sequel, we put

n m

1 1\
5=5¢ N\ sg, N:<—+—> .
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6.1 Bias bounds

Let us recall the characterization of the Besov spaces thanks to the wavelet coefficients:

heByo(R) = Vj>0. D |Bul? <R2ICTTP,
k

h€ Bl (k) = Vj >0, supl|Bl < R2(s+3), (12)
k
The following lemma is a direct application of (12).

Lemma 1 Let 0 < sy,5, < DB and R > 0. Assume that f € B, poo(R) and g € B, poo(R) for p

giwen in the table. The quantities Bj,,b,b;, given in Table 1 satisfy

Vjo > 0, ‘BJ'O‘ < b bjo'

l P B; b bj,

xo | oo | 227050 2k (Bik — bjk) k(o) 2(2DB = D|[Yl|lo R | 2770°
A oo | 307050 30k Bk — bjk) [4 ik 219 R 27 Jos
Lo | 2 | 252, Xk (Bik — bjk)? 2R 27 2jos
Loo | 00 | sup, [ 3552, 355 (Bik — bjr)¥ju(2)] | 2R(2DB — 1)[[¢[ls | 277°

Table 3: Bias of test statistics

6.2 Asymptotic distribution

We establish the asymptotic normality of the statistics of interest. We remark the difference between
the statistics associated either to the quadratic problem or the other problems. In the quadratic
case, the order of the variance can be different under the null hypothesis and under the alternative.
Note that, under Hp, on the parametric side (i.e. when the rate of convergence is VN ), we give
the exact constant u appearing in the variance. It is interesting to notice that u is depending on
I(f —g) = |If — g3 and then can be bounded from below under H;. This remark is fundamental for
the study of the error of the second type.

Lemma 2 In the quadratic problem, assume that the densities f and g are bounded. In supremum
problem, assume that f and g are compactly supported. For j large enough and B; given in Table 1, the
statistics T; defined in (3), (4), (5) and the statistic T}, defined in (7), have the following properties

ET; =1(f —g) — By, BTy =1(f —9)
and, denoting either T} or T by Sk

V(Si) = VUjnm + 7 (i the quadratic problem)
! VVjnm (in the other problems)

where

u:/(f,g)z(fﬁ—g)72/(f*g)f/(f*g)g* </(fg)2>2

and the constant v is bounded by vmay (see Table 4). Assume in addition that

16



I Tiuh) | vmax Vjonm
zo | h(zo) | (Ifllec V llgllee)2DB = 1)?(|9[2, | 27N~
A | fuh | fA =[OV 90— [y9)] | N7}
Ly | [B* | |fI3llgll3 2N2
Loo | Jhoje | (Ifllse V llgllo) Nt

Table 4: Asymptotic variance of test statistics

e for the point wise problem: xy is such that f and g are bounded from below on Iy = [xo —
279(2DB —1),z0 + 277 (2DB — 1)]

e for the interval wise problem: A is such that |A| > 279 and A C (supp (f) N supp (g))

then, under Hy for the quadratic problem, under either Hy or Hy for the other problems, we have
_ D
Wjnm) 2 (Sjk = ESjk) —nam—roo N(0,0).
Moreover, under Hy for the quadratic problem, we have

if2 <N then VN (Tj — ET}) —pamtoo N(0,1)
ifY >N then  (vjum) 2 (T; = ET}) s nnm o0 N(0,0).

6.3 Exponential inequalities

The following lemma is used for the particular case of the supremum problem to establish the op-
timality of the procedure Dj-(Ls) and for all problems D(d) to study the rates of the adaptive
procedures.

Lemma 3 is valid under Hy and H; except in the case of the quadratic problem. In the Lo
framework, the U —statistic T} has to be degenerate and this holds under Hy. Anyway, we only need
the exponential inequality to bound the error of the first type.

Lemma 3 The statistic Sj;, denotes either T; defined in (3), (4), (5) or T defined in (7). Under
the null hypothesis Hy, for j large enough, there exist constants ¢, C,C depending on ||f|so and ||¢]|s
such that

Y0 <A< cCjmm Yk, P(Sik] > \) < Cexp (—(Z*K(,\, j,n,m))

where Vj pn,m 15 given in Table 4 and C = 2 except in the quadratic problem.

l Cimm | K (X j,n,m)

A |1 v]}n -

Ly | 400 vjim A (NA/\N;Z; /\N%)
Lo | 27972 vjf:’m
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6.4 Proof of Theorem 1 - Pointwise, interval wise and quadratic problems

Let j be varying between jo and jo defined in (11). Let us remark that under Hy, the quantity ET)}
is zero. Applying Lemma 2 and using Chebyshev Inequality, we obtain

Po(Dj(d) =1) = Po(|Tj| = tjmm) <ty 5 0 Vjnm-
We choose
Umax
Ljnm = (7/2) Vjn,m (13>

in order to bound the risk of the first type by v/2. Using Lemma 2, the estimator 7T} satisfies the
following equality

Under the alternative H, we get

Py g(Dj(d) =0) = Py o(|T5| < tjnm)

IN

Py g (=tjnm—Uf—9)+B;j <Tj — ET; < tjnm—Uf—9g)+ Bj)

IA

Py (=tjmm —U(f—9)+ B; <T; — ET; if [(f — g) <0)
+Ps g (Tj — ETj < tjnm —Uf —g) + Bj if I(f —g) > 0)

< oryy (YD (110t ). )
j n,m n,m

Following Lemma 2, the random variable x is asymptotically Gaussian. Let us denote ¢, the quantile

verifying 2 P(N(0,1) > ¢4) = 7/2. In the quadratic problem, we restrict the study for a level j such
that 2/ > N which implies that V(Tj) < vvjn,m. The probability term is bounded as soon as

Tnm 2 (4n,m) V (4 Bjl) V (241 /V(1}))-
Combining Lemma 1 and (13), we choose the smoothing index j* such that

Umax _
(/) T T b

Remark that in the quadratic problem, the optimal index is given by
9i" — N1

and then is larger than N if s < 1/4. We explore the case where s > 1/4 at the end of this proof. We
get

(4t m) V (41Bj) V (2051 V(L3)) < (4V V/270,)t 0 -

Using the critical value found in (13), the rates verify

Umax
Tngm = (4V /27gy) ~/2) Uj*,n,m

Replacing v« » m, we obtain the rate r}, ,,, announced in Table 1. We finish the proof considering the
quadratic problem when s > 1/4. Since 2/° < N, we have V(T;) < %. By Cauchy-Schwarz Inequality,
we bound u

u S cf!] l(f _g)a
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for crg = [|f = glloo + 2[1 12 [lg]l2 and (14) writes

I(f - Bis|  tiemm
g

Nr* 1/2
2Pf,g<( 46;;") <x|.

Since Ny, ,, tends to infinity, this probability is going to 0 and the proof is completed.

A

6.5 Proof of Theorem 1 - Supremum problem

Let j be varying between jy and jo defined in (11). Under Hy, the quantities a; — aj are zero
for any k. Let us remark that, since f and g are compactly supported, the number of coefficients
Tji = &ji, — G appearing in maxy, |Tj| is less than 2/ L + (2D B — 1) where L (respectively 2DB — 1)
is the length of the support of f and g (respectively of ¢). Using Lemma 3, there exists a constant
Co > 0 depending on ||f]|ee and [|¢]|ec such that

> Po(ITjkl = tjmm)
k

< 22L+ (2DB - 1)) exp{—t7,, ,,Cov; \ ..}

J,n,m

IN

as soon as tjn,m < ¢279/2, The choice

tyman = \/ (08 (ALY + 5) Cy * vyim

1

is convenient because 27 < nlog(n)~! and allows to bound the risk of the first type for the test

Dj(Loo) by v/2. Remark that the expansion (6) on the wavelet basis implies
max | ETjx| > 2726l (11 = glle = By)
and therefore, under Hj, there exists £* such that
|ETj1e| > 22|l (rym — | By
Using Lemma 2, there exists an asymptotically Gaussian variable x such that

Pt g(Dj(Loo) =0) = Py g(Tj(Loo) < tjmm)

< Pypg (VR Tkl < tjnm)
< Prg(—tjmm — ETjre < Tjgr — ETjpe < tjnm — ETje-)
< Prg(=tjmm — (aje — ajpe) < Tjgr — ETjpe i g < ajpe)

+Ppg (Tjke — ETjir < tjnm — (ajer — ajee)  if agjge > ajpe)

2j/2Tn m B Bl |¢]lso 27j/2tlnm Bl
S 2Pf,g X Z 7:||¢”001 <1 _ | J‘ H || _ im, H || ) )
V(Tjk*) T'n,m Tnom

We finish the proof in the same way as previously.
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6.6 Proof of Theorem 3

Put v; = v|J|7!/2 and note that there exists a constant ¢ such that v; = c¢(log N)~'. We follow the
lines of the proof in the non adaptive setting replacing v with v;. In the supremum problem, taking

- B (jlog(Z) +log(4L/,\/j)>1/2
N ;

tinm =
we get

(D) =1) = FR(3je|T;| > th,n,m) < ZP0(|TJ| > Ej,n,m) < Z’Yj =7/2.
jeJ jeJ

In the other problems, we choose
- . 1/2
Eimam = (G5 vinm 108(C/75)

where C, Cy > 0 are the constants of Lemma 3. Applying Lemma 3, we have
.2
RD@) =1) < €Y exp (o2 )

as soon as 27 < for the quadratic problem. We obtain then

__N*
(loglog N)3

B(D(d) =1) <v/2.
On the other hand,

< Ejeemm)
for j** € J to determine. The choices
27 =27 (log | /)~

for € = (1+2s)7'/2 in the point wise problem, e = (2s)~! in the interval wise problem, € = (1+4s)~!
in the quadratic problem, € = 0 in the supremum problem lead to the announced rates.

7 Proof of the lower bounds

The main idea in the proof of the lower bounds is to reduce substantially the large class of functions to
a parametric subset. If this finite (but increasing with n A m) set is well chosen, the distance between
these functions is giving the optimal rate, while the distance between the resulting models decreases
to 0 or it is upper bounded by some constant. The proofs for the pointwise and supremum problem
are based on the following Lemma (which is proved at the end of this section)

Lemma 4 Let {(f,g1),---,(f,gm)} be M-couples of density functions in the class Ay ;m(C) = R U
Sn,m(C). Moreover, denote h the common density under the null hypothesis and assume that

2

M
Pro 515 >

I 1
Py 1 1-5 (15)

1
Py i
=1

for some0<y<1land0<d<1—n.
Then the lower bound in (10) holds true.
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For the quadratic problem, this lemma based on M hypothesis is not enough but we consider a richer
subfamily of experiments. We construct our hypotheses similarly to Ingster [5] or Pouet [14]. We
write the proof based on Assouad’s cube in a simpler manner, so that it is easy to see why this richer
family has such a small Bayesian risk.

For the minimax pointwise and supremum setups, we follow the lines of proof in Lepski and
Tsybakov [11]. In the following subsections, we need only to describe the choice of these particular
functions in each nonparametric setup (i.e. except the interval-wise setup) and prove that they verify
all needed conditions.

We mention that the cited proofs were given for the one-sample goodness-of-fit problem instead
of the two-sample homogeneity test problem that we consider here. As we already mentioned these
proofs need to be based on a general underlying density A under Hg that cannot be reduced to a
uniform density since h is unknown.

Assume for convenience, without loss of generality, that n > m and sy > s,4, note s = sy Asg = 54
and remark that N is of order m A n = m, when m An — oc.

In all specific constructions further on, we consider

h:fa

i.e. we construct hypotheses in Lemma 4 based on the common density under the null hypothesis Hy.
Then ¢1,...,gn are basically this very density plus suitable perturbations.
We need to assume that this common unknown density under Hy has a Besov norm ||h||p < R,

according to the setup. This is not a restriction for our former results.

7.1 Proof of Theorem 2 - Pointwise problem

In this setup, it is enough to consider M = 1. Define g; by

91(@) = f(z) + 277927 (z — x9)),

and choose
2j — (m/\n)l/(25+1)_

Step 1. The functions gi, f have the following properties:

e g1 € B3 o (R): we just need to take ¢ in the class B3 (R’), with R’ small enough to have
lgillzs,.. < 1flBs. +271¥lBs, < R.

e g1 is a density: Let us denote my > 0 the bound from below of f on Iy. Note that, as
n A m — oo, the support of the perturbation is shrinking and the size of the perturbation
127759 (-)||oo decreases to 0. It means that for n A m large enough, g; is a positive function.
Obviously, [ g1 =1 because f is a density and [+ = 0.

e The choice of j leads to |g1(xo) — f(xo)| = 277°|1(0)| > CN~3/(2s+1) for some C' > 0.

We conclude that (f,g1) € Ay m(C) for 1y, = N7/,
Step 2. We check Relation (15). We write

APy ) T g1(Y3)
P =P IL>1-§) =P lo Il > log(l -4
h’h<dPh,h - M( gi:l JYi) ~ B )
_ p (Z?’llogZi—um log(l—é)—um)
= Ihh >
Om Om



where

m m
g
Z; = 71(3/@)’ o = ZE,L,hlog Zi, 031 = ZVh,h(IOg Z;)
i=1 i=1

satisfy the following lemma (proved in Appendix A)

Lemma 5 The Z;’s are independent variables such that the log Z;’s have finite moments up to order
3 and

lim o SZEhh|Z EnnZif® = (16)
=1
|tom| < m;1 and o2, < 2mJ71 (17)

Combining Lyapounov Theorem with this lemma, P is larger than /(1 — 6) as soon as

log(1 — ) + m;l

- < q1-~/(1-6)-
1
me

Relation (15) is verified. We just have to apply Lemma 4 to obtain the lower bound.

7.2 Proof of Theorem 2 - Supremum problem

The construction is very similar, but we consider here an increasing number of perturbed functions:
M = 27. Because f is at least a continuous density, we can find a compact set on which f is positive.
Without loss of generality we take this compact set to be [0, 1] and let my > 0 be a lower bound of f

. A\ L@
~ \og(m An)

on this interval. Choose

and define
gr(z) = f(2) + 27752 (x — xp)), k= 1,..., M
where z, = 2777 1k.
Step 1. As in the previous part, we can prove that, for any k = 1,... M, g are densities belonging to

B (R). Moreover, since there exists a constant C' such that
. N T 2sFI
— = 927Is >(C -
ot = Al =2 Wl 2 € (g ) -

we deduce that (f, gr) € Ap m(C) for 1y, = (ﬁ)*m'

Step 2. We have to verify Relation (15). For k =1,... M, put Z( ) = = (gx/N)(Y:) and Uy =]}, Zi(k).
Note that Eh,hZZ-(k) = 1 and that Uy are independent variables since g have disjoint supports. We

write

1 degk
noy yrrtyam 2 -
(M i (X1,..., X 11 Yim)>1-10

; h(%znzw—lz—a)

k=1i=1

M
> 1-— Ph,h ( (Uk - Eh,hUk) > ]Wé)
k=1
M
> 1 Vary n(Ur),

M262
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We used successively Markov inequality and Rosenthal inequality for moments of the sum of indepen-

dent variables. Finally,

Varh,h(Ul) =

Jfi (o Esoany
i Ehhn(ww SR
=1

—2js 22]Y —x
= <1+Eh,h|: wfg )/11 1

]) -

_ <1+m22 2Js/¢ (29 (y — 21)h(y )dy> 1

—j(2s+1
< cm?2 J(S-*')7

which gives

M . 1
1 dPs.q m2-i(2s+1) logm (logm %+!
<— —kzl“S)El‘CWEl‘C 7\ m

and this is larger than v/(1 — §) for m large enough. This ends the proof of Relation (15). We just

have to apply Lemma 4 to obtain the lower bound.

7.3 Proof of Theorem 2 - Quadratic problem

We start with the same construction as before. Nevertheless, a subfamily of M = C? 2/ couples of
densities is not rich enough in this setup. Remark that C'is a fixed constant to be determined in the

sequel. For 6q,...,60) i.i.d. Bernoulli(1/2) random variables, let:
M . .
go(x) = f(x) + Y 06277%(2 (z — x1)),
k=1
and choose

27 :(n/\m)lf_‘“.

Step 1. The subfamily contains 2* couples of densities belonging to B;go (R). Moreover,
Hga — fHBgoo = M1/227j/2 = C.

The rate is given by
M 1/2
lgo — fll2 = (Z 9=2s /w2(2ﬂ'(:p - xk))dx> _ MV/29-059-/2 — Oy 2/ (1)
k=1
We deduce that (f,gs) € Ay (C) for 7, ,, = m™4s/(4s+1),
Step 2. The proof of the theorem in this case is not based on Lemma 4, but is slightly more complicated.

Indeed, when we give a lower bound of second-type error, we take the mean with respect to the measure

m(df) due to the i.i.d. random variables 6. Keeping the same notations as previously, this gives:
ir‘}f <Ph7h(V = l) + m;%fo,ge (V = 0))

> il (ph,h(v 1)+ / Py (V = 0)7?(d0)> >1-A/2,
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where

A2 = By, (/ﬁ%f()’,-)w(d@)) —1.

For the last inequality, we refer to Ingster [5], Theorem 2.1. It is sufficient to upper bound:

Epp </ﬁ %(K)W(d‘go
" 25 (20(Y; — ) ’
Enn </H<1+; k P k )w(d&))
ALY 0u2 7 9(2(Y; — ap)) i
B (/ LT (e ) ”(d"))

A% +1

i=1k=1

Indeed, the previous equality is true since each Y; can be in the support of a single perturbation
(27 (- — 1)) at a time. Let us denote in the following Y; j the random variable Y; if it belongs to the
support of the k-th perturbation and 0 otherwise. Thus, the variables under the sum are independent
as k goes from 1 to M. We have, for A% 4 1:

M m 0k27759(27 (Y — 1)) 2
frell </ (1 25 e

T [T (1 2 ) L o 2
< {5 (o [P

G0ma ) )
Mo (Eh,h [2%51/)2;22&({:; - Ik))DZ] 2

Here, we used successively the inequality (a + b)% < 2a? + 2b? and the fact that
Ep [277°0(27 (Yig — 22))f T (Yip)] = 0.

We also use asymptotic approximations, since:

272js’l/)2(2j(yl,k _ Ik)) 272jsw2(2j(y - Ik))
Eh.n 3 = L ez =i
f (Yl,k> f(y) [z 5T+ 257]
S cm;l 27j(2s+1).

(y)dy

Remark that, since f is continuous and positive on [0, 1], there exists my such that f(y) > ms > 0

on the integration domain. On the whole, we get as a lower bound of the sum of the test errors:

1/2
1 )
1-A/2 > 1= (1+%m2272j(25+1))M71
2 mi
> 1—cMY?m277C@st) =1 _ .

We just have to choose C' smaller than (1 —v)c™! to end the proof of Theorem 10.
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7.4

Proof of Lemma 4

Let us first restrict the large class of functions {(f, g) € Ay m(C)} to a finite subset {(f, g1), ..., (f, gm)}
belonging to A,, ,,(C). For any statistic V, we have

which implies

M
1
sup Py (V=0 > max Pry(V=0)>— P g, (V=0
F,9€M L, m (C) o ) (f,91)5-->(f,900) o ) M ,; o )
r = inf|P,p (V=14 sup Psq(V=0)
v £:9€8n,m (C)
M
. 1 dP
> inf (Eh,h (Iv=13] + Enn |:I{V_O}M ﬁ > .
k=1 '

Use now the relation (15) and denote by A = {M ! Z,]cwzl dPf g, /APy > 1 — 6}

ro > inf (Enp (Iv=y) + (1= 0)[{v_oy1a)] = (1 = 8)Prn(A) >~

which ends the proof.
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8 Appendix. Upper bounds.

8.1 Proof of Lemma 2 in the supremum problem
For all k varying in
K={2( min X;A min Y;)— (2D —1),...,2/( max X;V max Y;)},
i=1,..n i=1,...m i=1,...n i=1,..m

we consider
l & 1 &
Tin = D dw(Xi) - P > di(Yo).
i=1 i=1

The expectation and the variance are

1 1
ETjk =  Qjk — Qjk, 1% (Tk) = Evl + E/UQ
with
2
v = </ G3ph — (/ ¢jkh) ) and h = fly—1y + gly=2y.
We have

w < /¢2(t— W2 Tt)dt < b

Since k € IC, v1 Ava =V (¢jx(X)) AV (¢(Y)) # 0. It follows
1 1

V(Ty) = (— + —) v

n m

where v is a constant such that 0 < v < [|f|leo V |¢]lcc- Since the X’s (respectively the Y’s) are

independent and have the same distribution, the standard limit theorem holds. Since the X’s and the

Y’s are also independent, we deduce the asymptotic normality of

Te — BT _ $0(X) = Béu(X) - $u(Y) — Béu(Y)

V(Ty) vnlu vVm~lu,

C2
where
_ 1/2 _ 1/2
n~"tuy / m Ly /
AT\ T+ m Loy and o = | o= — - )
n=- vy +m vg n=—v1 +m v
satisfy ¢3 +c3 = 1.
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8.2 Proof of Lemma 2 in the point wise problem

Let us recall that

where
z{ = Zm D651 (0) 2>—Z¢Jk )51 (0).

The expectation is

ETj(wo) = BZ" +EZP =Y (o — aji) dj(wo).
k
We have
V (Tj(z0)) = —VZ(l) —VZ§2>.

with

v(z{) = /<Z¢jk(t)¢jk(x0)) h(t)dt — <Z¢jk(x0)/¢jkh>
k K

for h = flg—1y + glg—2y. Since the support of scaling function is [0,20D — 1], the set of the indices &
such that ¢;x(zo) # 0 is {k € Z, 2/ — (2D — 1) < k < 27}, We deduce that the number of terms in
the sum is 2D — 1 and that the integral is on the interval Iy = [xg — 277 (2D — 1), 29 + 277 (2D — 1)].

On one hand, we have

viz{) = 2 / <Z¢Ok(t)¢(2j$0—k)> h(29t)dt
k

< bl 3 [ 10w donal 615
k1k2
< 2|hlle(2D = 1)) 6%

On the other hand,

2 2

(Z ¢jk(w0)/¢jkh> < <Z (b(2j{[:0 - k)/¢0k(t>h(2_jt)dt>

k k
< 1Al 2D = 176115 Nl
It follows
2
vzl = 2| f (Z ¢0k<t>¢<zjxo—k>> A2 Ide = 277 2D = 1) bl 9]l 9]
k
> o [;22 ) 3¢ @0 — k) — 27D ) ||h||oo||¢||1||¢||oo]

Let k* be such that ¢?(27zq — k) # 0 (for instance k* = 2/x¢ — 1 if the scaling function satisfies

(1) # 0). We deduce, as soon as j is large enough,
(1 1
Vi) = 2 () o)

n m

where 0 < v(20) < (||flloe V ll9llo) (2D — 1)*||¢||%,. The proof of the asymptotic normality is the

same as in the previous subsection.
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8.3 Proof of Lemma 2 in the interval wise problem

Let us recall that the Haar scaling function is ¢ji(z) = 2//21(9 1)(272 — k). Let us put A = [a,b] such
that the diameter |A| = (b — @) is more than 277 and let us denote K = {27a,...,2/b — 1} the set of
indices such that ¢;i(z) # 0 for z € A. We get

/ bjt =271 iy (18)
A
Let us recall that
i, 1 ,e
TJ(A)_EZZz EZ i
i—1 i=1

where

The expectation is
ETJ(A) = EZ (1) +EZ Z ajok 7aj0k)/ ijok-
- A

We have . )
V(T;(A) = vz 4 —yvz®,
(T;(A)) = “VZ7 + —VZ

Vzl(l) = k§2 </¢jok1¢jok2h/¢j0k1h/¢jok2h)/A¢j0k1/A¢jOk2

for h = fly—1y +gly—2y. Since the supports of ¢k, and of ¢k, are disjoint when k; # k2, applying

with

Lemma 8 and using (18), we get

VZ%I) _ /¢2 2Jx7 k)h — </ Z qﬁjokh)

/Ah/ol?%k(//ﬁf(/ol%%ky
(/) (- L)

Since A C (supp (f) Nsupp (g)), we obviously have V(Z!) > 0 for I = 1 or I = 2. We deduce

g

n m

o= ([0 0) () L)

The proof of the asymptotic normality is the same as in the previous subsection.

for

8.4 Proof of Lemma 2 in the quadratic problem

Put ¢ = n A'm. Let us recall that the estimator 7};(L) is given by

1 q
Tj(Lz) = 0 Z Uiy i




where

Uilﬂé = Z (¢jk(Xi1) - ¢jk(}/11)) (¢jk(Xi2) - ¢jk(Yvi2)) 1{2'17%2}'

k

BU,. = Z( Jons- [ @w)z,
k

we deduce the expectation of the estimator Tj(Ls)

ETj(Lz) = Y (aje—aj)?.
k

Since

Let us compute the second moments of the U’s.:

2
COU(EUhizaEUisu) Z ailkzl{ilzis,izzu} + (Z bi) 1{’L'175i275i375i4}
k1 ko k

+ Z ak1k2bk1bk2(1{i1:i3,i275i4} + 1{2'1751'3,1'2:1'4} + 1{2'1:1'4,1'2#1'3} + 1{1'1?61'4,1'2:2'3})
k1ko

Akyky = (/¢jk1¢jk2f2/¢jk1f/¢jk29+/¢jk1¢jk29)
by = (/¢jkf—/¢jk9)

We deduce that there exists a constant ¢ > 0 such that

1 1 c
V(Tj(L2)) = ——— > g +4(——+ ) > (akykabri bk, — 07, B7,) -
glg—1) & g—1 ¢ L

where

The evaluation of each quantity is given in the following lemma which is proved at the end of this

section.

Lemma 6 Letss, s, > 0. If f (respectively g) is a bounded function belonging to B;fOO(R) (respectively
to By’ (R)). there exists a constant ¢ > 0 such that , for any level j,

Y i < 2 2DB=DIfIBll3
k1ko

S (arpbi b, — B2, 12,) = /(f 9 (fg) - 2/(f - g)f/(f 9

k1iko
2 -
— (/(f — g)2> 4+ 2~ (55 Nsg)

Remark that, under Hy, the b's are zero. We deduce that, under Hy
2
ET;(L2) = 0 and V(T}(L2)) < qullfIIz lgll2-

Under H;, applying Lemma 6, we obtain
27 1
V(T;(L2)) = v+ —u
(T5(L2)) 23
where u,v are given in Lemma 2. Using Hoeffding Central Limit Theorem for second order non degen-
erate U-statistics (see for instance Koroljuk and Borovskich [8]), we prove the asymptotic normality

of T;(L2). The key point is that Tj(L2) is non degenerate under H; since:

EU, — E(U12/X2,Y2) = > br(bs — (650(X1) — ¢j(Y1)) # 0.
k
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8.5 Proof of Lemma 3 in the point wise, interval wise and supremum
problems

Recall the following result

Proposition 1 Bernstein’s Inequality (see [13], p. 57). Suppose that E&; = 0, 0?2 = E&? <
(i=1,...,m), B= 221 U?. Suppose there exists positive constants H and Cy such that

|E€Y| SCé’p”apr*Q (i=1,...,m)

for all integers p > 2. Then, there exists a positive constant Cy depending on Cy such that

$2

<x<B/H, P > 2) < 2exp—Cp —.
Y0 <z < B/H, (|;5|_x)_ exp —Co —

In fact, the above inequality has sightly different assumptions (about the moment condition of £) than
the inequality in Petrov [13] p. 57. The proof is the same (using the concavity of the log function
which leads to the inequality ¢! > qZexp(—q + 1),q > 2).

Let us first consider the supremum problem. Suppose that m < n, let my be a lower bound for f.
Put

1 1 1
Zi = (n%’k(Xi) - méﬁjk(Yz’)) Lagicmy + —@in(Xe) Limti<i<n)

and

Observe that, under Hy

and then, we have

n

T = (Zi—EZ) =) &
i=1

i=1
Let ¢ be an integer larger than 1. Since

1 1 1
Ez; = ((ﬁ + E) Lii<i<my + - 1{m+1<i<n}> /¢jkf

1 1 1
EZ} = (<ﬁ+ﬁ> 1{1Si§m}+¥ 1{m+1<i<n}>/¢§k~f
e < 260 (Lo LY g e e ) 2 e (6
il = nP - mP {isism} T p “{mtisisn} - b

we deduce that there exists some constant C > 0 such that

2
o = ((% + %) LTii<icmy + % 1{m+1<i<n}> (/(b?kf </¢jkf) )

.

> ! + Ly’ 1 + L L_ oo
= 0 m {1<i<m} T 5 H{m+1<i<n} 3
1 1\7* 1 , o?
P o4 ) il . p—19j(5—1) pZi
E|£z| < ((n + m) 1{131§m} + P 1{m+1<z<n}> 2 2/12 Hf”oo ||¢||p0_12
1 P2
<

_ e (1 P 1
2p||f”oomf1“¢||§ai2 <2j/2 (E + E) li<icmy + o 1{m+1<i<n}>
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We finish the proof applying Petrov Inequality with

1 1 ; 1 1
B:(—+—) [/ lloo and H:2]/2(——|——>.
n m n m

The proof is analogue in the point wise problem and in the interval wise problem, setting

Zi = <nz¢3k i)®jk (2o **Z%k ¢gk(10)> Lii<i<m)
+-— Z¢gk $)Pjk(20) Timt1<i<n}
1 1
(E%:ijk(Xi)/Aﬁbjk—Ezk:%k(yé)//l%k) lii<i<my
1
+Ezk:¢jk(Xi)/A¢jk Lim+i1<i<n}

with (B, H) being respectively

(G2 (o)) (Gra)ine ()

which leads to the announced result.

Ne
Il

8.6 Proof of Lemma 3 in the quadratic problem
We recall the following result from Gine et al. [4]

Proposition 2 There exist universal constants C',C > 0 such that, if u is a bounded canonical

kernel, completely degenerate, of the i.i.d. variables Z1,...Z,, then for all x > 0,

2 2/3 1/2
, ~ 1 x T T T
1<iy £is<q

where A, B,C, D are defined by
A=lullss, B*=4qllEv*(Z, )|, C*=q¢*Eu?,
and
D? = g sup { Eu(Z1, Zo)ur (Z1)ua(Zs), Eui(Z) < 1, Eu3(Z) < 1}.
We apply this proposition with Z = (X,Y") and

u(zr,22) = Y ($ik(21) = Gik(y1) (dy0(w2) — dj(y2))

k

which is is degenerate under Hy. The following Lemma, proven at the end of Section 8, gives evalua-
tions for A, B,C, D. evaluations

Lemma 7 There exists some positive constant ¢ such that
A<, B?<c2q, C*<ci??, D<.

For all z > 0 and all level j, we obtain

= 2/3 1/2
Py (IT(L2)| = 7) < C' exp {_C (quz/\ e n o n L ﬂ

93/2 " T9i/3 27/2 (19>

We end the proof remarking that ¢ = n A m has same order than N.
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8.7 Proof of Lemma 6 and Lemma 7
8.7.1 Preliminary results

First, recall the following results. Since the wavelet basis is orthonormal, the Parseval Equality

obviously holds:

vj >0, /hQ = ;(/¢jkh>2+i2(/mh>2- (20)

Jj=j k
Lemma 8 (Meyer) If 6 is a bounded 1-periodic function, and h € L*(R), then:

/R WO )t —; o /{0 ot /R h(t)dt

8.7.2 Evaluation of E =), , a} ;.

Let h and h' be either f or g. Using Cauchy-Schwarz Inequality, Parseval Inequality and Meyer

Lemma, we get

2
ouh) < IhIB.
ASeut) =
) . 9\ 1/2
%/¢jkl¢jk2h/¢jkl¢jk2h/ < <k12k:2 </¢jk1¢jk2h> /;kz (/ ¢jk1¢jk2h/> )
1/2
< 02 h? P h’2> < 27 [h]l2 |2
(2o ) <xmt
< 27|l W ]loe | 3 / Giks Bl < [1hlloo 17 l|oc-

];M/%kl%@h/quklh/(ﬁjbh’

We conclude

k:1]€2
E < 2|[hflo 1]

8.7.3 Evaluation of F =3, | (a,k,bk,bk, — b}, b},)

For any function p(.), let us denote By(z) = p(z)— Y. ([ ¢xp)¢ji(z) and Ba(p)? = [p* >, ([ ¢jkp)2.
Remark that [ B2 = B,(p)? and applying Lemma 1, | By(p)| < M2 7% as soon as p(.) € By, (M).
Let us denote h = f — g, s, = s§ A\ sg, b/ being either f or g. Remark that

F = Fy+F,—2F;,—F),
for
Fh’ = Z/¢jk1¢jk2hl/¢jk1hint(rbjkzh
kiko
Fro = 3 [ s [omg [ [ o
kiko
o\ 2
F, = <Z(/¢nh) ) )
k

I’ being either f or g. We get

(o)) (o))

/(h—Bh)Qh’ :/h%'wh, (21)

Fh/
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where

i = ’—Q/thhur/thh' < By(h) (IRH 2 + Ba(h)|[ W1 [0)
< 2795,
Moreover
Frg = /(%: </¢jklf> ¢>jk1> h/ (%: (/(bjkzg) ¢jk2> h
= [u-Bon[@-Byn=[n [gn+ry, (22)
where

7 £,

'/Bgfh /ngh—i-/Bth‘

(@Ifhll2 + Bo(Hllghllz + B2(f)Ba(g)1h]1Z, < 277"

IN

Combining (21), (22) with

Fp = |hllz + Ba(h),

/h2f+/h2 —2/hf/hg—(/h2> + 27 sn,

8.7.4 Evaluation of B? = ¢||Eu?(Z,.)||

we deduce

Under Hy, the densities f and g are equal; we denote h the common density. With the same argument
as previously, we get

BQ

all D Craks (B () = Gk, (1)) (B () = Dk, (1)) Il oo

kikeo
qmax e, k, | (2DB — 1)27 4¢]|3,
kikeo

IN

for

(1o =2 (/ iks iwah =2 (/ Wlh)Z)

Since there exists a constant ¢ depending on ||hl|2, ||¢||2 such that |ck, k| < ¢, we get B? < cq27.

8.7.5 Evaluation of C? = ¢>Fu?

By Lemma, 6, we have C? = ¢227.
8.7.6 Evaluation of D = gsup,,,,, Eu(Z1, Z>)u1(Z1)u(Z2)
Denote h the joint density of Z: h(z,y) = f(x)g(y).

Culug = EU(Zl, Zg)ul(Zl)Ug(Zg)

>0 (/qﬁjk(xz)uil (fray)h(way)dwdy> (/ ¢jk($l')uil($,y)h(x,y)d:pdy)

1=1,21'=1,2

IN
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where r1 = x and x3 = y. Moreover, for u being either u; or us, put

and remark that

IN

cr(k)

IA

and then

o
[y
—

™
~

&)
(AN

In the same way

k

where

cr(k) = ‘/qﬁjk(z)u(x,y)h(z,y)dxdy‘

1£lloe / W2, y)h(x, y)drdy.

A

S e®)? < gl / w2 (2, ) (e, y)dady,

es(8) = | [ dtodutia, e, s

Using Cauchy-Schwarz Inequalities and (23), (24), we deduce that

and we obtain the announced

8.8 Proof of Lemma

CU«1U«2 < (”f“oo + ||g||oo)2 Z EUIQ,
1=1,2

result.

5

We note first that Z; = 1+ t(Y;) where t(z) = 2775 (27 (z — z0))/f(z). We get

oo < 27%|[Wlloc/my,  Egt(Yr) =0, Efft(Yy)|* < myp*tamdEtD )R,

for k=1,2.... Then, for j large enough, ||t||oc < 1 and since

v

we obtain

Han
>

Similarly g, < m;l. For the

IA

2
Om

IA

IA

Similarly, o2, > m;l. At last,

lz] < 1, z — 22 <log(l + ) < z + 22,

mEylog(1+t(Y1)) > m (Est(Y1) — Ept*(Y1))
—j(2s4+1),—1 —1
—m2~1(s )mf >—m; .
variance
mEy (log(l + t(Yl))Z)
mBy (1)1 +1(11))%)

. _ 2
mm;1273(25+1) (1 + 2775m;1||1/)||00> < 2m}71.

the 3rd order moment is finite and since

Vo <1, |z] < [log(1 +2)| < |2| + 27,
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we have

0,2 Epnllog Z; — Ep plog Z;[*
i=1
4mo,” [ Epp|log(L+t(Y1)) [* + | Enplog(1+ (Y1) [* ]

IN

amo [ Bunt(V)P A+t (YD) + (Enalt(V1)] (1 +[t(YD))* ]

IN

. 3 . .
dmm (142777 o) (m7?2 9G4 27040

< Smmy|y|F2- e+

which converges to 0 and completes the proof of Lemma (5).
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