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Abstract

In order to study punctualism in the Darwinian evolution of a mono-
morphic population, we prove a large deviation principle for a diffusion
model of adaptive dynamics constructed in Champagnat [2]. Because this
diffusion process has degenerate and non-Lipschitz diffusion part, and non-
continuous drift part, classical methods do not apply. We have to extend
methods of Doss and Priouret [7] to achieve this. The biological motiva-
tion of punctualism leads us to examine whether this diffusion process a.s.
never reaches particular points of the trait space — called evolutionary
singularities — or not. We then apply these results to the problem of exit
from a domain, which is the key question for punctualism: what are the
exit point and the exit time from an attracting domain of the trait space
containing a steady state of the unperturbed dynamics.

1 Introduction

The Darwinian evolution of a population, in which individuals are characterized
by quantitative traits (such as height or time to maturity), results from birth
and death processes involving mutation, and selection via the ecology of the
system. The theoretical approach to this phenomenon has been initiated in the
early 90s by Hofbauer and Sigmund [9], Marrow et al. [12] and Metz et al. [13].
This new approach to the so-called adaptive dynamics of an ecological system
has thrown new light on fundamental issues of evolutionary biology: the origin
and maintenance of genetic polymorphism within a population (Metz et al. [14]);
the process of adaptive radiation whereby new species evolve (Dieckmann and
Doebeli [4]).

Among the evolutionary phenomena that have not yet been interpreted in
this framework, is the phenomenon of punctualism. Punctualism, as observed
in the fossil record or experimental evolution, is a pattern of population states
that alternates periods of evolutionary equilibrium with periods of rapid change
(Rand and Wilson [16]). Typically, adaptive dynamics models describe the
dynamics of an evolving population as a stochastic process in the trait space.
We will be concerned here with a diffusion model of adaptive dynamics that
has been obtained in Champagnat [2]. The description of the phenomenon of
punctualism will appear as a consequence of a large deviation principle for this
process.

Let us define this diffusion process. We will assume that the quantitative
trait characterizing individuals belongs to a convex open subset X of R¢. A



population is called monomorphic when all its individuals hold the same trait
value.

Adaptive dynamics models are based on two biological hypotheses: mu-
tations are very rare (evolutionary and ecological time scales are separated,
see [14]), and the population is large, so that changes in the population size
are nearly deterministic. The hypothesis of very large population is the most
unrealistic: it leads to models in which evolution is possible only in particular
directions in the trait space, determined by the gradient of the fitness function
(the function measuring the selective advantage of a mutant trait in a given
population, see [13] and [14]). On the contrary, in finite populations, any mu-
tant, even deleterious ones, could settle by chance in the resident population.
In [2], we propose a model compatible with this requirement: this is a diffusion
process allowing evolution in any direction of the trait space.

In the monomorphic case, in which we will be concerned in this paper, this
process is weak solution on X to the stochastic differential equation

dX§ = (b(X]) + eb(X7))dt + Veo (X])dW, (1)

where b(x) and b(x) are in R%, o(z) is a d x d symmetric real matrix, and & > 0
is a small parameter scaling the size of the mutation jumps. The parameters b,
b and oo* = a are expressed in terms of individual biological parameters, listed
below.

Let us denote the state of a monomorphic population by z € X.

p(z,h)dh is the law of h = 2/ — z, where 2’ is a mutant trait born from an
individual with trait x. p(z,h) is defined on X x R? and is an even
function of h for any x € X (i.e. p(x,h)dh is a measure on R? symmetric
with respect to 0). Since ' must be in the trait space X, the support of
h+— p(z,h) is a subset of

X—x={y—xz;y € X}

The function p : z +— ]ia:, h)dh from X to the set of probability measures
on R? is extended to X by setting p(x) = dy when z is in the boundary
0X of X, where g is the Dirac measure at 0.

g(2',x) is a function from X x X’ to R that can be expressed in terms of biolog-
ical parameters (see [2]), and that measures the fitness, i.e. the selective
advantage (or disadvantage), of a single individual with trait 2’ in a mo-
nomorphic population made of individuals holding trait z. For biological
reasons, we assume that g = 0 on the boundary of X x X. This function
satisfies the fundamental property of fitness functions:

Vee X, g(z,z)=0. (2)

Note that the assumption that h +— p(z, h) is even is required for the construc-
tion of solutions to (1) in [2]. This assumption is almost always made in adaptive
dynamics models (see e.g. Dieckmann and Law [5] or Kisdi [11]). See [2] for a
discussion of the difficulties arising when p(x,-) is asymmetric.

We will assume that g is C2 on X x X, and we will denote by Vg the
gradient vector of g(a’, z) with respect to the first variable 2/, and by H; jg the



Hessian matrix of g(z', 2) with respect to the ith and ;P variables (1<i,7<2).
Then, we can define the parameters b, b and a of the SDE (1) as follows: let
b(z) = (bi(x),...,b4(2)), b(x) = (b1(x),...,bs(x)), and a(x) = (ar(x))1<k,i<d-

Then, as obtained in [2], for z € X

by() = / h[Vag(e,2) - By pla, h)dh,

1
) 5/{ }hk(h*Hlylg(a:,:v)h)p(:E,h)dh
bk(x) _ h-Vig(z,x)>0 ) (3)
if Vig(z,z)#0,
0 otherwise,

and ag(z) = /d hih|h - Vig(z, z)]+p(z, h)dh.
R

Since  — p(z, h)dh has been extended by d, on dX, b(z) = b(z) = 0, and
a(x) =0 for x € OX. Let us also define

b = b+ eb.

Weak existence for solutions to (1) has been shown in [2] under weaker
assumptions than the one we will use here.
Let us also define three sets used throughout the paper:

Fr=o0XU{xeX:Vig(z,z) =0}, (4)
Va>0,T,={xe X :dx7T)>a}, (5)
and Ve>0, T.={z e X:VsecR% s*a(z)s > c||s||*} (6)

The set T is called the set of evolutionary singularities, and, since b = b=a=0
on I, points of T" are possible rest points of solutions to (1).

This paper begins with some regularity results for the parameters a, b and
b (section 2). In section 3 we construct precisely the solution X< to (1) used in
the following, we make observations about uniqueness and the strong Markov
property of X¢, and we give conditions under which the process X¢ a.s. never
reaches I'. In section 4, we adapt methods of Doss and Priouret [7], inspired
from Azencott [1] to prove the main result of this paper: a Wentzell-Freidlin-like
large deviation principle [8] for the paths of X¢ as ¢ — 0. Finally (section 5), we
apply this result to the problem of exit of an attracting domain (see [8]), which
is the key question for interpreting the biological phenomenon of punctualism.

Notations

o C(I,E) (resp. Cy(I,E), C*(I,E), C¢(I,FE)) is the set of continuous
functions from an interval I of R, containing 0 to a subset E of R? (resp.
with value x € E at 0, resp. absolutely continuous, resp. absolutely
continuous with value z at 0).

e ||| denotes, for vectors of R, the Euclidean norm, for real d x d matrices,
the subordinate Euclidean norm [|A[| = supy, = [[AR| (remind that for
symmetrical positive matrices, this norm equals the spectral norm — the
greatest eigenvalue), and for functions, the L.°° norm.



e d(x,T) is the Euclidean distance from a point = € R? to a set I' C R%.

e For ¢ € C([0,T],R%) and 0 < a < b < T, define

ellas = sup fle(@)l, (7)
a<t<b
and
Bi(ip,0) ={¢ € C(10. T, RY) : [[p = ¢llo.p < 3} ®)
When a =0and b=T, || - |lo,r is the usual norm of uniform convergence

in C([0,T],R%), and when b = T, B7(y,d) is the usual closed ball centered
at ¢ with radius 6 in C([0, 7], R%) for the norm of uniform convergence.

2 Study of a, b and b

Let us first define properly the function o(z) appearing in (1) from a(z) defined
in (3). We will use the notation S, for the set of symmetrical non-negative d x d
real matrices, and for any ¢ > 0,

S.={acS8;:VscRY s*as > c||s|?}. (9)

Then

Proposition 2.1 For any a € Sy, there exists a uniqgue o € S such that
0% = a (since o is symmetrical, this can rewrite as co* = a). Let us call  the
function from Sy to S4 that maps a on o. Then ( is Holder with exponent 1/2

on Sy, and Lipschitz on S, for any ¢ > 0.

Proof The construction of o from a is standard: find an orthonormal basis of
R? where a is diagonal, put the square root of its elements in a new diagonal
matrix, and express it back in the first basis. It follows from this change of basis
that the uniqueness of ¢ is equivalent to the uniqueness of a solution S € S
to S2 = D, where D is a diagonal matrix with non-negative diagonal elements.
Two symmetrical commuting matrices diagonalize in the same orthonormal ba-
sis. Since SD = §% = DS, it is now easy to establish the uniqueness of o.

Let ( : S4 — S; be defined by ((a) = a®. Then (o = (o( = Ids,. The
differential of ¢ at a writes doC (h) = ah+ha and, when it is invertible, its inverse
is the differential d,2¢ of ¢ at a®. Let (ah + ha);; denote the 4, coefficient of
the matrix ah 4+ ha. Using the symmetry of a and h, an easy calculation gives
that

d d
Z hij (ah + ha)ij = Z hiah; + Z h;ahj (10)
i,j i=1 j=1
where h; is the i*" column (and, by symmetry, row) of the symmetrical matrix
h. Let || - || be the spectral norm on S;. If a € S., the quantity (10) is greater
than 2¢), ||hi]|* > Kc|lh||* for some constant K, and it is obviously smaller
than K'||h||||ah 4 ha|| for another constant K.

Hence, |lah + ha| > ££||h|| for any h € S; and a € S,. In particular,
]l = [|doC o de2C(h)]| > K |\d,2¢(R)|, which shows that ¢ has a bounded
differential on S.2 for all ¢ > 0. Therefore, ¢ is Lipschitz on S, for any ¢ > 0.



The proof that ¢ is Holder on Sy is taken from Serre [17]. Let us consider
two matrices a and b in S;. Then, there exists an orthonormal basis in which a
is diagonal, and another one where b is diagonal. So, there are two orthogonal
matrices U and V', and two diagonal matrices D1 and Dy with respective non-
negative diagonal elements A1, ..., \g and u1, ..., uq, such that a« = UD,U* and
b=UVD,V*U*.

Define A = Dy and B = VDyV*, and denote by || - | the Schur-Frobenius
norm on d X d matrices, given by || M|lp = />, m3; where M = (mij)1<i j<d-
Then,

2
IB—AlF=>" (Z Vik [k Vjk — Ai%‘)
k

4,
= Z Z Vik Vil Vi Vg1 — 2 Z Z V2 Nifig + Z A
5,7 k,l ik i

ZZ/A%—?ZZU?MiukJrZA?,
k ik i

where d;; is the Kronecker delta symbol, and where we used the fact that V =
(vij)1<i,j<d is an orthogonal matrix to obtain the last line. This can be rewritten
as

1B = Al =) vl (hi — )
i

Now, observe that ((a) = U((A)U* = U{(D;)U*, that ¢(b) = U{(B)U* =
UV ((D2)V*U*, and that ¢(D;) and ((D3) are diagonal matrices with respective
elements v/A1,...,v/Aq and \/fi1, ..., /fq. Then, it follows from the fact that

(VX = )? < [A—pl for A > 0 and g > 0, and from the Cauchy-Schwartz
inequality, that

2 2

IC(A) = CBIIE = | Dot (V= v | < | Do vhih — myl
ij i

<Y 0l v (N — ) =d| A - Blf3.
.1j

i,J

It remains to observe that, for any orthogonal matrix U and for any matrix M,

|UMU*||p = ||M||F to finally obtain that ||¢(a) — ¢(b)||r < d*/*\/]la — b][ for
any a and b in . O

Let us list here all the hypotheses needed in the following:

Hypotheses 2.1

(H1) g(2',z) is C? with respect to the first variable z', Vig and Hi 1g are
bounded and Lipschitz on X2. For biological reasons, we will also as-
sume that Vig(x,x) = 0 when x € 90X (this fact will only be used in
Theorem 3.2 of section 3.3).

(H2) p(z,h) is Lipschitz with respect to the first variable x in the following



sense: there exists a positive function m defined on R® such that
V(z,2') € X%, Vh € RY, |p(x,h) — p(a',h)| < ||z —a'|m(h),  (11)

/ AV |R)F)m(h)dh < +oo (12)
]Rd

and Vz € X, / (1 V |h®)p(x, h)dh < Cd(z,0X)  (13)
Il >d(=,0%)

for some constant C. Note that (11) and (12) imply that p(z, h)dh has
finite third-order moment for all x € X. We will moreover assume that
this third-order moment is bounded by a constant M3 on X .

(H2) Assume (H2) with the additional assumption that for all o« > 0, there
exists a function m,, : Ry — Ry such that for all x € T,

p(z,h) < ma(||h])
and / )P ma (| A])dh < +oco. (14)
Rd

(H3) For all o > 0, ~ul?|h - v|p(x, h)dh > 0.

inf / |h
d(2,0X)2a, u,vER%|u||=[lv[|=1

(H4) For all o > 0, ian Vig(z,z)|| > 0, where T, has been defined in (5).
el

When X = R?, (H2) is true for example if p(z,h)dh is Gaussian for all
x € X with covariance matrix K(z) uniformly non-degenerate (i.e. in S, for
a given ¢ > 0), bounded by some constant C' > 0 and Lipschitz on R?. This
fact can easily be proved by bounding the differential of the function K +—
(det K)~ /2 exp(—a*K'z/2) on {K € S..: | K| < C}.

Note that condition (13) is a technical condition compatible with the fact
that p(z,-) has been extended by g on OX. The following lemma, ensured by
assumption (H2), and the fact that p(x, h)dh has finite and uniformly bounded
third-order moment are the only conditions that will be necessary in the follow-
ing. One could replace (H2) with any condition ensuring these facts.

Lemma 2.1 For any continuous function f : RY — R Lipschitz in a neighbor-
hood of 0 and such that for any h € R, |f(h)| < K(||h||®> V1) for some constant
K, the function

when z € X

| #wpta ryan
jf(h)5o(dh) = f(0) when z € 0X
S

is globally Lipschitz on X.

Proof of Lemma 2.1 Let us call ¢ the function (15). The fact that ¢ is
globally Lipschitz on X follows easily from assumptions (11) and (12).



Fix 2 € X and 2’ € 0X. Decomposing R? as B(d(x,0X)) U B(d(x,0X)),
where B(a) = {h € R : ||h|| < a} yields, for x sufficiently close to 2/,

\M@—Wﬂﬂé/lﬂm—ﬂmm@ﬁmh

Rd

s/ (K + KLV |[B*)p(e, h)dh
B(d(z,0X))e

+  sup  [f(0) = f(h)| p(z, h)dh
IRl <d(z,0X) B(d(z,0X))

<2KCd(z,0X) + K'd(z,0X),

where the last inequality follows from (13) and from the fact that f is K'-
Lipschitz in a neighborhood of 0. This completes the proof of Lemma 2.1  [J

Remark 2.1 This lemma is actually true under the following more general
assumption: let p be the Kantorovich metric (see Rachev [15]) on the set of
probability measures on R with finite third-order moments, defined by

p(Py, P2) = inf - c(z,y)R(dx, dy),

where the infimum is taken over the set of measures R(dx,dy) with marginals
Py(dz) and Py(dy), and where c(z,y) = ||z — y|| max{||z|, |y||>,1}. Then we
could have assumed that the application p : © — p(x, h)dh is Lipschitz for this
metric p. We have chosen a simpler presentation to avoid a formalism which is
not necessary in usual applications, and which does not give much benefit in this
case of probability measures absolutely continuous with respect to the Lebesgue
measure.

Assumption (H2’) is necessary to control the probability measures p(x, h)dh
uniformly in any direction of R? and uniformly in x. It will only be used to
prove that b is locally Lipschitz on X'\ T, and we will make use of this fact only
in sections 3 and 5.

(H3) is only a technical condition needed to control the non-degeneracy of
the matrix a. It means in fact that p(x, h)dh gives a sufficient mass uniformly
in any directions around z. Since the support of p(x, h)dh is a subset of X — z,
this is possible only for z not too close to 0X. That is why the condition
d(x,0X) > « is necessary. For example, this assumption is true if there exists
a >0 and 8 > 0 such that for all h and for x such that d(z,0X) < «, p(x, h) >
PLjla—h|<d(z.0%/2}

(H4) is obviously true if (H1) is true and X is compact (then I',, is compact
and the infimum of ||V1g(z, )| on this set is attained, and hence is positive).
So, in the case where X is not bounded, (H4) only states that Vig(x,z) does
not converge too fast to 0 when ||z| — +oo.

Let us prove

Proposition 2.2

(i) Assume (H1) and (H2). Then a and b are Lipschitz and bounded on X,
and b is bounded on X and continuous on X \T". Under the additional
assumptions (H2’) and (H4), for all o > 0, b is Lipschitz on Ty, where Ty,
has been defined in (5).



(ii) The matrix a is symmetrical and non-negative on X, a(z) =0 ifx € I', and
a(x) is definite positive if x € X \ T'. Proposition 2.1, allows us to define

Ve e X, o(z) = ((a(z)),

so that co* = a. Under assumptions (H1) and (H2), o is Holder with
exponent 1/2 on X.

(iii) Assume (H3) and (H4). Then, Va > 0, 3¢ > 0 such that T, C T, where T,
has been defined in (6). Under the additional assumptions (H1) and (H2),
o Is Lipschitz on ', for all a > 0.

Proof of (i) a, b and b are trivially bounded.

By assumption (H1), V1g is K-Lipschitz on X for some constant K. For
any z and z’ in X, and for 1 < k < d,

pu(e) = )| < | [ m(Fg(o.0) = V19602 B e |

+

[, l¥agtene) ot ) -l h))dh\ |

Using the fact that |[a]+ — [b]+] < |a —b], the first term of the right-hand side is
less than K (2||x — '||) M2, where M, is a bound, given by (H2), for the second-
order moments of p(x, h)dh for x € X. The second term can be bounded by
K||V1ig(z,z)|||]x — || because of Lemma 2.1. Since, by (H1), Vg is bounded
on X2, it follows that b is Lipschitz on X. A similar computation, using (13),
extends this result to X. Similarly, a is Lipschitz on X.

Fix @ > 0 and z and 2’ in T',. Define S = {h € R? : h- Vig(z,z) > 0} and
S'={h:h-Vigi(z',2") > 0}. Then, it follows from (11) that

|5k($) - Ek(l‘/)|

1
<3 / hi[h* (Hya9(2, z) — Hyag(a', 2"))h]p(a’, h)dh
sns’

-2

+ / hi(h*Hy 1g(z, 2)h) (p(x, h) — p(/, h))dh
S

—/ hi(h*Hy19(z,2)h)p(z’, h)dh

SNS’e

- / hk(h*Hl,1g($’,x')h)p(x’,h)dh‘ (16)
Sens’

<

(Knx—x'n [ mipnte an
Rd

+ | Hiag(z, o)z — '] /Rd 1R|Pm(h)dh

+ / KR p(a’, hydh ) |
(SNS7€)U(SeNS")

where K > 0 is such that H; ;g is K-Lipschitz and bounded by K. It follows
from (H1) and (H2) that the first two terms of the right-hand side are bounded

N | =



by a constant times ||z — z’||. Note that the set SN S ={h:h-Vig(z,z) >
0, h-Vig(a',2") < 0} converges to () as x — 2’, and that SN .S’ converges
to {h : h-Vig(x,x) = 0}, which has Lebesgue measure 0 since Vig(z,z) # 0
(x ¢T), as © — z'. So, by the dominated convergence Theorem, the last term
of the right-hand side of (16) converges to 0 as & — z/, and b is continuous on
X\T.

Under assumptions (H2’) and (H4), in order to prove that b is Lipschitz on
Iy, it suffices to find C' > 0 such that

/ I3 p(a, h)dh = IR ma (Rl dh < Cllz — «'].
(SNS7e)U(SenS”) (SNS7e)u(SenST)

Since Vg is K-Lipschitz, |Vig(z,z) — Vig(2',2')|| < 2K |z — 2'||, so
h-Vig(z',z") > 0= h-Vig(z,z) > —2K]|h|/||z — 2'|.
This means that
S°nS" c{h:h-Vig(z,x) € [-2K]| ||z —2|,0]}.
Now, by (H4), ||[V1g(z, z)|| > ¢ for some ¢ > 0 depending only on «, therefore
S¢nS" c{h:cos(h,Vig(z,x)) € [-2K||x — z'||/c,0]}.

Then, using the spherical coordinates change of variable,

/ ¥ (|A])dh
Sens’

/2 w/2 +o0
< / / / / P30 (1) (1 01, O, )| drds . dOa_sdip,
TJ—7/2 0

—m/2

where T' = {0 € [—m,7] : cos@ € [-2K]|jxz — 2'||/¢,0]}, and J is the Jacobian
of the change of variable of spherical coordinates. It trivially follows from the
explicit development of the determinant that |J(r,01,...,04_2,0)] < dlrd=!
so (14) implies that for ||z — 2’| sufficiently small,

+oo
/S I (bl < /T / P2 () drdp
Cm/

-z arccos(—%”w—ﬁ”)
<C / d<p+/ dp
—arccos(—%”x—x’”) 5

2
K
< C?H‘T - 'rI”v

where the constant C' may change from line to line, and where we used the fact
that arccos is Lipschitz in the neighborhood of 0 for the last inequality. The
same estimate for the set S N S’ completes the proof of (i).

Proof of (ii) a is obviously symmetrical, and Vs = (sq,...,54) € R?, using
the symmetry of p(z, h)dh, an easy calculation (the second line is obtained by
the change of variable h’ = —h) shows that

s*a(x)s = /Rd(h -8)2[h - Vig(z, )] p(z, h)dh

= %/Rd(h'8)2|h'v19(55;3?)|p(33,h)dh.



This is non-negative for all s € R?, and is non zero if s # 0 and = ¢ I'. The fact
that o is Holder is a trivial consequence of Proposition 2.1 and of the fact that
a is Lipschitz, proved in (i).

Proof of (iii) Fixa >0,z € T, and s = (s1,...,54) € R% Denote by u
and v the unit vectors of R? such that s = ||s||u and Vig(z, ) = ||V1g(z, 2)|v.
Then

. 1
s*a(@)s = 5 ls|*IVig(z, z)] /Rd |- ul|h - vlp(z, dh)

> Cals|*IVig(z, 2)]

(17)

where C, is given by (H3), and it follows from (H4) that there exists some
¢ > 0 such that a(z) € S, for all x € T', (where S, has been defined in (9)),
i.e. I'y C I'.. Because of Proposition 2.1, it is now simple to prove that o is
Lipschitz on T',. O

3 Construction, uniqueness and strong Markov
property of X°

Since no standard method to prove uniqueness of solutions to SDEs applies
directly to our particular case, we will in this section construct a particular so-
lution, identify the difficulty for uniqueness and for the strong Markov property,
and give some conditions solving this difficulty, both in dimension d = 1, and
for greater dimensions.

3.1 Construction of a particular solution to (1)

Under assumptions (H1) and (H2), and assuming that points € X such that
Vig(z,z) = 0 are isolated in R%, the weak existence of solutions to the SDE (1)
in X' has been shown in [2] using an approximation technique. Since we can-
not show in general any uniqueness result for this SDE, let us give a precise
construction of the process that we will study in the rest of this paper.

Weak existence ensures that for all € > 0, there is a Brownian motion
(Qe, Fg, We,P¢), with respect to which can be constructed a solution X¢ to (1)

with given (random) initial state X € X'. Define the stopping time
T =inf{t > 0,X; €T'}.

Then X; = X}, is also a solution to (1): for any ¢ > 0, we can write
_ tAT tAT
Xe— X5 = X, +/ b (XE)ds + \/E/ o (XE)dW,
0 0
¢ ¢
=Xo+ / b (X5 )ds + \/5/ o(X5)dWs,
0 0

since, by (3), b(z) = b(x) = 0 and a(z) = 0 as soon as z € T.

Under additional assumptions (H2’), (H3) and (H4), by Proposition 2.2 (i)
and (iii), the coefficients o, b and b are Lipschitz on T'y, for any « > 0, so strong
existence and uniqueness of solutions to (1) hold for ¢t < 7, = inf{t > 0, X¢ &
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Ty} for any @ > 0, i.e. for ¢ < 7. This proves that Xcisa strong solution to (1)
on R,.

In the remaining of this paper, we will study this particular solution Xe.
Let us for convenience denote by X¢ this process.

3.2 Uniqueness and strong Markov property

No standard technique applies directly to prove the uniqueness in law of solu-
tions to (1). This comes from the fact that o degenerates at points of ', and
that b is not continuous at these points. Uniqueness is known to hold when only
one of these difficulties arises, but the combination of both of them leads to
great difficulties. Moreover, the strong Markov property for solutions to SDEs
is known to be linked to the uniqueness of solutions to the corresponding mar-
tingale problem. Here, we are only able to solve these questions under particular
assumptions.

Proposition 3.1 Assume (H1), (H2’), (H3) and (H}), and consider a Brow-
nian motion (Q, F, W, P). We have seen in the previous paragraph that there is
strong existence of a solution X< to (1) on (Q, F, W, P) with initial state x. Let
us denote by P, its law.

(a) Suppose that

Then, there is strong uniqueness of solutions to (1) with initial state x.

(b) For any Fi-stopping time S < 7, for anyt > 0, for any Borel set B C B(R?)
and for any x € X\ T,

P, (X5 € BIFs) = Pa(X5y, € BIXG). (19)

(c) Assume (18) for all x € X \T'. Then X¢ satisfies the strong Markov prop-
erty with respect to the canonical filtration (Fy,t > 0) associated to the
Brownian motion W.

Proof Let us first prove (a). Under assumptions (H1), (H2’), (H3) and (H4),
we have seen in the last paragraph that there is strong existence of X¢, and
that there is strong uniqueness of solutions to (1) with initial state = for ¢t < 7.
Since P, (7 = 00) = 1, this is actually true for ¢ € R.

Let us come to the proof of (b). Fix S < 7, ¢t > 0, B and z as in the
statement of (b). It follows from the fact that X¢ is constant after time 7
that (19) is equivalent to

P(X{syt)ar € BlFs) = f(X3) (20)

for some Lebesgue-measurable function f from R to R.
For any a > 0, let us define X5 as the strong solution to the SDE

X7 = (B(X]) + eba (X)) dt + VEou (X])dW,,

on (Q, F, W, P) with initial state =, where b, and o, are bounded and (globally)

Lipschitz functions on R? such that Va € Ty, ba(2) = b(z) and o4 (z) = o(z)
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(such functions exist since o and b are both Lipschitz on I'y). Note that, if
t<T1o=inf{t >0: X7 €T}, X;* = X{ P-as.

Since b, b and o, are bounded and Lipschitz, X“ is a strong Markov
process, so, for any a > 0, there is a Lebesgue-measurable function f, from R?
to [0, 1] such that

P(XCL, 0 € BIFs) = fulX5%).

(S+t)AT
Therefore,
P(r, > S, Xfé‘fmm € B|Fs) = 1{TQ>S}P(X(E§UAT € B|Fs) 21)
= 1(r.>51fa(X5)
Now, since, as « — 0, 7, — 7 > S a.s. and X(Eé(it)/\r — X(ES+t)/\‘r a.s., it follows

from the dominated convergence Theorem that

P(ra > 8, X(§\pr € BIFs) — P(X{s4pnr € BIFs) as.
when o — 0. For the same reason, 1y, <g1fa(Xg) — 0 as. when a — 0.
Combining these two facts in equation (21), it follows that f,(Xs) converges
almost surely to a function which is o(Xg)-measurable (as a limit of o(Xg)-
measurable function), and which is a.s. equal to P(XE_S-&-t)/\T € B|Fs). This
completes the proof of (20).

Finally, under the assumption (18), (c) is a trivial consequence of (b). O

3.3 The dimension 1 case

As we seen above, the uniqueness and the strong Markov property of X¢ rely
on the fact that P,(7 = oo) = 1. It is possible, in dimension d = 1, to give
conditions under which this is true. In this case, an elementary calculation gives
the following formulas for a, b and b:

ba) = 20, g )
i) = B oo, g, )02 g, 2)
a(z) = 22915, 4(0, ),

2
where Mk(x):/\h|kp(x, h)dh
R

-1 ifx<0
and sign(z) =<0 ifz=0
1 if x >0,

where 9;g(z, ) denotes the partial derivative of g(z,y) with respect to the ith
variable, and 97 ;9(w, ) the second partial derivative of g(,y) with respect to

the i*? and j*" variables (i,j = 1 or 2).

Theorem 3.1 Assume (H1), (H2), that d = 1, and that g is C3 with bounded
third-order derivatives. Let X¢ be a solution to (1) starting at x & T'. Define

12



c=sup{y € T,y <z}, ¢ =inf{y € T,y > x}, and let T be the stopping time
inf{t > 0,X° € I'} = inf{t > 0,X° € {c,'}}. Assume that ¢ and ¢ do not
belong to DX, that —oo < ¢ < ¢/ < o0, and that 93 1 g(c,c) + 8% 59(c,c) # 0 and
7 19(c, )+ 07 29(¢, ) # 0. Then we can define

o 81 19(c, ) _ 281 19(c,¢)
. 5% 19(c,c) + a1 29(c,¢) 8%19(C ) — a2 29(c,¢) (22)
81 19(c, ) 2‘91 19(c, )

O (@) + O pa(@nd) B a(@n) — g )

These equalities follow from the fact that 0% 19+ 203 29+ 822729 =0, obtained by
differentiating equation (2). Then, we distznguzsh four cases:

(a) Ifa>1 and 8 < —1, then P(7 = 0c0) = 1 and the process X* is recurrent
in (c,c).

(b) Ifa>1 and B > —1, then P(r < 00) =1 and P(lim;—, X{ =) = 1.
(¢) Ifa<1and B < —1, then P(1 < o0) =1 and P(lim;_, X7 =¢) = 1.

(d) Ifa <1 and B > —1, then P(t < c0) = 1, P(limy_,, X§ = ¢) > 0 and
P(limy_, X{ = ¢) = 1 — P(limy_, X{ = ¢) > 0.

Remark 3.1 The conditions 95 1g(c,c) + 97 59(c,c) # 0 and 07 19(¢,¢) +
97 29(c',¢') # 0 are only technical. A higher order calculation is possible if
one of them does not hold.

Remark 3.2 When ¢ = —oco or ¢ = oo, the calculation below depends on
technical properties of g and My, and no simple general result can be stated.

Remark 3.3 The biological theory of adaptive dynamics gives a classification
of evolutionary singularities, depending on the values of 81 19 and 82 29 at these
points. Here, the condition o > 1 corresponds, when 9% 1g(c c)—05 29(6 c) >0,
to the case 07 1g(c,c) + 05 59(c,¢) > 0, which corresponds in the biological ter-
minology (see e.g. Diekmann [6]) to a converging stable strategy with mutual
invasibility, which includes the evolutionary branching condition; and when
9% 19(c, ¢) — 03 99(c,¢) <0, to the case 9% 1g(c,c) + 03 ,g(c,¢) <0, which corre-
sponds biologically to a repelling strategy without mutual invasibility.

Proof of Theorem 3.1 We will here use the classical methods of removal of
drift of Engelbert and Schmidt and the explosion criterion of Feller (see Karatzas
and Shreve [10]). They can be applied to X ¢, considered as a process with value
in (¢, ¢’) killed when it reaches ¢ or ¢, under the following assumptions, obviously
fulfilled by our process:

Vz € (c,c), o(z) >0,

x+0 &
1+ 1b
and Vz € (¢,c’), 3§ > 0 such that / L+ )l

dy < oo.
w5 €02(Y)
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These methods involve the two following functions, defined for a fixed v € (¢, ¢’):

p(z) = L exp {z/f bw(jzzﬂ dy, Yz € (c,c),

v, Y 2dz ,
and v(zx) :L D (y)[/ mdy, Vo € (¢, ).

Then, as can be seen in [10] pp. 345 (Proposition 5.5.22), 348 (Theo-
rem 5.5.29) and 351 (Proposition 5.5.32), the statements about the limit of
the process X; when t — 7 and about the recurrence of X¢ depend on whether
p(z) is finite or not when z — ¢ and ¢’ (point (a) corresponds to p(c+) = —co
and p(¢’—) = 400, point (b) to p(c+) = —oco and p(c¢'—) < +o0, ete...), and
the statements about 7 depends on whether v(z) < 0o or not when  — ¢ and
¢ (P(r = 00) = 1 if and only if v(c+) = v(d'—) = o0, and P(1 < 00) = 1 if
and only if v(c+) < oo and v(¢'—) < o0, or v(c+) < oo and p(¢'—) = 400, or
v(c'=) < 00 and p(c+) = —o0).

So let us compute these limits.

(23)

F(x)  bF(x)  Ma(r) | 107 19(x, )
eo?(z)  ea(r) eMs(x) sign(Ovg(z, )] + 2 Oig(x,x)

(24)

So, for x < y < 7, the quantity inside the exponential appearing in the definition
of p writes

Y 2M(2) T 089(2 2)
/y 6M3(2)51gn[81g(z,z)]dz—|— ’ Ong(z.2)

Since ¢ & OX, the first term is bounded for ¢ < y < v (by assumption (H2),
M3 is positive and continuous on [¢,7], so it is bounded away of 0 on this

07,19(2,2)

interval), so we only have to study the second term. When y — ¢, 59

8%,19(@0) _
(2=¢)(87 1 9(c,0)+87 »g(c.c)) z—c’

v 52 v
/ Oia9(2,2) | / 2 _dz = —a(log(y — ¢) — log(y — ¢)).
y Y

0g(z,2) z—c

Consequently,

So, if a # 0, when y — ¢,

exp [2 /j b;(jzjﬂ = exp|[—alog(y — ¢)(1 4 o(1))] = (y — ¢) "+,

p(x) has a finite limit when & — ¢ if and only if the integral of the quantity
above on (c,7) is convergent. So, if a < 1, p(c+) > —oo (the case o = 0 leads
obviously to a finite integral), and if & > 1, p(c+) = —oo. The case a@ =1

a%,lg(zvz)
19(2,2)

depends on a development of to a higher order. An easy computation,

shows that when o = 1,

a%,lg(za Z) o 1 B 8?,1,29(@ C) —+ 8%,2,29(67 C)

gz7) x 5 9(er0) ol
so that
oy Vb (z)dz] B eCto(d)
P =exp |2 [T EEE] = explotosty — )+ C o) = S 29)
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which gives an infinite value to p(c+).

The same computation gives the required result when = — ¢'.

Now let us compute the limit of v at ¢ and ¢’. Since p(¢'—) = 00 = v(d'—) =
oo and p(c+) = —o0o = v(c+) = oo (see [10] page 348), we only have to deal
with the cases a < 1 and § > —1.

The higher-order estimation (25) above can be obtained for any value of «,

and gives
Y e (2)dz eCto®)
/
p'(y) = exp [—2/ } = = (26)
L @] w0
so, for some constant C'
2 a—1
Ea " ETIT
since
M;(z M;s(c
() = B gig (e, 2 ~ MY 2 g(e0) 4 Ragle oz -0 @20)

If @ <0, when y — ¢, p'(y) ; #‘%(z) ~ —Cp'(y)(y — ¢)* is bounded on

(c,7) by (26), and so v(c+) < oco. If @ = 0, p'(y) JEP,(de% ~ Clog(y — o),
which has a finite integral on (¢,7), so v(c+) < oco. Finally, if 0 < a < 1,

724z s hounded, so v(c+) < oo is equivalent to the convergence of the

y ep’(2)a(z)
integral fz 9’ (y)dy, which holds since p’(y) ~ and o < 1. O

_C
(y—a)>

In the case where ¢ or ¢ belong to 9X, what changes in the calculation
above? Assume for example that ¢ € 0X. The problem is that My(z) and
M3(z) are not bounded away from zero in the neighborhood of ¢. Indeed, the
support of p(z, h)dh is a subset of X — x which is symmetrical with respect to
0, so it is a subset of (—(z — ¢),x — ¢), which converges to {0} when z — ¢. So

the quantity 2%&) = Mz(z)

aG) = sMg(m)sig:,fn[alg(av,x)] appearing in the equation (24) may
not be bounded in the neighborhood of c.
If x € X, the support of p(z,h)dh is a subset of (—(z — ¢),x — ¢), so

[ |k]*p(z, h)dh < (z — ¢) [ |h|*p(z, h)dh, i.e.

MQ(JZ) 1
M;(2) = r—c

Since I' N (¢, ¢’) = 0, the sign of d1g(x,z) is constant on (c,c’), equal to the
sign of 07 1g(c, ¢) + 87 59(c,¢) (by expanding d1g(z,z) in the neighborhood of
¢), that is not null by assumption. Let us call s this sign.

If s = +1, then, for ¢ < y < 7, there is a constant C' > 0 such that

2 (7 My(z) . C
exp [g /y Vs (2) sign[o1g(z, 2)|dz| > o

Combining this fact with the estimations obtained in the proof of Theorem 3.1

2
for the term al'lg(z’z), we see that

019(z,2)

Y b2 (2)dz C
/
P'(y) = exp {2/ } > ) (28)
L @) ] T e
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and we finally obtain that p(c+) > —oco if a4+ 2 < 1.

In the case where s = —1, we obtain
Y be(2)dz C
/ -2 < 29
p (y) eXp |: /y 60'2(2) :l - (y _ c)a—?/f:" ( )

and so p(c+) = —c0 if a — 2 > 1.
Observe that if, for example,

Elp > 0, << 1, Vz € X, p(x,h) > p]-B(Oﬁ(m—c)); (30)
we easily obtain that %2%3 > ﬁc, and, consequently, the converse inequalities

in (28) and (29) hold. So, under this assumption, if s = +1, p(c+) > —c0 <
aJr% <1, andifs:fl,p(c+)>foo<ﬁ>af§<1.

Concerning the limit of the function v at ¢, observe that assumption (H2)
implies that M3 is a Lipschitz function, so there is some constant K such that
M;3(z) < K(z — ¢). In equation (27), this gives that a(z) < C(z — ¢)? for some
constant C.

Then, in the case s = +1, if we assume (30), we obtain

> _ (x—2+2/a'
e - CF T

Thus, if a+2/e < 1,

/( )/A/ 2dZ > C _ Cl
PW | ep@alz) = y—oor2e  y—c

so the first term of the right-hand side has a finite integral on (c¢,7v), and the
second term has a divergent integral, so v(c+) = oo.

In the case where s = —1, the same calculation can be made replacing a+2/¢
by a —2/e, and gives that v(c+) = oo when o — 2/ < 1.

Let us collect all these results in the following theorem:

Theorem 3.2 With the same notations and assumptions as in Theorem 3.1,
except that ¢ € OX and ¢ & OX, and with the notation s = sign[d7 1g(c, c) +
6%,29(07 C)]’

(a) If s=—1, a—2/e > 1 and B < —1, then the process X¢ is recurrent in
(¢,c). The same holds if s = 1, a+2/e > 1 and f < —1, under the
additional assumption (30). In both cases, P(T = 00) = 1.

(b) If s=—-1,a—2/e > 1 and § > —1, then P(limy_, X{ = ) = 1. The
same holds if s = 1, a +2/e > 1 and B > —1, under the additional
assumption (30). In both cases, P(T < 00) = 1.

(¢) If s=1, a+2/e <1 and < —1, then P(lim;—,, X7 = ¢) = 1. The
same holds if s = —1, a —2/e > 1 and 8 < —1, under the additional
assumption (30). In both cases, under assumption (30), P(t = o0) = 1.

A Ifs=1 a+2/e <1and p > —1, then P(lim;_, X; = ¢) > 0 and
P(lim, X{ = ) = 1 - P(limy—,, X; = ¢) > 0. The same holds if
s=—1,a—2/e>1 and B > —1, under the additional assumption (30).
In both cases, 0 < P(1 < 00) < 1.
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Remark 3.4 A similar result can be stated in the case where ¢ ¢ 0X and
c € OX, and in the case where ¢ and ¢’ are both in OX.

3.4 The dimension d > 2 case

Let us turn now to the case d > 2. If we restrict ourselves to the case X = Rd,
it is possible to give conditions under which P,(7 = oco) = 1, based on a
comparison of d(X¢,T) with Bessel processes:

Theorem 3.3 Assume (H1), (H2’), (H3), (H}), that X = R?, that g is C* on
R? x R? and that the points of T are isolated. Let T denote the stopping time
inf{t > 0,X; € T'}. For anyy €T, let U, be a neighborhood y, and take two
constants a¥ > 0 and a, > 0 such that a is a¥-Lipschitz on U, with respect to the
spectral norm || - ||, and such that Vx € Uy, Vv € R%, s*a(x)s > ay||s||?||z — y]|-
Define also

b= inf —— Y px)
zet,\{y} ||z — ¥

y =
and B = sup Ty <b(x).
zeUy \{y} |z =yl

Then

(a) If for any y € T, B“‘j# > 1, then, for any x ¢ T, P,(1 = 00) = 1 and
P,( lim X el)=0.

(b) If there exists y € T such that I;y*_fﬂ < 1, then, Py(lim;—,, X§ =y) >0
for any x € T.

Remark 3.5 In the case where X # R?, the method of this proof applies only
in the case where x +— d(z,0X) is C* on {x € X : d(x,0X) < a} for some a > 0
(this holds in particular when OX is compact and C?). This gives conditions for
P(7 = o0) = 1 involving sharp constants governing the behaviour of a, b and b

near 0X.

Before proving Theorem 3.3, let us give some bounds for the constants in-
volved in this Theorem:

Proposition 3.2 Assume (H1), (H2), (H3), that X = R%, that g is C*> on
R? x R? and that the points of I are isolated. Fizy € T, and fir o > 0 such
that B(y,a) NT' = {y}. Define

C= inf /|h ~ul?|h - v|p(x, h)dh.

u,wER: ||ull=lv]|=1
C > 0 by (H3). Let M3 be a bound for the third-order moment of p(x,h)dh
on X, gwen by (H2). Denote by D the differential H119(y,y) + H1,29(y,y) of
z+— Vig(z,x) aty and denote by AV (resp. Ay, ) the greatest (resp. the smallest)

eigenvalue of D*D. Observe that \Y > Xy, > 0 (D*D is a positive symmetrical
matriz), and that Ay > 0 if and only if the kernel of D is {0}. Suppose that this
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is true. Then, for any 0 > 0 there exists a neighborhood Uy, of y such that, in
the statement of Theorem 3.8, we can take

a¥ = MzVAY +6, a,=C\/\, 9,

- M - M,
< 73||H17lg(y,y)|| +46 and b, > 773||H1,19(y7y)|| -0

Remark 3.6 There are cases where I;y > 0. This holds for erxample when
D = cld for some constant ¢ > 0 and H119(y,y) is a positive symmetrical
matriz, or D = —cld and H119(y,y) is a negative matriz (and also for cases
sufficiently close to these two ones). These facts will appear clearly in the proof
of Proposition 3.2.

Proof of Proposition 3.2 Let us begin with 5 and l~)y: it follows from the
definition (3) of b that for x # y,

T—y - T —y
7Y ) :/ <— . h) (h* Hy1g(w, 2)h)p(z, h)dh, (31)
] om0y \Io vl Lt (

and, because of (H1), the quantity inside the integral can be bounded by
IRIP [ H1,19(y, )] + O(llz — yl)]p(z, k). So

rT—y =
— - b(z) < [[Hi,19(y, y) || + O(||z — y||)]/ |1alPp(a, h)dh
||CE y” {Vig(z,z)-h>0}

= 2219w, )|+ Oz~ )]

Hence, for any § > 0, b¥ can be made smaller than %HHng(y,y)H + 0 if
we choose U, sufficiently small. Similarly, b, > — s ||Hy 19y, y)|| — 6 if Uy, is
sufficiently small.

To prove Remark 3.6, is suffices to notice that, if Hy 1¢(y,y) is symmetrical
positive, the quantity inside the integral (31) is positive for all h such that
(z—y)-h >0, and that D = cId implies that Vyg(z,x) ~ ¢(x —y) when x — y.
So the set {Vig(z,z)-h > 0} \ {(z —y) - h > 0} converges to (), and we can
conclude thanks to the dominated convergence Theorem.

It follows from equation (17) in the proof of Proposition 2.2, that Vs € R?
and Yz € R?

Clsl*IVig(z, 2)|| < s™a(z)s < Ms]ls|*|[Vig(z, 2)]].
Considering an orthonormal basis of R? in which D* D is diagonal, one can easily
see that Ay |[v[|2 < ||Dv||?> = v D*Dv < X|jv||? for any v € RY. It remains to
observe that Vig(z,x) ~ D(z — y) when = — y to obtain the required bounds
for a¥ and a,,. |

Proof of Theorem 3.3 Fix y € I'. It will be more convenient in this proof
to reduce, by translation, to the case y = 0. By assumption, to this point of T’
is associated a neighborhood Uy of 0 and four constants ag > 0, a® > 0, by and
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b°. A standard computation using the It6 formula gives that V¢ < 7,

10 =l + g | X5 009 + 282

E (XE)*
2 Xzl

€
S

a(XE)

€
+ =Tr(a(X?)) —
2 X5l

dS + Mt,

where

— Ve / aw,,
\Xan

and where Tr is the trace operator on d x d matrices. Since b(0) = b(0) = a(0) =
0 (0 € T'), this relation is in fact true for all ¢ > 0, if we intend that the products
oo x 0 appearing inside the integrals are 0.

Since o is bounded, M; is a L2-martingale in R with quadratic variation

¢

(X5) X3

(M) = 5/ a(X3) ds. (32)
o [IX5 X5

It follows from the Dubins-Schwartz Theorem that for any ¢t > 0, M; = Byyy,,

where B is a one-dimensional Brownian motion. Because of Proposition 2.2 (ii),

(M) is strictly increasing for ¢t < 7, constant after 7, and it is C! on [0, 7) with

bounded derivative € HXE)H a(XZ) ”X:”

Define the time change T3 = inf{s > 0 : (M)s > t} for all ¢t > 0. If
t < (Moo = lims_,0o (M), then Ty < 0o and (M)r, =t. For t < (M), define
Y; = X7,. An easy change of variable shows that for ¢t < (M),

t
il =llel + [ e(¥.)ds + B
0

where
2 (b(2) + €b(2)) 4 Tr(a(z))/2 1

ez*a(z2)z 2z

c(z) = |-l

Using the constants defined in the statement of Theorem 3.3, the fact that b is
K-Lipschitz on R?, and the fact that Tr(a) = Zd erae;, where e; is the ith

i=1%
vector of the canonical basis of R?, one easily obtains that, for z € Uy,

vz € RY, er(llz]) < e(2) < ea(ll2]),

where, for u > 0,

dag+by 1)1 2K

Cl(u): Tfi -
040 1)1 2K

and co(u) = <7da +b - 5) + —

ao u  e€ag

Let p be small enough for B(p) := {z € R?: ||lz|| < p} C Uy and TN B(2p) =

{0} to hold, and define 7, := inf{t > 0: || X[| = p} and 7o = inf{t > 0: X} =
0}. We intend to prove the following lemma.
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Lemma 3.1
(a) Ifb”"’ff+/2 > 1, then, for all z € B(p) \ {0}, P,(1, < 70) = 1.

(b) If BOJFZ# < 1, then, there exists a constant ¢ > 0 such that, for all v €
B(p/2)\ {0}, Po({mo < 7,} U{m9 =T, = 00 and lim;_, o X7 =0}) > c.

Together with the incomplete strong Markov property of Proposition 3.1 (b),
part (a) of this lemma easily implies Theorem 3.3 (a), and part (b) implies
Theorem 3.3 (b) if we can prove that for any 2 € X'\ T', P,(7,/2 < 00) > 0.
This can be proved as follows.

Fix v € X \TI. If x € B(p/2), there is nothing to prove, so let us assume
that = ¢ B(p/2), and let a < d(x,T) A (p/4). Let ¢ be a C! function from
an interval [0,7] to T',, such that ¢(0) = = and ||¢(T)|| = «. Remember the
definition of the process X=%/2 in the proof of Proposition 3.1. This process
has uniformly Lipschitz and bounded drift and diffusion parts, and its diffusion
part is uniformly non-degenerate. It is well-known that, for such a process,
P.(]|X5%? — ¢|lor < a/2) > 0 (this can be seen as a consequence of the
Girsanov’s formula). Since Xf’a/z = X¥ for any ¢t < inf{t > 0:d(X}) < a/2},
this implies that P, (3t € [0,T] : X§ € B(3a/2)) > 0, which yields P, (7,/2 <
o0) > 0, as required. a

Proof of Lemma 3.1 Define the processes Z! and Z? strong solutions in
(0,00) to the SDEs

t
Zi=lall+ [ e(Zds + B
0

for i = 1,2, and stopped when they reach 0. As strong solutions, these processes
can be constructed on the same probability space than X¢ (and Y'). Define also
the stopping times (remind that Y; is defined only for ¢ < (M))

6, = inf{t > 0: |[Yil| = p} A (M),
Op=inf{t >0:Y; =0} AN M),
fori=1,2, 0" =inf{t >0:2" =0}
and 60" =inf{t >0: 2" = p}.
It follows from the definition of Y that Tp, = 7, and Ty, = 79. Then

Lemma 3.2 Almost surely, Vt < 0,, Z* < ||Y;|| < Z}.

Proof of Lemma 3.2 Observe that for ¢t < 6, A o1,

il -z} = / (e(¥) — e1(21))ds.

If there exists o € (0,6, A 6') such that ||Yy, || = Z}, then (|Y]| — Z') (o) =
c(Yy,) —c1(Z}) = e(Vi,) — e1([|Ysol]) > 0, and therefore, ||| > Z} for t > g
in a neighborhood of ¢y. Consequently, Z} < ||Y;|| for any ¢ < 6, A 6'. Since
Z} = 0 for t > 7, this inequality holds for ¢ < 6,. The proof of the other

inequality is similar. O

The processes Z' and Z? are Bessel processes with an additional drift, and
we can actually prove that
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Lemma 3.3 ~
(a) Z! is recurrent in (0, +oc0) if and only if %{f"ﬂ > 1.

(b) P(6% < 00) > 0 if and only jfw <1

0

Proof of Lemma 3.3 The proof relies on the same functions p and v than in
the proof of Theorem 3.1. They are defined by equation (23), where b° has to
be replaced in our case by ¢;, and a by 1. For the process Z!, if we fix v > 0,

then, for any x > 0,
y u
= [ oo [2 [ o]
¥ ¥

K 7 dz / T ok ku
=— | exp|2k — —kK(y—u)|du=-C [ u =" “du,
y u ? Yy

where we have used the constants k = Bﬁj# — % and k' = %. Consequently,
p(04+) = —oo if and only if 2k > 1, and p(4+00) = +oo, which yields (a). A
70 0
similar computation for Z?2 gives that p(0+) > —occ if and only if W <1,
which completes the proof of Lemma 3.3. 1

We are now able to prove Lemma 3.1. Assume first that EOJFZ# > 1, and
fix x € B(p) \ {0}. Then, by Lemma 3.3 (a), ' = co a.s. and there exists a.s.
t < oo such that Z} = p. Therefore, Lemma 3.1 (a) follows from the fact that,
by Lemma 3.2, Vt > 0, ||X%<M>t Il =11X5] > HZ(lM)tH'

The proof of Lemma 3.1 (b) is more delicate. Fix = € B(p/2) and assume

that % < 1. Define A = {1y < 7,} U {10 =7, = 00 and limy_ 4, X{ =
0}. First, it is sufficient to prove that P,(A) > P, (6% < 627). Indeed, if, for
u > 0, P, is the law of Z? with initial state u, then, since Z? is strong Markov,
P, (07 < 60%r) = P, (62 < 6%F) is greater than P, /(6% < 6*7). This is, by
Lemma 3.3 (b), a positive constant which can be taken as the positive constant
¢ involved in Lemma 3.1 (b).

So, let us prove that P,(A) > P,(0* < 6*°). The set {#? < 6>} can be
decomposed as BU C U D, where

B = {0 < 6*" and (M), = <},
C = {92 < 02”)3 <M>oo < oo and thm Xf = O}

and D ={6? < 6*", (M) < oo and Ja > 0, limsup || X > a}.
t—oo

We will prove that BUC C A, and that P(D) = 0, which will complete the
proof of Theorem 3.3.

Observe first that, by Lemma 3.2, 82 < 6%* implies that, for all t > 0,
IXE1 = 1Yy, Il < HZ<2M>t|| < p (the problem is actually to prove 6% < (M),
a.s.). This implies easily that B C {rp < 7,} C A and that C' C A.

Now, let us assume that P(D) > 0. Then, there exists o > 0 such that

§:=P(0? < 0*°, (M) < oo, limsup || X > a) > 0.
t—oo
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Define for any ¢ > 0 the stopping time 7, ¢ = inf{s > ¢ : || X5|| > a}. For any
t>0,P(0? <0?P, (M)s < 0, Tar <o) > 3. Then

Vt >0, 3T < 00, P(6? < %P, (M) < 00, Tar <T) >6/2.

We will obtain a contradiction from this statement thanks to the following
lemma:

Lemma 3.4 Given an a.s. finite stopping time S, and e < 1, for any h € (0,1)

B [ sup || X5, —X§||2] < 1002,
O<u<h

where C' is a bound for b, b and o on X.

Proof of Lemma 3.4 This is a straightforward consequence of the inequality
2

2
S+u _ S+u
1X5 4. — X5I1* <2 (/ 16(X3) +€b(X§)IIdS> +2Ve / o(X3)dWs
S S

and of Doob’s inequality. |

Set h = 6a?/160C2. Then, it follows from Lemma 3.4 and Tchebichev’s
inequality that for any a.s. finite stopping time S

P sw X5, - X31>5) <5
0<u<h

This inequality applied to the finite stopping time 7, + A T yields the first line

of the following inequality, and its forth line makes use of a constant C > 0

such that s*a(z)s > C||s|? for any s € R? and z € T » (given by Proposi-

tion 2.2 (iii)) and of the formula (32) for (M).

)
<P (92 <0%P, M)y < 0, Tap <T, sup || XZ  pi,— Xﬁ(mAT” < %)

Z N 0<u<h
@
<P (92 <O, (M) <00, sup X5 ., —X: < 5)
O<u<h
2 2, . . @
<P (0 <0 (M) o0 17l > 5 )
S P (<M>OO < 0, <M>Ta.t+h - <M>7'a,t Z ECh) :
So 5
P((M)s <00, (M)oo — (M); >eCh) > 1
holds for any ¢ > 0, which is impossible. O

4 Large deviations for X as ¢ — 0

This result will be obtained using a transfer technique to carry the LDP from
the family {\/eW }.~¢, where W is a standard d-dimensional Brownian motion
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(Schilder’s Theorem, see for example Dembo and Zeitouni [3]) to the family
{X¢}es0, where X© is the solution to the SDE (1) defined in section 3.1. The
method of the proof, adapted from Doss and Priouret [7], consists in obtaining
a function S that maps in some sense the paths of \/eWW on the corresponding
paths of X¢ when ¢ is small.

4.1 Statement of the result

Let us first recall Shilder’s Theorem:

Theorem 4.1 Let W be a d-dimensional standard Brownian motion. Then,
given T > 0, the family of processes {/eW }eso satisfies a large deviation prin-

ciple on C([0, T], R?) equipped with the uniform norm ||-|lo.7 defined in (7), with
good rate function (i.e. lower semicontinuous with compact level sets)

LTy 2 ; ac d
Jr(p) :{ 3]0 le(@)I*dt if o € Ce([0,T],RY)
0o otherwise,

where ¢ denotes the derivative of ¢. Namely, for any open subset O and closed
subset C of C([0,T],R%),

liminfe InP(veW € O) > — inf Jr(p)
e—0 peO

and limsupeInP(y/eW € O) < — 122 Jr(p).
©

e—0

Let us now give the expression of the rate function involved in our result.
Fix T'> 0 and z € X, and define

v € C([0,T],X), ty=inf{tc[0,T]:¢(t) eT}AT
and  C2°([0,T],X) = {4 € C2([0,T], X) constant on [t,, T]}.
Then, we can define for ¢ € C([0,T], X)

! / " Ri(t) — b ()] a @) () — b(eb(e)))dt

2
if ¢ eCee([0,T],X)
+00 otherwise.

Ir.(¥) = (33)

The inverse matrix a~!(z) of a(x) is, by Proposition 2.2 (ii), defined for = ¢ T,
so the quantity inside the integral is well defined. Moreover, since a(z) is a
non-negative symmetrical matrix, this quantity is positive, so the integral is
well-defined and Iy, (1) belongs to Ry U {+o00}. When t, =T, It () takes
the classical form of rate functions for diffusion processes. Note also that b does
not appear in these expressions. This comes from the fact that ° uniformly
converges to b when € — 0.
Now, we can state

Theorem 4.2 Assume (H1), (H2), (H3) and (H4). Suppose also that the points
x € X such that Vig(x,2) = 0 are isolated points of RY. For any y € X, let
{X¥}eso be the solution to (1) with initial state y constructed in section 3.1,
and let Py, denote its law. FixT >0 and x € X. Then, for any open subset O of
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€ ([0,T), X), and for any closed subset C' of C ([0,T], X) such that CL([0,T], X\
') is dense in C NC,([0,T], X),

liminf enP;(0) = hmlnf elnP(X%¥ € 0) > — inf Iy, (¢) (34)

e—0,y—x —0,y—z PeOo
limsup eInP(C) = limsup e nP(X*¥ € C) < — inf ITw(z/J) (35)
e—=0,y—z e—0,y—x pe

Remark 4.1 If we take y = x in (84) and (35), we recover the classical form
of large deviations bounds. The more general form of Theorem 4.2 is necessary
to handle the problem of exit from a domain of section 5.

Remark 4.2 Since we cannot prove that the upper bound holds for any closed
set C', Theorem 4.2 is actually an incomplete large deviation principle. This
comes from the degeneracy of a at points of I' and the fact that o is not Lipschitz
near I'. Note also that the fact that the process X< stays constant when it reaches
T" plays an important role in the proof. Yet, let us emphasize that the condition
on C' that we obtain covers all the closed sets of interest in the usual applications
of large deviations (in particular the closed sets involved in the problem of exit
from a domain, see section 5).

Before proving this theorem, let us prove two corollaries. The first one will
be useful in section 5:

Corollary 4.1 Assume the conditions of Theorem 4.2. Then, for any compact
set K C X, for any open O C C([0,T], X), and for any closed C C C([0,T], X)
such that for any y € K, CL([0,T], X \T) is dense in C N C,([0,T],X),

o : ey _
llgl_}(r)lfeln ylglf(P(X € 0) > —sup inf I, (¢),

yeK €O
and limsupelnsup P(X*Y € C — inf T .
msupzinsup PXY € C) < = _int Iz, (1)

This result can be easily deduced from Theorem 4.2 (for details, see the proof
of Corollary 5.6.15 in Dembo and Zeitouni [3]).

The second corollary of Theorem 4.2 states that X© converges as ¢ — 0 to a
deterministic function, solution to a differential equation called in the biological
litterature canonical equation of adaptive dynamics (see [5] and [14]).

Corollary 4.2 Assume the conditions of Theorem 4.2. Then, for any T > 0
and x € X, X5 converges in probability as ¢ — 0 to the solution ¢ of ¢ = b(¢)
with initial state x on [0,T].

Proof of Corollary 4.2 This follows immediately from (35) applied to the
set Cp, = {¢ : | — dllo,r > n} for n > 0 (where || - ||4,» has been defined in (7)),
if we can prove that infyec, I7,(¥) > 0 for each > 0. This can be proved as
below:

For any ¢ € C, such that Iy r(¢) < oo, there exists t € [0,7] such that
e — ¢¢]l > n. Note that ¢ (resp. 1) is constant after the time ¢y (resp.
ty) where it reaches I', and that b(x) = 0 for x € I'. Note also that, by
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Proposition 2.2 (i), there exists K > 0 such that b is K-Lipschitz, and a is
bounded by K on X. The Cauchy-Schwartz inequality yields

o= onf? <2 [ " (= b AR 2
<or / s+ 21 [ 10G60) ot
< 20 [ = b e )~ b))
it l6e — al2ds
< Stratw)2ri [ 16e — ulPds,
and, by Gronwall’s Lemma, Ir,(¢) > Kn2e 27°K* /27 > 0. 0

Finally, let us make observations about the lower semicontinuity of Ir .
Define, when d > 2,

T
] 3 | Lewenld) - o) a W) - Huo)d
I () = 0 if e C([0,7],X)
+o00 otherwise,

(36)
and when d = 1, define I:Tz by the same formula, except that the condition
P e Cxe([0, T, X) is replaced by v € €2¢([0,T), C,.), where C,, is the connected
component of X \ I" containing x.

Define also for v > 0

®(u) = {p € Co([0, T],R) : Jr(p) < u} (37)
U(u) = {y € Co([0, 7], X) : Ira () < u} (38)
U(u) = {¢ € Co([0, 7], X) : I12(¥) < u} (39)

Note that Schilder’s Theorem (Theorem 4.1) implies that ®(u) is compact for
any u > 0. Then

Proposition 4.1 Assume the conditions of Theorem 4.2. Then, for any u > 0,
(u) is closed (i.e. It is lower semicontinuous), and W(u) C U(u). Assume
additionally that there exists an isolated point y of I such that g is C? at y, and
the differential D = Hy19(y,y) + H129(y,y) of x — Vig(z,z) at y has a null
kernel. Then, if x ¢ T, U(u) G ¥(u), and so Ir, is not lower semicontinuous.

Remark 4.3 It is always possible to obtain a large deviation principle with
a rate function (lower semincontinuous) from a large deviation principle with
a non-lower semincontinuous “rate” function: if we define the function I,

by Ir.(v) = lim infd;_w IT@(l;), it is easy to prove that It is lower semi-
continuous, that It, < Ir., and that for any open set O in C.([0,T], X),
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infyeo I7.(¢) = infyeo It (). So (34) and (35) hold with Ir, instead of
It .

Proposition 4.1 shows that I~Tﬁz s a good candidate for IfT_,z, since jT,:c <Ir,
and I~T7x is lower semicontinuous. Unfortunately, we are not able to prove that,
for any open set O in Cp([0,T],X), infyeco Ir..(¢) = infyeo I (). This is
actually equivalent to the equality W(u) = U(u). Whether this is true or not is
not clear.

Proof of Proposition 4.1 Proposition 4.1 relies on the following lemma,
which is Proposition 3.1 of Doss and Priouret [7]:

Lemma 4.1 Let 6 be a bounded and Lipschitz function from R? to S, for some
c >0, and let b be a bounded and Lipschitz function from R? to R. Define Iy
on C*([0,T],R?) as follows:

T
Ir(¢) = —/0 [9(8) = b ()" a™ () [() — b(w())]dt,

where & = 66*. Then Ir is lower semicontinuous on C*([0,T],R%) for the
norm of uniform convergence. Moreover, for any compact set K and positive u,
{1 € C([0,T],R?) : I7(vp) < u,9(0) € K} is compact.

Let (1) be a sequence of functions of W(u) uniformly converging to a func-
tion 1 € C,([0,T], X). Note that, in the case where d = 1, since INT@.(zbn) <u
implies that 1, € C2¢([0,T], C), we actually have v € C2¢([0,T], C,).

For any § > 0, define K5 = {t € [0,T] : d(t,{t € [0,T] : ¢(t) € T'}) > 6}.
K5 is a compact set, made of a finite union of intervals (since between each
interval, there is at least a distance of 24). By compactness, there exists o > 0
such that, for all t € Ky, d(1(¢),T') > a. Consequently, for n sufficiently large,
d(¥,(t),T) > a/2 for all t € K. Define @ = a + xId with x Lipschitz, x = 0 on
Iyj2, and x =1 on I'y 4. Then, by Proposition 2.2 (i) and (iii), G is Lipschitz
and uniformly non-degenerate and b is Lipschitz, and, therefore, 6 = ((a) and
b=1b satisfy the assumptions of Lemma 4.1.

Let [s,t] be a maximal interval included in Ks. Since & = o on Iy o, if we
replace [0,T] by [s,t] in the statement of Lemma 4.1, we obtain

1

5/5 [$(v) = b(ep(v)]*a™ ($(v))[$(v) = b(s(v))]dv

<timint 5 [ [ (0) = Ben(0)]"a Wn(0) a(0) = b (0)]do:

Consequently,

1 x —1
g/Ké[w(v) = b(yp(v))"a” (¥ (v) ¥ (v) = b(¥(v))]dv

< lim inf% [ (0) = b(¥n (0))]*a™" (¥ (0)) [ (v) = bR (v)]dv < u.

Ks
Finally, since Kj converges to {t € [0,T] : ¥(t) ¢ I'} when § — 0, it follows
from the monotone convergence Theorem that

1

It . () = —/ [Y(v) = b(yp(v))]*a™ (¥ (v) [P (v) — b (v))]dv < u,
2 Jywgr
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and, therefore, ¥(u) is closed.

Since I, < I, this implies immediately that ¥(u) C W(u).

Now assume that x ¢ I' and that there exists an isolated point y of T’
such that g is C? at y, and the differential D = Hy19(y,y) + Hi,29(y,y) of
x — Vig(xz,z) at y has a null kernel. By translation, we can suppose that
y = 0. Then, Proposition 3.2 implies that there exists a neighborhood Ny of 0
and a constant ag > 0 such that for all s € R? and z € N, s*a(x)s > agl|z||||s]|,
i.e. each eigenvalue of a(z) is greater than ag||z||. Therefore, for all s € R? and

.IEN(),

N s
s*a” (z)s < (40)
ao [z
Firstly, take zp € X \ T such that the segment (0, x| is included in X' \ T’
and in Ny, and define for 0 <¢ < T

2t 2
v =(1-%) o
and for alln > 1
. T 1 T 1
”(/)(t) if t€|:0,2n:|u|:2+n,T:|

Yn(t) =
P (Z — %) otherwise.

Since ¥(T/2 — 1/n) = Y(T/2 + 1/n), ¢, is continuous and piecewise differen-
tiable. Note that the values of ¢ and v, belong to the segment [0, z¢], that
Y(t) & T except if t = T'/2, and that ¢,(¢t) € T for any ¢t € [0,7]. There-
fore, It 4, (1)) = oo, and Ir 4, (¥n) < co. Since v, uniformly converges to v, it
suffices to prove that lim inf I ., (,,) < oo in order to prove that ¥(u) G ¥(u).

It follows from (40) and from the fact that b is K-Lipschitz (Proposition 2.2),

that
i 1 (71— 2t/T)220/T + b((1)) |2
Fray(0) < 5o [ 0] “
1 (7201 —2t/T)%4| o)/ T? + 2K |y (t) |2
. d 41
< 5a |, [0l row
< 1 (2 ol + 262 0] ) dt < 0
= %a J, \T? 0 :

Therefore, for all n > 1,

L [T/ b (1)) 12

" 20 r/2-1m (@)
1 T/24+1/n

IT zo('(/)n> S — 2 dt

IN
Nz

2
S & LG 3
which is bounded.

It remains to observe that for an arbitrary « ¢ T, since X is connected and
the points of T' are isolated in X, there exists ¢ € C1([0,T],&X \ T') such that
¢(0) = z and ¢(T) = xp, and there exists a > 0 such that all the values of ¢
belong to T',. Since, by Proposition 2.2 (iii), a is uniformly non-degenerate on
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Ty, I7 4 (¢) < co. One can concatenate ¢ and ¢ to obtain a function ¥ defined
on [0,27] such that Iop (1) < oo and Iap (1)) = oo, and the same procedure
as above ends easily the proof of Proposition 4.1 for general z. O

4.2 Proof of Theorem 4.2

Let us first give some notations. For any ¢ > 0 and y € X, X5 is a weak so-
lution to (1), defined on some filtered probability space (Q5Y, ;Y We¥ Pev),
where W¢¥ is a standard d-dimensional P¢¥Y-Brownian motion.

Let us define the function S that transfers the LDP for the Brownian motion
to the processes X¢: for any ¢ € C§°([0, T], R?), let S(¢) be the solution on [0, T’
to

S(p) =+ / b(S(p)s)ds + / o(S().)puds, (42)

obtained in the following way: by Proposition 2.2 (i) and (iii), b and o are
bounded and locally Lipschitz on X' \ T, so, by the Cauchy-Lipschitz Theorem,
there is local existence and uniqueness in X \ ' of an absolutely continuous
function solution to y = b(y) + o (y)@. This defines properly S(p) until the time
ts(y) where it reaches T'. In the case where tg(,) < T, set S(¢): = S()tg,,
for tg,) <t < T. Since for any x € I', b(z) = 0 and o(x) = 0, this function
S(p) is actually a solution to (42) on [0,7]. Hence, we have defined properly
the function S from Cg°([0, T],R?) to € ([0, T], X).

The proof of Theorem 4.2 is based on the following three lemmas. Their
proof is postponed after the proof of the theorem.

The first lemma precises in which sense the function S maps the paths of
VEW to the paths of X¢¥ when ¢ is small and y is close to x.

Lemma 4.2
(i) Fix ¢ € C8¢([0,T],R?) such that ¢ := S(p) takes no value in T and such
that Jr(p) < +o00. Then, Vn > 0, YR > 0, 36 > 0 such that

limsup eInP; (| XY — S()|lo.r =0, [VEWSY —pllor <6) < —R.  (43)

e—0,y—x

(ii) With the same ¢ as in (i), Y6 > 0, VR > 0, 3In > 0 such that

limsup eInPg (| XY = S(p)llor <0, [VeW= = ¢llor > 6) < —R.  (44)

e—0,y—x

(iii) Fix ¢ € €g°([0, T],R?) such that 1, := S(¢); € T for somet € [0,T]. Define
@t = ¢ for t <ty and oy = @y, forty, <t <T. Then S(p) = S(@) = .
Suppose that Jr(yp) < +oo. Then, ¥n > 0, VR > 0, 36 > 0 such that (43)
holds.

Let us briefly comment this lemma. In Doss and Priouret [7], b° = b+ ¢b and o
are both supposed Lipschitz on X", which is, by Proposition 2.2, only true for
b in our case. Moreover, the process X° stays constant after the time where it
reaches I'. Because of these difficulties, the method of [7] has to be adapted in
order to obtain (i). A more careful study is necessary to obtain (iii), and this
only gives the lower bound (34). In order to establish (35), we have firstly to
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adapt the method of the proof of (i) to prove (ii), and then to obtain the upper
bound thanks to a different estimate.

The second lemma specifies the usual relation between S, It , and Jr for
transfers of large deviation principles.

Lemma 4.3

(i) For all ¢ € C, ([0.7],%), Ir.(¥) = inf{Jr(¢),S(¢) = ¥}, and when
It . (¥) < +o0, there is unique ¢ € C§°([0,T],R?) that realizes this infi-
mum, and this function is constant after t,,.

(i) C1([0,T], X \T) is dense in S({Jr < 0o}).

The last lemma gives a uniform exponential tightness estimate.

Lemma 4.4 Define for any k > 0 and y € X the compact set
_ 1 1

where w(y,6) = supp_g <4 1Y) — P(s)||. Then, there exists ko and €9, such
that for ally € X, k > ko and € < o,

e P(XY ¢ KV) < i

ST (16)

where ¥ is a bound for o on X.

All the preliminary steps required for the proof of Theorem 4.2 have now been
completed.

Proof of Theorem 4.2 (34) The lower bound (34) for any open set O is
classically equivalent to the fact that Vi € C,([0,T], X) and Vn > 0,

liminf elnP=Y(|| XY —Yllor < 1) > —I1.(¢). (47)

e—0,y—z

Fix ¢ and n as above, and assume that Ir (1) < +oo (otherwise, there is
nothing to prove). By Lemma 4.3 (i), there is a unique ¢ € C§°([0,T],R?)
such that S(¢) = ¢ and u := Jp(p) = Ir4(¢). Choose R > w. If the image
of ¢ has empty intersection with I, apply Lemma 4.2 (i). Otherwise, apply
Lemma 4.2 (iii). In both cases, there exists § > 0 such that

limsup eInP=Y (|| XY — ¢

e—0,y—z

lor =1, [VeEW=Y — ollo,r <8) < —R.

Write

PY(|[VEWSY — gllor < 6) < PHY(| XY = Yllor <)
+PV(IXY — o =0, [IVeWSY — ¢llo,r < 0)

and observe that P=¥(||\/eW¥ — p|lor < d) is independent of ¢ and y. Take
the liminf of £ times the log of both sides of this inequality: using Schilder’s
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Theorem on the second line, we obtain

—u = —Jp(p) < —inf{Jr(@), s € Br(p,0)}
< liminf eInPY(|[VeW®Y — pllor < 6)

T e—0,y—z

—0,y—x

< Sup{ lir(r)linf e PY(|| XY — o7 < n),
€

ligind 1 PV — bl > 0, VAW — plr <)}

e—0,y—x

< sup{ liminf elnPY(|| XY — o1 < n), —R} :

e—0,y—x

and since R > u, (47) is established.

Proof of Theorem 4.2 (35) Let us first study the case where x € T. In this
case, Ve > 0 and Vt > 0, X; =z, and Iy, (¢) = +oo as soon as ¢ # x, so (35)
is trivial when x € C. Assume that x ¢ C. Then, there exists 7 > 0 such
that By (z,n) NC = 0, where Br(p,n) has been defined in (8). In particular, if
ly — z|| <, there is no function in C' with initial value y, so P(X®¥ € C') = 0.
This yields (35) when x € T

Now, fix 2 ¢ T'. Let us first establish (35) for particular compact sets.

Let K be a non-empty compact set of C ([0, 7], X) such that S({Jr < +o0})
is dense in K,, where K, := K NC.([0,7T],X). By Lemma 4.3 (i), S{Jr <
+oo}) = {Irs < +oo}, and so u = inf{Ir . (v),y € K} < +o0.

Fix p > 0. For any ¢y € K NS({Jr < +00}), by Lemma 4.3 (i), there exists
a unique ¢ € C§([0,T],R%) such that S(¢) = 1 and I, () = Jr(p) < co. We
intend to use Lemma 4.2 (ii), which holds only if ¢ takes no value in I'. So we
have to introduce oy, > 0 such that

1 t,w
5[ lepds <2,
2 )iy e, 2
so that Jr(p) < Ji,—a, (@) +p/2 (by Lemma 4.3 (i), ¢; = 0 for ¢t > t,), and,

since J;,, —q,, is lower semicontinuous, there exists d,, > 0 such that

V@ € Btw—aw (507 (;@U)a Jt'x/)_aw (95) > th_a'd; (50) - > JT(SD) - P (48)

[\l e

where By(yp, d) has been defined in (8).
Since ¢y € I for any ¢t € [0,ty — ay), we can apply Lemma 4.2 (ii) with
T =ty — oy, 0 =0y and R > w: there exists 74 > 0 such that

limsup eInP=Y (|| XY — ¢

e—0,y—x

0ty —auy < s H\/EWE,y - |0,t1/;*0¢w > 5¢) < -R.

Since we have assumed that K, = K, N S({Jr < +o00}), we can write

Kw C U BT(z/)ﬂ?w)a
YEKNS({Jr<+oo})
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so, from the compactness of K, follows the existence of a finite number of
functions 1, ..., 1, in K, N S({Jr < +oc}) such that

K, < | Br(vim),

i=1

where we wrote 7; instead of 7y,. It easily follows from the compactness of K
that there exists a neighborhood N, of x such that

KNI C U BT(wia’rli)a
i=1

where Ky, = {¢ € K : ¢(0) € N, }. Define
U=|JBt,—a, (i 6),
i=1

where t; = ty,, a; = o, and §; = dy,, and where ¢; is the function satisfying
S(i) = i and Ity (¥:) = Jr(p:).
Then, it remains to write for y € A,

PY(X Y € K) < POY(VEWSY € U) + PY(VEWY ¢ U, XV € Ky,)

< ZPE,y(\/gwé,y S Bti—ai(gpia 62))
=1

+ S PE(XEY — o < iy JEWEY & U)

i=1
n
<Y PYY(IVEWSY = gilot—a, < 6)
i=1
n
+ZP6’9(||X6’9 —Yillo,ti—as <16 IVEWEY — @illo,t,—a; > 04),
i—1

and to observe that, by Schilder’s Theorem and (48),
limsup e InPY(|[VeWY — @illo.t,—a; < i)

e—0,y—z o

<7 ’Ilf J‘_a' <7J i+’
~ ‘PeBtiiai(S/’i,éi) ti 1(90) >~ T((P ) p

to obtain

limsup e InP*Y (XY € K)

e—0,y—x

< sup{ sup limsup emP=Y(||[VeW®Y — o;llo.ti—a; < 6i),

1<i<ne—0,y—z

sup limsup elInPSY(|| XY — o]
1<i<n e—0,y—x

<sup{- inf (re) - ).~}

<sup{—inf{lIr,(¢¥),¥ € K} + p,—R} < —u+p.

0ti—ai < 05 [VEWSY — @illoti—a, > 52‘)}
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Since this holds for any p > 0, the proof of (35) for the set K is complete.
Now, let C be a closed subset of C([0,T],X) such that C;([0,T],X \T) is
dense in C'NC,([0,T], X). Define the compact set

Ky, ={ € C([0,T],X) : [[(0) — x| < 1,VI > k,w(¥,1/k%) < 1/k}
= Ujy—ay<1 K.

The following exponential tightness estimate follows trivially from Lemma 4.4:

limsup e InP(XY ¢ K},) < —k/64d%>. (49)

e—0,y—x

The exponential tightness method requires to decompose C as (C'N(K)¢)U
(CN Ky), to use inequality (49) to bound the probability of the first set, and to
use the large deviations upper bound for compact sets to bound the probability
of the second set. Unfortunately, S{(Jr < co}) may not be dense in C' N Kj N
C.([0,T],X). However, (49) still holds if we replace K} by any bigger compact
set. Therefore, we will introduce a compact set K D K}, so that S{(Jp < co})
should be dense in C' N K}, NC,([0,T], X).

Let us construct Ky, as follows. C' N K N C,([0,T],X) is compact, so it is
separable. Let v, be a sequence of functions dense in this set. For all n > 0,
¥y, € C, so, by assumption, there exists a sequence (¥, ,)p>0 in CNCL([0,T7], X'\
I') converging to v,,. We can moreover assume that (¢, , — ¥n|or < 277 for
all p > 0. Let us define

Kk:KkU U{’L/Jmp:pzn} ,

n>0

and let us prove that K}, is compact. Let (¢,,) be a sequence of K}, and let us
extract a converging subsequence. The only problem is when {m : ¢,,, € K} is
finite, and when for all n > 0, {m : ¢, € {tnp : p > n}} is finite. In this case,
there exists two (strictly) increasing sequences of integers (o) and (8,,) such
that for all m > 0, ¢q,, € {¢g,,p: P > Bm}. For all m > 0, ¢, belongs to the
compact set C N Ky NC,([0,T], X), so, extracting a subsequence from (a;,,) and
(Bm), we can suppose that 15, — ¢ € CN K, NC.([0,T],X). Then

16, = Yllor < l1Pa, = ¥s,llor + 185, = Dllor <270 + ||, — ¥,

which converge to 0 when m — oo. Hence ¢,,, — %, and K}, is compact.
Moreover, since Kj D Ky, it follows from (49) that

limsup e InP(X*Y ¢ K) < —k/64d%?, (50)

e—0,y—z

and K}, has been constructed in such a way that CL([0,7],X \ T') is dense in
C N Ky NC,([0,T),X). So, by Lemma 4.3 (i), S({Jr < oco}) is dense in C' N
Ki N C.([0,T],X), and we can apply the first part of the proof to the compact
set C'N Ky

limsup enP(XY € C N Ky) < —inf{I7,(¢),¢ € CN Ky}

e—0,y—z

32



Together with (50), this yields for sufficiently large &

limsup elInP(X*Y € C) < sup { limsup e nP(X*¥ € C'NKy),

e—0,y—x e—0,y—x

limsup eInP(XY ¢ f(k)}

e—0,y—z

< — inf Iy, (1),
< élelcT,(z/))

and the proof of (35) is complete O

The proofs of Lemmas 4.2 and 4.3 are based on the following lemma, gener-
alization of classical exponential inequalities for stochastic integrals.

Let Mg 4 denote the set of real d x d matrices, and let || - || be the norm on
this vector space defined by [[M|| = supy¢ =1 [|M(]|. Then,

Lemma 4.5 LetY; be a F;-martingale with values in RY on a filtered probability
space (0, F, F:, P), and suppose that its quadratic covariation process (Y ) satis-
fies sup,<p |(Y)e]| < A. Let T be a F; stopping time, and let Z : Ry xQ — Mg q
be a progressively measurable process such that sup,.. || ZF|| < B (where Z; is
the transpose matriz of Z;). Then for any R >0,

tAT
P(Sup / ZdY
t<T ||Jo

Proof of Lemma 4.5 For any v € R, let M(v) be the exponential local
martingale defined for ¢ > 0 by

R2

M;(v) = exp [v* /ot/\T ZsdYy — 5 /OMT(U*ZS)d<Y>S(U*Z5)*} .

Since fg/\T(v*ZS)d<Y>s(v*Zs)* < TAB?||v||?, by Novikov’s criterion, M;(v) is

actually a martingale.
Then Doob’s inequality gives that if ||v]| =1 and A > 0,

tAT R
P( sup v*/ ZydYs > —)
o<t<t  Jo Vd

AR A2AB2T
<P( sup M,(\)>exp|n - 2222
- (0;% o) 2 Xp(x/ﬁ 2 ))

AR NAB?T
S exp _ﬁ + T .

The infimum of the right-hand side is obtained when A = which gives

__ R
VAAB2T’

tAT R R2
P sup v* ZdY, > — | <exp| ———+= .
<0<tET /0 \/E> P < 2dABQT)
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Finally, let us consider an orthonormal basis {vy,...,v4} of R?. Then

tAT d tAT 2
P <Sup / ZdY,|| > R) =P (sup) (w / ZSdYS) > R?
<7 ||Jo t<T 0
d tAT R
< P | su 'UZ*/ ZdYs| > —)
; <t<$ 0 Vd
R2
<2 S —
< 2dexp ( 2dTAB2)
which is exactly the required result. O

Proof of Lemma 4.2 Let ¢ be as in any point of Lemma 4.2. We will first
use the Girsanov’s Theorem to restrict ourselves to the case ¢ = 0.
Define on (%Y, F1.¥) the probability measure P by

dPe 1 [t S L
dPey = €Xp (%/0 s dWSY — 2_5/0 sl ds) = Z.

Since in all cases Jr(yp) = 1/2 fOTHgthth < 400, by Novikov’s criterion,
(Zt)i<r is a P=Y-martingale, and it follows from Girsanov’s Theorem that
WY .= WY — py/+/€ is a PSY-Brownian motion for t < T. If we denote
by X=¥ the process X=¥ on (Q5¥, Ff'Y, WY PY), then, P*¥-as., for t < T

t t
Xt =y [ )+ o(XiMpds +VE [ o(Xemawer. o)
0 0

Let F=¥ denote the event {[|X*¥ — S(¢)|lo,r > 0, [[VeWY —¢llor < 0} =

{IX=Y — S()lor >0, |[VEWSY|or < 6} Tt follows from Cauchy-Schwartz’s
Theorem that

1

dpP=y . 3 apev\® - \?

PoY(FY) = [ 1pey——dP™Y < (PSY(FY =) apv| .
( ) / F dPE’y —( ( )) (/ <dP5,y) >

(52)

Since WY = W + ¢, /\/€, we can write
Pev 2 9 T ~ 1 T
<d~—> =exp | ——= ¢de§vy——/ |5 |*ds
dpey Ve Jo € Jo
T . T 2
2¢5 ~ 1
—exp / (-“")dwgﬁy——/ ds
0 Ve 2Jo
S
wesp L[ Igalds ).
€Jo

The first term in the product of the right-hand side is a f’f’y-martingale (by
Novikov’s criterion), and the second term is equal to exp(2Jr(p)/e). There-
fore, (52) yields

2¢5
NG

elnPEY(F5Y) < — InPSY(FSY) + Jr(p).

Do ™
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So, in order to complete the proof of Lemma 4.2, it suffices to prove the following
lemma:

Lemma 4.6 The three points of Lemma 4.2 hold when (43) and (44) are re-
placed respectively by

limsup e P (| X = S(@)llo.r = 0, [VEW Yo <8) < —R  (53)

e—0,y—zx
and

limsup & In P&Y (||X5y = S@)lo,r <0, [VEWSY o1 > 5) <-—R. (54)

e—0,y—z

In order to keep notations simple, we will write throughout the proof of this
lemma W instead of W¥ and P instead of P, for events involving the process
X=¥ solution to (51).

Lemma 4.6 relies on the following lemma, deduced from Lemma 4.5 adapting
the proof of Lemma 1.3 in Doss and Priouret [7].

Lemma 4.7 Let XY be defined by (51) with ¢ satisfying Jr(p) < co. Let
Y, be a FyY-martingale such that sup,<p [[(Y):]| < A, let 7 be a F;¥-stopping

time, and let & be uniformly continuous bounded function defined on X. Then,
vn >0, VR >0, 36 > 0, 3Jeg > 0 both depending on Y only through A, and
both independant of T, such that Vy € X, Ve < gq,

P (Hﬁ: /0 T exemay,

>, IVeYlor < 5> <—-R. (55

0,17

Proof of Lemma 4.7 We use a discretization technique: for any p € N, let

us define X;¥? = XZ;’ »» where k € N is such that k < 27?7 < k + 1. Given

v>0,p>1andd >0, to be determined next, we can write

{Hﬁ / ez,

where

>, [VeYlor < 5} C ASUBfUCE,
0,7

AT = {|| XY = X2l - > 4},

>
0,7

> 2. IVeYllor < a}.

‘\f e - sz,

N3

{XE W Xs,y’p”OT <~,

}
i o= f|ve

We will choose first v such that P(B¢) is sufficiently small, then choose p > 1
to control P(A¢), and finally choose § > 0 such that C¢ = .

Firstly, let us apply Lemma 4.5 with Z, = E[E(X{Y) — £(XYP)). If we
define B, 1= supj,_, <~ I§(x) — &), then, on B, for t < 7, ||ZF|| < VEB,.
Therefore, Lemma 4.5 gives

2
e n”/4
P(B*®) < 2dexp <2dTA/EB2) .
g

E(XEYP)dY,
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Now, since ¢ is uniformly continuous, B, — 0 when v — 0. Therefore, for e < 1,
eInP(B°) can be made smaller than —2R choosing 7 small enough.
Secondly, v > 0 being fixed as above, equation (51) yields

> 7
-7)

tAT B _
/k [ (X59) + o(X:)p, | ds

2=PAT

P(| X5V — X50Po - > )

T2P—1
< Z P< sup
k=0

tAT
Vo (XEW)dW,

k2=PAT

k2-r<t<(k+1)2-P

T2P 1
+ Z P( sup
k=0

k2-P<t<(k+1)2-P

>

ro |2

)

T2 -1 tAT
<> P< e Vo (X5¥)dW, g)
=0 k2-P<t<(k+1)2-7 ||Jk2-PAT 2
T2P -1
+ Y P(02*P+02*P/2\/az %)
k=0

where C'is a bound for b° and o, where u = 2Jr(p) = foT l¢s|I?ds < +o0, and
where we have used the Cauchy-Schwartz inequality to obtain y/u in the last
line of this inequality. For p big enough, the second sum of the right-hand side
equals 0. For the first sum, Lemma 4.5 with 7 =T =2"P, Y =W, A =1,
R =~/2 and B = /eC gives that, for 0 < k < T2P,

tAT

2d2-7(C2¢

- 2/4
P sup \/EU(XE’y)dWSH > 1) <a2dexp ( #> .
k2-P<t<(k+1)2-P 2

Therefore, taking p large enough, elIn P(A®) < —2R for all € < 1.
Finally, with p > 1 and v > 0 as above, for t < T,

k2—PAT

T2P—1

tAT
\/E/ EXYP)dYs = Z \/gg(Xfé?iy/\T)D/(iJrl)Q*P/\t/\r — Yio-patnr)-
0 i=0

On C%, |[VeY|ljo,r) <0, s0, for t < T,

T2P -1

< Y 2,

=0

tAT
Ve [ exzmmay.

where C'is a bound for €. Hence C° = () as soon as § < 72~ P+2) /CT.

We obtain that e InP(A*UB°UC?) < eln2 — 2R, which yields (55) as soon
ase < R/In2 A 1.

This argument is true for any y € X and for any stopping time 7. It remains
to observe that A is the only information about Y that we used to estimate
P(B®), that Y does not appear in A°, and that no assumption about Y is
necessary to obtain C¢ = (). Hence, the constant A is the only information
about Y required to obtain § and gg. O

Now, let us prove Lemma 4.6.

36



Proof of Lemma 4.6 (i) The function ¢ = S(p) does not take any value
in ' on [0, 7], so there exists a > 0 such that V¢t € [0,T], ¢ € I',. Suppose
without loss of generality that 7 < «/2, and define for y € X

Y = inf{t: d(XSY,T) < a/2} AT.

When 7Y < T, | XY, — S(@)reww|| > d(S(@)rew,T) — d(X2,,T) > a/2 > 1,

so, in any case,
1X5% = S0y =1 = XY = S(@)lj0,720) = 1-
Consequently, (53) will be proved if we find § > 0 such that

limsup eInP(|| XY — S(p)

e—0,y—x

orev 21, [WeWllor <6) < —R.

Now, take C' such that o is C-Lipschitz on Iy /2, b is C-Lipschitz and bis bounded
by C on X (see Proposition 2.2). It follows from (51) that, for ¢t < 75,
IX5Y = Sl

|
t B t o
< Ve / o (XEV)AW,|| + ¢ / 1B(XEY) | ds + [l — g
0 0

+ / IB(XEY) — b(S(0)a) ds + / lo (XYY — o(S(0))| % [|@slds

< e /U(Xg’y)dWs +eCT + ||z —y|
0

t
e / (L4 |G DIREY — S(p)alds.

Remind that v := fOT l¢sl|?ds < +o0o. Gronwall’s Lemma and the Cauchy-
Schwartz inequality yield for ¢ < 75¥

1£57 = S(on
t

< [\/E | oxzmaw.
0

+eCT + ||z — yll} exp {C <T+ \/ﬁﬂ .

Therefore, it suffices to find § > 0 such that

limsup eInP <\/E

e—0,y—z

t
/ o(X2Y)dW,
0

> 18, Vel|Wllor < 5) < -—R,

0,7:Y

where 3 = exp[—C(T + vuT')]/2. This is an direct consequence of Lemma 4.7
withY =W, A=1, £ =0 and 7 = %Y (by Proposition 2.2 (ii), o is uniformly
Holder, so ¢ is uniformly continuous).

Proof of Lemma 4.6 (ii) As above, take a > 0 such that V¢ € [0,T],
S(p)e € Ty. Fix n < a/2. Then, on the event {||X®¥ — S(p)llor < n},

for any ¢ € [0,T], Xfy € I'y /2. Take C such that b is C-Lipschitz, b is bounded
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by C, and o is C-Lipschitz on I'y /5. It follows from equation (51) that, on the
event {||X=¥ — S()]| 0,7] < n}, for any ¢ € [0, 77,

va| [ oz - \Xf’y—smtw—x— [ lo(xz) = atse)puds

- / B(XEY) — b(S(p).)]ds — ¢ / b(X2)ds
0 0

T
<X = S(ell+ la =yl +C | (+ @)X = S(e)ilds +CT
<n+ |z —yll + Cn(T + VuT) + CT < n(2 + 2CT 4+ CVuT)

for e < n and ||x —y|| < n. Therefore, using the notation f = 24 2CT + CvVuT,

{I1X=Y = S(@)llor < n, VW]

t
/ o(X5Y)dW,
0

o1 =6} C (56)

{Vt €[0,7], X;¥ €Ts, Ve

<08, Vel|[Wlor < 5} .

0,7
Define
7Y = inf{t : d(XY,T) < a/2} AT,
vor [o(gimaw,
0
-1

E=x0"",

where y is a Lipschitz function from X to [0, 1] such that x(z) = 0 if d(z,T") <
a/4 and x(z) = 1if d(z,T) > /2. So {(z) = o *(x) if # € Ty /2. With these
notations, a small computation shows that (56) rewrites

{I1IX=Y = S(@)lor <n, VeW o > 6} C

VelY=¥lor <, Ve

>0

tATSY B
| exemaver
0

0,T

and _(54) is now a direct consequence of Lemma 4.7: § is Lipschitz and bounded
on X (by Proposition 2.2 (iii), I'y/s C e for some ¢ > 0, so o(x) € S
for z € I'y /4, and it remains to observe that the inverse matrix application is
Lipschitz and bounded on S, 1), and for any ¢t < 7, (YY), = fot a(X2Y)ds which
is bounded, by Proposition 2.2 (i), by a constant A independent of y and e.

Proof of Lemma 4.6 (iii) In Lemma 4.6 (iii), ¢ is defined from ¢ by ¢; = ¢,
for t < ty, and ¢ = @y, otherwise (i.e. ¢ = 0 for t > ty), where ¥ = S(@).
Then ¢ = S(p) = S(p) since S(¢) does not depend on ¢, for ¢t > ¢,. By the
Cauchy-Schwartz inequality, fotw |ps]lds < (2T J7())/? < +o0, so there exists
p > 0 small enough such that

ty —-CT
. ne
[sllds < : (57)
/twp 8C
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where C' is a constant bounding b, b and o, and such that b is C-Lipschitz.
Distinguishing when || X®¥ — 9[/g.+,,—, > ne~“T /4 or not, we can write

{I1X=Y —llor =, |[VeEW o <8} C DSV UEY,

where

ne=CT
Oty—p < (XY =l =0, [VEW o0 < 5}

Do {xer -y

—CT
- e
and ESY — {||X5’y —Ylloey—p = nTv ||\/EW||0,tu;—p < 5}'

Part (i) of Lemma 4.6 shows that P(E*Y) has the required exponential decay
if § is small enough. Let us estimate the probability of D=¥.

It follows from (51) and from the fact that ¢, = 0 for ¢t > t,, that, for any
t=ty—p

t
15 — gl < IREL, — Yool + VE / o (XY aw,

v=P
t ~ ty At ~
40 [ IRz s 0T+ [ o (Re) — o]  ea]ds.
ty—p ty—p

On the event DY, the first term of the right-hand side is smaller than ne =7 /4,
and, since ¢ is bounded by C, the last term is smaller than 2C fttww_p l¢llds,

which is smaller than ne=¢7 /4 by (57). Moreover, we can suppose £ small
enough to have eCT < ne~"'/4. So, on the event DV, by Gronwall’s Lemma,

for t >ty — p,

t
/ o(XEY)dW,
t

v=P

. 3
%5 =l < [Zne T4 Ve

Since || XY — V||t —p,r > n on DY, we finally can write

D=Y C
~ . ne—CT
VE[ommaw| 2T VAW W) < 20
ty=p ty—p, T
and (53) is now a consequence of Lemma 4.7. 0

Proof of Lemma 4.3 Take ¢ € ég“([O,T],?), and assume that there exists
¢ € C8¢([0,T),R?) such that S(¢) = 1. Then for any ¢ € [0, T]

b = (W) + o (1) ér.
For t < ty, ¥y ¢ T, so o(¢y) is invertible, and
o1 =0 (o)l — b(w)]- (58)
This defines uniquely the function ¢ on [0,%,), and ¢, exists if and only if

o (W) [t — b(1¢)] is L on [0,2,]. Assume this is true. Then, since for t > t,,
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Yy € T, and so b(vy) = o(¢y) =0, S(p)¢ = ¢ = ¢y, for t > t, whatever is the
function ¢, on (ty,T]. Consequently,

1 (T )
Jr(p) = 5/0 ¢~ dt

1 [t 1 [t -
>5[l =g [ loT w0t bl = Ir),
and, when I, (1) < 400, a solution ¢ to S(p) = ¢ satisfies Jr(¢) = I, (¢) if
and only if ¢ is constant for ¢ > t,.

Conversely, when o~!(¢;)[t); — b(3;)] is not L' on [0,%,] or ¢ does not
belong to C2¢([0,T], X), there is no solution to S(¢) = 1. Moreover, in this
case It x (1) = 400, so the proof of (i) is completed.

Since by Proposition 2.2 (iii) ¢ is uniformly non-degenerate on I, for any
a > 0, it follows trivially from (58) that C1([0,T], X \T) C S({Jr < oo}). (ii)
is now clear. O

Proof of Lemma 4.4 It follows from (1) that, for any y € X, s > 0 and
t e [0,7],

t+s
X7 — XY < Cs+ Ve / o(XSY)dW,,
t

where C is a bound for b* (for ¢ < 1). So, for a given h > 0, we can apply
Lemma 4.5 with R > Ch to obtain

(R—Ch)2>’

SV XSV >R) < -
P < sugh 1 X0 — X7 > R> < 2dexp < Sdhes

0<s<
where ¥ is a bound for 0. Writing this for ¢t = ih for 0 < i < T/h, we easily
deduce that, for R > Ch,

(59)

P (w(X®, k) > 2R) < 2d (% + 1> exp (—M> ,

2deX2h

where w(1, h) has been defined in the statement of Lemma 4.4.
For any | > 1, set R; = 1/2] and h; = 1/I3. Then, for sufficiently large I,
R; > Ch; and

(B —Chi)* _ (VI=20/1°7%)%
2deX2h; 8deX2 -

Wy2)?

8de¥2  32deX?’ (60)

Now, observe that the set K}, defined in (45) in the statement of Theorem 4.2
satisfies

KV = { € Cy([0,T],X) : VI > k,w (¢, b)) < 2R;}.

This is a compact set by Ascoli’s Theorem, and a simple computation, using (59)
and (60) shows that e InP(X®¥ ¢ K!) < —k/64d%? for sufficiently large k. [
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5 Application to the problem of exit from a do-
main

When evolution in a population comes to an equilibrium, two interesting long-
term biological phenomena may happen. The first one is the evolutionary
branching, the appearance of two (or more) distinct subpopulations evolving
in different directions of the trait space, which may eventually lead to specia-
tion, and the second one is the punctualism, the quick evolution of the whole
population from an evolutionary equilibrium to another, due to a large muta-
tion or to successive invasions of deleterious mutants in the population. Many
paleontological data, and experiments on artificial evolution, seem to reflect this
kind of rapid evolution (see Rand and Wilson [16]). In this section, we propose
to study the phenomenon of punctualism by answering the following questions:
in which direction a rapid evolution is more likely to occur, and how long does
it take to happen?

In adaptive dynamics models, evolutionary equilibria (also called evolution-
ary singularities) have to be understood as equilibria of the unperturbed dy-
namic (corresponding to the case e = 0) b= b(¢), called canonical equation of
adptive dynamics (see [2] and [5]). These equilibria are the points of I'. Because
of Corollary 4.2, when ¢ is small, X=? is close to the solution of the canonical
equation with initial state z with high probability. Yet, the diffusion part of
X% may imply that X% almost surely leaves in finite time any bounded do-
main G containing an evolutionary singularity. The result of this section gives
estimates for this time, and precises where the exit occurs in 0G.

We will assume d > 2. Otherwise, the problem has little interest: the process
XY can exit from an open domain G = (¢, ¢) of X' containing a unique point x
of I', with y > z, only from the right side ¢’ of G, and the probability of reaching
x before ¢’ can be computed explicitly using Proposition 5.5.22 of Karatzas and
Shreve [10].

In this section, it will be sometimes more convenient to use Markov processes’
notations: in some cases, we will write X¢ instead of X =% and the initial state
of X¢ will be specified as indices in the probability and expectation symbols:
P, and E,.

Let us follow the treatment of section 5.7 of Dembo and Zeitouni [3]. Fix an
open bounded domain G C X, and suppose that the boundary of G is smooth
enough for

¢ =inf{t > 0: X; € 0G}

to be a well-defined stopping time. Assume also that

Hypotheses 5.1
(Ha) The unique stable equilibrium point in G of the d-dimensional ordinary
differential equation

¢ =b(p) (61)
is at 0 € G, and

$(0) e G=Vt>0,¢(t) € G and tlim ¢(t) =0.
(Hb) For any e >0 and y € G\ {0}, P, (tlirgo X = O) =0.
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(Ha) states that the domain G is an attracting domain, and we have given in
Theorem 3.3 (section 3.4) conditions under which (Hb) holds. Remind that, by
Proposition 3.1 (b), assumption (Hb) implies that X¢ is strong Markov as long
as it stays inside G.
Define
V(y,z,t) = _ inf Ity (1Y),
{wec([0,t],X):(0)=y,(t)=2}

which is, heuristically, the cost of forcing XV to be at z at time ¢t. Define also

V(y,2) = t11>1£V(y,z,t).

Observe that the quasi-potential of Freidlin and Wentzell [8] V(0,z) has no
interest in our setting, since for all t > 0, V(0,2,t) = oo if z # 0 (X=0 is
constant, equal to 0). Instead, let us define

V(0,2) := hI;ng)lfyégfp) V(y, 2),
where S(p) = {y € R% : |ly|| = p} is the sphere of R? centered at 0 and with
radius . Let also B(p) be the closed ball in R¢ centered at 0 and with radius
p. Note that the liminf above is in fact an increasing limit, since, if p < p’ and
if z ¢ B(p'), one can obtain from a path from S(p) to z a new path from S(p’)
to z by “cutting” the beginning of the former path.

The treatment to follow is guided by the heuristics that, as ¢ — 0, X*
wanders around 0 for an exponentially long time, during which its chance of
hitting a closed set N C 9G is determined by inf,cny V(0, z). Any excursion off
the stable point 0 has an overwhelmingly high probability of being pulled back
near 0, and it is not the time spent near any part of G that matters but the
a priori chance for a direct, fast exit due to a rare segment in the Brownian
motion’s path.

Three other assumptions are required:

Hypotheses 5.2
(Hc) All the trajectories of the deterministic system (61) with initial value in
O0G converge to 0 as t — oo.

(Hd) V.= infzeBG V(O, Z) < 00.

(He) g is C* at 0 and the differential D := Hy19(0,0) + H1,29(0,0) of the
function x — Vig(x,x) at 0 has a null kernel.

Assumption (Hc) prevents consideration of situations in which dG is the chara-
teristic boundary of the domain of attraction of 0. Assumption (Hd) is natural,
since otherwise all points on 0G are equally unlikely on the large deviation scale.
We have already encountered an assumption similar to (He) in Theorem 3.3 and
Proposition 3.2 (section 3.4). It allows to bound below the eigenvalues of a(x)
for x near 0.

Now, let us state

Theorem 5.1
(a) Assume (H1), (H2’), (H3), (H4), (Ha), (Hb), (Hd) and (He). Then, for all
x € G\ {0} and § > 0,

lim P (7° > eV=0/ey = 1. (62)
E—
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(b) Assume (H1), (H2’), (H3), (H4) and (Ha)-(He). If N is a closed subset of
0G and if inf,en V(0,2) >V, then for any x € G \ {0},

lim P, (X7. € N) =0. (63)
E—

In particular, if there exists z* € G such that V(0,2*) < V(0, z) for all
z € 0G\ {z*}, then

V6 > 0,Ve € G\ {0}, lirr(l)Pz(HXﬁa —-Z"<d) =1 (64)
£—
Note that assumption (He) is not necessary to prove (a).

Remark 5.1 Part (a) of this kind of results usually includes an upper bound
for 5. We are not able to achieve this because of the singularity at 0 of the
process X©: we are only able to obtain an uniform exponential lower bound on
P,(m¢ <T) forx € G\ B(p), and not for any x € G\ {0}. This uniform lower
estimate is crucial in the classical proofs of the fact that P, (¢ < e(V+9)/e) — 1.

Remark 5.2 Some additional work might allow to generalize part (b) of The-
orem 5.1 to more general domains including several points of I', or including
w-limit sets (such as cycles) of the differential equation (61). We refer the
interested reader to chapter 6 of the book of Freidlin and Wentzell [8].

The proof of a similar result in Dembo and Zeitouni [3] (Theorem 5.7.11 and
Corollary 5.7.16) is based on the strong Markov property for X<, which holds
in our case for quite general stopping times thanks to assumption (Hb) and
Proposition 3.1 (b), and on several lemmas, which have to be adapted to our
degenerate case. Some of them will be very close to the lemmas of [3], and some
of them will require a different treatment. In particular, part (a) of Theorem 5.1
will be obtained in a very similar way than in [3], whereas part (b) has to be
obtained without using any upper bound on 7¢.

The first lemma is a continuity result for V.

Lemma 5.1 Assume (H1), (H2’), (H3), (H4) and (He). For any 6 > 0, there
exists p > 0 small enough such that

sup inf V(z,y,t)<d (65)
z,y€B(p)\{0} t€[0:1]

and
sup inf V(x,y,t) <6. (66)
{z.y:iinfcoq (ly—2|+l|lz—z[)<p} tEI0:1]

The second lemma states that the diffusion wanders in G for an arbitrary long
time without hitting a small neighborhood of 0 with an exponentially negligible
probability. Assumption (Hc) is necessary to prove this lemma.

Lemma 5.2 Assume (H1), (H2’), (H3), (H4), (Ha)-(He). Let
o, :=inf{t > 0: X° € B(p) UIG},

for p small enough to have B(p) C G (mind that o, depends on €; we do not
mention it to keep notations simple). Then

lim limsupelnsup Py(o, > t) = —o0.
t—oo ¢ 0 zeG
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The third lemma gives a uniform lower bound on the probability of an exit from
G starting from a small sphere around 0 before hitting an ever smaller sphere.

Lemma 5.3 Assume (H1), (H2’), (H3), (H4), (Ha), (Hb), (Hd) and (He).
Then

lim liminfeln inf P,(X: €0G)> -V =— inf V(0,z).
p—0 e—0 yes(gp) P z2€0G

The following upper bound relates our quasi-potential V (0, -) with the probabil-
ity that an excursion starting from a small sphere around 0 hits a given subset
of OG before hitting an even smaller sphere.

Lemma 5.4 Assume (H1), (H2’), (H3), (H4), (Ha)-(He). For any closed set
N C 0G,

lim limsupeln sup P (XS € N) < — inf V(0,2)
p—0 =0 yES(2p) i zeN

The following lemma is used to extend the upper bound to hold for every initial
point z € G.

Lemma 5.5 Assume (H1), (H2’), (H3), (H4) and (Ha). For every p > 0 such
that B(p) C G and all x € G,

lin%Px(Xg € B(p)) = 1.
e— r

Finally, we need a uniform estimate stating that over short time intervals, the
process X°¢ with initial state x has an exponentially negligible probability of
getting too far from x.

Lemma 5.6 Assume (H1), (H2’), (H3), (H4), (Ha), (Hb), (Hd) and (He). For
every p > 0 and every ¢ > 0, there exists a constant T(c, p) < oo such that

limsupe Insup P, (| X° — zl|o,7(c,p) = p) < —c.
zeG

e—0

Let us briefly comment these lemmas. All of them except Lemmas 5.3 are
similar to those of [3], but their proofs all require some modifications. Lemma 5.1
will be proved in a different way than in [3], and the new Lemma 5.3 will allow
to prove Theorem 5.1 (b), but is not sufficient to prove the usual upper bound
on 7°.

We will first prove Theorem 5.1, and postpone the proof of all the preceding
lemmas to the end of the section.

Proof of Theorem 5.1 (a) We will first prove (a) under the additional
assumption (Hc). Let p > 0 be small enough such that B(2p) C G (p will be
specified later). Let 8y = 0 and for m = 0, 1,... define the stopping times
Tm = inf{t > 0,,, : X; € B(p) UIG},
Omy1 = inf{t > 7, : X7 € S(2p)},
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with the convention that 6,41 = oo if X: € 0G. Each interval [7,, Tp1]
represents one significant excursion off B(p). Note that, necessarily, 7¢ = 7,
for some integer m.

Moreover, assumption (Hb) implies that 6,11 < oo as soon as Xt € B(p).
This can be proved as follows. Since for any a > 0, X¢ is a dlﬁusmn with
bounded drift part and uniformly non-degenerate dlffusmn part in B(2p)NT, /2,
X°¢ has an uniformly positive probability to reach S(2p) before S(«/2) starting
from any point of S(a). Hence, by the strong Markov property of Proposi-
tion 3.1 (b), for all z € S(p), P, (61 < +oo|limsup, ., o || X[ > a) = 1. Since
assumption (Hb) implies that for all z € S(p), P, (limsup,_, o [|X;|| > a) = 1
when o — 0, we actually have, for all z € S(p), P.(61 < +00) = 1. By
the strong Markov property, this provides almost surely the implication X3 €
B(p) = 9m+1 < 00.

For V = 0, the lower bound on 7¢ is an easy consequence of Lemmas 5.5
and 5.6. Hence, assume hereafter that ¥V > 0, and fix § > 0 arbitrarily small.
Note that 0G is a closed set and choose p > 0 small enough as needed by
Lemma 5.4 for

limsupeln sup P, (X: €0G) < -V +
e—0 yeS(2p) ’

N |

to hold. Now, let ¢ = V and let Ty = T(c, p) be as determined by Lemma 5.6.
Then, there exists £g > 0 such that for all ¢ < eg and all m > 1,

sup ]-:)93(7—6 = Tm) S sup PU(XOE.p S 8G) S 6_(‘7_6/2)/5
z€G\{0} yeS(2p)

and

sup PO — Tn1 < Tp) < sup Po(|X° — zllom, > p) < e (V70/2/e
zeG\{0} z€G

The event {7¢ < KTy} implies that either one of the mutually exclusive events

{r® = 7} for 0 < m < k occurs, or else that at least one of the first k

excursions [Ty, Tm+1] off B(p) is of length at most Tp. Thus, utilizing the

preceding estimates, for all € G'\ {0} and any integer k,

P, (¢ < kTp) < ZP =Tm) + > Pa(bm — 71 < Th)

S Po(rf = m) + 2k (T

Recall the identity {r® = 70} = {X: ¢ B(p)} and apply the preceding inequal-
ity with k = [T(;le(v_‘s)/a] + 1 to obtain, for small enough e,

P, (r° < eV=0/%) <P, (r° < kTy) < Po (XS & B(p)) + 4T, 'e /%

By Lemma 5.5, the left side of this inequality converges to 0 as € — 0; hence,
the proof of (62) is complete.

It remains to study the case where assumption (Hc) is removed. In this
case, let G7° := {x € G : d(x,0G) > p}. Observe that G~ are open sets for
which assumption (Hc) holds. Therefore, (a) is true for these sets. Moreover,
the stopping times 7° related to G~ are increasing when p decreases to 0.
The announced lower bound on 7¢ results easily from this fact and from the
continuity of the quasi-potential V at any point of G, implied by (66). O

45



Proof of Theorem 5.1 (b) Fix a closed set N C G such that Vy :=
inf,en V(0,2) > V (if Vv = oo, then simply use throughout the proof an
arbitrary large constant as V). Fix n > 0 such that n < (Vy — V)/3, and set
p >0 and ¢y > 0 as needed in Lemmas 5.3 and 5.4 for

inf P,(X° €dG)>e VIN/e vy < 67
yEISI'l(Qp) y( op€ )—6 ) €X¢€0 ( )

and

sup Py(X; € N) < e~ IN=m/e e < g
yE€S(2p)

to hold. Fix y € B(p) and remind the definition of the stopping times 7, and
0., in the proof of Theorem 5.1 (a). Observe that

l
P,(X. € N) <Py (r°>7)+ Y Py(r° =7, and X; € N). (68)

m=1

Firstly, let us bound the second term: for m > 1, y € B(p) and € < ¢, thanks
to the strong Markov property of Proposition 3.1 (b),

P, (r = 7 and X5, € N) = P, (r* > 10 1)P, (X5, € NI > 7,01)

=P, (7 > Tm71)Ey[PX;m (Xip € N)|7T8 > Tpp—1]

< sup P, (X: €N) < e (n=ml/e,
z€S(2p) i

Secondly, let us bound the first term of the right-hand side of (68): for [ > 1
and y € B(p),

Py(TE > Tl) = Ey[PXZ (7’E > Tl—l)] < sup ].335(7'6 > Tl—l)- (69)
! z€S(2p)

Now, for z € S(2p) and k > 1,

P,(m° > 1) = [1 = Pyu(7° = 73|7° > 721)|Po(7° > Ti—1)
= [1 - EI[ngk (Xfrp S aG)|T€ > kal]}Pm(TE > kal)
< (1 =q)Pu(7° > 73-1),

where ¢ := infycg(o,) Py(X5 € 0G) > e~ (VHn)/e by (67). Iterating over k =
1,2,... gives for k > 0

sup P.(7° > 1) < (1- q)k.
yE€S(2p)

In (69), this yields for all I > 1 and y € B(p)
P,(r° > m) < (1-9)".

Putting together these estimates in (68) gives finally for all y € B(p) and € < ¢
vin\ -1 Uy —n
P, (X5 € N) < (1 —e_T) Flem
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Choosing | = [2¢(VF20/2], for ¢ small enough, [ —1 > e(V+21)/¢ and hence

n/e
1 Ues € o5 .
P,(X:. € N) < [(1 - _) } oo

Ue

where u, := eVTM/e - 4100, So (1 — 1/ue)"s — 1/e, and, finally, P, (X:. €
N) — 0 for y € B(p) (recall that 0 < n < (Viy — V)/3). The proof of (63) is
now completed by combining Lemma 5.5 and the inequality

P, (X% € N) < P.(XS, ¢ B(p)) + sup P,(XZ € N).
yE€B(p)

Applying (63) to the set N = {2 € 9G : ||z — 2*|| > 6} and observing that Lem-
ma 5.1 (66) implies the continuity of z — V' (0, z) on JG, we easily obtain (64).
O

Proof of Lemma 5.1 (65) Fix § > 0, let p be small enough for B(p) C G
to hold, and fix x and y in B(p) \ {0}. In order to be clear, we will use the
complex notation for the coordinates of points of the plane of R¢ containing 0,
x and y, and we will assume that z = € R and y = /e, with 0 <, < p.

Define 9 € C([0,1], B(p)) by

(1—(3t)%)r + (3t)%p if 0<t<1/3
Y(t) = pe?Bt-1) if 1/3<t<2/3
(1—(3—=3t)%)r'e? + (3 —3t)%2pe? if 2/3<t<1.

Then ¢(0) = z and (1) =y, and ¢(t) € B(p)\ {0} for any ¢ € [0, 1]. Moreover,
for 0 <t <1/3,4(t) = r+9t3(p—7), so that [|[¢(t)|| > 9t2(p—r), and, similarly,
for 2/3 <t <1, [|(t)| > 9(1—t)?(p—r'). A calculation similar to equation (41)
in the proof of Proposition 4.1 gives, with the same K, Ny and ag as therein, if
B(p) C No,

1 ([P 208t — 1) + 2K2 V()
hal¥) < 54, (/ [ “
/2/3 2(30p)? + 262 (1)1
Vs @l
b 2(18(1 = #)(p = 1)) + 2K s6(8)|°
" /2/3 T ‘“)
1/ 2/
< ﬁ (/O 3(648(p —7) + 2K ||y(t)|)dt + /1/33(1892 + 2K?)pdt
1
+ [ 18-+ 2K2||w<t>||>dt>
2/3
- 2(216 + 2K2/3)p + (66% + 2K2/3)p

2(10

Consequently, for sufficiently small p > 0 not depending on z and y in B(p)\{0},
I () < §/2, which yields (65). O
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Proof of Lemma 5.1 (66) Fix § > 0, let p be small enough for {z :
d(z,0G) < 3p} C X\T to hold, and fix x and y such that there exists z € G
with ||z — z|| + |ly — 2| < p. Let us denote by I'" the r-enlargement of I':
I'" = {z :d(x,T) <r}. Then z and y belong to X \ I'**, and ||z — y|| < p, so
the segment [z,y] is included in X \ T'”.

For any tq > 0, define v, € C([0,t0], G** \ T'?) by

o (1) = (1 - i) o+ Ly

for 0 <t <tg. Then v, (0) = z and ¢y, (to) = .

Remind that assumption (H3) implies that there exists a constant C' > 0 such
that for all s € R? and x € X, s*a(z)s > C||Vig(z, 2)|||s|?, i.e. s*a=(z)s <
IIslI?/C|IV1g(z,x)|. From the fact that, on the closure of G \ T'”, which is a
compact set, ||V1g(z, )| never vanishes, it follows the existence of a constant
C' such that for all s € R? and z € G* \ T?, s*a~!(x)s < C'||s%.

It follows from this estimate that

!

T ) < 5 [ (O + 210050005 )

to ,02
< C’/ (t—g + BQ> dt
0 0

P
< O/ <_ + BQtO) )
to
where B is a bound for b on X. The infimum of the right-hand side is obtained
for to = p/B, and gives

Ip/B,x(wp/B) S QBC/pa

which converges to 0 when p — 0. It remains to observe that to = p/B < 1 for
p small enough to complete the proof of (66). O

Proof of Lemma 5.2 If 2 € B(p), then o, = 0 and the lemma trivially holds.
Otherwise, consider the closed sets

Cr = C([0,1], G\ B(p)),

and observe that, for € G, the event {o, > t} is contained in {X° € C;}.
Corollary 4.1 yields, for all t > 0,

limsupeln sup P,(X® e Cy) < — inf L(¢),
=0 +€G\B(p) wec

where throughout this proof I;(v) stands for I 4(0)(¢0). Hence, in order to
complete the proof of the lemma, it suffices to show that

75li)r(r)lo wlggt I (¢) = 0. (70)

Let 1® denote the trajectory of (61) starting at x € G\ B(p). By assump-
tions (Ha) and (Hc), ¥® hits S(p/3) in a finite time, denoted T. Moreover,
by the uniform Lipschitz continuity of b and Gronwall’s lemma, there exists an

48



open neighborhood W, of x such that, for all y € W, the path ¥ hits S(2p/3)
before T,,. Extracting a finite cover of the compact set G\ B(p) by such sets, it
follows that there exists T' < oo such that for all y € G\ B(p), ¥¥ hits S(2p/3)
before time T

Assume now that (70) does not hold true. Then , for some M < oo and
every integer n, there exists " € C,p such that I, (™) < M. Consequently,
for some ¥™* € Or,

M 2 L (¢") = ];IT(W“) >n min (™).

Hence, there exists a sequence ¢ € Cr with lim I7(¢™) = 0. It follows from
the fact that a is uniformly non-degenerate and uniformly Lipschitz on G'\ B(p)
and from Lemma 4.1, that the set {¢ € Cr : Ir(¢) < 1} is compact, so the
sequence ¢™ has a limit point ¢* in Cp, and that Iy is lower semicontinuous on
Cr, and therefore, I7(¢*) = 0. Consequently, ¢* is a trajectory of (61) staying

inside G \ B(p) on [0,T], which yields a contradiction with the definition of T
O

Proof of Lemma 5.3 Fix 7 > 0 and let p > 0 be small enough for B(2p) C G
and for Lemma 5.1 to hold with § = 1/3 and 2p instead of p. Note that the
definition of V(0,z) yields the inequality inf,eg(2p) V(y,2) < V(0,2) as soon
as z ¢ B(2p). Then, by (66) and assumption (Hd), there exists z € S(2p),
2 ¢ G, Th < ocoand ¢ € C([0,T1],X) such that ¥(0) = =z, ¥(T1) = 2 and
I, +(¥) <V +1n/3. Moreover, by properly “cutting” the beginning of the path
1, we can suppose that for all ¢ > 0, 1 (t) € B(2p). Since z € X'\ G, the constant
A :=d(z,0GUJX) is (strictly) positive.

Thanks to (65), for any y € S(2p), there exists a continuous path ¥¥ of
length ¢, < 1 such that ¥¥(0) =y, ¥¥(t,) = x, and I, ,(¢¥) < /3. Moreover,
the construction of such a function in the proof of Lemma 5.1 allows us to
assume that [|¢¥(t)|| = 2p for all t € [0,t,]. Let ¢¥ denote the path obtained
by concatenating ¥ and v (in that order) and extending the resulting function
to be of length Ty = T7 + 1 by following the trajectory of (61) after reaching
z. Since the latter path does not contribute to the rate function, it follows that
I, (6%) < V +21/3.

Consider the set

o= U {¢ € C([0, 7o), X) : [l — ¢¥lo,1, < A—A}
)

2
yeS(2p

Observe that O is an open subset of C([0,Tp], X) that contains the functions
{9V }yes(2p)- Therefore, by Corollary 4.1,

liminfeln inf P,(X®€O0)>— su inf I
e—0 yeS(2p) y( )_ yesgp)¢eo To,y(w)

> — sup Ig,,(¢Y) > —(V +n).
yeS(2p)

If ¢ € O, then 1 reaches the open ball of radius A/2 centered at z before hitting
B(p), so v hits G before hitting B(p). Hence, for X§ =y € S(2p), the event
{X*® € O} is contained in {X7 € 0G}, and the proof is completed. O
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Proof of Lemma 5.4 Let us first notice that the fact that V(z, z) < V(z,y)+
V(y, z) for all z, y and z in X implies that

Vy,z€ X, V(0,2) <V(0,y) +V(y, 2). (71)

Fix a closed set N C 9G, fix § > 0 and define V§ := (inf,en V(0, 2) — §) A 1/6.
Then, it follows from (71) and Lemma 5.1 (65) that, for p > 0 small enough,

inf V(y,z) > inf V(0,2)— sup V(0,y) > V3.
. (y,2) 2 inf V(0,2) yesgp) 0,y9) > Vy

Moreover, by Lemma 5.2, there exists T' < oo large enough for getting

limsupeln sup P, (o, >T) < —Vy.
e—0 y€S(2p)

Consider the following closed subset of C([0,T], X):

C:={y eC([0,T],X): 3t €[0,T] such that i(t) € N}.

Note that C obviously satisfies the assumptions of Corollary 4.1, and that

inf I > inf Vy,z) > V3.
vestmveo VT 2 Bl Vw2 2 Vi
Thus
limsupeln sup P, (X €(O) < — inf T < —Vy.
e—0 y€S(2p) o ) y€E€S(2p),9EC 7y(¥) N

Since Py (X5 € N) < Py(o, >T) + Py (X € C), it follows that

limsupeln sup P,(X: € N) < V3.
e—0 yES(2p) ’

Taking § — 0 completes the proof of the lemma. O

Proof of Lemma 5.5 Let p be small enough for B(p) C G. For z € B(p),
there is nothing to prove. Thus, fix x € G\ B(p), let ¢ denote the trajectory
of (61) with initial state x, and let T := inf{t : ¢(¢t) € S(p/2)}. Because of
assumption (Ha), T' < co and there exists a positive distance between {¢(t) }i<r
and 0G. Let A := p Ad({¢(t) }i<r, IG), then

X5 = dllor < A/2= X5F € B(p).

By the uniform Lipschitz continuity of b, for ¢t < T,

)

t
/ o (XE)dW,
0

’
0,7

t
X" = o) < K/o | X5 — ¢(s)||ds 4+ eBT + /=

where B is a bound for b. Hence, by Gronwall’s lemma,

| X5 — @llor < VeeT (\/EBT + ’

/ (X5,
0

50



and, by Lemma 4.5, for sufficiently small ¢ > 0,

P, (X5, € 0G) < Py (| X° = ¢llo,r > A/2)

A
<P, > KT
{ )

A2p—2KT
< 2dexp < e> —<0 0,

[ oxzaw.

0

 32deTX2

where ¥ is a uniform bound for o. O

Proof of Lemma 5.6 Let B be a uniform bound for b and b. For any t <
p/4B, and for any = € G, (1) yields

t
1X5° — 2 < Z + eg e / o (X5)dW,
0

Therefore, for any € < 1 and any t < p/4B, by Lemma 4.5,

P£(||X€ - x”O,t > P) <P, (\/g / O’(Xf)dWs > g)
0 0,t
2
p
<2d —
= S0P < 8sdt22> ’
where X is a uniform bound for . Therefore,
2
P 4
T = —
(e.p) = 15 " sarvee
is an appropriate constant for Lemma 5.6. O
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