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Abstract

The classical CLT by Newman for strictly stationary associated real-valued random fields is generalized
to quasi-associated vector-valued fields comprising, in particular, positively or negatively associated fields
with finite second moments. We also establish a version of CLT with random matrix normalization for
the fields under consideration. This main result allows us to construct approximate confidence intervals
for the unknown mean vector.
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1. Introduction

The aim of this paper is to prove the CLT with random normalization for strictly
stationary random fields defined on a lattice Zd and taking values in Rk. The summation
regions for the multiindexed random vectors are finite sets Un ⊂ Zd growing in a certain
sense as n →∞. The dependence structure of the fields under consideration is described
in terms of quasi-association. This concept was introduced for real-valued random fields in
Bulinski and Suquet (2001). Related dependence concepts were proposed for real-valued
stochastic processes in Doukhan and Louhichi (1999) and for random fields in Doukhan
and Lang (2002).

Let X = {Xt, t ∈ T} be a family of real-valued random variables defined on a prob-
ability space (Ω,F , P ) and indexed by t in some set T . Recall that this family is called
associated or positively dependent (Esary et al. (1967)) if, for any finite sets I, J ⊂ T and
any coordinatewise nondecreasing functions f : R|I| → R, g : R|J | → R,

cov(f(Xs, s ∈ I), g(Xt, t ∈ J)) ≥ 0, (1)

whenever the covariance exists (here and in the sequel |I| denotes cardinality of a finite
set I). The notation f(Xs, s ∈ I) means that for I = {s1, . . . , sm} we consider any
f(xu1 , . . . , xum) where (u1, . . . , um) is an arbitrary permutation of (s1, . . . , sm).

There are various modifications of this definition. Under additional requirement I∩J =
∅ condition (1) defines weak association (Newman (1984)), or positive association and the
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counterpart of (1) with opposite inequality defines then negative association (Joag-Dev
and Proschan (1983)).

Note that any family of independent real-valued random variables is automatically
associated and negatively associated.

There are interesting stochastic models in mathematical statistics, reliability theory,
percolation theory and statistical mechanics described by families of positively or nega-
tively associated random variables, see, e.g., the references in Bulinski and Suquet (2001).

A collection of real-valued random variables X = {Xt, t ∈ T} with EX2
t < ∞ (t ∈ T ) is

called quasi-associated if for all finite disjoint subsets I, J ⊂ T and any bounded Lipschitz
functions f : R|I| → R, g : R|J | → R the following inequality holds

|cov(f(Xs, s ∈ I), g(Xt, t ∈ J))| ≤ Lip(f)Lip(g)
∑
s∈I

∑
t∈J

|cov(Xs, Xt)|. (2)

Here

Lip(f) = sup
x 6=y

|f(x)− f(y)|
‖x− y‖1

< ∞, (3)

‖x‖1 =
∑m

s=1 |xs| for x = (x1, . . . , xm) ∈ Rm. Since all norms in Rm are equivalent, the
choice of norm ‖ · ‖1 in (3) is for the sake of convenience only.

In Bulinski and Shabanovich (1998) it was shown that any positively or negatively
associated collections of random variables with finite second moment satisfy (2). Conse-
quently, such fields are quasi-associated.

An analogue of (2) for smooth functions f and g was proved by Birkel (1988) for
associated random variables (cf. Roussas (1994), Peligrad and Shao (1995), Bulinski
(1996)).

Let now X = {Xt, t ∈ T} be a random field with values in Rk. The generalizations of
the abovementioned concepts to vector valued families of random variables are considered,
e.g., in Burton et al.(1986), Bulinski (2000), Bulinski and Shahkin (2003). The following
definition was given in Bulinski (2000). A random field X with values in Rk is called
quasi-associated if for any disjoint sets I, J ⊂ Zd and all bounded Lipschitz functions
f : Rk|I| → R, g : Rk|J | → R one has

|cov(f(Xs, s ∈ I), g(Xt, t ∈ J))| ≤ Lip(f)Lip(g)
∑
s∈I

∑
t∈J

k∑
r,q=1

|cov(Xs,r, Xt,q)| (4)

where Xs,r denotes the r-th component of a vector Xs.
Recently it was proved in Shashkin (2002) that any Gaussian random field X = {Xt, t ∈

T} with values in Rk is quasi-associated. A real-valued Gaussian random field is associated
if and only if its covariance function is nonegative (Pitt(1982)) and negatively associated
if and only if cov(Xs, Xt) ≤ 0 for all s 6= t (Joag-Dev and Proschan (1983)). Thus the
resul by Shashkin shows that the concept of quasi-association is strictly wider than that
of positive or negative association for random fields with finite second moments.

To conclude the discussion of dependence conditions note that there are various possi-
bilites to give estimates of the left-hand side of (4) for certain classes of ”test functions”
f and g (see, e.g., Doukhan and Lang (2002), Bulinski and Shashkin (2003)).
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In section 2 we establish a generalization of the classical CLT by Newman (1980) to the
vector-valued strictly stationary quasi-associated random fields. In section 3 a statistical
variant of the CLT is obtained. Namely, the self-normalized partial sums are studied.

2. CLT for quasi-associated strictly stationary vector-valued
random fields

In this section we prove the CLT for partial sums

S(Un) =
∑
j∈Un

Xj, n ∈ N,

of multi-indexed quasi-associated random vectors Xj using non-random normalizaton.
The summation is carried over finite sets Un ⊂ Zd growing in a sense.

For a ∈ Rd
+, V ⊂ Rd and j ∈ Zd put

Λ0(a) = {x = (x1, . . . , xd) : 0 < xp ≤ ap, p = 1, . . . , d}, (5)

Λj(a) = Λ0(a) + (j1a1, . . . , jdad), (6)

J+
a (V ) = {j : Λj(a) ∩ V 6= ∅}, N+

a (V ) = |J+
a (V )|, (7)

J−a (V ) = {j : Λj(a) ⊂ V }, N−
a (V ) = |J−a (V )|. (8)

One says that Vn →∞ in the Van Hove sense as n →∞ if for every a ∈ Rd
+

N−
a (Vn) →∞ and

N−
a (Vn)

N+
a (Vn)

→ 1 as n →∞. (9)

If Vn are bounded measurable subsets of Rd then (see Ruelle (1964), ch.2, §2.1) Vn →∞
in the Van Hove sense whenever for any ε > 0 one has

µ((∂Vn)ε)/µ(Vn) → 0 as n →∞, (10)

here Gε denotes the ε-neighbourhood (in the Euclidean metric) of a set G ⊂ Rd and µ is
the Lebesgue measure in Rd.

There is a natural discrete analogue of this concept of ”regular growth” for sets Un ⊂ Zd

(see, e.g., Bolthausen (1982)). For U ⊂ Zd let

∂U = {s ∈ U : inf
t∈Zd\U

‖s− t‖ = 1}

where ‖x‖ = max1≤p≤d |xp| for x = (x1, . . . , xd) ∈ Rd.
One says that a sequence {Un}n∈N of finite subsets of Zd tends to infinity in a regular

manner (cf. (10)) if
|∂Un|/|Un| → 0 as n →∞. (11)

The following result is an extension of Theorem 1 by Bulinski and Vronski (1996) which
generalized the classical CLT by Newman (1980).
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Theorem 1 Let X = {Xj, j ∈ Zd} be a strictly stationary quasi-associated random field
with values in Rk. Assume that for all r, q = 1, . . . , k one has

σr,q =
∑

j∈Zd

|cov(X0,r, Xj,q)| < ∞. (12)

Then for all finite sets Un ⊂ Zd satisfying condition (11) the following relation holds

|Un|−1/2(S(Un)− |Un|EX0)
D→ N(0, C) as n →∞. (13)

Here C is the matrix with elements

cr,q =
∑

j∈Zd

cov(X0,r, Xj,q), r, q = 1, . . . , k, (14)

and ”
D→” means the weak convergence for distributions of random vectors in Rk.

Proof is based on known methods (see Newman (1980), Burton et al.(1986), Bulinski
and Vronski (1996)). We begin with preliminary steps.

Lemma 1 Let X = {Xj, j ∈ Zd} be a wide sense stationary random field with values
in Rk such that condition (12) is satisfied. Let {Un}n∈N be a sequence of regular growing
finite subsets of Zd (see (11)). Then

|Un|−1 var S(Un) → C as n →∞ (15)

where var S(Un) is a covariance matrix of S(Un) and C is a martix defined in (14). The
relation (15) means the convergence of all elements of the matrix |Un|−1 var Sn to the
corresponding elements of C as n →∞.

For a strictly stationary real-valued random field X (i.e. k = 1) this statement was
established by Bolthausen (1982). The proof in the multidimensional case is straightfor-
ward.

The next lemma is an extension of the inequality by Burton et al.(1986).

Lemma 2 Let Y1, . . . , Yp (p ≥ 2) be quasi-associated random vectors with values in Rk.
Then for any λ ∈ Rk one has

∣∣∣∣∣E exp{i
p∑

m=1

(λ, Ym)} −
p∏

m=1

E exp{i(λ, Ym)}
∣∣∣∣∣ ≤

√
2‖λ‖2

p∑

m,s=1,m6=s

k∑
r,q=1

|cov(Ym,r, Ys,q)|

(16)
where (·, ·) denotes the inner product in Rk and i =

√−1.

Proof. For any λ ∈ Rk and 1 ≤ v ≤ p− 1 (v ∈ N) the following identity holds

∆v,p = E exp
{

i

p∑
u=v

(λ, Yu)
}
− E exp{i(λ, Yv)}E exp

{ p∑
u=v+1

(λ, Yu)
}
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= cov

(
cos(λ, Yv), cos

( p∑
u=v+1

(λ, Yu))
))

cov

(
sin(λ, Yv), sin

( p∑
u=v+1

(λ, Yu)
))

+i

[
cov

(
cos(λ, Yv), sin

( p∑
u=v+1

(λ, Yu)
))

+ cov
(
sin(λ, Yv), cos

( p∑
u=v+1

(λ, Yu)
))]

.

Note that f(x1, . . . , xk) = cos(
∑k

r=1 λrxr) and

g(y1,1, . . . , y1,k, . . . , yp−v,1, . . . , yp−v,k) = cos
( k∑

r=1

λr

p−v∑
q=1

yq,r

)

for each fixed λ ∈ Rk are the Lipschitz functions such that Lip(f) ≤ ‖λ‖ and Lip(g) ≤
‖λ‖. Using the analogous inequalities for sine-functions and the trivial estimate |a+ ib| ≤√

2 max{|a|, |b|} for any a, b ∈ R we see that the quasi-association of Y1, . . . , Yp implies
the inequality

|∆v,p| ≤ 2
√

2‖λ‖2

p∑
u=v+1

k∑
r,t=1

|cov(Yv,r, Yu,t)|.

The left-hand side of (16) can be estimated by
∑p−1

v=1 |∆v,p|. This completes the proof of
the lemma.

Now we turn to the proof of Theorem 1. For a = (a1, . . . , ad) ∈ Rd
+, U ⊂ Zd and j ∈ Zd

set Λ̃0(a) = Λ0(a)∩Zd, Λ̃j(a) = Λj(a)∩Zd where Λ0(a) and Λj(a) were introduced in (5)

and (6). Then for U ⊂ Zd in a similar way as for V ⊂ Rd (i.e. using Λ̃0(a) and Λ̃j(a)
instead of Λ0(a) and Λj(a) in (7),(8)) define J+

a (U) and J−a (U).
For any fixed a ∈ Rd

+ consider a set Mn = J−a (Un) and

U (1)
n =

⋃
j∈Mn

Λj(a), U (0)
n = Un \ U (1)

n (n ∈ N). (17)

Let ‖ · ‖0 be the Euclidean norm in Rk. Using the estimate

E

∥∥∥∥
∑

j∈U
(0)
n

(Xj − EXj)

∥∥∥∥
2

0

≤ |U (0)
n |

k∑
r=1

σr,r (18)

and relations
|U (0)

n |/|Un| → 0 and |U (1)
n |/|Un| → 1 as n →∞ (19)

it is easy to see that for establishing (13) it is sufficient to prove that

|U (1)
n |−1/2(S(U (1)

n )− |U (1)
n |EX0)

D→ N(0, C(a)) as n →∞ (20)

where C(a) → C as a →∞ (i.e. ar →∞ for every r = 1, . . . , k).
Introduce the random fields {Yj(a), j ∈ Mn}, n ∈ N where

Yj(a) = |Λ̃j(a)|−1/2(S(Λ̃j(a))− |Λ̃j(a)|EX0). (21)
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Then
|U (1)

n |−1/2(S(U (1)
n )− |U (1)

n |EX0) = |Mn|−1/2
∑

j∈Mn

Yj(a). (22)

For any j ∈ Zd due to Lemma 1 one has

var Yj(a) =
var S(Λ̃0(a))

|Λ̃0(a)|
= C(a) → C as a →∞. (23)

Clearly, {|Mn|−1/2Yj(a), j ∈ Mn} for every n ∈ N and a ∈ Rk
+ is a collection of

quasi-associated random vectors. Consequently, Lemma 1 and (23) permit us to reduce
the proof of (20) to the CLT for arrys of independent centered random vectors with
covariance matrix C(a) whenever for each a ∈ Rk

+

∆(n, a) =
1

|Mn|
∑

s,t∈Mn,s 6=t

k∑
r,q=1

|cov(Ys,r(a), Yt,q(a))| → 0 as n →∞.

For ε ∈ (0, 1/2) consider the sets

Λε
0(a) = {s ∈ Zd : εar < sr ≤ (1− ε)ar, r = 1, . . . , k}.

Let Sr(U) denote the r − th component of a vector S(U), U ⊂ Zd. Then for all n ∈ N
and a ∈ Rd

+

∆(n, a) ≤ |Λ0(a)|−1
∑

j 6=0

k∑
r,q=1

|cov(Sr(Λ0(a)), Sq(Λj(a)))|

≤
∑

‖j‖>εa0

k∑
r,q=1

|cov(X0,r, Xj,q)|+
(

1− |Λε
0(a)|

|Λ0(a)|
) k∑

r,q=1

σr,q (24)

where a0 = minr=1,...,k |ar|. Taking ε small enough and after that taking a ∈ Rd
+ large

enough (i.e. all components of a are large enough) due to condition (12) we obtain from
(24) the desired result. The proof of Theorem 1 is complete.

Remark 1. We gave a detailed prof of Theorem 1 to clarify the role of quasi-association
condition. Moreover, we see that to prove CLT for strictly stationary vector-valued ran-
dom fields, it is sufficient to use the estimates for covariances only of cosine and sine
type functions of appropriately normalized sums of the initial random vectors taken over
certain cubes.

Remark 2. In the same manner as in Newman (1980) we can use the renorm group
approach to construct random fields of the type (21) for all j ∈ Zd. The reasoning used
to prove Theorem 1 shows that finite-dimensional distributions of these fields weakly
converge to the ones defined by a Gaussian mean zero vector field with independent
values.
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3. Self-normalization in the CLT

To construct approximate confidence domains for unknown mean vector of a strictly
stationary quasi-associated random field with values in Rk we need consistent estimates
of the covariance matrix C appearing in (13). If C is nondegenerate then (13) implies the
following relation

(C|Un|)−1/2(S(Un)− |Un|EX0)
D→ N(0, I) (25)

where I is a unit matrix of order k. Thus if we have a sequence of consistent estimates

Ĉ(Un) = (ĉr,q(Un))k
r,q=1 of the matrix C = (cr,q)

k
r,q=1, that is for all r, q = 1, . . . , k

ĉr,q(Un)
P→ cr,q as n →∞, (26)

then due to (25) and (26) we come to the formula

(Ĉ(Un)|Un|)−1/2(S(Un)− |Un|EX0)
D→ N(0, I). (27)

Here Ĉ(Un) = Ĉ(Xj, j ∈ Un), n ∈ N, and ”
P→ ” means the convergence in probability.

In other words a random normalization is used in the CLT. In this regard one can
recall the well-known procedure of studentization for independent summands. For strictly
stationary sequences (d = 1) posessing either mixing or association properties

and Un = {1, . . . , n}, n ∈ N, two estimates of the variances of partial sums were
proposed in Peligrad and Shao (1994) to guarantee the CLT with random normalization.
More general families of estimates for variances of partial sums were introduced in Bulinski
and Vronski (1996). In the last paper the associated real-valued random fields were
studied.

For j ∈ U ⊂ Zd (1 ≤ |U | < ∞), b = b(U) > 0 and r, q = 1, . . . , k set

Kj(b) = {T ∈ Zd : ‖s− t‖ ≤ b}, Qj = Qj(U, b) = U ∩Kj(b), (28)

ĉr,q(U) =
1

|U |
∑
j∈U

|Qj|
(

Sr(Qj)

|Qj| − Sr(U)

|U |
)(

Sq(Qj)

|Qj| − Sq(U)

|U |
)

. (29)

Note that for dependent summands instead of the traditional estimates of a covari-
ance matrix used for independent observations the averaged variables Sr(Qj)/|Qj| have
appeared.

Theorem 2 Let the conditions of Theorem 1 be satisfied. Let Un be a sequence of regular
growing finite sets Un ⊂ Zd (i.e. satisfying (11)). Assume that {bn}n∈N is a sequence of
positive numbers such that

bn →∞ as n →∞, lim sup
n∈N

b2d
n

|Un| < ∞. (30)

Then relation (26) holds. Moreover, if C is nondegenerate then (27) takes place.

Proof. The estimates (ĉr,q(U))k
r,q=1 introduced by means of (29) are invariant under

transformation Xj 7→ Xj − EX0 (j ∈ U). So, without loss of generality we can further
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on assume that EX0 = 0 ∈ Rk. Let ‖ξ‖L stand for the norm of a real-valued random
variable ξ ∈ L(Ω,F , P ). For any fixed r, q = 1, . . . , k one has

‖ĉr,q(Un)− cr,q‖L ≤ I1(Un) + I2(Un) + I3(Un)

where

I1(Un) =
1

|Un|

∥∥∥∥∥
∑
j∈Un

|Qj|
((

Sr(Qj)

|Qj| − Sr(Un)

|Un|
)(

Sq(Qj)

|Qj| − Sq(Un)

|Un|
)
− Sr(Qj)

|Qj|
Sq(Qj)

|Qj|
)∥∥∥∥∥

L

,

I2(Un) =
1

|Un|

∥∥∥∥∥
∑
j∈Un

1

|Qj| (Sr(Qj)Sq(Qj)− ESr(Qj)Sq(Qj))

∥∥∥∥∥
L

,

I3(Un) =

∣∣∣∣∣
1

|Un|
∑
j∈Un

1

|Qj|ESr(Qj)Sq(Qj)− cr,q

∣∣∣∣∣ .

Condition (12) yields

I1(Un) ≤ |Un|−3E|Sr(Un)Sq(Un)
∑
j∈Un

|Qj|

+ |Un|−2
∑
j∈Un

(E|Sr(Qj)Sq(Un) + E|Sr(Un)Sq(Qj)|)

≤ (σr,rσq,q)
1/2(|K0(bn)||Un|−1 + 2|K0(bn)|1/2|Un|−1/2) → 0 as n →∞. (31)

For c > 0 introduce the functions

h1(x) = sign(x) min{|x|, c}, h2(x) = x− h1(x), x ∈ R. (32)

For a nonempty finite set Q ⊂ Zd let

Sr(Q) =
Sr(Q)√
|Q| , r = 1, . . . , k.

Note that

I2(Un) ≤
2∑

p,m=1

I
(p,m)
2 (Un) (33)

where

I
(p,m)
2 (Un) =

1

|Un|
∥∥∥

∑
j∈Un

hp(Sr(Qj))hm(Sq(Qj))− Ehp(Sr(Qj))hm(Sq(Qj))
∥∥∥

L
.

For b, n ∈ N introduce the sets

T (b)
n = {s ∈ Un : inf

t∈∂Un

‖s− t‖ ≤ b}.
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Put Tn = T
(2bn)
n where bn meet condition (30). Then

I
(1,2)
2 (Un) + I

(2,1)
2 (Un) + I

(2,2)
2 (Un)

≤ 2|Un|−1
∑
j∈Un

(
E|h1(Sr(Qj))h2(Sq(Qj))|

+E|h2(Sr(Qj))h1(Sq(Qj))|+ E|h2(Sr(Qj))h2(Sq(Qj))|
)

≤ 2

(
E|h1(Sr(K0(bn)))h2(Sq(K0(bn)))|

+E|h2(Sr(K0(bn)))|h1(Sq(K0(bn)))|)|+ E|h2(Sr(K0(bn)))h2(Sq(K0(bn)))|

+ 3|Tn||Un|−1(σr,rσq,q)
1/2

)

≤ 4
(
σr,rE

(
Sq(K0(bn)))21

{|Sq(K0(bn))| ≥ c
}))1/2

+ 4
(
σq,qE

(
Sr(K0(bn))21

{|Sr(K0(bn))| ≥ c
}))1/2

+ 6|Tn||Un|−1(σr,rσq,q)
1/2

where 1 is an indicator function.
It is easy to see that for every r = 1, . . . , k a family {S2

r(K0(bn))}∞n=1 is uniformly
integrable. Consequently for any ε > 0 we can find c = c(ε) such that for all n large
enough

I
(1,2)
2 (Un) + I

(2,1)
2 (Un) + I

(2,2)
2 (Un) < ε. (34)

Note that

(I
(1,1)
2 (Un))2 ≤ |Un|−2

∑
j,t∈Un

|cov
(

h1(Sr(Qj))h1(Sq(Qj)), h1(Sr(Qt))h1(Sq(Qt))

)
|.

Using (32) we get

|Un|−2
∑

j,t∈Un,‖j−t‖≤2bn

∣∣∣∣cov
(

h1(Sr(Qj))h1(Sq(Qj)), h1(Sr(Qt))h1(Sq(Qt))

)∣∣∣∣

≤ 2c2|Un|−2
∑

j,t∈Un,‖j−t‖≤2bn

E|h1(Sr(Qj))h1(Sq(Qj))|

≤ 2c2|Un|−1|K0(bn)|(σr,rσq,q)
1/2. (35)

Now the quasi-association property implies that

|Un|−2
∑

j,t∈Un,‖j−t‖>2bn

∣∣cov (
h1(Sr(Qj))h1(Sq(Qj)), h1(Sr(Qt))h1(Sq(Qt))

)∣∣

9



≤ c2|Un|−2
∑

j,t∈Un,‖j−t‖>2bn

1√|Qj||Qt|
∑

u∈Qj ,v∈Qt

(|cov(Xu,r, Xv,q)|+ |cov(Xu,q, Xv,r)|

+|cov(Xu,r, Xv,r)|+ |cov(Xu,q, Xv,q)|). (36)

Furthermore, we have

∑

j,t∈Un,‖j−t‖>2bn

1√|Qj||Qt|
∑

u∈Qj ,v∈Qt

|cov(Xu,r, Xv,q)|

≤
∑

u,v∈Un

|cov(Xu,r, Xv,q)|
∑

j∈Un,Qj3u

1√|Qj|
∑

t∈Un,Qt3v

1√
|Qt|

≤ 1

2

∑
u,v∈Un

|cov(Xu,r, Xv,q)|
[( ∑

j∈Un,Qj3u

1√|Qj|
)2

+
( ∑

t∈Un,Qt3v

1√
|Qt|

)2]

≤ |K0(Un)||Un|σr,q + |K0(Un)|2|Tn|σr,q.

Estimating in a similar way all sums appearing in the right hand side of (36) and using
(35) we se that

(I
(1,1)
2 (Un))2 ≤ c2[2|Un|−1|K0(bn)|(σr,rσq,q)

1/2

+ |K0(bn)||Un|−1(σr,q + σq,rσr,r + σq,q) + |K0(bn)|2|Tn||Un|−1]. (37)

Taking into account (33), (34) and (37) we get that

I2(Un) → 0 as n →∞. (38)

Now observe that

|Un|−1
∑
j∈Un

|Qj|−1ESr(Qj)Sq(Qj) = |Un|−1|Un \ Tn||K0(bn)|ESr(K0(bn))Sq(K0(bn))

+|Un|−1
∑
j∈Tn

|QJ |−1ESr(Qj)Sq(Qj).

In view of (13) the following relation is valid

|K0(bn)|−1ESr(K0(bn))Sq(K0(bn)) → cr,q as n →∞.

Condition (31) implies that

|Tn||Un|−1 → 0 as n →∞.

Using the trivial bound

|Qj|−1E|Sr(Qj)Sq(Qj)| ≤ (σr,rσq,q)
1/2, j ∈ Zd,

we conclude that
I3(Un) → 0 as n →∞. (39)

Relations (31), (38) and (39) yield (26). The proof of Theorem 2 is complete.

This work is partially supported by RFBR grant 01-03-00724.
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