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1. Introduction

The aim of this paper is to establish convergence rates in the CLT for sums
of dependent multiindexed random vectors with values in Rs. We develop an
approach to description of the dependence structure proposed by Doukhan
and Louhichi (1999) for stochastic processes and by Bulinski and Suquet
(2001) for random fields.

Let X = {Xt, t ∈ T} be a random field defined on a probability space
(Ω,F , P) such that Xt takes values in a metric space (M,κ) for each t ∈ T .
The key idea is to measure, for finite disjoint sets I, J ⊂ T (with cardinalities
|I|, |J |), the dependence between collections of random variables XI = (Xt, t ∈
I) and XJ = (Xt, t ∈ J) in terms of a functional

F (f, g; I, J) = |cov(f(XI), g(XJ))| (1)

where f : MI → R, g : MJ → R belong to specified classes of ”test functions”
(whenever the covariance exists). Some restrictions can be imposed on I and
J as well, for instance, |I| = 1.

We use here classes of bounded Lipschitz functions f, g. Recall that G :
K → L (where (K, τ) and (L, ν) are some metric spaces) is a Lipschitz function
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if

Lip(G) = sup
x6=y

ν(G(x), G(y))

τ(x, y)
< ∞. (2)

When K = MI we take τ(x, y) =
∑

t∈I κ(xt, yt) for x = (xt, t ∈ I), y = (yt, t ∈
I) in formula (2). Let BL(K) denote the class of bounded Lipschitz functions
G : K → R (in R we use the Euclidean distance).

Often it is natural to suppose, when T is endowed with a metric ρ, that
the dependence between XI and XJ is ”rather small” if the distance ρ(I, J) =
inf{ρ(t, v) : t ∈ I, v ∈ J} is ”large enough”. At the same time the dependence
can increase if the distance ρ(I, J) is fixed but I and J are growing in a sense.

To give an exact formulation consider T = Zd and introduce a set Θ
consisting of functions θ(I, J) depending on finite disjoint sets I, J ⊂ Zd such
that

θ(τnI, τmJ) → 0 as |n−m| → ∞ (n,m ∈ Zd) (3)

where τnI = {t + n : t ∈ I} is a shift of I, |n| = maxi=1,...,d |ni|.
For example, θ ∈ Θ if

θ(I, J) ≤ a(|I|, |J |)u(ρ(I, J)) (4)

where a function a ≥ 0 is nondecreasing in each variable and u(r) ↘ 0 as
r →∞.

Definition 1 (Bulinski and Suquet (2001)). A random field X = {Xj, j ∈
Zd} with values in a metric space (M,κ) is called (BL, θ)-dependent if there
is a function θ ∈ Θ such that

F (f, g; I, J) ≤ Lip(f)Lip(g)θ(I, J) (5)

for all finite disjoint sets I, J ⊂ Zd and any f ∈ BL(MI), g ∈ BL(MJ).

The appearance of Lipschitz constants in the right-hand side of (5) is clear
since covariance is a bilinear function and Lip(cf) = |c|Lip(f) for every c ∈ R.

The motivation for the concept of (BL, θ)-dependence is the following.
There are a number of interesting models described by means of families of
random variables possessing properties of positive or negative association or
their modifications. For definitions and examples we refer to the pioneering
papers by Harris (1960), Lehmann (1966), Esary et al. (1967), Fortuin et al.
(1971), Joag-Dev and Proschan (1983); see also, e.g., Pitt (1982), Newman
(1984), Lindqvist (1988), Evans (1990), Lee et al. (1990), Rachev and Xin
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(1996), Ebrahimi (2002). Due to Bulinski and Shabanovich (1998) for a pos-
itively or negatively associated real-valued random field X = {Xj, j ∈ Zd}
having finite second moments the inequality (5) holds with

θ(I, J) =
∑

i∈I

∑

j∈J

|cov(Xi, Xj)|. (6)

So, for this function θ the bound (4) is valid with a(|I|, |J |) = min{|I|, |J |}
and with an analogue of the Cox–Grimmett coefficient

u(r) = sup
j∈Zd

∑

q:|q−j|≥r

|cov(Xj, Xq)|, r ≥ 1.

Thus, θ appearing in (6) satisfies (3) if u(1) < ∞ and u(r) → 0 as r →∞.
In other words Definition 1 provides a unified approach to studying both

families of positively or negatively dependent random variables.
A variant of inequality (5) for smooth functions f and g in associated

real-valued random variables was firstly established by Birkel (1988) (related
results were proved by Newman (1984), Roussas (1994), Peligrad and Shao
(1995), Bulinski (1996)). Some modifications of association for vector-valued
processes and random fields leading to (5) were used by Burton et al. (1986),
Bulinski (2000), Shashkin (2002).

Note that the choice of indicator functions f and g as the ”test-functions”
in (1) would lead to the Rosenblatt-type mixing coefficient (see, e.g., Doukhan
(1994) and the references therein showing that the calculation or estimation
of mixing coefficients is in general a difficult problem whereas using of a co-
variance function is much more simple). The choice of certain power-type
functions f and g in (1) was applied by Bakhtin and Bulinski (1997) to get
bounds for absolute moments of partial sums of multiindexed dependent ran-
dom variables. Linear functions f and g and a correlation coefficient instead
of covariance in (1) was recently used by Bradley (2002) to study the bound-
edness properties for spectral density of weakly stationary random field. The
choice of ”complex exponential” functions is discussed by Jakubowski (1993),
Doukhan and Louhichi (1999).

Remark 1. Following Doukhan and Louhichi (1999) we can define the
dependence conditions for a field X = {Xt, t ∈ T} by means of specified ”test
functions” f and g and inequalities

F (f, g; I, J) ≤ c(f, g; |I|, |J |)v(ρ(I, J))

3



where I and J are finite disjoint subsets of T , c is a nonnegative function
(nondecreasing in |I| and |J |) and v(r) → 0 as r →∞.

Remark 2. In many problems we need not consider the whole random
field X on Zd but only ”a part” XU = (Xj, j ∈ U), U ⊂ Zd, |U | < ∞. Then
it is sufficient to use I, J ⊂ U , I ∩ J = ∅ in (5). Moreover, we can introduce

θ1 = θ1(XU) = sup F (f, g; {j}, U \ {j}) (7)

where the supremum is taken over all j ∈ U and all f ∈ BL(M), g ∈
BL(MU\{j}) with Lip(f) ≤ 1, Lip(g) ≤ 1. Note that in (7) a set U need
not be a subset of Zd, that is we can use any finite collection of random
variables Xt, t ∈ U , with values in some metric space (M,κ).

Further on let T = Zd and M = Rs, that is we study a random field
X = {Xj, j ∈ Zd} with values in Rs. As usual EY and V ar(Y ) denote
respectively the mean and covariance matrix of a random vector Y defined
on a probability space (Ω,F , P).

Let U be a finite subset of Zd. Assume that

EXj = 0 ∈ Rs, E‖Xj‖2 < ∞ for all j ∈ U, (8)

where ‖ · ‖ is the Euclidean norm in Rs. We shall use ‖z‖1 =
∑k

i=1 |zi| for
z ∈ Rk as well. Note that |z| ≤ ‖z‖ ≤ ‖z‖1 for all z ∈ Rk. These norms
coinside if k = 1. Moreover, all norms are equivalent in our finitedimensional
case.

Set
S =

∑

j∈U

Xj, V 2 =
∑

j∈U

V ar(Xj).

Suppose det V 2 > 0 and define

Yj = V −1Xj, W = (W1, . . . , Ws) =
∑

j∈U

Yj, R = ‖V −1‖2
1|U |θ1 (9)

where V −1 is the inverse matrix to the square root of V 2, ‖A‖1 is the matrix
norm corresponding to the vector norm ‖z‖1.

Evidently, V 2, W , R are functions of Xj, j ∈ U , and we use also notation
V 2(XU), W (XU), R(XU).

Consider a function h : Rs → R such that for some positive constants
M0,M1,M2 and for all x, x′ ∈ Rs, k = 1, . . . , s, one has

|h(x)| ≤ M0,

∣∣∣∣
∂h(x)

∂xk

∣∣∣∣ ≤ M1,

∣∣∣∣
∂h(x)

∂xk
− ∂h(x′)

∂xk

∣∣∣∣ ≤ M2 ‖x− x′‖. (10)
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Using the Stein method (see Stein (1972, 1986)) we provide, for a (BL, θ)-
dependent random field X = {Xj, j ∈ Zd} with values in Rs, upper estimates
of a functional

∆(h,XU) = |Eh(W )− Eh(Z)| (11)

where h is a function satisfying conditions (10), Z is a standard normal vector
in Rs and U is a finite subset of Zd.

It is worth remarking that there are various generalizations of the Stein
method. We refer to Chen (1975), Tikhomirov (1980, 1983), Barbour (1990),
Götze(1991). The approach based on diffusion approximation for positively
or negatively dependent random field was used in Bulinski and Shabanovich
(1998). Interesting applications of the Stein techniques (with semigroup ap-
proach) in the framework of statistical models are discussed in Baddeley
(2000).

Our main result (Theorem 1) gives an estimate for ∆(h,XU) in terms of
the Lindeberg function

Lε = Lε(XU) =
∑

j∈U

E‖Yj‖21{‖Yj‖ > ε}, ε > 0, (12)

of the function R appearing in (9); here random vectors Yj are defined in (9)
and 1{·} is an indicator function.

If, moreover, for some δ ∈ (0, 1]

E‖Xj‖2+δ < ∞, j ∈ U, (13)

then Theorem 2 gives an estimate of ∆(h,XU) in terms of the Lyapunov
fraction instead of Lε.

Using the smoothing techniques we establish (Theorem 3) the upper bound
for

∆(B,XU) = |P(W ∈ B)− P(Z ∈ B)| (14)

where B is an arbitrary convex set in Rs.
It is also shown that the Bernstein block techniques is useful in combination

with the above mentioned theorems (see Theorem 4).
An application to kernel estimates of unknown density of a vector-valued

stationary random field is provided as well. Theorem 5 extends some results
obtained by Bosq et al. (1999), Roussas (2000, 2001), Veretennikov (2000),
Bulinski and Millionshchikov (2002).
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2. Results and proofs

Here we keep the notation used in the Introduction.

Theorem 1. Let X = {Xj, j ∈ Zd} be a random field with values in Rs

satisfying condition (8) where U is a finite subset of Zd. Assume that for a
function h condition (10) holds. Then for every ε > 0

∆(h,XU) ≤ s(D1 + ε(s + 1)D2)R + 2εc(s)D2

+(2ε−1D0 + (6s + 1)D1 + (ε/2)s(s + 1)D2)Lε

(15)

where c(s) =
∑s

k=1 k3/2 ≤ s5/2,

D0 =
√

2πM0, D1 = max{4M0,
√

2πM1},
D2 =

√
2 max{

√
2πM0 + 2M1, 4

√
sM1,

√
2πM2}

(16)

and the constants M0,M1,M2 appear in (10).

Proof. For i = 1, . . . , s (s ≥ 1) and xi, . . . , xs ∈ R introduce functions

Hi(xi, . . . , xs) = E(h(Z1, . . . , Zi−1, xi, . . . , xs)− h(Z1, . . . , Zi, xi+1, . . . xs)),
(17)

here Z = (Z1, . . . , Zs) is a standard normal vector in Rs (as usual if s = 1 one
has H1(x1) = E(h(x1)−h(Z1)), if s ≥ 2 then H1(x1, . . . , xs) = E(h(x1, . . . , xs)−
h(Z1, x2, . . . , xs)) and Hs(xs) = E(h(Z1, . . . , Zs−1, xs)− h(Z1, . . . , Zs)) ).

For i = 1, . . . , s consider a differential equation

∂fi

∂xi
− xifi = Hi (18)

where functions Hi are defined in (17).
Below we employ the solution of this equation given by the formula

fi = fi(xi, . . . , xs) = ex2
i /2

xi∫

−∞
Hi(u, xi+1, . . . , xs)e

−u2/2du

(for i = s one has fs = fs(xs) = ex2
s/2

∫ xs

−∞Hs(u)e−u2/2du).

Lemma 1. For all x = (xi, . . . , xs), x
′ = (x′i, . . . , x

′
s) ∈ Rs−i+1 and any

i = 1, . . . , s, k = i, . . . , s the following inequalities are valid

|fi(x)| ≤ D0, |∂fi(x)/∂xk| ≤ D1, (19)
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|∂fi(x)/∂xk − ∂fi(x
′)/∂xk| ≤ D2 ‖x− x′‖ (20)

where D0, D1, D2 are indicated in (16).

Proof. Note that Eh(Z1, . . . , Zi, xi+1, . . . , xs) for a Borel function h : Rs →
R is given by the expression

(2π)−i/2
∫

Ri

e−
u2
1+...+u2

i
2 h(u1, . . . , ui, xi+1, . . . , xs)du1 . . . dui

and, for h having bounded partial derivatives in xi+1, ..., xs,

∂

∂xk
Eh(Z1, . . . , Zi, xi+1, . . . , xs) = E

∂

∂xk
h(Z1, . . . , Zi, xi+1, . . . , xs)

for every k = i + 1, . . . , s. A simple calculation shows that, if K : R→ R is a
bounded Borel function, |K(x)| ≤ K0, x ∈ R, and

∫
RK(u)e−u2/2du = 0, then

for all x ∈ R

ex2/2

∣∣∣∣∣∣

x∫

−∞
K(u)e−u2/2du

∣∣∣∣∣∣
≤ K0

√
π/2, |x|ex2/2

∣∣∣∣∣∣

x∫

−∞
K(u)e−u2/2du

∣∣∣∣∣∣
≤ K0. (21)

Thus to establish (19) we use the upper bounds for the absolute values of func-
tions appearing under the signs of integrals in representations for fi(xi, . . . , xs)
and ∂fi(xi, . . . , xs)/∂xk.

To obtain (20) consider separately the cases k > i and k = i. Moreover,
each time we have to consider whether xi = x′i or xk = x′k, k = i + 1, . . . , s.
As for the case of xk = x′k, k = i + 1, . . . , s, let us note the existence of the
second partial derivatives ∂2fi/∂xi∂xk, k = i, ..., s. Clearly from the equation
(18) we have

∂2fi/∂xi∂xk = ∂Hi/∂xk + xi∂fi/∂xk, k = i + 1, . . . , s;

∂2fi/∂x2
i = ∂Hi/∂xi + (1 + x2

i )fi + xiHi.

The estimate for the second partial derivative in xi and xk, k > i, follows now
from (21). To estimate ∂2fi/∂x2

i it suffices to integrate by parts in the integral
representation for x2

i fi. In the case xi = x′i we use again the representations
for fi and ∂fi/∂xk, k = i, . . . , s. The Lemma is proved.

Continuing the proof of Theorem 1, observe that (17) and (18) imply

s∑
i=1

E

(
∂

∂xi
−Wi

)
fi(Wi, . . . , Ws) = Eh(W )− Eh(Z) (22)

7



where the vector W is defined in (9).
For each fixed i ∈ {1, . . . , s} we estimate the summand

E

(
∂

∂xi
−Wi

)
fi(Wi, . . . , Ws)

in the left-hand side of (22). Analogously to Bulinski and Suquet (2001)
introduce for a given ε > 0 auxiliary random vectors

Tj = (Tj1, . . . , Tjs) = (b(Yj1), . . . , b(Yjs)), Vj = (Vj1, . . . , Vjs) = Yj − Tj

where b(y) = sign(y) min{|y|, ε}, y ∈ R. For the sake of brevity we write
W = (Wi, . . . , Ws) and Tj = (Tji, . . . , Tjs). Set

W(j) = W− (Yji, . . . , Yjs), j ∈ U.

It can be seen that

EWifi(W) =
4∑

q=1

Riq

where
Ri1 =

∑

j∈U

EYjifi(W(j)),

Ri2 =
∑

j∈U

EVji(fi(W)− fi(W(j))),

Ri3 =
∑

j∈U

ETji(fi(W)− fi(W(j) + Tj)),

Ri4 =
∑

j∈U

ETji(fi(W(j) + Tj)− fi(W(j))).

Note that for a Lipschitz function G : Rm → R and a linear map A :
Rn → Rm (m,n ∈ N) the composition G(A(·)) is a Lipschitz function with
Lip(GA) ≤ Lip(G)‖A‖1. Using this fact, definitions (7), (12) and inequalities
(19) we derive the following estimates

|Ri1| ≤
∑

j∈U

|cov(Yji, fi(W(j)))| ≤
∑

j∈U

|cov(Tji, fi(W(j)))|+ 2D0

∑

j∈U

E|Vji|

≤ D1‖V −1‖2
1|U |θ1 + 2D0ε

−1
∑

j∈U

EY 2
ji1{‖Yj‖ > ε}
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= D1R + 2D0ε
−1

∑

j∈U

EY 2
ji1{‖Yj‖ > ε},

|Ri2| ≤
∑

j∈U

|EVji(fi(W)− fi(W(j) + Tj))|+ |EVji(fi(W(j) + Tj)− fi(W(j)))|

≤ D1

∑

j∈U

s∑

k=i

E(|VjiVjk|+ |VjiTjk|)

≤ D1

∑

j∈U

s∑

k=i

(
1

2
E(Y 2

ji + Y 2
jk)1{‖Yj‖ > ε}+ εE|Yji|1{|Yji| > ε}

)

≤ 3

2
D1(s− i + 1)

∑

j∈U

EY 2
ji1{‖Yj‖ > ε}+

1

2
D1Lε.

In a similar way

|Ri3| ≤ D1

∑

j∈U

s∑

k=i

E|TjiVjk| ≤ D1

∑

j∈U

s∑

k=i

εE|Yjk|1{‖Yj‖ > ε} ≤ D1Lε.

Due to differentiability of fi one has

∣∣∣fi(W(j) + Tj)− fi(W(j))−
s∑

k=i

∂fi(W(j))

∂xk
Tjk

∣∣∣

≤
s∑

k=i

∣∣∣∣
∂fi(W(j) + τ0Tj)

∂xk
− ∂fi(W(j))

∂xk

∣∣∣∣ |Tjk| ≤ D2(s−i+1)1/2
s∑

k=i

max
i≤p≤s

|Tjp||Tjk|

where τ0 ∈ [0, 1]. Taking into account the relation
∑

j∈U V ar(Yj) = I where
I is a unit matrix of order s we conclude that

Ri4 =
∑

j∈U

s∑

k=i

ETjiTjk
∂fi(W(j))

∂xk
+4i1.

One has

|4i1| ≤ εD2(s− i + 1)1/2
∑

j∈U

s∑

k=i

E|TjiTjk|

≤ εD2(s + i− 1)1/2
s∑

k=i

∑

j∈U

E(Y 2
ji + Y 2

jk)/2 ≤ εD2(s− i + 1)3/2
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and ∑

j∈U

s∑

k=i

ETjiTjk
∂fi(W(j))

∂xk
=

∑

j∈U

s∑

k=i

cov

(
TjiTjk,

∂fi(W(j))

∂xk

)

+
∑

j∈U

s∑

k=i

ETjiTjkE

(
∂fi(W(j))

∂xk
− ∂fi(W)

∂xk

)

+
∑

j∈U

s∑

k=i

ETjiTjkE
∂fi(W)

∂xk
=

3∑
q=1

Ciq.

For any i, k = 1, . . . , s the function bik(x) = b(xi)b(xk), x = (x1, . . . , xs) ∈ Rs,
is a Lipschitz one with Lip(bik) ≤ 2ε. Consequently

|Ci1| ≤
∑

j∈U

s∑

k=i

∣∣∣cov
(
TjiTjk,

∂fi(W(j))

∂xk

)∣∣∣ ≤ 2D2ε‖V −1‖2
1(s− i + 1)|U |θ1

≤ 2D2(s− i + 1)εR.

|Ci2| ≤
∣∣∣∣∣∣
∑

j∈U

s∑

k=i

ETjiTjkE

(
∂fi(W(j))

∂xk
− ∂fi(W(j) + Tj)

∂xk

)∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

j∈U

s∑

k=i

ETjiTjkE

(
∂fi(W(j) + Tj)

∂xk
− ∂fi(W)

∂xk

)∣∣∣∣∣∣

≤ D2(s− i+1)1/2
∑

j∈U

s∑

k=i

E|TjiTjk|E max
p=i,...,s

|Tjp|+D2

∑

j∈U

s∑

k=i

s∑
p=i

E|TjiTjk|E|Vjp|

≤ εD2(s− i + 1)3/2 + εD2(s− i + 1)Lε.

To estimate Ci3 consider at first the case k = i. Then

∑

j∈U

ET 2
jiE

∂fi(W)

∂xi
= E

∂fi(W)

∂xi

∑

j∈U

E Y 2
ji +4i2 = E

∂fi(W)

∂xi
+4i2,

|4i2| =
∣∣∣E∂fi(W)

∂xi

∑

j∈U

(E T 2
ji − E Y 2

ji)
∣∣∣ ≤ D1

∑

j∈U

E Y 2
ji1{‖Yj‖ > ε}.
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The bounds for Ri2 and Ri3 imply that

|4i3| =
∣∣∣
∑

j∈U

s∑

k=i+1

ETjiTjkE
∂fi(W)

∂xk

∣∣∣

=
∣∣∣

s∑

k=i+1

E
∂fi(W)

∂xk

∑

j∈U

E(YjiYjk − TjiVjk − VjiTjk − VjiVjk)
∣∣∣

≤
∑

j∈U

s∑

k=i+1

∣∣∣∣E
∂fi(W)

∂xk

∣∣∣∣ (E|TjiVjk|+ E|VjiTjk|+ E|VjiVjk|)

≤ D1((3/2)Lε + (3s/2)
∑

j∈U

E Y 2
ji1{‖Yj‖ > ε})

in view of the relation
∑

j∈U V ar(Yj) = I, that is
∑
j∈U

EYjiYjk = 0, k 6= i.

Finally we have

∆(h,XU) ≤
s∑

i=1

∣∣∣∣E
(

∂

∂xi
−Wi

)
fi(Wi, . . . , Ws)

∣∣∣∣

≤
s∑

i=1

(
3∑

q=1

(|Riq|+ |4iq|) +
2∑

q=1

|Ciq|
)

.

Observing that
∑s

i=1(s − i + 1)3/2 = c(s) and
∑s

i=1(s − i + 1) = s(s + 1)/2
we come to (15). The proof of Theorem 1 is complete.

Corollary 1. For a family of centered random fields X(n) = {X(n)
j , j ∈ Zd}

(n ∈ N) with values in Rs and a family of finite subsets Un of Zd, the CLT
holds, that is

W (X
(n)
Un

)
Law−→ Z as n →∞,

whenever, for every ε > 0,

Lε(X
(n)
Un

) → 0 and R(X
(n)
Un

) → 0 as n →∞.

If X
(n)
Un

consists of independent random vectors then R(X
(n)
Un

) = 0. Thus The-
orem 1 comprises the multidimensional Lindeberg theorem for independent
summands. Analogously to Bulinski and Suquet (2001) one can also obtain
from (15) the generalization of the classical Newman CLT for associated ran-
dom fields.
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Theorem 2. Assume that conditions of Theorem 1 are satisfied and, more-
over, (13) holds. Then

∆(h,XU) ≤ s(D1 + D2(s + 1))R

+(2D0 + (6s + 1)D1 + (2c(s) + s(s + 1)/2)D2)L2+δ

(23)

where the Lyapunov fraction

L2+δ = L2+δ(XU) =
∑

j∈U

E‖Yj‖2+δ ≤ ‖V −1‖2+δ
1

∑

j∈U

E‖Xj‖2+δ
1 ,

random vectors Yj are defined in (9) and c(s) appears in (15).

Proof. Observe that for ε = 1 and δ ∈ (0, 1] one has Lε ≤ L2+δ. To
estimate ∆i1 (and analogously Ci2) we use inequalities |abc| ≤ (|a|3 + |b|3 +
|c|3)/3 for all a, b, c ∈ R and |a|3 ≤ |a|2+δ when |a| ≤ 1. Thus

D2(s− i + 1)1/2
∑

j∈U

s∑

k=i

E|TjiTjk max
p=i,...,s

Tjp|

≤ 1

3
D2(s + i− 1)1/2

∑

j∈U

s∑

k=i

(E|Tji|3 + E|Tjk|3 + E max
p=i,...,s

|Tjp|3)

≤ D2(s− i + 1)3/2
∑

j∈U

E‖Yj‖2+δ = D2(s− i + 1)3/2L2+δ.

Theorem is proved.

Now we need some new notation. Let B(γ) be a γ-neighborhood of a
set B ⊂ Rs with respect to Euclidean distance (that is B(γ) = {x ∈ Rs :
infy∈B ‖x− y‖ < γ}), ∂B being the boundary of B.

Remark 3. From Theorem 1.4 by Goldstein and Rinott (1996) the es-
timate for ∆(h,XU) (in our notation) can be established when h ∈ C3

b (Rs)
and EXj = 0, E‖Xj‖4 < ∞, j ∈ U . Using a function h ∈ C3

b approximating
the indicator function of a convex set B ⊂ Rs (more precisely, for a given
γ ∈ (0, 1) let h(x) = 1 for x ∈ B, h(x) = 0 for x /∈ B(γ) and 0 ≤ h(x) ≤ 1 for
all x ∈ Rs) one can derive from the mentioned estimate that

∆(B, XU) ≤ P(Z ∈ (∂ B)(γ)) + Gγ(XU) (24)

where ∆(B, XU) is defined in (15), Gγ(·) is a certain (nonrandom) functional
in XU . In Theorems 1 and 2 of our paper the estimates of ∆(h,XU) are

12



obtained in other terms under lower moment assumptions and for a wider
class of functions h satisfying the conditions (10). We have

∆(B, XU) ≤ P(Z ∈ (∂B)(γ)) + Hγ(XU) (25)

where Hγ(·) is a specified nonrandom functional in XU , as the next theorem
shows. For fixed U , ε and s one has Gγ(XU) = O(γ−3) as γ → 0 whereas
Hγ(XU) = O(γ−2) as γ → 0.

Write
γ0(s) = min{1, 3

√
π/(2s)}.

Theorem 3. Let conditions of Theorem 1 be satisfied and B be a convex
set in Rs. Then for any γ ∈ (0, γ0(s)] the estimate (25) holds with

Hγ(XU) =
√

2πsγ−1(2 + 12
√

2(s + 1)εγ−1)R + 48
√

πc(s)εγ−2

+
√

2π(ε−1 + (12s + 2)γ−1 + 6
√

2s(s + 1)εγ−2)Lε.
(26)

If, moreover, conditions of Theorem 2 are satisfied then one can take

Hγ(XU) =
√

2πsγ−1(2 + 12
√

2(s + 1)γ−1)R

+
√

2π(1 + (12s + 2)γ−1 + 12
√

2(2c(s) + s(s + 1)/2)γ−2)L2+δ.
(27)

Proof. Introduce a function ψ setting

ψ(x) =





1, x ≤ 0,

1− 16x3

3γ3 , x ∈ (0, γ
4 ],

3
2 − 2x

γ − 16
3γ3 (

γ
2 − x)3, x ∈ (γ

4 ,
3γ
4 ],

16
3γ3 (γ − x)3, x ∈ (3γ

4 , γ],

0, x ≥ γ.

(28)

It is easy to verify that the following statement is true.

Lemma 2. The function ψ ∈ C2(R) and for all u ∈ R one has

0 ≤ ψ(u) ≤ 1, |ψ′(u)| ≤ 2γ−1, |ψ′′(u)| ≤ 8γ−2.

For a convex set B ⊂ Rs define the function

h(x) = ψ(ρ(x,B)), x ∈ Rs, (29)
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where ψ is given by (28) and ρ is the Euclidean distance in Rs.
Obviously

0 ≤ h(x) ≤ 1, x ∈ Rs, h(x) = 1, x ∈ B, h(x) = 0, x /∈ B(γ). (30)

Lemma 3. For the nonnegative function h ∈ C1(Rs) (see (29)) the condi-
tion (10) is satisfied with M0 = 1, M1 = 2 γ−1 and M2 = 12 γ−2.

To prove this result one can use the properties of ψ given in Lemma 2 and
take into account that for all x /∈ [B] and any i = 1, . . . , s there exists

∂

∂xi
ρ(x,B) = − cos(ei, n).

Here ei is the i-th unit vector of the natural orthonormal basis of Rs, n = y−x

where y ∈ [B] and ‖x − y‖ = ρ(x,B); [B] is a closure of B in the Euclidean
distance.

Lemma 4. If γ satisfies the conditions of Theorem 3 and the function h

is given by (29), the statement of Lemma 1 is valid with

D0 =
√

π/2, D1 = 2
√

2πγ−1, D2 = 24
√

πγ−2. (31)

Proof. The indicated values for D0, D1, D2 can be easily obtained from
the formula (19), analogously to the proof of Lemma 1, using the fact that
|Hi(x)| ≤ 1 since 0 ≤ h(x) ≤ 1, x ∈ Rs.

Now we proceed with the proof of Theorem 3. Due to Theorem 1 and
Lemma 4 we come to the estimate (15) with D0, D1, D2 indicated in (31). In
view of (30)

P(W ∈ B)− P(Z ∈ B(γ)) ≤ Eh(W )− Eh(Z) ≤ ∆(h,XU). (32)

In a similar way for the set B(γ) = B \ (∂B)(γ) one has

P(W ∈ B)− P(Z ∈ B(γ)) ≥ −∆(h,XU). (33)

Now (32) and (33) imply (25) with H(XU) given by (26). The second assertion
of Theorem 3 follows in the same manner as Theorem 2 was obtained using
Theorem 1. Theorem 3 is proved.

The next result gives the possibility to provide an estimate for ∆(B,XU)
which is uniform on the class Cs of convex sets of Rs. It is easy to derive im-
mediately the following bound from Corollary 3.2 of Bhattacharia and Ranga
Rao (1976).
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Lemma 5. For any k ∈ N, all γ > 0 and every convex set B ⊂ Rs

P(Z ∈ (∂B)γ) ≤ a(s)γ

where a(1) = 2
√

2/π and a(s) = 21/2(s − 1)Γ((s − 1)/2)/Γ(s/2) for s ≥ 2.
Thus

a(s) ≤ a0s
1/2, a0 = const, s ∈ N. (34)

Corollary 2. Let conditions of Theorem 2 be satisfied. Then

sup
B∈Cs

∆(B, XU) ≤ c(R(XU) + L2+δ(XU))1/3

where a factor c = c(s).
Remark 4. We are interested in asymptotical behaviour of random vec-

tors W = W (XU) as U → ∞ in a sense. In this regard note that in general
R = R(XU) need not tend to zero for growing sets U (if for dependent sum-
mands there are points of U which are ”rather close” to each other). So, it
is natural to use the combination of the obtained results with the Bernstein
block techniques. Our next two theorems provide examples of this approach.

Let X = {Xj, j ∈ Zd} be a (BL, θ)-dependent random field with values
in Rs such that (4) holds with a(I, J) = min{|I|, |J |} and some function
u(r) ↘ 0 as r → ∞. Define for a Lipschitz function ϕ : Rs → Rm (in
Euclidean spaces we use the norm ‖ · ‖1) a random field X̃ = {X̃j, j ∈ Zd}
where X̃j = ϕ(Xj), j ∈ Zd.

Lemma 6. A random field X̃ is (BL, θ̃)-dependent where for any finite
disjoints sets I, J ⊂ Zd

θ̃(I, J) ≤ min{|I|, |J |}(Lip(ϕ))2u(ρ(I, J)). (35)

Proof. Note that if fk(fk−1(. . . f1)) is a composition of Lipschitz functions
f1, . . . , fk then

Lip(fk(fk−1(. . . f1))) ≤ Lip(fk) . . . Lip(f1).

Now (35) is obvious due to (BL, θ)-dependence of a field X.
Let U be a finite subset of Zd such that

U =
N⋃

k=0

U (k), N ∈ N, (36)
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where U (0), . . . , U (N) are disjoint sets and for some positive b and q

|U (k)| ≤ b and ρ(U (k), U (l)) ≥ q, k, l = 1, . . . , N, l 6= k. (37)

Assume that
EX̃j = 0 ∈ Rm, E‖X̃j‖2 < ∞, j ∈ Zd. (38)

Set for k = 0, . . . , N

Xk =
∑

j∈U (k)

X̃j, V 2
1 =

N∑

k=1

V ar(Xk), V 2
0 = V ar(X0). (39)

Using this notation we have S̃ = S̃(U) =
∑

j∈U X̃j =
∑N

k=1 Xk. Suppose that

det V 2
1 > 0 and introduce for random vectors Y k = V −1

1 Xk (k = 1, . . . , N)
the Lindeberg function

Lε =
N∑

k=1

E‖Y k‖21{‖Y k‖ > ε}, ε > 0. (40)

Theorem 4. Let X̃ be a random field satisfying all the above mentioned
conditions and U be a finite set appearing in (36). Then for any nonrandom
matrix A of order m and all ε > 0, γ ∈ (0, γ0(m)] one has

∆ := sup
B∈Cm

|P(AS̃ ∈ B)− P(Z ∈ B)|

≤ 2a(m)γ + γ−2{m
√

2π(2 + 12
√

2(m + 1)ε)Nb(Lip(ϕ))2u(q)‖V −1
1 ‖2

1

+48c(m)
√

πε +
√

2π(ε−1 + 12m + 2 + 6
√

2m(m + 1)ε)Lε}+ γ−2∆ (41)

where

∆ = 2m{‖AV1 − I‖2
1(m + ‖V −1

1 ‖2
1Nb(Lip(ϕ))2u(q)) + m‖A‖2

1‖V 2
0 ‖1}, (42)

Cm is a class of convex sets in Rm, a(m) appears in (34) and Z is a Gaussian
vector in Rm. If, moreover, for some δ ∈ (0, 1]

sup
j∈Zd

E‖X̃j‖2+δ ≤ c̃ < ∞ (43)

then
∆ ≤ 2a(m)γ + γ−2

√
2π{a1(m)‖V −1

1 ‖2
1Nb(Lip(ϕ))2u(q)
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+ c̃b2+δa2(m)N‖V −1
1 ‖2+δ

1 }+ γ−2∆ (44)

where a1(m) = m(2 + 12
√

2(m + 1)) and a2(m) = m2+(3δ)/2(12m + 3 +
12
√

2(2c(m) + m(m + 1)/2)).
Proof. We need the following two elementary results.
Lemma 7. Let ζ0, ζ1 be random vectors with values in Rm such that

E‖ζ0‖2 < ∞. Then for any value γ > 0

sup
B∈Cm

|P(ζ0 + ζ1 ∈ B)− P(Z ∈ B)| ≤ sup
B∈Cm

|P(ζ1 ∈ B)− P(Z ∈ B)|

+ γa(m) + γ−2E‖ζ0‖2.

Lemma 8. Let ζ be a centered random vector with values in Rm such that
E‖ζ‖2 < ∞. Then for any nonrandom matrix A of order m one has

E‖Aζ‖2 ≤ m2‖A‖2
1‖V ar(ζ)‖1.

To prove Theorem 4 note that AS̃ = ζ0 + ζ1 where

ζ1 = V −1
1

N∑

k=1

Xk, ζ0 = (AV1 − I)V −1
1

N∑

k=1

Xk + AX0,

here I is a unit matrix of order m.
Using estimate (49) and Lemmas 5,7 we get

∆ ≤ sup
B∈Cm

|P(ζ1 ∈ B)− P(Z ∈ B)|+ γa(m) + γ−2E‖ζ0‖2. (45)

Theorem 3 provides a bound

sup
B∈Cm

|P(ζ1 ∈ B)− P(Z ∈ B)| ≤ a(m)γ

+ γ−2{m
√

2π(2 + 12
√

2(m + 1)ε)R + 48
√

πc(m)ε

+
√

2π(ε−1 + 12m + 2 + 6
√

2m(m + 1)ε)Lε} (46)

where Lε appears in (40) and R is defined for a collection of random vectors
X1, . . . , XN in the same manner as R in (9). Namely

R = ‖V −1
1 ‖2

1Nθ1

where θ1 is given for XU = {Xk, k = 1, . . . , N} accordingly to (7). Hence

R ≤ Nb(Lip(ϕ))2u(q)‖V −1
1 ‖2

1. (47)
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Set ξk = (AV1 − I)V −1
1 Xk. Note that

∑N
k=1 V ar(ξk) = (AV1 − I)(AV1 − I)∗

and consequently

E‖
N∑

k=1

ξk‖2 ≤
N∑

k=1

E‖ξk‖2 +
N∑

k=1

m∑
r=1

|cov(ξkr,
∑

l 6=k

ξlr)|

≤ Tr(AV1 − I)(AV1 − I)∗ + mN‖AV1 − I‖2
1‖V −1

1 ‖2
1θ1

≤ m‖AV1 − I‖2
1(m + R), (48)

here ∗ and Tr stand respectively for conjugation and trace of a matrix. Due
to Lemma 8 and (48)

E‖ζ0‖2 ≤ ∆ (49)

where ∆ is defined in (42). Estimates (45) – (49) imply (41).
To prove (44) we use instead of (46) the relation (27). The proof is com-

plete.

3. Application to the kernel estimate of a density

We consider a stationary random field X = {Xj, j ∈ Zd} with values in
Rs. Assume that X0 has a density f = f(x), x ∈ Rs.

Recall that, given a probability density function K, the Parzen – Rosen-
blatt (kernel) estimators for a density f are defined as follows

f̂n(x) =
1

|Un|hs
n

∑

j∈Un

K

(
x−Xj

hn

)
, x ∈ Rs,

where Un, n ∈ N are finite subsets of Zd, {hn}n≥1 is a sequence of positive
numbers such that

hn → 0 and |Un|hs
n → 0 as n →∞.

Introduce three types of conditions concerning the properties of a field X,
a kernel K and sets Un (n ∈ N). Further on C denotes some positive factors
(not necessary the same in different expressions) which do not depend on n.

(A1) Let X be a (BL, θ)-dependent random field such that (4) holds with
a(|I|, |J |) = min{|I|, |J |} and for some λ > d(s + 2)/s

u(r) = O(r−λ) as r →∞. (50)
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Assume that the density f is a Lipschitz function and for all j ∈ Zd there
exists a joint density fj(x, y) for random vectors X0 and Xj such that

sup
x,y∈Rs

fj(x, y) ≤ c0 (51)

where c0 does not depend on j.
(A2) Let kernel K be a Lipschitz function and

∫

Rs

‖x‖K(x)dx < ∞. (52)

(A3) Let Un, n ≥ 1, be regularly growing parallelepipeds in Zd, that is

Un = {(a1(n), a1(n) + l1(n)]× . . .× (ad(n), ad(n) + ld(n)]} ∩ Zd (53)

and for some C1 > 0 and all n ∈ N, i, k = 1, . . . , d one has

ai(n) ∈ Z, li(n) ∈ N, i = 1, . . . , d and li(n)/lk(n) ≤ C1. (54)

For fixed m ∈ N and different points x1, . . . , xm ∈ Rs such that f(xi) > 0, i =
1, . . . , m, define

σ2
i = f(xi)

∫

Rs

K2(x)dx.

Consider a random vector L(n) = (L1(n), . . . , Lm(n)) with components

Li = σ−1
i

√
|Un|hs

n(f̂n(xi)− Ef̂n(xi)), i = 1, . . . , m.

Theorem 5. Let X be a random field and Un be a sequence of subsets of
Zd satisfying all the conditions mentioned above. Then there exist β > 0 such
that for hn = |Un|−β, n ∈ N, and some C0, µ > 0 (independent of Un) the
following inequality holds

sup
B∈Cm

|P(L(n) ∈ B)− P(Z ∈ B)| ≤ C0|Un|−µ, n ∈ N. (55)

If s > 2d + 1 and λ ≥ λ0 = d(s + 4)/(s− 2d− 1), one can choose

β =
1

2Λ(s, d, λ)
, µ =

1

3Λ(s, d, λ)

where Λ(s, d, λ) = 2 + s/2 + 2d(2λ + s + 4)/λ. If s ≤ 2d + 1 or λ < λ0 one
can take

β =
1

5s
, µ =

2(λs− (s + 2)d)

15s(2λd + 2d + λ)
.
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Proof. Let {pn}n≥1 and {qn}n≥1 be nonrandom sequences with values in
N such that

qn →∞, qn/pn → 0, pd
nh

s
n → 0 as n →∞.

Following the Bernstein method each edge (ak(n), ak(n)+ lk(n)] can be repre-
sented as a union of disjoint ”large” and ”small” intervals (open from the left
and closed from the right) having the respective lengths pn, qn, pn, . . . , qn, p̃nk

where pn ≤ p̃nk ≤ 3pn (n ∈ N, k = 1, . . . , d); see the details in Bulinski and
Millionshchikov (2002). Through every end point of these intervals (for each
k=1,. . . ,d) draw the hyperplane which is perpendicular to i-th axis. Thus
we have a partition of |Un| into blocks (that is parallelepipeds) of 2d types.
Namely, to each block there corresponds a vector α = (α1, . . . , αd) determin-
ing the type such that αi = 0 if the length of block’s edge along the i-th axis
is equal to qn and αi = 1 otherwise. Denote by Γ the set of all such vec-
tors α. Numerate as 1, 2, . . . , mk the intervals of lengths pn, qn, pn, . . . , qn, p̃nk

along the i-th edge of Un. Then we get a partition of Un into blocks Πj where
j ∈ Λn = {(j1, . . . , jd) : 1 ≤ jk ≤ mk, k = 1, . . . , d}, with mk = mk(Un). Let
j ∈ Λα

n if the block Πj has type α = (α1, . . . , αd). Below we write Πα
j instead

of Πj to indicate the type of a parallelepiped.
Keeping the notation of Theorem 4, let ϕ(y) = (ϕ1(y), . . . , ϕm(y)), where

ϕi(y) = σ−1
i h−s/2

n

(
K

(xi − y

hn

)
− EK

(xi −X0

hn

))
, i = 1, . . . , m, y ∈ R.

We have
Lip(ϕi) ≤ σ−1

i Lip(K)h−s/2−1
n . (56)

Let X̃j = ϕ(Xj), j ∈ Zd. Clearly, the field {X̃j, j ∈ U} satisfies the con-
dition (38). Enumerate the blocks Π1

j of type 1, where 1 = (1, . . . , 1), as

U (1), . . . , U (N), N = |Λ1
n|. Put also U (0) = U \ (∪N

k=1U
(k)). It is easy to see that

condition (37) holds with b = (3pn)
d, q = qn. For α ∈ Γ we introduce auxiliary

random fields with values in Rm

X
α
(n) =

{∑

i∈Πj

X̃i(n), j ∈ Λα
n

}
, n ∈ N.

So X
1
(n) = X(n).

Lemma 9. For each α ∈ Γ

θ1(X
α
(n)) ≤ 3dp‖α‖1n qd−‖α‖1

n h−s−2
n u(qn)

(
s∑

i=1

σ−1
i

)2

(Lip(K))2.
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Proof. Evidently for every Πα
j one has

ρ0(Π
α
j ,

⋃

i6=j

Πα
i ) ≥ qn,

where ρ0(B, D) = mins∈B,t∈D{maxd
k=1 |sk − tk|}, B,D ⊂ Zd, and |Πα

j | ≤
3dp

‖α‖1
n q

d−‖α‖1
n . The Lemma now follows from (35) and (56).

The next Lemma describes some properties of the field {X̃j, j ∈ U} deter-
mined by the distributions of order not greater than two.

Lemma 10. For all i, j ∈ Un, i 6= j and r, t = 1, . . . , m

|V ar(X̃ir(n))− 1| ≤ Chn, (57)

|cov(X̃ir(n), X̃jt(n))| ≤ Chs
n. (58)

If r 6= t one has
|cov(X̃ir(n), X̃it(n))| ≤ Chn. (59)

Also for all j ∈ Un, r = 1, . . . , m

E|X̃jr(n)|3 ≤ Ch−s/2
n . (60)

Proof. Note that f is a bounded Lipschitz function. Due to (51) and
(A2) simple estimates of the corresponding integrals lead to (57)-(60).

Now we turn to the properties of matrices V 2
1 , V 2

0 defined in (39), denoting
by I the unit matrix of order m.

Lemma 11. The following estimate holds

‖V 2
1 −

N∑

k=1

|U (k)
n |I‖1 ≤ C

N∑

k=1

|U (k)
n |(hn + pd

nh
s
n).

Proof. By definition of V 2
1 , (57) and (58) for any r = 1, . . . , m we have

∣∣∣
(
V 2

1 −
( N∑

k=1

|U (k)
n |

)
I
)

rr

∣∣∣ =
∣∣∣

N∑

k=1

∑

j∈U (k)

V ar(X̃jr(n))

+
N∑

k=1

∑

j,q∈U (k)

j 6=q

cov(X̃jr(n), X̃qr(n))−
N∑

k=1

|U (k)
n |

∣∣∣
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=

∣∣∣∣∣∣∣∣

N∑

k=1

∑

j∈U (k)

(V ar(X̃jr(n))− 1) +
N∑

k=1

∑

j,q∈U (k)

j 6=q

cov(X̃jr(n), X̃qr(n))

∣∣∣∣∣∣∣∣

≤ C(hn + pd
nh

s
n)

N∑

k=1

|U (k)
n |.

If t = 1, . . . , m, t 6= r then, making use of (58) and (59),

∣∣∣
(
V 2

1 −
( N∑

k=1

|U (k)
n |

)
I
)

rt

∣∣∣ =
∣∣∣

N∑

k=1

∑

j,q∈U (k)

cov(X̃jr(n), X̃qt(n))
∣∣∣

≤ C(hn + pd
nh

s
n)

N∑

k=1

|U (k)
n |.

Lemma 11 now follows from standard norm estimates.
Thus we can write

V 2
1 = (I + Mn)

N∑

k=1

|U (k)
n | (61)

where Mn is a matrix of order m, and ‖Mn‖1 ≤ C(hn + pd
nh

s
n). Clearly, if

‖Mn‖1 ≤ 1/2 then det V 2
1 > 0. To apply Theorem 4 we introduce A =

|Un|−1/2I. According to (60) we can use the second proposition of Theorem
4 with δ = 1. The next Lemma gives the estimates of matrix expressions
occurring in (42).

Lemma 12. Assume that for Mn in (61)

‖Mn‖1 ≤ 1/2 and qn/pn ≤ 1/2. (62)

Then
‖V −1

1 ‖1 ≤ C|Un|−1/2, (63)

‖AV1 − I‖2
1 ≤ C(qn/pn + hn + pd

nh
s
n)

2, (64)

‖V 2
0 ‖1 ≤ C|Un|(qn/pn + pd−1

n qnh
s
n + (qn/pn)h

−s−2
n u(qn)). (65)

Proof. To establish (63), (64) we need the simple fact that for every real
square matrix T with ‖T‖1 ≤ 1/2
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‖(I + T )−1/2 − I‖1 ≤ 21/2‖T‖1,

‖(I + T )1/2 − I‖1 ≤ 2−1/2‖T‖1.
(66)

We shall also use (61) and the estimate |U (0)
n | ≤ Npd−1

n qn ≤ |Un|qn/pn. Clearly

V −1
1 = (|Un|− |U (0)

n |)−1/2(I +Mn)
−1/2 = |Un|−1/2

(
1− |U

(0)
n |
|Un|

)−1/2
(I +Mn)

−1/2,

AV1 − I =
(
1− |U (0)

n |
|Un|

)1/2
(I + Mn)

1/2 − I. (67)

Thus in view of (66), we derive (63) and (64) from (67).
Consider now V 2

0 . At first, we have

‖V 2
0 ‖1 = ‖V ar(

∑

α 6=1

∑

j∈Λα
n

X
(α)

(n))‖1 ≤ (2d − 1)m3/2
∑

α 6=1

‖V ar(
∑

j∈Λα
n

X
(α)

(n))‖1.

For fixed α ∈ Γ, α 6= 1,

‖V ar(
∑

j∈Λα
n

X
(α)
j (n))‖1 ≤ ‖

∑

j∈Λα
n

V ar(X
(α)
j (n))‖1

+
∑

j,q∈Λα
n

j 6=q

m∑
r,t=1

|cov(X
(α)
jr (n), X

(α)
qt (n))|.

Since |Πα
j | ≤ pd−1

n qn, Lemma 10 provides (analogously to the proof of Lemma
11) the bound

‖V ar(X
(α)
j (n))‖1 ≤ pd−1

n qn(1 + C(hn + pd−1
n qnh

s
n))

and pd−1
n qn|Λα

n| ≤ |Un|qn/pn follows from the fact that |Λα
n| ≤ N. Consequently,

‖
∑

j∈Λα
n

V ar(X
(α)
j (n))‖1 ≤ |Un|(qn/pn)(1 + C(hn + pd−1

n qnh
s
n)).

Applying Lemma 9 we conclude that for j ∈ Λα
n, r, t = 1, . . . , m

∑

q∈Λα
n, j 6=q

|cov(X
(α)
jr (n), X

(α)
qt (n))| ≤ θ1(X

α
(n), Λα

n)
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≤ Cpd−1
n qnh

−s−2
n u(qn) ≤ Cpd

n(qn/pn)h
−s−2
n u(qn).

The assertion of Lemma 12 is now evident.
Let us return now to the proof of Theorem 5. From (44), using (50), (60),

(63) – (65), we find that, if (62) holds, then for every γ ∈ (0, γ0(m)]

sup
B∈Cm

|P(L(n) ∈ B)− P(Z ∈ B)| ≤ C(γ + γ−2(h−s−2
n q−λ

n

+ |Un|−1/2h−s/2
n p2d

n + qn/pn + h2
n + p2d

n h2s
n )).

(68)

Let τ, β, η, µ > 0 be such positive numbers that λτ−(s+2)β−µ > 0, β−µ >

0, 1/2−sβ/2−2dη−2µ > 0, η−τ−µ > 0, sβ−dη−µ > 0. For n ∈ N we take
γ = γn = γ0(m)|Un|−µ, hn = |Un|−β, pn = [|Un|η], qn = [|Un|τ ]/2, [·] meaning
the integer part of a number. Optimization of (τ, β, η, µ) in (68) leads to (55)
for all n such that |Un| is large enough to guarantee the condition (62). For
other n the estimate (55) is obvious. The proof of Theorem 5 is complete.

This work is partially supported by RFBR grant 01-03-00724.
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