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Abstract
This paper is devoted to the construction and the study of a spe-

ci…c Bootstrap method for positive recurrent Markov chains based
on the regenerative method and the Nummelin splitting technique.
The main idea underlying this construction consists in generating a
sequence of approximate pseudo-renewal times for a Harris chain X
from data X1; :::; Xn and the parameters of a minorization condition
satis…ed by its transition probability kernel and then applying a vari-
ant of the methodology proposed by Datta & McCormick (1993) for
bootstrapping additive functionals of type n¡1

Pn
i=1 f(Xi) when the

chain possesses an atom. This methodology mainly consists in divid-
ing the trajectory of the chain into i.i.d. blocks corresponding to the
successive visits to the atom and resampling the blocks. We prove that
in the atomic case our method inherits the OP (n¡1) accuracy of the
Bootstrap in the i.i.d. case (up to a logarithmic factor). In the gen-
eral case (including the nonstationary case), asymptotic validity for
this resampling procedure is established, provided that a consistent
estimator of the transition kernel may be computed. Applications to
speci…c Markovian models are discussed, together with some simula-
tion results.
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1 Introduction

1.1 Bootstrap methods for Time Series
In the last few years, many researchers have been working on transposing
the naive Bootstrap method (Efron,1979) introduced in the i.i.d. setting to a
dependent setting. In most situations, stationary time series or homogeneous
random …elds are considered (for an introduction refer to Chapter 9 in Shao
& Tu (1995) and the references therein). The main idea underlying these
generalizations is to resample blocks of observations to mimic the dependence
of the data. The idea of the moving-block bootstrap (MBB) (see Hall (1985),
Carlstein (1986), Künsch (1989) and Liu & Singh (1992)) is to resample
(overlapping or disjoint) blocks of observations to capture the dependence
structure of the observations. Refer to Bühlmann (2002), Politis (2003) for
recent survey and more complete references. However, as noticed by many
authors, the results obtained by using such an approach are not completely
satisfactory for the following reasons.

² First, the MBB approach usually requires stationarity for the observa-
tions and generally fails in a general nonstationary framework.

² The asymptotic behaviour of the MBB distribution crucially depends
on the estimation of the bias and of the asymptotic variance of the statistic of
interest, which makes it di¢cult to apply in practice (see Lahiri (1992), Politis
& Romano (1992), Götze & Künsch (1996)). From a theoretical viewpoint,
the rate of convergence of the MBB distribution is slower than the one of
the Bootstrap in the i.i.d. case: at best it is of order OP(n¡3=4) under
restrictive conditions, stipulating the …niteness of moments at any order and
an exponential rate for the decay of the strong mixing coe¢cients, while the
Bootstrap achieves OP (n¡1) in the i.i.d. setting.

² Finally, the choice of the size of the blocks is a key point to get an accu-
rate estimation. In some very particular case (the sample mean or functions
of the sample mean, for which the Bootstrap may appear of lesser use), it is
possible to give some indications concerning the adequate size of the blocks
(see Götze & Künsch (1996)), but this practical problem still remains open
in the general case.

Recently, several authors have been interested in bootstrapping some par-
ticular type of Markov chains. On the one hand, if a Markovian model is a
priori speci…ed (for instance an ARMA model or a nonlinear model with a
…nite number of lags and i.i.d residuals, such as a GARCH model), the prob-
lem reduces then to the random sampling of estimated centered residuals
in the stationary case. The properties of such a semiparametric Bootstrap
are well understood since Bose (1988) (see the references therein). Based on
these ideas, Bühlmann (1997) has considered a sieve bootstrap method based
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on the approximation of times series by some AR(p) model with a large p,
eventually depending on n: This kind of Bootstrap, which presents promising
results and good practical performance at the same time, is well suited to
linear stationary time series rather than to general Markov chains. On the
other hand, most of the recent works on the Bootstrap for Markov chains
(refer to Horowitz (2002) for a comprehensive survey) follows the proposal
of Rajarshi (1990) in the case of …nite state chains and Datta & McCormick
(1995), which uses a nonparametric estimate of the transition probability in
the Bootstrap procedure, so as to mimic the markovian underlying structure
of the chain. Paparoditis & Politis (2001) have introduced a local Markov
Bootstrap, which avoids the use of an explicit (smooth) nonparametric es-
timate of the transition kernel by using a local resampling scheme, but is
nevertheless based on an implicit estimation of the transition probability.
Unfortunately, the results obtained in that direction are weakened by the
form of the hypotheses made on the models considered. Most of the time,
under these regularity assumptions, the conditions of Götze & Hipp (1983)
may be checked directly on these models, so that Edgeworth expansions are
immediately available and may be inverted straightforwardly, yielding even
better results than what can be expected with these methods. In this paper,
we focus on a method originating from Athreya & Fuh (1989) and Datta &
McCormick (1993), which exploits the renewal properties of Markov chains
when a (recurrent) state is in…nitely often visited. We call this method the
Regenerative Block Bootstrap (RBB). The problem of extending the RBB
methodology to general (eventually nonstationary) Harris recurrent Markov
chains is also addressed in this article.

1.2 On the description of Markov chains via Renewal

and Regenerative processes
Renewal theory plays a key role in the analysis of the asymptotic structure
of many kinds of stochastic processes, and especially in the development of
asymptotic properties of general irreducible Markov chains. The underly-
ing ground consists in the fact that limit theorems proved for sums of in-
dependent random vectors may be easily extended to regenerative random
processes, that is to say random processes that may be decomposed at ran-
dom times, called regeneration times, into a sequence of mutually indepen-
dent segments, namely regeneration cycles (see Smith (1955)). The method
based on this principle is traditionally called the regenerative method. As will
be recalled at length in subsection 3.1, Harris chains that possess an atom,
i.e. a Harris set on which the transition probability kernel is constant, are
special cases of regenerative processes and so fall into the range of application
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of the regenerative method. The theory developed in Nummelin (1978) (and
in parallel the closely related concepts introduced in Athreya & Ney (1978))
showed that general Markov chains could all be considered as regenerative in
a broader sense (i.e. in the sense of the existence of a regenerative extension
for the chain, see subsection 3.2), as soon as the Harris recurrence property
is satis…ed. Hence this theory made the regenerative method applicable to
the whole class of Harris Markov chains and allowed to carry over many
limit theorems to Harris chains. The aim of this paper is to reexamine and
develop further the application of the regenerative method to construct a
data-resampling procedure for Markov chains.

The powerful ideas introduced in Athreya & Fuh (1989) and Datta &
McCormick (1993) do not seem to be widely known in the Bootstrap liter-
ature, nor used in practice. This may be partly due to the fact that they
only deal with the restrictive case of Markov chains possessing a known atom
under rather strong assumptions, so that the scope of applications is limited.
Moreover, because of some inadequate standardization, the regeneration-
based bootstrap method proposed in Datta & McCormick (1993) is not sec-
ond order correct and performs very poorly in the applications (see Bertail
& Clémençon (2003b)). The main idea underlying this method consists in
resampling a deterministic number of data blocks corresponding to regener-
ation cycles. Bertail & Clémençon (2003b) have proposed a modi…cation of
the procedure introduced by Datta & McCormick (1993), which is second
order correct in the unstudentized case (i.e. when the variance is known)
when the chain is stationary. They showed that, provided the bootstrap
statistic is suitably standardized and recentered, the regeneration-based boot-
strap achieves the rate OP(n¡1 log(n)) in the stationary case. However, this
method fails to be second order correct in the nonstationary case, as a careful
examination of the second order properties of the sample mean statistic of a
positive recurrent chain based on its Edgeworth expansion (see Malinovskii
(1987), Bertail & Clémençon (2003a)) shows: nonstationarity induces a sig-
ni…cant bias, that may be decomposed into three components, each of them
being induced by a speci…c segment of the data, and cannot be estimated
when the number of resampled blocks is held …xed conditionally to the orig-
inal data, as for the regeneration-based bootstrap. Our proposal consists in
imitating the renewal structure of the chain by sampling regeneration data
blocks, until the length of the reconstructed Bootstrap series is larger than
the length n of the original data series, so as to approximate the distribution
of the (random) number of regeneration blocks in a series of length n and
remove the bias terms. In this paper we study in particular the higher order
properties of this resampling method, which we call the regenerative block-
bootstrap (RBB), for suitably standardized functionals and show how it may
be extended to the much broader class of Harris Markov chains.

We …rst consider the particular case of Markov chains with an atom (also

3



called Markov models with regeneration times, which …nd many applications
in the …eld of operational research for modeling queuing/storage systems, see
Asmussen (1987) and Feller (1968, 71)). We demonstrate here the power of
this method for suitably standardized statistics: the RBB has in particular
an uniform rate of convergence of order OP (n¡1 log(n)); close to the optimal
rate in the i.i.d case. Moreover, it is noteworthy that, unlike the MMB, there
is no need in the RBB procedure to choose the size of the blocks, which are
entirely determined by the data. Besides, the second order accuracy of the
RBB holds under weak mixing conditions (polynomial rate for the decay of
the strong mixing coe¢cients).

Then we extend this methodology to general positive recurrent chains.
Our proposal is based on a practical use of the splitting technique introduced
in Nummelin (1978) and an empirical method to build approximatively a
realization drawn from an extension of the chain with a regeneration set.
Unfortunately, this requires to compute a consistent estimate of the transi-
tion kernel of the chain. We establish the asymptotic validity of this pro-
cedure, even in a nonstationary framework, that is clearly more suitable for
many applications. The study of the second order properties of this general
method and of the optimal rate that may be attained presents severe tech-
nical di¢culties and will be carried out at length in a forthcoming article.
Here we essentially focus on the case of the sample mean in the positive re-
current case, but the ideas set out in this paper may be straightforwardly
extended to much more general functionals and even to the null recurrent
case, when speci…c models are considered. These results are illustrated by
some examples.

1.3 Outline
In section 2, notations are set out and a few de…nitions concerning the com-
munication structure and the stochastic stability of Markov chains are given.
Some basics about the regenerative method and the Nummelin splitting tech-
nique are then recalled. In section 3, our proposal for bootstrapping atomic
chains is described. Beyond the actual RBB algorithm, an asymptotic result
claiming the second order validity of the RBB method for studentized sam-
ple mean statistics is stated. Section 4 deals with the extension of the RBB
procedure to general positive recurrent chains. Two illustrative examples are
given in section 5. And technical proofs are detailed in section 6.
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2 Theoretical background

2.1 Notation and de…nitions
We shall introduce some notation and recall key notions of the Markov chain
theory that will be needed throughout the paper (for further detail, refer to
Revuz (1984)). Let X = (Xn)n2N be an aperiodic irreducible Markov chain
on a countably generated state space (E; E); with transition probability ¦,
and initial probability distribution º. Thus for any B 2 E and any n 2 N;
we have

X0 » º and P (Xn+1 2 B j X0; :::; Xn) = ¦(Xn; B) a.s. .

In what follows, Pº (respectively Px for x in E) will denote the probability
measure on the underlying probability space such that X0 » º (resp. X0 =
x), E¹ (:) the Pº-expectation (resp. Ex (:) the Px-expectation), and IfAg
will denote the indicator function of the event A:

A measurable set B is Harris recurrent for the chain if for any x 2 B,
Px(

P1
n=1 IfXn 2 Bg = 1) = 1. And the chain is said Harris recurrent if

it is Ã-irreducible and every measurable set B such that Ã(B) > 0 is Harris
recurrent. When the chain is Harris recurrent, we have the property that
Px(

P1
n=1 IfXn 2 Bg = 1) = 1 for any x 2 E and any B 2 E such that

Ã(B) > 0:
And as it is obviously easier to deal with chains with time-invariant mar-

ginal distributions for statistical purposes, it is natural to require the exis-
tence of an invariant probability measure. A probability measure ¹ on E is
said invariant for the chain when ¹¦ = ¹, where ¹¦(dy) =

R
x2E ¹(dx)¦ (x; dy).

An irreducible chain is said positive recurrent when it admits an invariant
probability (it is then unique).

Now we recall some basics concerning the regenerative method and its
application to the analysis of the behaviour of general Harris chains via the
Nummelin splitting technique (refer to Nummelin (1984) for further detail).

2.2 Chains possessing an atom
Assume that the chain is Ã-irreducible and possesses an accessible atom, that
is to say a measurable set A such that for all x; y in A:

¦(x; :) = ¦(y; :) and Ã(A) > 0:

Denote by ¿A = ¿A(1) = inf fn ¸ 1; Xn 2 Ag the hitting time on A; by
¿A(j) = inf fn > ¿A(j ¡ 1); Xn 2 Ag for j ¸ 2, the successive return times
to A, and by EA (:) the expectation conditionally to X0 2 A: Assume further
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that the chain is Harris recurrent, hence the probability of returning in…nitely
often to the atom A is equal to one, no matter what the starting point:

8x 2 E; Px (¿A <1) = 1:

Then, it follows from the strong Markov property that, for any initial distri-
bution º, the sample paths of the chain may be divided into i.i.d. blocks of
random length corresponding to consecutive visits to the atom A

B1 =
¡
X¿A(1)+1; :::; X¿A(2)

¢
; :::; Bj =

¡
X¿A(j)+1; :::; X¿A(j+1)

¢
; :::

taking their values in the torus T = [1n=1En:
The sequence (¿A(j))j>1 de…nes successive times at which the chain for-

gets its past, such random times are called regeneration times. When an
accessible atom exists, the stochastic stability properties of the chain amount
to properties concerning the speed of return time to the atom only. For
instance, in this framework the following result, known as Kac’s theorem,
holds.

Theorem 2.1 The chain (Xn)n2N is positive recurrent if and only if EA(¿A) <

1. In such a case the unique invariant probability distribution ¹ is the oc-

cupation measure given by:

8B 2 E ; ¹(B) = 1
EA(¿A)

EA(
¿AX

i=1

IfXi 2 Bg):

For such chains, limit theorems can be derived from the application of the
corresponding results to the i.i.d. blocks (Bn)n>1. One may refer for example
to Meyn & Tweedie (1996) for the LLN, CLT, LIL, Bolthausen (1980) for the
Berry-Esseen theorem, and Malinovskii (1987, 89) for other re…nements of
the CLT. The same technique can also be applied to establish moment and
probability inequalities, which are not asymptotic results (see Clémençon
(2001)).

2.3 General Harris chains
In this subsection, we recall the splitting technique introduced in Nummelin
(1978), which allows to extend in some sense the probabilistic structure of
the chain in order to arti…cially construct a regeneration set, an atom in the
general Harris recurrent case. First, consider the following notion.
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De…nition 2.2 For a Markov chain valued in a state space (E; E) with tran-

sition probability ¦, a set S 2 E is said to be small if there exist an integer

m > 0, a probability measure © supported by S, and ± > 0 such that

8x 2 S;8A 2 E ; ¦m(x;A) ¸ ±©(A);

denoting by ¦m the m-th iterate of ¦:When this holds, we say that the chain

satis…es the minorization condition M(m;S; ±;©):

Recall that accessible small sets do exist for irreducible chains (see Jain
& Jamison (1967)). We assume that the chain is Harris recurrent. Now let
us precise how to construct the atomic chain onto which the initial chain X
is embedded, from a set on which an iterate ¦m of the transition prob-
ability is uniformly bounded below. Suppose that the chain X satis…es
M = M(m;S; ±;©) for some measurable set S such that Ã(S) > 0: Even if it
entails to replace the chain (Xn)n2N by the chain

¡
(Xnm; :::; Xn(m+1)¡1

¢
)n2N,

we suppose m = 1. The sample space is expanded so as to de…ne a sequence
(Yn)n2N of independent random variables with parameter ± by de…ning the
joint distribution Pº;M whose construction relies on the following random-
ization of the transition probability ¦ each time the chain (Xn)n2N hits the
set S (note that it happens almost surely since the chain is Harris recurrent
and Ã(S) > 0). If Xn 2 S and

² if Yn = 1 (which happens with probability ± 2 ]0; 1[), then Xn+1 is
distributed according to the probability measure ©,

² if Yn = 0, (which happens with probability 1¡±), then Xn+1 is distrib-
uted according to the probability measure (1¡±)¡1(¦(Xn+1; :)¡±©(:)):

Set Ber±(¯) = ±¯+(1¡±)(1¡¯) for ¯ 2 f0; 1g. We now have constructed
a bivariate Markov chain XM = ((Xn; Yn))n2N , called the split chain, taking
its values in the state space E £ f0; 1g with a transition probability kernel
¦M de…ned by

² for any x 2 Sc; B 2 E , ¯ and ¯ 0 in f0; 1g ;

¦M ((x; ¯) ; B £ f¯ 0g) = Ber±(¯ 0) £¦ (x;B) ;

² for any x 2 S; B 2 E , ¯ 0 in f0; 1g ;

¦M ((x; 1) ; B £ f¯ 0g) = Ber±(¯ 0)£ ©(B);
¦M ((x; 0) ; A£ f¯ 0g) = Ber±(¯ 0)£ (1 ¡ ±)¡1(¦ (x;B) ¡ ±©(B)):
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The whole point of the construction consists in the fact that S £ f1g is
an atom for the split chain XM, which inherits all the communication and
stochastic stability properties from X (irreducibility, Harris recurrence,...),
in particular (for the case m = 1 here) the blocks constructed for the split
chain are independent. Hence the splitting method enables to extend the
regenerative method, and so to establish all of the results known for atomic
chains, to general Harris chains. It should be noticed that if the chain X sat-
is…es M = M(m;S; ±;©) for m > 1; the resulting blocks are not independent
anymore but 1-dependent, a form of dependence which may be also easily
handled. For simplicity ’s sake, we will omit the subscript M in what follows
and abusively denote by Pº the extensions of the underlying probability we
shall consider.

3 Bootstrapping Markov chains with an atom
Let X(n) = (X1; :::; Xn) be observations drawn from a Markov chain X
valued in a state space E equipped with a countably generated ¾-…eld E ,
with unknown transition probability ¦ and initial probability distribution
º. Assume further that the chain X is positive recurrent with unknown
stationary probability ¹ and admits an a priori known accessible atom A
(see Example 1 in section 6 for a practical case). In the following we denote
by ln =

Pn
i=1 IfXi 2 Ag the number of successive visits to the atom, giving

rise to ln + 1 data blocks

B0 = (X1; :::; X¿A(1)); B1 = (X¿A (1)+1; :::; X¿A(2)); :::;

Bln¡1 = (X¿A(ln¡1)+1; :::; X¿A (ln)); B(n)
ln = (X¿A(ln)+1; :::; Xn);

with the convention B(n)
ln = ; when ¿A(ln) = n: We denote by l(Bj) =

¿A(j + 1) ¡ ¿A(j); j > 1; the lengths of the regeneration blocks (note that
E(l(Bj)) = EA(¿A) = ¹(A)¡1 for j > 1).

Let f : E ! < be a ¹-integrable function and consider the estima-
tor ¹n(f) = n¡1

Pn
i=1 f(Xi) of the unknown mean ¹(f ) = E¹(f (X1)) con-

structed from the whole data segment X(n). In Bertail & Clémençon (2003a)
(see Proposition 3.1) it is shown that in the case when the chain is not sta-
tionary (i.e. when the initial distribution º di¤ers from ¹), the …rst data
block B0 induces a signi…cant bias, which cannot be estimated from a single
realization X(n) of the chain starting from º. It is thus impossible to approxi-
mate the second order properties of such a statistic in the nonstationary case
by using a resampling method. Hence, when the matter is to consider esti-
mators, for which one can obtain accurate bootstrap distribution estimates,
it is preferable to construct them using the data collected from the …rst re-
generation time (i.e. from the …rst visit to the atom A), so as to get rid of
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the …rst order term induced by B0 in the bias. The last (non regenerative)
data block B(n)

ln induces a …rst order term in the bias too. And although it
seems possible to estimate accurately its sampling distribution, we shall con-
sider in what follows statistics based on the observations X¿A(ln)¿A = (B1; ::::;
Bln¡1) collected between the …rst and last visits to the atom only (the use
of B(n)

ln would make the resampling method we introduce below slightly more
complex on the one hand, and would make its technical study much more dif-
…cult on the other hand). In the case of the estimation of ¹(f ), this prevails
to consider the sample mean statistic based on the data segment (X¿A+1; :::;
X¿A(ln))

¹n(f ) = (¿A(ln) ¡ ¿A)¡1
ln¡1X

i=1

f (Xi)

with the convention that ¹n(f) = 0 when ln < 2.
Hence, given a statistic Tn = Tn(X

¿A(ln)
¿A ) estimating some parameter µ

based on X¿A(ln)¿A only, we are interested in estimating accurately its sam-
pling distribution under Pº; that is to say to obtain a sharp approximation
of H(n)

Pº (x) = Pº(Hn(X
¿A(ln)
¿A ; µ) 6 x); x 2 <; where Hn(:) is a root in the

”Bootstrap literature” sense, that is either the di¤erence Tn ¡ µ or its ab-
solute value jTn ¡ µj (or S¡1n (Tn ¡ µ), when some adequate standardization
is available) when µ is real, and d(Tn; µ) for some appropriate distance d in
the general case. For the sake of the simplicity we only focus in the sequel
on sampling distributions of type

H(n)
Pº (x) = Pº(S

¡1
n (Tn ¡ µ) 6 x)

for some real parameter µ and an adequate standardization Sn. In the case
of ¹n(f) an appropriate standardization Sn = Sn(X¿A(ln)¿A ) has been exhib-
ited in Bertail & Clémençon (2003a)) (see subsection 3.2). For the reasons
mentioned above, the estimate of the asymptotic variance of Tn we shall
consider is also constructed from the regenerative data blocks B1; ::::; Bln¡1
only. This greatly simpli…es the argument for establishing the Edgeworth
expansion of the standardized sum (refer to Bertail & Clémençon (2003a) for
further details).

3.1 The regenerative block-bootstrap algorithm
Given a speci…ed parameter bn controlling the maximum length of the boot-
strap data segment (a typical choice in practice is bn = n), the RBB procedure
is performed in four steps as follows:

1. Count the number of visits ln to the atom A up to time n. And divide
the observed sample path X(n) = (X1; ::::; Xn) into ln + 1 blocks, B0,
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B1; ::::; Bln¡1; B(n)
ln valued in the torus T = [1n=1En; corresponding to

the pieces of the sample path between consecutive visits to the atom
A. Drop the …rst and last (non regenerative) blocks.

2. Draw sequentially bootstrap data blocks B¤1;n; :::; B¤k;n independently
from the empirical distribution Fn = (ln ¡ 1)¡1

Pln¡1
j=1 ±Bj of the blocks

fBjg16j6ln¡1 conditioned on X(n); until the length l¤(k) =
Pk
j=1 l(B¤j;n)

of the bootstrap data series is larger than bn. Let l¤n = inffk > 1;
l¤(k) > bng:

3. From the bootstrap data blocks generated at step 2, reconstruct a
pseudo-trajectory of size bn by binding the blocks together

X¤(n)
bn = (B¤1;n; :::;B¤l¤n¡1;n):

And compute the RBB statistic based on the bootstrap data blocks

T ¤n;bn = Tbn(X
¤(n)
bn ) = T (B¤1;n; :::;B¤l¤n¡1;n):

4. If Sn = S(B1; :::;Bln¡1) is an appropriate standardization of the original
statistic Tn, compute

S¤n;bn = Sn(X
¤(n)
bn ) = S(B¤1;n; :::;B¤l¤n¡1;n):

The RBB distribution is then given by

HRBB(x) = P ¤(S¤¡1n;bn(T
¤
n;bn ¡ Tn) 6 x jX (n))

where P ¤(: j X(n)) denotes the conditional probability given X (n).

Remark 3.1 In the next sections, the maximum length for the bootstrap

series is chosen to be bn = n. As will be shown below, the RBB is then

second order correct for regular functionals. However, in the i.i.d. case, it is

known since Bretagnolle (1983) that subsampling (i.e. choosing bn = o(n) in

our case) without replacement may yield a general second-order asymptotic

validity at the cost of some e¢ciency (and knowledge on the convergence rate

of the statistic) : see Politis & Romano (1994), Bertail (1997) and Politis,

Romano & Wolf (2000) for a recent survey. The study of the properties of

such a regenerative subsampling distribution estimate goes beyond the scope

of this paper and will be the subject of further investigation.
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Remark 3.2 One may naturally compute a Monte-Carlo approximation to

HRBB(x) by repeating independently the procedure above B times.

Remark 3.3 We point out that the RBB di¤ers from the regeneration-based

bootstrap proposed by Datta & McCormick (1993) (and from its modi…ed ver-

sion in Bertail & Clémençon (2003b) as well) in which the number of resam-

pled blocks is held …xed to ln ¡ 1, conditionally to the sample. By generating

this way a random number l¤n ¡ 1 of bootstrap regenerative blocks, we get a

data series that somehow mimics the renewal properties of the chain, although

it is not markovian (nor stationary). Consequently, the usual properties of

the i.i.d. Bootstrap cannot be directly used for studying the RBB method,

contrary to the regeneration-based bootstrap studied in Bertail & Clémençon

(2003b).

Remark 3.4 We also emphasize that the principles underlying the RBB may

be applied to any (eventually continuous time) regenerative process (and not

necessarily markovian).

3.2 Second order accuracy of the RBB
Prolongating the work of Datta &McCormick (1993), in which the regeneration-
based bootstrap is introduced, Bertail & Clémençon (2003b) showed that a
suitably modi…ed version of their bootstrap methodology is second order or-
der correct up to OP (n¡1 log(n)) for the studentized mean, in the stationary
case only. Given the necessary modi…cations (standardization and recenter-
ing) and the restrictive stationary framework required to obtain the second
order accuracy, this Bootstrap method is of limited interest from a practical
point of view. We study here the asymptotic validity of the RBB for the
studentized mean by an adequate estimator of the asymptotic variance. This
is the useful version for con…dence intervals but also for practical use of the
Bootstrap (refer to Hall (1992)). Since we know from Bertail (1997) that ex-
trapolating subsampling distribution (or m out of n bootstrap distribution)
yields second order correctness (at least up to oP (n¡1=2)) in an automatic way
under quite weak conditions, it is also of theoretical and practical importance
to determine accurately the rate of convergence (see Götze & Künsch (1996)
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for the case of the MBB). We prove that for a broad class of Markov chains
(including chains with strong mixing coe¢cients decreasing at a polynomial
rate), the accuracy reached by the RBB is of order OP(n¡1) for the unstan-
dardized sample mean and OP(n¡1 log(n)) for the studentized sample mean.
The logarithmic factor results from some crude approximation in establishing
the Edgeworth expansion (E.E. in abbreviated form) but one may reason-
ably expect that some technical re…nements could allow to assess the rate
OP(n¡1). The rate obtained is nevertheless comparable to the optimal rate of
the Bootstrap distribution in the i.i.d. case, contrary to the MBB (see Götze
& Künsch (1996)). The proof relies on the E.E. for the studentized sample
mean established in Bertail & Clémençon (2003a), which result mainly de-
rives from the methods used in Malinovskii (1987) to obtain the E.E. for the
unstandardized sample mean (see also Malinovskii (1985, 89) and Bolthausen
(1980)).

3.2.1 Further notations and preliminary remarks

We set

nA = ¿A(ln)¡ ¿A(1) =
ln¡1X

j=1

l(Bj);

f(Bj) =
¿A(j+1)X

i=1+¿A(j)

f(Xi); for any j > 1:

With these notations, we may write

¹n(f) ¡ ¹(f ) = n¡1A
ln¡1X

j=1

ff (Bj) ¡ l(Bj) ¹(f)g:

By virtue of the strong Markov property, ff(Bj) ¡ l(Bj) ¹(f )gj>1 are i.i.d.
r.v.’s with mean 0 and variance

¾2F = E(ff(Bj)¡ l(Bj) ¹(f )g2) (2)

In the following, we also set

® = EA(¿A) and ¯ = cov(l(Bj); f (Bj) ¡ l(Bj) ¹(f )g):

Under the assumption that the expectations EA((
P¿A
i=1 f(Xi))

2); EA(¿2A);
Eº((

P¿A
i=1 jf (Xi)j) and Eº(¿A) are …nite, the CLT holds (see Theorem 17.2.2

in Meyn & Tweedie (1996)). We have as n! 1

n¡1=2(¹n(f) ¡ ¹(f )) ! N (0; ¾2f ) in distribution under Pº,
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with the asymptotic variance ¾2f = ®¡1¾2F :
For the MBB, the choice of the standardization, the bias it induces and

the de…nition of its Bootstrap counterpart are key points to obtain the sec-
ond order validity of the method. In our regenerative setting, we avoid this
problem with the RBB, since the following estimate of the asymptotic vari-
ance ¾2f = ®¡1¾2F based on the expression (1) may be naturally constructed
using the regeneration times

¾2n(f) = n¡1A
ln¡1X

j=1

ff (Bj) ¡ ¹n(f)l(Bj)g2 :

First order properties of this estimator have been studied in Bertail & Clé-
mençon (2003a). A straightforward application of the SLLN for positive
recurrent Markov chains shows it is strongly consistent. Under some further
regularity conditions, Bertail & Clémençon (2003a) have also shown that its
bias is of order O(n¡1) and it is asymptotically normal. As will be shown
below, the regenerative properties allow to exhibit a straightforward stan-
dardization, that does not weaken the performance of the RBB, while the
standardization of the MBB distribution in the strong mixing case is the
main barrier to achieve good performance (as shown by Götze & Künsch
(1996)). In most practical situations (except for the very special case of m-
dependence), positive moving-block based estimates of the variance with such
good properties are not available. Moreover, in opposition to the MBB, the
Bootstrap counterparts may be de…ned straightforwardly in our regenerative
setting. With n¤A =

Pl¤n¡1
j=1 l(B¤j ), we de…ne

¹¤n(f ) = n¤¡1A
l¤n¡1X

j=1

f(B¤j) and ¾¤2n (f) = n¤¡1A
l¤n¡1X

j=1

©
f (B¤j ) ¡ ¹¤n(f )l(B¤j )

ª2 :

3.2.2 Main asymptotic result

We now state the asymptotic validity of the RBB in the atomic case.

Theorem 3.1 Assume that the chain X ful…lls the following conditions,

(i) (Cramer condition)

lim
jtj!1

jEA(exp(it(
¿AX

i=1

ff (Xi) ¡ ¹(f )g))j < 1:

(ii) (Non degeneracy of the asymptotic variance)

¾2f > 0:

13



(iii) (”Block moment conditions”) For some integer s ¸ 2;

EA(¿sA) < 1; EA(
¿AX

i=1

jf(Xi)j)s <1:

(iv) (”Block moment conditions” for the initial law º)

Eº(¿2A) <1; Eº(
¿AX

i=1

jf(Xi)j)2 <1:

(v) (Non trivial regeneration set)

EA(¿A) > 1:

Then under assumptions (i)-(v) with s= 6+"; the RBB distribution estimate

for the unstandardized sample mean is second order accurate in the following

sense

¢Un = sup
x2R

jHURBB(x) ¡HUº (x)j = OPº (n¡1), as n! 1;

with HURBB(x) = P ¤(n1=2A ¾
¡1
f f¹¤n(f) ¡ ¹n(f)g · x j X(n)) and HUº (x) =

Pº(n
1=2
A ¾

¡1
f f¹n(f )¡ ¹(f)g · x):

Under the assumptions (i)-(v) with s = 8 + "; the RBB distribution esti-

mate for the standardized sample mean is also second order correct

¢Sn = sup
x2R

jHSRBB(x) ¡HSº (x)j = OPº (n¡1 log(n)), as n! 1;

with HSRBB(x) = P ¤(n
¤¡1=2
A ¾¤¡1n (f)f¹¤n(f)¡¹n(f)g · x j X(n)) and HSº (x) =

Pº(n
1=2
A ¾¡1n (f )f¹n(f) ¡ ¹(f )g · x):

This result ensures that for atomic chains the RBB has nearly the opti-
mality of the i.i.d. Bootstrap. This is noteworthy, since the RBB method
applies to countable chains (for which any recurrent state is an atom) but
also to many speci…c Markov models widely used in practice (see section 2.4
in Meyn & Tweedie (1996), Feller (1968, 71) and Asmussen (1987) for more
details of such models and for instance the popular storage model in Exam-
ple 1 of section 6). We point out that the relationship between the ”block
moment” condition (iii) and the rate of decay of mixing coe¢cients has been
investigated in Bolthausen (1982): for instance condition (iii) is typically ful-
…lled when f is bounded as soon as the strong mixing coe¢cients sequence
decreases at an arithmetic rate n¡½, for some ½ > s¡ 1.

14



4 Approximate regenerative block-bootstrap

for positive recurrent chains
Consider now observations X1; :::; Xn+1 drawn from a positive recurrent
Markov chain X with transition probability ¦, stationary law ¹ and initial
distribution º satisfying a minorization condition M = M(m;S; ±;©) with
known parameters (m;S; ±;©) (we take m = 1 with regard to simplicity). If
we were able to generate Y1; :::; Yn, so that XM (n) = ((X1; Y1); :::; (Xn; Yn))
be a realization of the split chain XM described in subsection 3.2, then
we could apply the RBB procedure to the sample path XM (n): Unfortu-
nately, as will be shown below, knowledge of ¦ is required to draw practi-
cally Y1; :::; Yn this way. Our proposal for bootstrapping positive recurrent
chains relies on the splitting construction and is based on the knowledge
of the parameters of a minorization condition. Precisely, the matter is to
approximate this construction by computing an estimator pn(x; y) of the
transition density p(x; y) using data X1; :::; Xn+1, and to generate a ran-
dom vector (bY1; :::; bYn) conditionally to X(n+1) = (X1; :::; Xn+1); drawn from
a distribution L(n)(pn; S; ±; Á;X(n+1)) approximating in some sense the con-
ditional distribution L(n)(p; S; ±; Á;X(n+1)) of (Y1; :::; Yn) for given X(n+1) :
Our method, which we call approximate regenerative block-bootstrap (ARBB),
amounts then to apply the RBB procedure to the data ((X1; bY1); :::; (Xn; bYn))
as if they were drawn from the atomic chain XM. Here we will show that,
even if it requires to use a consistent estimate of the ”nuisance parameter” p
and the corresponding approximate blocks it induces, this bootstrap method
still remains asymptotically valid.

4.1 ”Approximating the regenerative blocks”
We suppose that condition M is ful…lled with m = 1 for the sake of the sim-
plicity. We assume further that the family of the conditional distributions
f¦(x; dy)gx2E and the initial distribution º are dominated by a ¾-…nite mea-
sure ¸ of reference, so that º(dy) = f(y)¸(dy) and ¦(x; dy) = p(x; y)¸(dy),
for all x 2 E: Notice that the minorization condition entails that © is ab-
solutely continuous with respect to ¸ too, and that

p(x; y) ¸ ±Á(y); ¸(dy) a.s.

for any x 2 S; with ©(dy) = Á(y)dy.
Let Y be the binary random sequence constructed via the Nummelin

technique from the parameters of condition M. Note that the distribution
of Y (n) = (Y1; :::; Yn) conditionally to X(n+1) = (x1; :::; xn+1) is the tensor
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product of Bernoulli distributions given by: for all ¯(n) = (¯1; :::; ¯n) 2
f0; 1gn ; x(n+1) = (x1; :::; xn+1) 2 En+1;

Pº
³
Y (n) = ¯(n) j X (n+1) = x(n+1)

´
=
nY

i=1

Pº(Yi = ¯i jXi = xi; Xi+1 = xi+1);

with

² if xi =2 S;

Pº(Yi = ¯i j Xi = xi; Xi+1 = xi+1) = Ber± (¯i) ;

² if xi 2 S;

Pº(Yi = 1 j Xi = xi; Xi+1 = xi+1) = ±Á(xi+1)=p(xi; xi+1);
Pº(Yi = 0 j Xi = xi; Xi+1 = xi+1) = 1 ¡ ±Á(xi+1)=p(xi; xi+1);

for 1 6 i6 n:

Roughly speaking, conditioned on X (n+1), from i = 1 to n, Yi is drawn
from the Bernoulli distribution with parameter ±, unless X has hit the small
set S at time i: in this case Yi is drawn from the Bernoulli distribution
with parameter ±Á(Xi+1)=p(Xi; Xi+1): We denote by L(n)(p; S; ±; Á; x(n+1))
this probability distribution. Our proposition for bootstrapping Harris chains
consists thus in approximating this construction by computing an estimate
pn(x; y) of p(x; y) from data X1; :::; Xn+1, and then drawing a random vector
(bY1; :::; bYn) conditionally to X(n+1) = (X1; :::; Xn+1); from the distribution
L(n)(pn; S; ±; Á;X(n+1)): Note that we may choose the estimate pn(x; y) of the
transition density such that pn(x; y) ¸ ±Á(y); ¸(dy) a.s., and pn(Xi; Xi+1) >
0, 1 6 i 6 n:

In the next subsection, we show that the accuracy of this approximation
(in the sense of the Mallows distance) mainly depends on the rate of the
uniform convergence of pn(x; y) to p(x; y) over S £ S .

4.2 Mallows distance between (Xi; bYi)16i6n and (Xi; Yi)16i6n

Let us show that the distribution of (Xi; bYi)16i6n gets closer and closer to
the distribution of (Xi; Yi)16i6n in the sense of the Mallows distance (also
known as the Kantorovich or Wasserstein metric in the probability literature)
as n tends to in…nity. Hence, we express here the distance between the
distributions PZ and PZ 0 of two random sequences Z = (Zn)n>0 and Z 0 =
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(Z 0n)n>0 ; taking their values in Rk, by (see Rachev & Rüschendorf (1998), p
76)

lp (Z;Z 0) = lp(PZ; P Z
0
)

= min
n
Lp (W;W 0) ; W » PZ; W 0 » P Z0

o
;

with
(Lp (W;W 0))1=q = E [Dp (W;W 0)] ;

where D denotes the metric on the space Â(Rk) = (Rk)1 de…ned by

D (w;w0) =
1X

k=0

2¡k kwk ¡ w0kkRk

for any w, w0 in Â(Rk) (k:kRk denoting the usual euclidian norm of Rk).
Thus, viewing the sequences Z(n) = (Xk; Yk)16k6n and bZ(n) = (Xk; bYk)16i6n
as the beginning segments of in…nite series, we evaluate the deviation between
the distribution P (n) of Z(n) and the distribution bP (n) of bZ(n) by using this
de…nition

l1(P (n); bP (n)) = min
Z(n)»P (n)
bZ(n)» bP (n)

nX

k=1

2¡kE(
¯̄
¯Yk ¡ bYk

¯̄
¯):

Theorem 4.1 Assume that

(i) S is chosen so that infx2S Á(x) > 0;

(ii) p is estimated by pn at the rate ®n for the MSE when error is measured

by the L1 loss over S2; then

l1(P (n); bP (n)) 6 (± inf
x2S
Á(x))¡1®1=2n :

This results clearly shows that the closeness between the two distri-
butions is tightly connected to the rate of convergence of the estimator
pn(x; y) but also to the minorization condition parameters. This gives us
some hints on how to choose the small set to obtain better …nite sample
results (see Example 2 in section 5).

4.3 The approximate regenerative block-bootstrap

algorithm.
It is now easy to see how we can perform an approximate regenerative block-
bootstrap (ARBB) algorithm to obtain the sample distribution of some sta-
tistic Tn: Given the parameter bn, it is performed in six steps as follows.
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1. From the data X(n+1) = (X1; :::; Xn+1), compute an estimate pn(x; y)
of the transition density such that pn(x; y) ¸ ±Á(y); ¸(dy) a.s., and
pn(Xi; Xi+1) > 0, 1 6 i 6 n:

2. Conditionally to X(n+1), draw a vector (bY1; :::; bYn) from the distribution
estimate L(n)(pn; S; ±; Á;X (n+1)).

3. Count the number of visits bln =
Pn
i=1 IfXi 2 S; bYi = 1) to the set

AM = S £ f1g up to time n. And divide the observed sample path
X(n) into bln+1 blocks, valued in the torus T = [1n=1En; corresponding
to the pieces of the sample path between consecutive visits to AM,

bB0 = (X1; :::; Xb¿AM (1)); bB1 = (Xb¿AM (1)+1; :::; Xb¿AM (2)); :::;
bBbln¡1 = (Xb¿AM (bln¡1)+1; :::; Xb¿AM (bln)); bB(n)

ln = (Xb¿AM (bln)+1; :::; Xn);

with

b¿AM(1) = inf
n
n > 1; Xn 2 S; bYn = 1

o
;

b¿AM(j +1) = inf
n
n > b¿AM(j); Xn 2 S; bYn = 1

o
;

l( bBj) = b¿AM(j + 1) ¡ b¿AM(j); for j > 1:

4. Draw sequentially bootstrap data blocks B¤1; :::; B¤k independently from
the empirical distribution Fn = (bln¡1)¡1

Pbln¡1
j=1 ± bBj of the blocks bB1; :::;

bBbln¡1, conditioned on X(n) until the length of the bootstrap data series
l¤(k) =

Pk
j=1 l(B¤j ) is larger than bn: Let l¤n = inffk > 1; l¤(k) > bng:

5. From the bootstrap data blocks generated at step 4, reconstruct a
pseudo-trajectory by binding the blocks together, getting the recon-
structed ARBB sample path

X¤(n)
bn = (B¤1; :::;B¤l¤n¡1):

Then compute the ARBB statistic

T ¤(n)n;bn = T(X¤(n)
bn )

and the ARBB standardization

S¤(n)n;bn = S(X¤(n)
bn ):

6. The ARBB distribution is then given by

HARBB(x) = P ¤(S¤¡1n;bn (T
¤
n;bn ¡ Tn) 6 x j X(n+1)):
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In the following we choose bn = n:

Remark 4.1 From a practical point of view, it actually su¢ces to draw the
bYi’s at times i when the chain visits the set S (i.e. when Xi 2 S); which are

the only time points at which the split chain may regenerate. At such a

time point i, draw bYi according to the Bernoulli distribution with parameter

±Á(Xi+1)=pn(Xi; Xi+1)).

Remark 4.2 A Monte-Carlo approximation to HARBB(x) may be straight-

forwardly computed by repeating independently N times the steps 4-6 of the

procedure above.

4.4 Asymptotic validity of the ARBB
As explained in Malinovskii (1985, 87) in the unstandardized case, the Edge-
worth expansion (E.E. in abbreviated form) proved in Bertail & Clémençon
(2003a) for an atomic chain in the studentized case straightforwardly ex-
tends to a general positive recurrent chain by applying the latter to the
split chain (X; Y ) constructed via the Nummelin technique from a minoriza-
tion condition M : it is noteworthy that, though expressed using the pa-
rameters of condition M, the coe¢cients in the E.E. are independent from
these latter, in particular the asymptotic variance, which may be written
¾2f = EAM(¿AM)¡1EAM((

P¿AM
i=1 ff(Xi)¡ ¹(f)g)2), where ¿AM = inffn > 1;

(Xn; Yn) 2 S £ f1gg and EAM(:) denotes the expectation conditionally to
(X0; Y0) 2 AM = S £ f1g. However in the studentized case, one cannot use
the standardization de…ned in 4.2.1 in the atomic setting for the split chain,
since the times when the split chain regenerates are unknown. We thus con-
sider the following estimators based on the pseudo-regeneration times (i.e.
times i when (Xi; bYi) 2 S £ f1g) generated by the procedure described in
4.1.

b¹n(f) = bn¡1
AM

bln¡1X

j=1

f ( bBj);

b¾2n(f) = bn¡1
AM

bln¡1X

j=1

n
f( bBj)¡ b¹n(f)l( bBj)

o2

of ¹(f) and ¾2f respectively, with bn
AM

= b¿AM(bln) ¡ b¿AM(1) =
Pbln¡1
j=1 l( bBj)

and f( bBj) =
Pb¿A(j+1)
i=1+b¿A(j) f(Xi). By convention, b¹n(f) (respectively b¾2n(f);
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bnAM ) equals to 0, when bln 6 1. Note that, analogously to the way we
proceeded in the atomic case to avoid bias terms that cannot be approximated
by using a resampling method (see section 3), eventual data collected before
the …rst (respectively, after the last) pseudo-regeneration time are not used
to construct these estimators.

Let us de…ne the unstandardized distribution by

HUº (x) = Pº(bn1=2AM¾(f)
¡1 (b¹n(f) ¡ ¹(f )) · x):

We also de…ne the pseudo-regeneration based studentized sample mean

btAM;n =
Pbln¡1
j=1 f( bBj)¡ ¹(f)Pbln¡1

j=1 l( bBj)
µPbln¡1

j=1

n
f( bBj)¡ b¹n(f )l( bBj)

o2
¶1=2 = bn1=2

AM

b¹n(f) ¡¹(f)
b¾n(f)

;

with sampling distribution

HSº (x) = Pº(btAM;n · x):

4.4.1 Further assumptions and preliminary results

In this setting we use the following assumptions to establish the asymptotic
validity of the ARBB approach. Let k > 2 be a real number.

H1(f; k; º) : The small set S is such that

sup
x2S
Ex((

¿SX

i=1

jf(Xi)j)k) <1 and Eº((
¿ SX

i=1

jf(Xi)j)k) <1:

H1(k; º) : The small set S is such that

sup
x2S
Ex(¿ kS) <1 and Eº(¿ kS) < 1:

Remark 4.3 We point out that assumptions H1(f; k; º) and H1(k; º) do not

depend on the choice of the small set S (if it is checked for some accessible

small set S, it is also ful…lled for all accessible small sets of the chain). Note

also that in the case when assumption H1(k; º) is satis…ed, H1(f; k; º) is

ful…lled for any bounded measurable function f .

For a sequence of nonnegative real numbers (®n)n2N converging to 0 as
n! 1,

H3 : p(x; y) is estimated by pn(x; y) at the rate ®n for the MSE when
error is measured by the L1 loss over S £ S :

Eº( sup
(x;y)2S£S

jpn(x; y)¡ p(x; y)j2) = O(®n); as n! 1:
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Remark 4.4 Numerous estimators of the transition density of positive re-

current Markov chains have been proposed in the literature and their esti-

mation rates have been established under various smoothness assumptions on

the density of the joint distribution ¹(dx)¦(x; dy) and the one of ¹(dx) (re-

fer to Roussas (1969, 91a, 91b), Rosenblatt (1970), Birgé (1983), Doukhan

& Ghindès (1983), Prakasa Rao (1983), Athreya & Atuncar (1998) or Clé-

mençon (2000) for instance): For instance, under classical Hölder constraints

of order s, the typical rate for the risk in this setup is ®n » (lnn=n)s=(s+1).

H4 : The density Á is such that infx2S Á(x) > 0:
H5 : The transition density p(x; y) and its estimate pn(x; y) are bounded

by a constant R <1 over S2:
We have the following result.

Theorem 4.2 Suppose that conditions (i)-(ii) are ful…lled by the split chain

XM for the atom AM. Assume moreover that X satis…es H1(f; ½; º) and

H2(½; º) with ½ ¸ 4; H3; H4 and H5, then we have as n! 1

b¾2n(f) ! ¾2f in Pº- probability,

bn1=2
AM

b¹n(f) ¡ ¹(f )
b¾n(f )

! N (0; 1) in distribution under Pº:

Remark 4.5 We recall that conditions (i)-(v) for the split chain may be

more easily checked in practice by using test functions methods (refer to

Kalashnikov (1978)). In particular, it is well known that ”block” moment

conditions may be replaced by drift criteria of Lyapounov’s type (see Chap-

ter 11 in Meyn & Tweedie (1996) for further details on such conditions and

many examples). We also point out that assumptions H1(f; ½; º) and H2(½; º)

classically imply that the block-moment conditions (iii) and (iv) are satis…ed

by the split chain for s = ½.

4.4.2 Main asymptotic theorem

The bootstrap counterparts of the statistics introduced above are then de-
…ned as follows. Let B¤1; :::; B¤l¤n¡1 be the bootstrapped pseudo-regenerative
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data blocks and n¤
AM

=
Pl¤n¡1
j=1 l(B¤j ) be the length of the ARBB data series,

then set

¹¤n(f) = n¤¡1AM

l¤n¡1X

j=1

f (B¤j );

¾¤2n (f) = n¤¡1AM

l¤n¡1X

j=1

©
f(B¤j) ¡ ¹¤n(f)l(B¤j )

ª2 :

The unstandardized version of the approximate-regenerative bootstrap
distribution is given by

HUARBB(x) = P
¤(n¤1=2

AM
b¾¡1n (f ) (¹¤n(f) ¡ b¹n(f )) · x jX (n+1)):

De…ne also the bootstrap version of the pseudo-regeneration based stu-
dentized sample mean by

t¤AM;n =
Pl¤n¡1
j=1 f (B¤j ) ¡ b¹n(f)

Pl¤n¡1
j=1 l(B¤j )³Pl¤n¡1

j=1
©
f(B¤j )¡ ¹¤n(f )l(B¤j )

ª2
´1=2 = n¤1=2

AM

¹¤n(f) ¡ b¹n(f)
¾¤n(f)

and the studentized ARBB distribution estimate

HSARBB(x) = P ¤(t¤AM;n · x j X(n+1)):

Note that this is the same construction as in the atomic case, except that
one uses the approximated blocks instead of the true regenerative ones.

Theorem 4.3 Under the hypotheses of Theorem 4.2, we have the following

convergences in distribution under Pº

¢Un = sup
x2R

jHUARBB(x) ¡HUº (x)j ! 0; as n! 1

¢Sn = sup
x2R

jHSARBB(x) ¡HSº (x)j ! 0; as n! 1:

Remark 4.6 In consideration of technical di¢culties, we con…ned here the

study of the properties of the ARBB distribution estimate to establishing its

asymptotic validity. In particular, second order properties of the ARBB can-

not be straightforwardly deduced from the E.E. of the RBB version by the

standard Chibisov lemma, nor from the argument used in the atomic case.
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As a careful examination of the proof of Theorem 5.1 in Bertail & Clémençon

(2003a) shows, second order asymptotic results for the RBB when a known

atom A exists are established by partitioning the probability space according

to the number ln ¡ 1 of regenerative blocks and the values taken by the suc-

cessive regeneration times ¿A(1); :::; ¿A(ln) up to time n, and and applying

then non uniform limit theorems for sample mean statistics based on 1-lattice

i.i.d. random vectors on each subset of the partition (see also Malinovskii

(1987, 89)). What makes this approach very hard to transpose in the ARBB

case is that, by construction, pseudo-regeneration times b¿AM(j), and the data

blocks bBj they induce, depend on the whole trajectory, owing to the transition

probability estimation step. This suggests that higher order properties of the

ARBB should be studied with other techniques, which will be the subject of

further investigation. In spite of this we nevertheless expect that the ARBB

properties are comparable to the RBB properties.

5 Illustrative examples
We now give two examples, only with a view to illustrate the scope of ap-
plications of our methodology. Simulations showing the performance of the
RBB for speci…c regenerative queuing models are exhibited in Bertail & Clé-
mençon (2003c). The …rst example presents a regenerative Markov chain
described and studied at greater length in Harrison & Resnick (1976) (see
also Brockwell, Resnick & Tweedie (1982) and Browne & Sigman (1992))
for modeling storage systems. In consideration of the recent emphasis on
nonlinear models in the time series literature, our second example shows to
what extent the ARBB method may apply to a general nonlinear AR model.
Further, we point out that the principles exposed in this paper are by no
means restricted to the markovian setting, but may apply to any process for
which a regenerative extension can be constructed and simulated from the
data available (see chapter 10 in Thorisson (2000)).
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5.1 Example 1 : content-dependent storage systems
We consider a general model for storage, evolving through a sequence of input
times (Tn)n2N (with T0 = 0 by convention), at which the storage system is
replenished. Let Sn be the amount of input into the storage system at the
nth input time Tn and Ct be the amount of contents of the storage system at
time t. When possible, there is withdrawal from the storage system between
these input times at the constant rate r and the amount of stored contents
that drops in a time period [T; T + ¢T ] since the latter input time is equal
to CT ¡ CT+¢T = r¢T , and when the amount of contents reaches zero, it
continues to take the value zero until it is replenished at the next input time.
If Xn denotes the amount of contents immediately before the input time Tn
(i.e. Xn = CTn ¡ Sn), we have for all n 2 N;

Xn+1 = (Xn +Sn ¡ r¢Tn+1)+ ;

with (x)+ = sup (x; 0) ; X0 = 0 by convention and ¢Tn = Tn ¡ Tn¡1 for all
n ¸ 1: Let K(x; ds) be a transition probability kernel on R+. Assume that,
conditionally to X1; :::; Xn; the amounts of input S1; :::; Sn are independent
from each other and independent from the inter-arrival times ¢T1; :::; ¢Tn
and that the distribution of Si is given by K(Xi; :), for 0 6 i 6 n: Under
the further assumption that (¢Tn)n>1 is an i.i.d. sequence with common
distribution G, independent from X = (Xn)n2N, the storage process X is a
Markov chain with transition probability kernel ¦ given by

¦(Xn; f0g) = ¡(Xn; [Xn; 1[);
¦(Xn; ]x; 1[) = ¡(Xn; ]¡1; Xn ¡ x[)

for all x > 0, where the transition probability ¡ is given by the convolution
product ¡(x; ]¡1; y [) = R1

t=0

R 1
z=0G(dt)K(x; dz)Ifrt¡ z < yg:

One may check that the chain ¦ is ±0-irreducible as soon as K(x; :) has
in…nite tail for all x > 0. In this case, f0g is an accessible atom for X and
it can be shown that it is positive recurrent if and only if there exists b > 0
and a test function V : R+ ! [0;1] such that V (0) < 1 and for all x > 0 :

Z
¦(x; dy)V (y) ¡ V (x) 6 ¡1 + bIfx = 0g:

The times at which the storage process X reaches the value 0 are thus
regeneration times, and allow to de…ne regeneration blocks dividing the sam-
ple path, as shown in Fig. 1. Figure 2 below shows a reconstructed RBB
data series, generated by a sequential sampling of the regeneration blocks (as
described in 3.1), on which RBB statistics may be based.
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Figure 1: Dividing the trajectory of the storage process into data blocks

corresponding to the regeneration times ¿A(j)

)( *
nA lτ

Figure 2: Reconstruction of a storage process data series using the RBB

resampling procedure
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Simulation results We simulated two trajectories of respective length
n = 100 and n = 200 drawn from this Markov chain with r = 1, K(x; dy) =
Exp3(dy) and G(dy) = Exp1(dy); denoting by Exp¸(dy) the exponential
distribution with mean 1=¸ > 0, which is a standard M/M/1 model (see As-
mussen (1987) for instance). In Fig. 3 below, a Monte-Carlo estimate of the
true distribution of the sample mean standardized by its estimated standard
error (as de…ned in § 3.2.1) computed with 10000 simulated trajectories is
compared to the RBB distribution (in both cases, Monte-Carlo approxima-
tions of RBB estimates are computed from B = 2000 repetitions of the RBB
procedure, see remark 3.2)) and to the gaussian approximation.

Figure 3: Comparison of true, RBB and gaussian distributions for n = 200:

With a view to constructing accurate con…dence intervals, Table 1 com-
pares the quantile of order ° of the true distribution, the one of the gaussian
approximation (both estimated with 10000 simulated trajectories) and the
mean of the quantile of order ° of the RBB distribution over 100 repetitions
of the RBB procedure in the tail regions.

The left tail is clearly very well estimated, whereas the right tail gives
a better approximation than the asymptotic distribution. The gain in term
of coverage accuracy is quite enormous in comparison to the asymptotic
distribution. For instance at the level 95%, for n = 200, the asymptotic
distribution yields a bilateral coverage interval of level 71% whereas the RBB
distribution yields in our simulation a level of 92%.
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n= 100 200 1
°% TD RBB TD RBB ASY

1 -7.733 -7.044 -5.492 -5.588 -2.326

2 -6.179 -5.734 -4.607 -4.695 -2.054

3 -5.302 -5.014 -4.170 -4.165 -1.881

4 -4.816 -4.473 -3.708 -3.757 -1.751

5 -4.374 -4.134 -3.430 -3.477 -1.645

6 -4.086 -3.853 -3.153 -3.243 -1.555

7 -3.795 -3.607 -2.966 -3.045 -1.476

8 -3.576 -3.374 -2.771 -2.866 -1.405

9 -3.370 -3.157 -2.606 -2.709 -1.341

10 -3.184 -2.950 -2.472 -2.560 -1.282

n= 100 200 1
°% TD RBB TD RBB ASY

90 1.041 1.032 1.029 1.047 1.282

91 1.078 1.085 1.083 1.095 1.341

92 1.125 1.145 1.122 1.150 1.405

93 1.168 1.207 1.177 1.209 1.476

94 1.220 1.276 1.236 1.277 1.555

95 1.287 1.360 1.299 1.356 1.645

96 1.366 1.453 1.380 1.442 1.751

97 1.433 1.568 1.479 1.549 1.881

98 1.540 1.722 1.646 1.685 2.054

99 1.762 1.970 1.839 1.916 2.326

Table 1 : Comparison of the tails of the true distribution (TD), RBB and
gaussian distributions.

5.2 Example 2 : nonlinear AR models
Consider now the general heteroskedastic autoregressive model

Xn+1 = m(Xn) + ¾(Xn)"n+1; n 2 N;

where m : R ! R and ¾ : R ! R¤
+ are measurable functions, ("n)n2N is a

i.i.d. sequence of r.v.’s drawn from g(x)dx such that, for all n 2 N, "n+1 is
independent from the Xk’s, k 6 n with E("n+1) = 0 and var("n+1) = 1. The
transition kernel density of the chain is given by p(x; y) = g((y¡m(x))=¾(x)),
(x; y) 2 R2: Assume further that g; m and ¾ are continuous functions and
there exists x0 2 R such that p(x0; x0) > 0: Then, the transition density
is uniformly bounded from below over some neighborhood Vx0 (")2 = [x0 ¡
"; x0 + "]2 of (x0; x0) in R2 : there exists ± = ±(") 2]0; 1[ such that,

inf
(x;y)2V 2

x0

p(x; y) > ±(2")¡1: (4)

Any compact interval Vx0(") is thus a small set for the chainX, which satis…es
the minorization condition M(1; Vx0("); ±;UVx0(")); where UVx0(") denotes the
uniform distribution on Vx0 (") (see de…nition 3.2). Hence, in the case when
one knows x0; " and ± such that (2) holds (this simply amounts to know a
uniform lower bound estimate for the probability to return to Vx0(") in one
step), one may e¤ectively apply the ARBB methodology to X.

We point out that the number of pseudo-regenerative blocks to resample
depends on how large the small set chosen is (or more exactly, on how often it
is visited by the chain in a trajectory of …nite length) and how accurate is the
lower bound (2) (the larger ± is, the larger is the probability to draw pseudo
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regenerative times bYk = 1 at randomization steps, i.e. when Xk 2 Vx0(")).
And since the larger " is, the smaller ±(") is, it is intuitive to think that bet-
ter numerical results for the block-resampling procedure can be obtained in
practice for some speci…c choices of the size ", likely (but with no argument
except empirical evidence to support this point) for choices corresponding to
a maximum number of regenerative data blocks given the trajectory. Thus,
from a practical viewpoint, when little prior information about the structure
of this chain (i.e. about functions m; ¾ and g) is available, an empirical
method for choosing the minorization condition parameters could be as fol-
lows. A possible ideal selection rule could rely on searching for " > 0 so as to
maximize the expected number of data-blocks conditionally to the observed
trajectory X(n+1), that is

Nn(") = E(
nX

i=1

IfXi 2 Vx0("); Yi = 1g jX(n+1)) (5)

=
±(")
2"

nX

i=1

If(Xi; Xi+1) 2 Vx0(")2g
1

p(Xi; Xi+1)
:

Since the transition density p and its minimum over Vx0(")2 are unknown, a
practical criterion bNn(") to optimize could be obtained by replacing p by an
estimate pn and ±(")=2" by a sharp lower bound b±n(")=2" for pn over Vx0(")2
in expression (5): Properties of such a choice (which gives remarkable results
in practice for variance estimation and bootstrap approximation according
to our experience) will be studied in more details in a further work. Observe
…nally that other approaches may be used for the choice of the minorization
condition, for instance one may refer to Roberts & Rosenthal (1996) in the
case of di¤usion Markov processes.

Simulation results Here are empirical evidences for two speci…c models.
The AR(1) model :

Xi+1 = ®Xi + "i+1; i 2 N;

with "i
i:i:d:» N (0; 1); ® = 0:95; X0 = 0 and for a trajectory of length n = 200:

The AR(1) model with ARCH(1) residuals called AR-ARCH model:

Xi+1 = ®Xi + (1 + ¯X2
i )1=2"i+1; i 2 N;

with "i
i:i:d:» N (0; 1); ® = 0:6; ¯ = 0:1; X0 = 0 and for a trajectory of

length n = 200:
A much more detailed simulation study as well as applications to di¤erent

types of markovian model will be carried out in a forthcoming paper. Here
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the true distribution of the sample mean is estimated with 10000 simulations,
the ARBB distribution is approximated with B = 2000 iterations and the
procedure is repeated 100 times ( we simulated 100 trajectories and aver-
aged the 100 quantiles of the corresponding ARBB distributions in Table 2).
We estimated the transition density with a classical kernel estimator bpn of
Nadaraya-Watson ’s type (see Doukhan & Ghindès (1983) for instance). The
small set is selected by maximizing the empirical criterion bNn(") described
above over " > 0. The main steps of the procedure are summarized in graph
panels 1 and 2. The …rst …gure shows the Nadaraya-Watson (NW) estimator,
the second one represents bNn(") as " grows and clearly allows to identify an
optimal value for the size of the small set. In the case of the AR model for in-
stance, this selection rule leads to pick " = 0:90 and b± = 0:110 (the minimum
value of p(x; y) over the corresponding square is actually ± = 0:118): In the
second line of the panel, the level sets of the NW estimator, the data points
(Xi; Xi+1) and the ”optimal” small set are represented (this also shows that
the small set chosen may be not that ”small” if the transition density is ‡at
around (0; 0)). The next …gure shows a trajectory of the chain and indicates
the pseudo-regenerative blocks obtained by applying the randomization rule
with Ber(1 ¡ b±(2")¡1= bpn(Xi; Xi+1)) at times i when (Xi; Xi+1) 2 V0(")2).
The …gure on the right hand shows how binded blocks form a typical ARBB
trajectory. It is noteworthy that such a trajectory presents less arti…cial
”jumps” than a trajectory reconstructed from a classical MBB procedure.
Finally the true distribution, the ARBB distribution and the asymptotic
gaussian distribution are compared in the last picture. Table 2 below gives
the mean of some quantiles (of order °) of the ARBB distribution over 100
replications of the procedure for the two models, compared to the true and
asymptotic quantiles.

AR AR-ARCH

° TD ARBB TD ARBB ASY

1 -3.639 -3.754 -2.532 -2.683 -2.326

2.5 -2.772 -2.818 -2.025 -2.146 -1.960

5 -2.346 -2.388 -1.793 -1.866 -1.645

10 -1.741 -1.797 -1.429 -1.452 -1.282

AR AR-ARCH

° TD RBB TD ARBB ASY

90 1.683 1.583 1.362 1.416 1.282

95 2.160 1.934 1.732 1.826 1.645

97 .5 2.731 2.533 2.004 2.143 1.960

99 3.627 3.572 2.533 2.693 2.326

Table 2: Comparison of the tails of the true, ARBB and gaussian
distributions for the two models

These pictures speak volumes : for both models the true distribution is
accurately approximated. But note in particular the di¤erence in the size of
the ”optimal” small set and in the number of pseudo-regenerations between
these models. We point out that, though remarkable when compared to
the gaussian approximation, the gain in accuracy obtained by applying the
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ARBB methodology to the AR model is higher than the one obtained for
the AR-ARCH type model. As may be con…rmed by other simulations, the
ARBB method provides less accurate results for a given (moderate) sample
size, as one gets closer to a unit root model (i.e. as ® tends to 1): one may
simply get an insight for this phenomenon by noticing that the rate of the
number of regenerations (respectively, of the number of visits to the small
set) then decreases. Although generalizing successfully the ARBB method
to the null recurrent case seems possible from a theoretical viewpoint, these
empirical results suggest that further investigation is needed to elaborate a
practical ARBB procedure with so good properties in this case. This goes
beyond the scope of this article but will be studied elsewhere
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6 Proofs

6.1 Proof of Theorem 3.1.
In the following, C and K are constants which may be not necessarily
the same at each appearance. We denote by E¤(: j X (n)) the conditional
expectation given X(n) (recall that the f (B¤j )’s are i.i.d with distribution
l¡1n

Pln
j=1 ±Bj ; conditionally to the trajectoryX(n)). The proof relies on check-

ing that conditions for the validity of the Edgeworth expansions (E.E. in
abbreviated form) established in Malinovskii (1987) (cf Theorem 1 therein)
and in Bertail & Clémençon (2003a) (cf Theorem 5.1 therein) respectively
are ful…lled for the RBB reconstructed series. These asymptotic results ac-
tually hold not only for Markov chains but also for any regenerative process,
with regeneration times de…ning blocks satisfying the hypotheses required.
It is easy to see that exactly the same argument may be used to derive the
E.E. of the bootstrap counterpart (just like in the i.i.d. case), with the only
di¤erence that all the quantities are replaced by their empirical counterparts.

² Condition (i). Denote for t > 0, x 2 R,

Cn(t; x) =
1

ln ¡ 1

ln¡1X

j=1

exp(itff(Bj)¡ xl(Bj)g);

C(t) = EA(exp(itff (Bj) ¡ ¹(f)l(Bj)g):
We have

lim
n!1

lim
jtj!1

jE¤(exp(itff(B¤j )¡¹n(f )l(B¤j )g) j X(n))j = lim
n!1

lim
jtj!1

jCn(t; ¹n(f ))j:

On any compact set the following bound holds uniformly in t,

jCn(t; ¹n(f)) ¡ Cn(t; ¹(f))j 6 tj¹n(f) ¡ ¹(f )j 1
ln ¡ 1

ln¡1X

j=1

l(Bj);

and the term at the right hand side almost surely converges to 0 as n! 1
by virtue of the SLLN (¹n(f) ! ¹(f), while (ln¡1)¡1

Pln¡1
j=1 l(Bj) ! EA(¿A)

as n! 1). Moreover the SLLN also yields that jCn(¹(f)) ¡ C(t)j ! 0 a:s:
as n! 1. Thus Cn(t; ¹n(f)) converges to C(t) uniformly over any compact
set. Since limt!1C(t) < 1; we may choose 0 < ´ < 1; such that jC(t)j · 1¡´
for any t large enough. Then, for any A > 0, for any jtj · A, there exists
N such that, for all n > N; jCn(t; ¹n(f ))j · jC(t)j + ´=2 · 1¡ ´=2 : Since
this is true for any A > 0; the empirical Cramer condition is satis…ed.

² Conditions (ii) and (iii). By virtue of the SLLN again, we have

E¤(f(B¤j )p j X(n)) = 1
ln ¡ 1

ln¡1X

k=1

f(Bk)p ! E(f (Bj)p) <1; as n! 1
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In particular,

var¤(f(B¤j )¡ ¹n(f )l(B¤j )) =
1

ln ¡ 1

ln¡1X

j=1

ff(Bj)¡ ¹n(f )l(Bj)g2

=
¿A(ln)¡ ¿A(1)
ln ¡ 1

¾2n(f) ! EA(¿A)¾2f > 0 a.s.

as n! 1:
² Conditions (iv) and (v). We have by de…nition of the blocks

E¤(l(B¤j ) j X(n)) =
1

ln ¡ 1

ln¡1X

j=1

l(Bj)s ! EA(¿ sA) a:s:; as n! 1

Thus for n large enough,

E¤(l(B¤j) j X(n)) > 1; a:s: .

It follows from Bertail & Clémençon (2003a) that, as n! 1;
HURBB(x) = E(2)

n;n(x) + OPº (n¡1);

HSRBB(x) = F (2)
n;n(x) +OPº(n¡1 log(n));

with

E (2)
n;n(x) = ©(x)¡ n¡1=2k

(n)
3 (f)
6

(x2 ¡ 1)Á(x) ¡ n¡1=2b(n)(f)Á(x);

F (2)
n;n(x) = ©(x) + n¡1=2

k(n)3 (f )
6

(2x2 + 1)Á(x)¡ n¡1=2b(n)(f)Á(x):

Here the empirical sknewness k(n)3 (f ) and the bias b(n)(f ) are given by

k(n)3 (f) = (E¤(l(B¤j) j X(n)))¡1fM (n)
3;A(f) ¡ 3¾2n(f )¯(n)(f)g=¾3n(f);

b(n)(f) = ¡(E¤(l(B¤j ) j X(n)))¡1¯(n)(f)=¾n(f );

with

M(n)
3;A(f) = E

¤(ff(B¤j )¡ ¹n(f )l(B¤j )g3 j X(n));

¯(n)(f) = E¤(ff(B¤j )¡ ¹n(f )l(B¤j )gl(B¤j ) j X(n)):

It su¢ces thus to show that each of these terms converges at the rate n¡1=2 to
the corresponding terms in the E.E. of ¹n(f). By developping …rst the cubic
term and applying a CLT to each term, we clearly have as n! 1,

M (n)
3;A(f) =

1
ln ¡ 1

ln¡1X

j=1

ff (Bj) ¡ ¹n(f)l(Bj)g3 = M3;A(f) + OPº(n¡1=2);
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where
M3;A(f) = E(ff(Bj)¡ ¹(f)l(Bj)g3

In a similar fashion one may easily prove that, as n! 1;

¾2n(f) = ¾
2
f + OPº (n

¡1=2);

¯(n)(f) = ¯ + OPº (n¡1=2);

with
¯ = cov(l(Bj); f(Bj)¡ ¹(f)l(Bj));

provided that condition (ii) is ful…lled with s= 6+ ": Note in addition that,
as n! 1;

E¤(l(B¤j) j X(n)) =
1

ln ¡ 1

ln¡1X

j=1

l(Bj) = EA(¿A) + OPº (n¡1=2):

The proof is then …nished by observing that the E.E. of the true distributions
(see expressions (8) and (9) in Bertail & Clémençon (2003a)) and the one of
the RBB distribution match up to OPº (n¡1) in the unstandardised case and
OPº (n¡1 log(n)) in the standardized case, as n! 1.

6.2 Proof of Theorem 4.1
In what follows, we denote by ¿ S = ¿S(1) = inf fn > 1; Xn 2 Sg and ¿ S(j) =
inf fn > ¿S(j ¡ 1); Xn 2 Sg, j > 2, the times of the successive visits to the
small set S . Let us consider the joint distribution such that, conditionally on
the sample path X(n+1) = (X1; :::; X¿S(1); :::; X¿S(Ln); :::; Xn+1); where Ln =Pn
i=1 1S(Xi) denotes the number of visits of X to the small set S between

time 1 and time n, the (Yi; bYi) ’s are drawn independently for 1 6 i 6 n so
that

Y¿S(k) » Ber
¡
±Á

¡
X¿ S(k)+1

¢
=p(X¿ S(k); X¿ S(k)+1)

¢
;

bY¿S(k) » Ber
¡
±Á

¡
X¿ S(k)+1

¢
=pn(X¿S(k); X¿S(k)+1)

¢
;

and if p(X¿S (k); X¿S(k)+1) 6 pn(X¿S (k); X¿S(k)+1);

P (bY¿S(k) = 0 j X(n+1); Y¿ S(k) = 1) = pn(X¿ S(k); X¿ S(k)+1)¡ p(X¿S (k); X¿S(k)+1);

P (bY¿S(k) = 1 j X(n+1); Y¿ S(k) = 0) = 0;

and if p(X¿S (k); X¿S(k)+1) > pn(X¿S (k); X¿S(k)+1)

P (bY¿S(k) = 1 j X(n+1); Y¿ S(k) = 0) = p(X¿S(k); X¿S(k)+1) ¡ pn(X¿S (k); X¿S(k)+1);

P (bY¿S(k) = 0 j X(n+1); Y¿ S(k) = 1) = 0;
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for k 2 f1; :::; Lng ; and that for all i 2 f1; 1; :::; ngn f¿ S(k); 1 6 k 6 Lng ;
Yi = bYi » Ber (±). Hence, we deduce that, for 1 6 k 6 Ln;

P (bY¿S(k) 6= Y¿S(k) j X (n+1)) =

¯̄
¯̄
¯
±Á

¡
X¿ S(k)+1

¢

p(X¿S(k); X¿S(k)+1)
¡ ±Á

¡
X¿S(k)+1

¢

pn(X¿ S(k); X¿ S(k)+1)

¯̄
¯̄
¯ a.s.,

l1(P (n); bP (n)) =
n¡1X

k=1

2¡kE [1S(Xk)
¯̄
¯̄ ±Á(Xk+1)
p(Xk; Xk+1)

¡ ±Á(Xk+1)
pn(Xk; Xk+1)

¯̄
¯̄]:

Observe that, we almost surely have
¯̄
¯̄ ±Á(Xk+1)
p(Xk; Xk+1)

¡ ±Á(Xk+1)
pn(Xk; Xk+1)

¯̄
¯̄ 6 1S(Xk+1)

jp(Xk; Xk+1)¡ pn(Xk; Xk+1)j
p(Xk; Xk+1)

:

Consequently, we may write

l1(P (n); bP (n)) 6
n¡1X

k=1

2¡kE [I fXk 2 S; Xk+1 2 Sg

£ jp(Xk; Xk+1) ¡ pn(Xk; Xk+1)j
p(Xk; Xk+1)

]

6
n¡1X

k=1

2¡kE [I fXk 2 S; Xk+1 2 Sg

£ jp(Xk; Xk+1) ¡ pn(Xk; Xk+1)j
±Á(Xk+1)

]

Hence, under (i), we have

l1(P (n); bP (n)) 6 (± inf
x2S
Á(x))¡1

n¡1X

k=1

2¡kE[ sup
(x;y)2S2

jp(x; ; y) ¡ pn(x; y)j]:

Thus, given the asymptotic properties of pn we assumed, we get the wished
bound (± infx2S Á(x))¡1®1=2n :

6.3 Proof of Theorem 4.2
In order to make the exposition of the proof much simpler, we only consider
the case when f is bounded, since the same argument applies to the general
unbounded case except for light and obvious modi…cations. The proof is
based on the study of the closeness between the distribution of the blocks
B1; :::; Bln dividing the segment X(n+1) = (X1; :::; Xn+1) according to the
ln consecutive visits of (Xi; Yi) to the atom AM = S £ f1g between time
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1 and time n and the distribution of the blocks bB1; :::; bBbln dividing X(n+1)

according to the bln successive visits of (Xi; bYi) to S £ f1g conditionally to
X(n+1): Let us assume that, conditionally toX (n+1); the (Yi; bYi)’s are drawn as
supposed in subsection 6.2. We shall use the notations ln =

Pn
i=1 IfXi 2 S;

Yi = 1g, ¿AM = ¿AM(1) = inffn > 1; (Xn; Yn) 2 AMg; ¿AM(j + 1) =
inffn > ¿AM(j); (Xn; Yn) 2 AMg, l(Bj) = ¿AM(j) ¡ ¿AM(j) for j > 1. Set
nAM = ¿AM(ln) ¡ ¿AM(1) and let ¹n(f ) = n¡1AM

Pln
j=1 f (Bj) and ¾2n(f) =

n¡1AM
Pln
j=1ff(Bj)¡¹n(f)l(Bj)g2 be the respective counterparts of b¹n(f) and

b¾2n(f) based on the regenerative blocks.
We …rst begin by controlling the di¤erence between the …rst (resp. the

last) pseudo regeneration time and the true one. For the sake of the sim-
plicity, we introduce further notation and denote by ¿ 1 = ¿AM (respectively,
b¿1 = b¿AM) the (random) time corresponding to the …rst visit to S £ f1g of
(Xi; Yi)16i6n (resp., of (Xi; bYi)16i6n) as well as the time ¿ 2 = ¿AM(ln) (resp.,
b¿2 = b¿AM(bln)) corresponding to the last visit.

Lemma 6.1 Let ° > 2. Under H2(2°) and H3; there exists a constant C

such that for i 2 f1;2g;

Eº(jb¿ i ¡ ¿ ij°) 6 C®1=2n :

Proof. Let C denote a constant that is not necessarily be the same at
each appearance in what follows. Given assumptions H4 and H5, note that
±Á

¡
X¿ S(k)+1

¢
=p(X¿ S(k); X¿ S(k)+1) and ±Á

¡
X¿S(k)+1

¢
=pn(X¿ S(k); X¿ S(k)+1) are

bounded from below by q = ± infx2S Á(x)=R. Given the joint distribution of
the (Yi; bYi)’s (refer to 6.2 above) and in particular that

P (Y¿S(k) 6= bY¿S(k) j X(n+1)) 6 (± inf
x2S
Á(x))¡1 sup

(x;y)2S2
jpn(x; y) ¡ p(x; y)j

for any k 2 f1; :::; Lng, one may derive the following bound for the conditional
expectation

E
¡
jb¿ 1 ¡ ¿ 1j° j X(n+1)¢ 6 C

X

16l<k6Ln
(¿S(k) ¡ ¿S(l))°q(1 ¡ q)k¡1

£ sup
(x;y)2S2

jpn(x; y) ¡ p(x; y)j :

Using Cauchy-Schwarz ’s inequality and assumption H3, easy calculations
yield the following bound for the (unconditional) expectation

Eº(jb¿ i ¡ ¿ ij°) 6 C®1=2n (
1X

k=1

k2(1¡ q)kEº(¿S(k)2°))1=2:
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Furthermore, it straightforwardly follows from the identity ¿ S(k) = ¿ S +Pk¡1
l=1 f¿S(l+1)¡ ¿ S(l)g that Eº(¿ S(k)2°) is bounded by 22°fEº(¿ 2°S ) + (k¡

1)2° supx2S Ex(¿
2°
S )g for all k. Under H2(2°) the bound is thus established

when i = 1:
The case i = 2 follows from a similar argument.
Let g : (E; E) ! R be a bounded measurable function and set g(Bj) =P¿AM (j+1)
i=1+¿AM (j) g(Xi). Nowconsider the functionals T (M)

n (g) = n¡1
Pln¡1
j=1 g(Bj)M

and bT (M)
n (g) = n¡1

Pbln¡1
j=1 g( bBj)M forM 2 f1; 2g, with by convention T (M)

n (g) =
0 (respectively, bT (M)

n (g) = 0) when ln 6 1 (resp., when bln 6 1). The following
lemma provides an asymptotic bound for

D(M)
n (g) =

¯̄
¯T (M)
n (g) ¡ bT (M)

n (g)
¯̄
¯ ;

with M = 1; 2:

Lemma 6.2 Let ° > 4. Under H2(°) and H3, we have as n! 1

D(1)
n (g) = OPº (n

¡1®1=2n ); (6)

D(2)
n (g) = OPº (1); (7)

as n! 1:
Proof. Bound (6) immediately follows from lemma 6.1.

Let Nn =
Pmin(b¿2 ;¿2)
k=max(b¿1 ;¿1) I

n
Y¿S(k) 6= bY¿S(k)

o
be the number of times when Xi

visits S and bYi di¤ers from Yi simultaneously between time max(b¿1; ¿ 1) and
time min(b¿2; ¿ 2) (with the usual convention regarding to empty summation).
We introduce the corresponding successive random times

t1 = inf
n
¿ S(k); max(b¿1; ¿1) 6 ¿S(k) 6 min(b¿2; ¿ 2); Y¿S(k) 6= bY¿S(k)

o
;

tj+1 = inf
n
¿ S(k); tj < ¿ S(k) 6 min(b¿ 2; ¿ 2); Y¿ S(k) 6= bY¿ S(k)

o

with j = 1; :::; Nn ¡ 1: And for 1 6 j 6 Nn, we denote by t(1)j (respectively,
t(2)j ) the last time before (resp., the …rst time after) tj when, simultaneously,
Xi visits S and Yi or bYi is equal to one, between time 0 and time n. We can
check that

jD(2)
n (g)j 6 kgk21

n
f(b¿ 1 ¡ ¿1)2 + (b¿ 2 ¡ ¿2)2+ 2

NnX

j=1

(t(2)j ¡ tj)(tj ¡ t(1)j )g

6 kgk21
n

f(b¿ 1 ¡ ¿1)2 + (b¿ 2 ¡ ¿2)2+
NnX

j=1

f(t(2)j ¡ tj)2 + (tj ¡ t(1)j )2gg:

38



Set tj = t
(2)
j = 0 for j > Nn. By proceeding analogously as we did previ-

ously, one easily shows that there exist constants cr(q) depending only on
q; such that Eº((t

(2)
j ¡ tj)r) 6 cr(q) supxEx(¿ rS) for any j > 1, r 6 °. By

Cauchy-Schwarz ’s inequality we have for any deterministic sequence of pos-
itive integers mn;

Eº(
NnX

j=1

(t(2)j ¡ tj)2) 6
mnX

j=1

Eº((t
(2)
j ¡ tj)2) + Eº(

nX

j=1

(t(2)j ¡ tj)2IfNn > mng)

6 C1mn +C2n(P (Nn >mn))1=2;

where C1 = supx2S Ex(¿2S )c2(q) and C2 = supx2S Ex(¿4S)c4(q). As shown in
6.2, the probability that Yi di¤ers from bYi is bounded by qn = (± infx2S Á(x))¡1®n
and the (Y¿S(k) ; bY¿S(k))’s are drawn independently conditionally to X (n+1).
Hence, by using Chebyshev’s exponential inequality, we derive that

P (Nn >mn) 6 e¡mnE(eNn) (8)
6 e¡mn(1 + qne)n:

Now by choosing mn " 1 such that mn=n! 0 and n®n=mn ! 0 as n! 1,
we deduce from (8) that n¡1Eº(

PNn
j=1(t

(2)
j ¡ tj)2) = O(1); as n ! 1: By

an analogous argument, one shows that n¡1Eº(
PNn
j=1(tj ¡ t

(1)
j )2) = O(1); as

n! 1:
We deduce from this result that the following empirical quantities based

on the pseudo-blocks converge to their respective counterparts based on the
regenerative blocks.

Lemma 6.3 Under the assumptions of Theorem 4.2, we have the following

convergences in Pº-probability as n! 1;

n1=2(b¹n(f) ¡¹n(f )) ! 0; (9)
¯̄
¯bln=n¡ ln=n

¯̄
¯ ! 0: (10)

Moreover we have for k = 1; 2

n¡1
ln¡1X

j=1

l(Bj)k ¡ n¡1
bln¡1X

j=1

l( bBj)k ! 0; (11)

n¡1
ln¡1X

j=1

f(Bj)k ¡ n¡1
bln¡1X

j=1

f ( bBj)k ! 0; (12)

n¡1
ln¡1X

j=1

l(Bj)f(Bj)¡ n¡1
bln¡1X

j=1

l( bBj)f ( bBj) ! 0: (13)
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Proof. From (6) in lemma 6.2 with g ´ 1, it follows that
¯̄
¯bnAM =n¡nAM=n

¯̄
¯ =

OPº (®
1=2
n n¡1) as n ! 1. Given that nAM=n ! 1 Pº a.s. as n ! 1, this

combined to (6) again with g = f obviously yield (9).
Now observe that

¯̄
¯bln=n¡ ln=n

¯̄
¯ 6 n¡1

LnX

k=1

IfY¿S(k) 6= bY¿S(k)g;

Using again the fact that conditionally to X(n+1) the (Y¿S (k); bY¿S (k))’s are
drawn independently for k = 1; :::; Ln and P (bY¿S(k) 6= Y¿ S(k) j X(n+1)) 6
(± infx2S Á(x))¡1 sup(x;y)2S2 jpn(x; y) ¡ p(x; y)j ; this entails

E(
¯̄
¯bln=n¡ ln=n

¯̄
¯ j X(n+1)) 6 n¡1Ln(± inf

x2S
Á(x))¡1 sup

(x;y)2S2
jpn(x; y)¡ p(x; y)j :

Since Ln =
Pn
i=1 IfXi 2 Sg 6 n, taking the expectation implies that

Eº(
¯̄
¯bln=n¡ ln=n

¯̄
¯) = O(®1=2n ); as n! 1:

Now, (11) (respectively, (12)) straightforwardly results from lemma 6.2
with g ´ 1 (resp., with g = f ).

And (13) may be proved by simply noticing that

2¹(f )
bln¡1X

j=1

l( bBj)f( bBj) =
bln¡1X

j=1

f( bBj)2 ¡
bln¡1X

j=1

f( bBj)2 ¡ ¹(f)2
bln¡1X

j=1

l( bBj)2

and applying lemma 6.2 to each component on the right hand side (by taking
successively g(x) equal to f(x) = f (x)¡ ¹(f); f(x) and 1).

Now one easily deduce from these results that b¾2n(f) ¡ ¾2n(f) ! 0 in Pº-
pr., as n! 1. Hence, given that ¾2n(f) ¡ ¾2f in Pº- pr., as n! 1 (see the
preliminary remarks in §3.2.1) the consistency of b¾2n(f) is established.

Finally, combining this to (9) and the CLT for the sample mean ¹n(f )
relating to the atomic split chain (cf §3.2.1) proves that bn1=2

AM
b¾n(f)¡1(b¹n(f )¡

¹(f )) ! N (0; 1) in Pº- distribution, as n! 1 .

6.4 Proof of Theorem 4.3
We …rst recall the ”Bootstrap mode of convergence”. In what follows, we
shall write Zn

P ¤! Z in Pº- probability (respectively, Pº a.s.) along the sample
when

P ¤(jZn ¡ Zj > " j X(n+1)) ! 0 in Pº-probability (resp., Pº a.s.),

as n! 1:
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The unstudentized case Note that one may write

n¤1=2
AM

(¹¤n(f) ¡ b¹n(f))
b¾n(f)

=
Pl¤n¡1
j=1 ff(B¤j) ¡ b¹n(f)l(B¤j )g

n¤1=2AM b¾n(f )
:

The result is proved by following line by line the classical argument
establishing the CLT for regenerative process (see for instance Theorem
17.2.2 in Meyn & Tweedie (1996)). The latter relies on approximating
the summation over a random number of regenerative blocks by a sum in-
volving a deterministic number of blocks. Note …rst that conditionally to
X(n+1) the ARBB sequence (although not Markovian) de…nes a regenera-
tive process with independent segments bB¤j , j > 1: By the L.L.N., we have
(ln ¡ 1)¡1

Pln¡1
j=1 l(Bj) ! EAM(¿AM), Pº a.s. . Lemma 6.3 thus entails that,

as n! 1;

E¤(l( bB¤1) j X(n+1)) = 1
bln ¡ 1

bln¡1X

j=1

l( bBj) ! EAM(¿AM) in Pº- probability:

In a similar fashion, we have as n! 1;

E¤(l( bB¤1)2 jX (n+1)) ! EAM(¿ 2AM) < 1 in Pº- probability:

This implies in particular that, as n! 1;

l( bB¤j )
n

P¤! 0 and
n¤
AM

n
P ¤! 1 in Pº- probability along the sample. (15)

Now note that by de…nition of l¤n we have

l¤nPl¤n
j=1 l( bB¤j)

· l
¤
n

n
· l¤nPl¤n¡1

j=1 l( bB¤j )
: (16)

Combining the L.L.N. to lemma 6.3 we have as n! 1,

l¤¡1n
l¤nX

i=1

l( bB¤j ) ¡ (bln ¡ 1)¡1
bln¡1X

i=1

l( bBj) P
¤

! 0 Pº a.s.;

which entails that l¤¡1n
Pl¤n
i=1 l( bB¤j )¡EAM(¿AM) P

¤
! 0; in Pº - probability along

the sample. We deduce that

l¤n
n

¡ EAM(¿AM)¡1 P
¤

! 0; in Pº- probability along the sample.
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Thus for ² > 0, if we set n1 = b(1 ¡ ")EAM(¿AM)¡1nc + 1 and n2 =
b(1 + ")EAM(¿AM)¡1nc (denoting by bxc the integer part of x 2 R); there
exists n0 = n0(") 2 N such that, for n > n0

P ¤(n1 · l¤n ¡ 1 · n2 j X(n+1)) ¸ 1¡ " in Pº- probability (17)

Combining (15), (17) and Markov’s inequality implies that for any ´ > 0;

P ¤(j¹
¤
n(f )¡ b¹n(f )
n¤¡1=2AM b¾n(f)

¡
P1+bnEAM (¿A)

¡1c
j=1 ff(B¤j )¡ b¹n(f )l(B¤j )g

n¤1=2AM b¾n(f)
j> ´ j X(n+1))

· " +P ¤(b¾n(f )¡1 max
n1·l·n2

j
1+bnEAM (¿A)

¡1cX

j=l

ff(B¤j )¡ b¹n(f )l(B¤j ) > ´n¤1=2AM
j X(n+1))

· " +P ¤(b¾n(f )¡1 max
n1·l·n2

j
1+bnEAM (¿A)

¡1cX

j=l

ff(B¤j )¡ b¹n(f )l(B¤j ) > ´n1=2=2 j X(n+1))

+ P ¤(n¤1=2
AM
n¡1=2 < 1=2 j X(n+1))

· " +4b¾n(f )¡22"E¤(ff(B¤j )¡ b¹n(f)l(B¤j )g2)=´2 + ";

for n large enough. Since this is true for any ´; " > 0; it follows (using again
(15)) that

¹¤n(f )¡ b¹n(f )
n¤¡1=2AM b¾n(f)1=2

=
P1+bnEAM (¿A )

¡1c
j=1 ff(B¤j )¡ b¹n(f)l(B¤j )g

n1=2b¾n(f)1=2
+ oP ¤(1)

along the sample in Pº- probability, as n! 1.
Now it is su¢cient to apply the classical bootstrap CLT (see Bickel &

Freedmann (1981)) to the i.i.d. r.v.’s ff(B¤j ) ¡ b¹n(f )l(B¤j )gj>1. These r.v.’s
are centered with variance

E¤(ff (B¤j ) ¡ b¹n(f)l(B¤j)g2 j X(n+1)) =
bnAM

bln ¡ 1
b¾2n(f );

which converges to EAM(¿AM)¾2f in Pº- probability under the hypotheses of
Theorem 4.3 (cf Theorem 4.2 and lemma 6.3).

The studentized case We essentially have to prove that, as n! 1;

¾¤n(f )¡ b¾n(f ) P
¤! 0 in Pº - pr. along the sample.
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With arguments similar to those used in the unstudentized case, it is easy
to see that

¾¤n(f)2 =
1
n

1+bnEAM(¿A)
¡1cX

j=1

ff(B¤j) ¡ b¹n(f)l(B¤j )g2 + oP¤ (1)

in Pº- probability along the sample and the result follows also from standard
bootstrap results in the i.i.d case.
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