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1. INTRODUCTION

In conventional problems of signal analysis, noisy observations are made of a

signal at regular time intervals. The sampling rates can vary widely; they are as

low as 8kHz for digital telephony, 44.1kHz for conventional CDs, 96kHz or 192kHz

for DVD audio, and several mHz for new multi-channel systems. However, the rate

for a specific device generally does not vary in time. While this constraint makes

for simpler technology, it prevents users from accessing the advantages of a more

adaptive, and hence potentially more effective, system.

Those advantages can arise in several ways. First, in the case of data storage,

using a constant sampling rate means that unnecessarily large amounts of storage

space are taken up when the signal is essentially flat, or uninteresting. If the sam-

pling rate could be reduced in such circumstances then this space could be saved.

Not being able to do so can be a major drawback for remote, automated equip-

ment which spends most of its time off-line, perhaps transmitting its stored data

only occasionally when a satellite passes overhead. On the other hand, using a

low sampling rate at all times may cause the device to miss important detail in

high-frequency events which occur only infrequently. Likewise, multi-rate sampling

is potentially beneficial in the context of data transmission; sending masses of data

containing little information can be cost-ineffective.

For these reasons, and others, there is growing interest in technologies where

sampling rates vary with time, in an adaptive fashion determined by signal com-

plexity. See, for example, work of Liu (1996), Liu and Walter (1996), Jetter and

Stöckler (1997), Aldroubi and Feichtinger (1998), Chen, Itoh and Shiki (1998), and

Aldroubi and Gröchenig (2001). Of course, wavelet methods offer an exceptionally

flexible approach to signal analysis, and there a natural technique for determining

(and responding to) signal complexity is to threshold the wavelet coefficients. On-

line, quasi real-time versions of this approach have been suggested and discussed

by Hall and Penev (2002), and shown both theoretically and numerically to have

the sorts of properties desired of them. In particular, they allow the sampling rate

to increase when an empirical assessment of the signal shows that it has become

relatively complex, and to decrease again when complexity appears to be returning

to more conventional, lower levels.

While the methods discussed by Hall and Penev (2002) are reasonably close
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to those that might be used in practice, the results are developed only for a single

signal, not uniformly in a large class of signals. An advantage of the former ap-

proach is that it permits detailed analysis of local properties, but a disadvantage

is that it precludes access to traditional minimax optimality arguments, based on

global performance on intervals. To overcome this drawback, in the present pa-

per we introduce a global measure of performance which nevertheless encompasses

local features of multi-rate estimators, and which reveals the ability of multi-rate

sampling schemes to accommodate, in an essentially optimal way, functions whose

regularity may by highly variable on an interval.

In practice, a multiple sampling rate technology would probably be based on

only a small number of rates, perhaps two, three or four. In a theoretical treatment,

addressing more than two rates is often neither more revealing nor more difficult

than considering only two, and so we shall confine most of our attention to the latter

case. It has the advantage of being simpler to discuss. We shall briefly consider

multi-rate generalisations in sections 2.4 and 3.1.

In the two-rate case we treat a threshold-based rate-switching rule which is

designed to use the lower sampling rate at timepoints where a signal is judged to be

of high regularity, and to increase the rate when the regularity appears to decrease

below a threshold. High regularity is defined in terms of the true signal, g say,

being in a convention al Hölder space Λs, and low regularity as g ∈ Λt \ Λs, where

t < s. Rate-switching decisions are based on empirical wavelet coefficients, using

a new level of threshold which is designed to distinguish between Λs and Λt \ Λs.

It is shown that this approach can achieve virtually minimax-optimal convergence

rates uniformly over the larger, lower-regularity class Λt, and at the same time

ensure that the lower (and less expensive) sampling rate is employed in the higher-

regularity class Λs, except when functions are near the boundary that separates Λs

from g ∈ Λt \ Λs.

In a dual-rate scheme applied in cases where the signal is usually relatively

mundane, but has occasional interesting, high-frequency bursts, the sampler would

spend most of its time at the lower rate, increasing the rate only for relatively short

periods when adaptive data analysis indicated that doing so was warranted. Our

theory is motivated by this context, and in section 3.1 we discuss our results in

this setting. The diametrically opposite alternative, where most sampling is done
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at the high rate but drops to the low rate occasionally, is usually hard to justify

in practical terms, since it leads to only minor savings in sampling, storage and

transmission costs.

2. MODELS AND METHODOLOGY

2.1. Models for data and sampling. Suppose data Yu are generated at “observation

times” u according to the model,

Yu = g(u) + εu , u ∈ I ≡ [0, 1] , (2.1)

where the function g represents a signal, εu (denoting noise) is a random variable

with zero mean and finite variance σ2, and the timepoints u are chosen discretely.

The experimenter has some latitude in selecting the observation times. In particular,

we shall suppose that u comes from a design that may be chosen on one of two grids,

either “slow” with u = k/vn for 1 ≤ k ≤ vn, or “fast” with u = k/n for 1 ≤ k ≤ n,

where n will be permitted to increase without bound.

Motivation for dual-rate sampling is perhaps better appreciated if we assume

that
n ≥ vn, both n and vn are integer powers of 2,

and vn → ∞ as n → ∞, but with vn/n → 0 .
(2.2)

The relationship n ≥ vn implies that the fast grid corresponds to a higher sampling

rate than does the slow grid. Our algorithm will prescribe fast-grid sampling when

there is empirical evidence, local to a point in time, that the signal g is relatively

complex. Our primary example of vn will satisfy vn � nξ, where 0 < ξ < 1 and the

notation an � bn, for positive constants an and bn, means that an/bn is bounded

away from zero and infinity. The assumption, in (2.2), that n and vn are both powers

of 2 is inessential but conventional, since it simplifies notation for, and computation

of, wavelet estimators. On the present occasion it also implies that the slow grid is

a subset of the fast grid. This means that if we draw a slow-grid sample but then

decide (after an analysis of those data) that we really need a fast-grid sample, the

slow-grid sample can still be used; we need only adjoin extra data to it.

2.2. Wavelet expansion and estimators. To introduce the expansion, denote by

ψ and φ the mother and father wavelet functions, assumed bounded and com-

pactly supported. Let p = 2j0 be the (inverse of the) “maximal bandwidth,” or

the “primary resolution level,” these nomenclatures being drawn from Donoho et
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al. (1995) and Hall and Patil (1995), respectively. Put pj = 2jp for j ≥ 0, and

define φj(u) = p1/2 φ(pu − j) and ψjk(u) = p
1/2
j ψ(pju − k). A wavelet expansion

of g is

g =
∑

`

α` φ` +
∞
∑

j=j0

∑

k

βjk ψjk , (2.3)

where α` =
∫

g φ` and βjk =
∫

g φjk.

We shall assume g is in the Hölder class Λs = Bs∞∞, consisting of functions

for which, with the above definitions of α` and βjk,

sup
`

|α`| + sup
j≥j0

2j{s+(1/2)} sup
k

|βjk| < ∞ . (2.4)

Of course, the series here depends on j0, but it is finite for some j0 if and only if it

is finite for all j0, in particular for j0 = 0. The value of the left-hand side of (2.4)

in the latter case is the norm ‖g‖s∞∞. Given a constant γ > 0, let Λs(γ) denote

the set of g for which ‖g‖s∞∞ ≤ γ. We shall usually suppress the notation γ.

In section 2.3 we shall discuss a wavelet estimator with dual sampling rates,

where the slow and fast rates are designed primarily to estimate g on intervals to

which its restriction is in Λs, or in Λt \ Λs, respectively, with 1
2 < t < s < r.

Here, the positive number r denotes the greatest “regularity” that we envisage the

functions might enjoy, and t the least.

Next we define empirical wavelet coefficients and thresholds. In our main results

we shall take the primary resolution level to satisfy

p � v1/(2r+1)
n . (2.5)

With superscripts S and F denoting respectively “slow” and “fast,” respectively,

the empirical wavelet coefficients computed on the slow and fast grids are,

α̂S
` = v−1

n

vn
∑

i=1

φ`(i/vn)Yi/vn
, β̂S

jk = v−1
n

vn
∑

i=1

ψjk(i/vn)Yi/vn
,

α̂F
` = n−1

n
∑

i=1

φ`(i/n)Yi/n , β̂F
jk = n−1

n
∑

i=1

ψjk(i/n)Yi/n .

Choose integers JS and JF such that

2JS

� vn/ log vn , 2JF

� n/ logn , (2.6)
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and define the thresholds

δSn = KS
(

v−1
n log vn

)1/2
, δFn = KF

(

n−1 log n
)1/2

, (2.7)

where KS and KF are constants.

In this notation, the conventional wavelet estimator computed on the slow

grid is

ĝS(u) =
∑

`

α̂S
` φ`(u) +

JS

∑

j=j0

∑

k

β̂S
jk I

(
∣

∣β̂S
jk

∣

∣ > δSn
)

ψjk(u) . (2.8)

Its fast-grid version, ĝF, is obtained by changing S to F throughout.

2.3. Dual-rate estimator. The dual-rate estimator ĝ∗ is constructed in a block-wise

fashion, taking the intervals Ij0` as the blocks. These may be addressed in arbitrary

order, but practice is better reflected if we imagine that time increases as we pass

from the left- to the right-hand side of I. Thus, having computed ĝ∗ on [0, (`−1)/p],

the next step is to calculate it on ((`− 1)/p, `/p] = Ij0`.

If the wavelets are from the Haar sequence then all the wavelet functions that

influence ĝS or ĝF on Ij0` are supported in that interval. More generally, however,

ψ and φ are supported on intervals that are of greater than unit length, and con-

sequently there is some spillage of influence from either side of Ij0`. Therefore it is

helpful to describe the “domain of influence” of Ij0`.

Let Sjk and Tk denote the supports of ψjk and φk, respectively. Define I(`),

the domain of influence of Ij0`, to be the union of Sjk over all pairs (j, k) such

that j ≥ j0 and Sjk ∩ Ij0` 6= ∅, together with the union of Tk over all k such that

Tk ∩ Ij0` 6= ∅. If Sjk ∩ Ij0` 6= ∅ then we might fairly say that the corresponding

wavelet coefficient βjk “falls within the domain of influence of g on Ij0`.”

Excepting small effects at the endpoints 0 and 1 of I, we may interpret I(`)

as the smallest subset of I such that data drawn at any timepoint u ∈ I(`) might

affect the value of either ĝS or ĝF. Recall that the length of Ij0` equals p−1; the

length of each I(`) equals O(p−1), uniformly in `.

The first step in computing ĝ∗ on Ij0` is to calculate all the slow-grid empirical

wavelet coefficients β̂S
jk, for j0 ≤ j ≤ JS and such that Sjk ∩ Ij0` 6= ∅, and check

whether any of them exceed (in absolute value) a pre-determined, and relatively

large, “rate-switching” threshold ∆n, say. If one argues that the slow grid is es-

sentially designed for estimating functions whose regularity is not less than s, in
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the sense that they are elements of Λs; and the fast grid is primarily for estimating

functions of lower regularity in Λt \Λs, where t ∈ ( 1
2 , s); then one should choose ∆n

towards the upper extremity of the absolute values of coefficients βjk in the case of

functions from Λs. A guide to the size of ∆n is given by (2.4): consider taking ∆n

to be of smaller order than 2−j0{s+(1/2)}.

Note particularly that the rate-switching threshold has a completely different

purpose from, and consequently a very different size from, the conventional thresh-

olds δSn and δFn . The latter serve to distinguish an empirical wavelet coefficient from

fluctuations due to noise. On the other hand, ∆n separates (in an approximate

way) wavelet coefficients whose size reflects functions in Λs, from coefficients whose

size reflects functions in Λt \ Λs where 1
2 < t < s.

If none of the values of |β̂S
jk|, for j0 ≤ j ≤ JS and k such that Sjk ∩ Ij0` 6= ∅,

exceeds ∆n then we take ĝ∗ on Ij0` to be the slow-grid estimator ĝS. On the other

hand, if for some (j, k) with j0 ≤ j ≤ JS and Sjk ∩ Ij0` 6= ∅, |β̂S
jk| exceeds ∆n, then

we sample within I(`) on the fast grid, and take ĝ∗ = ĝF on Ij0`.

Therefore, our algorithm requires slow-grid sampling to be undertaken through-

out I, albeit in a block-wise manner. The overlapping influence of neighbouring

blocks means that, except in the case of Haar wavelets, some data on the slow grid

will be used more than once — indeed, once for each interval I(`) into which the

corresponding timepoints fall. This causes no difficulty, however.

For simplicity we shall assume that when it is necessary to sample at the fast

rate on Ij0`, the necessary data are drawn independently of the slow-rate data.

This assumption is made explicit at (3.7) below. However, since the ratio of the

sizes of the fast- and slow-grid samples diverges to infinity as n → ∞ then making

the fast-grid data completely independent of their slow-grid counterparts involves

only negligible loss of efficiency. Nevertheless, with a little extra analysis one may

treat the case where the fast-rate sample is drawn only at fast-grid points where no

slow-grid data were previously available. (This possibility is permitted by (2.2).)

That is, when we decide to use ĝF instead of ĝS on Ij0` we simply adjoin some extra

data to the slow-grid sample, to convert it to a fast-grid sample.

The sampling rule described above is an abstraction of that suggested by Hall

and Penev (2002). It captures the essential features of the latter, but is more

amenable to mathematical study of its performance over function classes. It can
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be converted to an online algorithm by, for example, increasing the sampling rate

in the next interval Ij0,`−1, rather than the current interval Ij0`, if the threshold

∆n is exceeded in Ij0`, and likewise delaying a return to the slower sampling rate.

Theoretical properties of this lagged approach, for functions where high-frequency

episodes last for more than one block, are in many respects similar to those of the

slightly simpler technique on which it is based.

2.4. Multi-rate estimators. In the case of Q sampling rates, and Q function classes

Λs1 ⊆ . . . ⊆ ΛsQ with regularities satisfy r > s1 > . . . > sQ > 1
2 , we determine

thresholds 0 < ∆
(1)
n ≤ . . . ≤ ∆

(Q)
n = ∞ in such a way that ∆

(q)
n is larger than

the wavelet-coefficient bound for functions in Λsq−1 , but less than the bound for

functions in Λsq , for each q. For example, we might take ∆
(q)
n = Kq 2−j0{uq+(1/2)},

where

u1 > s1 > u2 > s2 > . . . > sQ−1 > 0 > uQ = −∞

and the constants satisfied Kq > 0. There are likewise Q sampling rates, vnq = nξq

for 1 ≤ q ≤ Q, where ξ1 < . . . < ξQ. One algorithm for switching rates is the

following: work primarily with the lowest rate, vn0, which we continue to call the

slow rate and for which the empirical wavelet coefficients still have the notation β̂S
jk.

(We assume p = 2j0 � v
1/(2r+1)
n0 .) Within interval Ij0`, switch to rate vnq if q is

the largest integer such that |β̂S
jk| > ∆

(q)
n for some (j, k) with j0 ≤ j ≤ JS and

Sjk ∩ Ij0` 6= ∅; and use the slow rate if each |β̂S
jk| is less than ∆

(1)
n . There are of

course variants of this scheme, some of which involve making thresholding decisions

using sampling rates that are faster than the slowest.

3. THEORETICAL PROPERTIES

3.1. Main result, and discussion. Our main result, derived in section 4, is Theorem 1

below. Recall from from section 2 that our aim is to use the slow and fast rates

to estimate g when it is in Λs and in Λt \ Λs, respectively, where 1
2
< t < s. To

assess the potential performance of our empirical rate-switching rule, consider the

deterministic event

A`(g) : “|βjk| ≤ (1 + η) ∆n for all (j, k) with j0 ≤ j ≤ JS and Sjk ∩ Ij0` 6= ∅ ,”

(3.1)

and let A`0 = A`0(g) denote the version of A` that arises when η = 0. In a sense,

an “ideal rate-switching rule” is one that results in either ĝ∗ = ĝS or ĝ∗ = ĝF on
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Ij0`, according as A`0 is true or false, respectively. Thus, we would ideally like to

use the fast grid only to estimate g when its wavelet coefficients are relatively large

among functions in Λs.

Consider employing this rule to estimate g ∈ Λt. Functions of this type which

satisfy A`0 look like functions in Λs when constrained to Ij0`, and so when estimated

there using ĝS their integrated L2 convergence rates should be bounded above by

p−1 (δSn)4s/(2s+1). (To appreciate why, observe that the optimal uniform convergence

rate for estimating functions in Λs on the unit interval is O{(δSn)4s/(2s+1)}, modulo

a logarithmic factor. If we confine attention to the subinterval Ij0` of length p−1

then this should be multiplied by p−1.) Using the ideal rule, we take ĝ∗ = ĝF when

A`0 fails; there, the optimal rate of our estimator is O{p−1 (δFn)4t/(2t+1)}, uniformly

in g ∈ Λt.

Therefore, computing ĝ∗ using the ideal rule, rather than the empirical rule

suggested in section 2, we aspire to obtaining the following L2 convergence rate

on Ij0`:

p−1
(

I
{

A`0(g)
} (

δSn
)4s/(2s+1)

+
[

1 − I
{

A`0(g)
}] (

δFn
)4t/(2t+1)

)

, (3.2)

uniformly in g ∈ Λt. Adding over 1 ≤ ` ≤ p we see that the sought-after L2

convergence rate on I is:

∫

I

E|ĝ∗ − g|2 = O
[

ρ(g)
(

δSn
)4s/(2s+1)

+ {1 − ρ(g)}
(

δFn
)4t/(2t+1)

]

, (3.3)

uniformly in g ∈ Λt, where ρ(g) = p−1
∑

` I{A`0(g)} denotes the proportion of

indices ` for which the ideal rate-switching rule classifies the restriction of g to Ij0`

as being in the more regular function class Λs, rather than simply in Λt.

Result (3.3) implies that

sup
g∈Λt

∫

I

E
∣

∣ĝ∗ − g
∣

∣

2
= O

{

n−a (logn)−b
}

, (3.4)

where

a = min

(

2ξs

2s+ 1
,

2t

2t+ 1

)

, b =
2s

2s+ 1
.

Provided the exponent, ξ, of the slow sampling rate is not less than (2s+1)t/(2t+1)s,

which is always strictly less than 1 since t < s, (3.4) shows that dual-rate sampling

allows us to maintain the optimal convergence rate at the value (δS
n)4s/(2s+1) it
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would assume under slow-grid sampling for g ∈ Λs, despite the fact that we are

actually addressing all functions in the less regular class Λt. Of course, the price to

be paid is that we must sample more often (specifically, at rate n rather than rate

nξ per unit time) when estimating functions that the rate-switching rule assesses

to be in Λt but not in Λs.

However, if the functions g we are likely to observe will for the most part be

in Λs rather than in Λt \ Λs, and if even those functions in Λt \ Λs will look like

Λs functions for most of the length of I, then the price will rarely have to be paid,

and more seldom still will it have to be paid in full. As argued in section 1, dual-

rate sampling is often intended to address this context, where relatively complex

functions (or relatively complex parts of functions) are present relatively rarely in

data, and the higher sampling rate is needed only occasionally, to accommodate

such cases. It is in these terms that (3.3) and (3.4), and likewise Theorem 1 below,

provide theoretical justification, in terms of uniform convergence rates over Hölder

classes, for dual-rate sampling.

Of course, the majority of this discussion applies to the ideal rule, not the

empirical rule suggested in section 2.3. However, result (3.9) in Theorem 1 will

show that convergence rates for the empirical rule have almost exactly the same

property; the only change is that the slow- and fast-grid sampling fractions, ρ and

1−ρ, alter slightly. Similarly, result (3.10) in the theorem shows that the empirical

sampling fraction differs little from its ideal-rule version.

Next we give regularity conditions for Theorem 1. Assume ∆n > 0 satisfies

∆n = o
(

p−{s+(1/2)}
)

, (vn/ log vn)1/2 ∆n → ∞ (3.5)

as n → ∞. The first part of this condition ensures that ∆n is of smaller order

than the upper bound, |βjk| ≤ C p−{s+(1/2)}, which applies uniformly in j ≥ j0 and

g ∈ Λs; see (2.4). Therefore, functions g in Λt that satisfy A`0(g) look like functions

in Λs when viewed on Ij0`.

The second part of (3.5) asks that ∆n be of strictly larger order than the

threshold, δSn, for the slow-rate estimator. One choice of ∆n that satisfies both

parts of (3.5) is

∆n = K n−ξ(2u+1)/2(2r+1) ,

where K > 0 is arbitrary and s < u < r.
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Suppose the mesh, vn, of the slow grid satisfies

vn � nξ , where 0 < ξ < 1 . (3.6)

Assume of the errors in the model at (2.1) that:

the εu’s for the slow grid (placed throughout I) are independent and iden-

tically distributed as normal N(0, σ2), and, conditional on the slow-grid

data, the εu’s for the fast grid (placed at places in I that are determined

by the slow-grid data) are independent and identically normal N(0, σ2) .

(3.7)

Suppose too that the threshold constants KS and KF satisfy

min
(

KS, KF
)

≥ 23/2 σ . (3.8)

Write B` = B`(g) for the event corresponding to A`(g), defined at (3.1), when

1+η is replaced by 1−η in (3.1). Let ρ̂ denote the proportion of indices `, 1 ≤ ` ≤ p,

such that ĝ∗ = ĝS on Ij0`, and write ρA(g) for the proportion of indices ` for which

the event A`(g) holds for the function g:

ρA(g) = p−1

p
∑

`=1

I{A`(g)} .

Let ρB(g) be its counterpart when A` is replaced by B` on the right-hand side.

Denote by ρ̂ the proportion of indices `, 1 ≤ ` ≤ p, such that ĝ∗ = ĝS on Ij0`.

Theorem 1. Let 1
2 < t < s < r. Assume conditions (2.5)–(2.7) and (3.5)–(3.8).

Then, for each η > 0 in the definitions of ρA and ρB,

sup
g∈Λt

∫

I

E|ĝ∗ − g|2 = O
[

ρA(g)
(

δSn
)4s/(2s+1)

+
{

1 − ρB(g)
}(

δFn
)4t/(2t+1)

]

, (3.9)

inf
g∈Λt

Pg

{

ρB(g) ≤ ρ̂ ≤ ρA(g)
}

→ 1 . (3.10)

The full force of the second part of (3.5) is needed only to prove (3.10). It may

be replaced by the assumption that

lim inf
n→∞

(vn/ log vn)1/2 ∆n > 0

if (3.9) is the objective.

The methods used to derive Theorem 1 also lead to results analogous to (3.2),

where performance is assessed on a local, block-wise basis. Such formulae have the
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advantage of showing more explicitly that the benefits of dual-rate sampling are

available at a local level. However, the mean integrated squared error view taken at

(3.9) is more standard, and therefore more easily interpreted. It reflects the local

result through the sampling fractions ρA and ρB.

Theorem 1 has close analogues in the case of multi-rate sampling schemes. For

example, when the scheme is that described in section 2.4, result (3.9) changes to

sup
g∈Λs1

∫

I

E|ĝ∗ − g|2 = O

{ Q
∑

q=1

ρq(g)
(

δ(q)
n

)4sq/(2sq+1)
}

,

where δ
(q)
n = (n−ξq log n)1/2 and ρq(g) denotes the proportion of indices ` for which

q is the largest integer such that (a) |βjk| > (1 − η)∆
(q−1)
n for some (j, k) with

j0 ≤ j ≤ JS and Sjk ∩ Ij0` 6= ∅, and (b) |βjk| ≤ (1 + η)∆
(q)
n for all such (j, k). (We

take ∆
(Q)
n = ∞.)

The next two sections develop properties of wavelet estimators on small inter-

vals, and are used in our proof of the theorem.

3.2. Index of local sparsity. We introduce an index, mq, of the sparsity of wavelet

coefficients of the signal, g. The index, which is especially simple to work with,

bounds the number of large wavelet coefficients which exceed an arbitrary level.

Since less regular signals have more large coefficients, then smaller values of mq cor-

respond to greater regularity. A global index has been discussed by Kerkyacharian

and Picard (2000), for another purpose; the present index is local.

Let J denote a subinterval of I = [0, 1], with length |J | not less than 2−j0 .

Let g be a function admitting the wavelet expansion at (2.3), and put

mq(j0,J ) = sup
λ>0

Card
{

(j, k) : j ≥ j0 , |βjk| > λ , Sjk ∩ J 6= ∅
}

λq .

The lemma below shows that if mq(j0,J ) is finite then the number of wavelet

coefficients βjk exceeding λ in absolute value, with their indices k in the interval J

and their levels j ≥ j0, is always less than a constant multiple of λq.

Recall that p = p(j0) = 2j0 . Fix s > 0, and put q = (s+ 1
2 )−1.

Lemma 1. If g ∈ Λs(γ) then for any interval J of length |J | satisfying |J | ≥ p−1,

mq(j0,J ) ≤ C |J |, where C > 0 depends only on s, γ and the support of the

wavelet.
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To derive the lemma, write log2 to indicate logarithms to base 2, let C1 > 0

and let jλ denote the integer part of (s+ 1
2 )−1 | log2 λ| + C1. Since g ∈ Λs then for

any j ≥ 0, supk |βjk| ≤ C2 2−j{s+(1/2)}, where C2 = ‖g‖s∞∞. Therefore, if C1 is

sufficiently large and j > jλ then |βjk| ≤ λ. Hence,

Card
{

(j, k) : j ≥ j0 , |βjk| > λ , Sjk ∩ J 6= ∅
}

≤ C3

jλ
∑

j=j0

2j |J | ≤ 2C3 2jλ |J | ≤ C4 |J |λ−q ,

uniformly in g ∈ Λs, where C3, C4 > 0 depend only on s, ‖g‖s∞∞ and the support

of the wavelet.

3.3. Local performance of thresholding algorithms. Let

ĝ(u) =
∑

`

α̂` φ`(u) +
J

∑

j=j0

∑

k

β̂jk I(|β̂jk| > K cn)ψjk(u)

denote a general wavelet estimator, in which the wavelet coefficients α̂` and β̂jk are

calculated in an as-yet unspecified way and the threshold is a constant multiple, K,

of a sequence of constants cn converging to zero. We choose J and p, the latter in

the definitions of φ` and ψjk, such that

2J � c−2
n , p ≤ C c−2/(2r+1)

n , (3.11)

where, here and below, C > 0 is a constant not depending on n. We shall assume

r > s, and give a bound for the integral of E(ĝ − g)2 over small intervals J .

See also Cohen, DeVore, Kerkyacharian and Picard (2001) and Kerkyacharian and

Picard (2000).

Recall that Sjk denotes the support of ψjk, and let T` denote the support of

φ`. We assume that the coefficients α̂` and β̂jk satisfy:

for all ` such that T` ∩ J 6= ∅ , E|α̂` − α`|
2 ≤ C c2n , (3.12)

for all (j, k) such that j0 ≤ j ≤ J and Sjk ∩ J 6= ∅ , E|β̂jk − βjk|
4 ≤ C c4n , (3.13)

for all (j, k) such that j0 ≤ j ≤ J and Sjk ∩ J 6= ∅ ,

P
(

|β̂jk − βjk| ≥
1
2
K cn

)

≤ C c4n , (3.14)

where α` and βjk are the wavelet coefficients in the expansion at (2.3).

As in Lemma 1, put q = (s+ 1
2 )−1. Let C denote the class of intervals J ⊆ I

such that |J | ≥ C p−1, where C > 0 is arbitrary.
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Proposition 1. Assume r > s and that (3.11)–(3.14) hold. Then,

∫

J

E|ĝ − g|2 = O
{

c4s/(2s+1)
n mq(j0,J )

}

+ o
(

c4s/(2s+1)
n |J |

)

+

∞
∑

j=J+1

∑

k :Sjk∩J 6=∅

β2
jk , (3.15)

uniformly in J ∈ C and functions g ∈ Λs.

Of course, the proposition continues to hold if we replace s by t throughout.

It is proved in section 4, and implies a variety of bounds to convergence rates, on

various spaces. See, for example, Donoho and Johnstone (1995). We apply it here

to the case where ĝ = ĝS or ĝF, to show how local convergence rates depend on

respective sampling rates. Recall that the thresholds δS
n and δFn involve the constants

KS and KF, respectively.

Proposition 2. Let ĝS denote the slow-grid estimator defined at (2.8), and let ĝF

be its fast-grid counterpart. Assume conditions (2.5)–(2.7) on the parameters used

in the estimator, that 1
2
< s < t < r and min(KS, KF) ≥ 23/2 σ, and that the errors

εu in the model at (2.1) are independent and normal N(0, σ2). Then,

sup
g∈Λs

∫

J

E
∣

∣ĝS − g
∣

∣

2
= O

{

|J |
(

δSn
)4s/(2s+1)

}

, (3.16)

sup
g∈Λt

∫

J

E
∣

∣ĝF − g
∣

∣

2
= O

{

|J |
(

δFn
)4t/(2t+1)

}

, (3.17)

uniformly in J ∈ C.

4. PROOFS OF PROPOSITIONS AND THEOREM

4.1. Proof of Proposition 1. For u ∈ J we may write

ĝ(u) − g(u) =
∑

` :T`∩J 6=∅

(α̂` − α`)φ`(u)

+
J

∑

j=j0

∑

k :Sjk∩J 6=∅

{

β̂jk I(|β̂jk| > K cn) − βjk

}

ψjk(u)

−
∞
∑

j=J+1

∑

k :Sjk∩J 6=∅

βjk ψjk(u) .

The integral of the square of the left-hand side over the interval J is bounded above

by the integral of the square of the right-hand side over the whole real line. Hence,
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by orthogonality,
∫

J

|ĝ − g|2 ≤ S1 + S2 + S3 , (4.1)

where

S1 =
∑

` :T`∩J 6=∅

(α̂` − α`)
2 , S2 =

∞
∑

j=J+1

∑

k :Sjk∩J 6=∅

β2
jk ,

S3 =
J

∑

j=j0

∑

k :Sjk∩J 6=∅

{

β̂jk I(|β̂jk| > K cn) − βjk

}2
.

In view of (3.11) and (3.12),

E(S1) ≤ C1 c
2
n Card

{

` : T` ∩ J 6= ∅
}

≤ C1 p c
2
n |J | ≤ C2 c

−4r/(2r+1)
n |J | , (4.2)

where, here and below, C1, C2, . . . denote constants not depending on n or J . Fur-

thermore,

1
2
E(S3) ≤ s31 + s32 and s3j ≤ s3j1 + s3j2 ,

where

s31 =
J

∑

j=j0

∑

k :Sjk∩J 6=∅

E
{

(β̂jk − βjk)2 I(|β̂jk| > K cn)
}

,

s32 =
J

∑

j=j0

∑

k :Sjk∩J 6=∅

β2
jk P (|β̂jk| ≤ K cn) ,

s311 =
J

∑

j=j0

∑

k :Sjk∩J 6=∅

E
{

(β̂jk − βjk)2 I
(

|β̂jk − βjk| ≥
1
2 K cn

)}

,

s312 =

J
∑

j=j0

∑

k :Sjk∩J 6=∅

E(β̂jk − βjk)2 I
(

|βjk| ≥
1
2 K cn

)

,

s321 =

J
∑

j=j0

∑

k :Sjk∩J 6=∅

β2
jk P (|β̂jk − βjk| > K cn) ,

s322 =

J
∑

j=j0

∑

k :Sjk∩J 6=∅

β2
jk I(|βjk| ≤ 2K cn) .

Define

J ′ =

∞
⋃

j=J+1

⋃

k :Sjk∩J 6=∅

Sjk .
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Using (3.11), (3.13), (3.14) and the Cauchy-Schwartz inequality, we may prove that

s311 ≤ C c4n

J
∑

j=j0

∑

k :Sjk∩J 6=∅

1 ≤ C3 c
4
n 2J |J ′| ≤ C4 c

2
n |J ′| ≤ C5 c

2
n |J | ,

s312 ≤ C c2n Card
{

(j, k) : j0 ≤ j ≤ J , |βjk| ≥
1
2 K cn , Sjk ∩ J 6= ∅

}

≤ C6 c
2
nmq(j0,J ) (K cn/2)−q ≤ C7 c

4s/(2s+1)
n mq(j0,J ) ,

s321 ≤ C c4n

J
∑

j=j0

∑

k :Sjk∩J 6=∅

β2
jk ≤ C8 c

4
n |J | ,

s322 ≤

∫ 2Kcn

0

2xCard
{

(j, k) : j0 ≤ j ≤ J , |βjk| ≥ x , Sjk ∩ J 6= ∅
}

dx

≤ C9mq(j0,J )

∫ 2Kcn

0

x · x−q dx ≤ C10mq(j0,J ) c2−q
n

= C10 c
4s/(2s+1)
n mq(j0,J ) .

Proposition 1 follows on combining (4.1) with the bounds from (4.2) down.

4.2. Proof of Proposition 2. (We shall drop the superscripts S and F, working

on each occasion with either grid.) First we establish the regularity conditions for

Proposition 1. There, cn = (v−1
n log vn)1/2 or cn = (n−1 log n)1/2 in the slow- or

fast-grid cases, respectively. Since min(s, t) > 1
2

then standard methods show that

for both types of grid, (Eα̂`−α`)
2 = O(c2n) uniformly in ` such that T`∩J 6= ∅, and

(Eβ̂jk − βjk)2 = O(c2n) uniformly in (j, k) such that j0 ≤ j ≤ J and Sjk ∩ I 6= ∅.

Results (3.12) and (3.13) now follow from standard moment bounds, and (3.14)

from a standard moderate deviation bound. The first part of (3.11) follows from

(2.6), and the second from (2.5).

It remains to show that the bound at (3.15) implies those at (3.16) and (3.17).

By Lemma 1, mq(j0,J ) ≤ C |J |. Since g ∈ Λs then it follows from (2.4) that

|βjk| ≤ C1 2−j(2s+1)/2. Therefore,

∞
∑

j=J+1

∑

k :Sjk∩J 6=∅

β2
jk ≤ C2 |J |

∞
∑

j=J+1

2−j(2s+1) ≤ C3 |J | 2−2Js

≤ C3 |J | 2−2Js/(2s+1) ≤ C4 |J | δ4s/(2s+1)
n .

4.4. Proof of (3.9). Let ES
` denote the event that for all (j, k) with j0 ≤ j ≤ JS and

Sjk ∩ Ij0` 6= ∅, |β̂S
jk| ≤ ∆n. Write EF

` for the complement of ES
` , and put

aS
` =

∫

Ij0`

E
{

∣

∣ĝS(t) − g(t)
∣

∣

2
I
(

ES
`

)

}

dt .
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Define aF
` to be the same quantity but with S replaced by F throughout. Then,

a` ≡

∫

Ij0`

E|ĝ∗ − g|2 = aS
` + aF

` . (4.3)

For arbitrary η > 0 put AS
` = A` = A`(g), the latter defined at (3.1), and let

AF
` denote the complement of AS

` . Put

aSS
` =

∫

Ij0`

E
{

∣

∣ĝS(t) − g(t)
∣

∣

2
I
(

AS
` ∩ ES

`

)

}

dt ,

and let aSF be the same quantity but with AS
` replaced by AF

` . In this notation,

aS
` = aSS

` + aSF
` . (4.4)

Let BS
` = B` be as defined in section 3, and write BF

` for the complement of BS
` .

Put

aFS
` =

∫

Ij0`

E
{

∣

∣ĝF(t) − g(t)
∣

∣

2
I
(

BS
` ∩ EF

`

)

}

dt ,

and let aFF
` be the same quantity but with BS

` replaced by BF
` . Then,

aF
` = aFS

` + aFF
` . (4.5)

Combining (4.3)–(4.5) we deduce that

a` ≤ I(A`)

∫

Ij0`

E
{
∣

∣ĝS(t) − g(t)
∣

∣

2}
dt+ {1 − I(B`)}

∫

Ij0`

E
{
∣

∣ĝF(t) − g(t)
∣

∣

2}
dt

+ aSF
` + aFS

` . (4.6)

Let F` denote the event that |β̂S
jk − βjk| > η∆n for some (j, k) with j0 ≤ j ≤ JS

and Sjk ∩ Ij0` 6= ∅. In this notation, AF
` ∩ ES

` ⊆ F`. In this notation,

aSF
` + aFS

` ≤

∫

Ij0`

{

bS(t) + bF(t)
}

dt , (4.7)

where bS(t) = E{|ĝS(t) − g(t)|2 I(F`)} and bF denotes the same quantity but with

ĝF on the right-hand side. We shall prove that

sup
g∈Λt

p
∑

`=1

∫

Ij0`

bS(t) dt = O
[

min
{

(

δSn
)4s/(2s+1)

,
(

δFn
)4t/(2t+1)

}]

. (4.8)

An identical bound may be derived for the integral of bF.
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Using the argument leading to (4.3), and taking J there to equal Ij0`, we

deduce that
∫

Ij0`

bS(t) dt ≤ b1(`) + b2(`) + b3(`) , (4.9)

where by the Cauchy-Schwarz inequality and the bound JS ≤ C1 log n,

b1(`) =
∑

k :Tk∩Ij0` 6=∅

E
{

(α̂S
k − αk)2 I(F`)

}

≤ P (F`)
1/2

∑

k :Tk∩Ij0` 6=∅

{

E(α̂S
k − αk)4

}1/2
≤ C2 P (F`)

1/2
(

δSn
)2
,

b2(`) =
JS

∑

j=j0

∑

k :Sjk∩Ij0` 6=∅

E
[

{

β̂S
jk I

(
∣

∣β̂S
jk

∣

∣ > KS cn
)

− βjk

}2
I(F`)

]

≤ C2

[

{

E(β̂jk − βjk)2
}1/2

P (F`)
1/2 + P (F`)

]

logn

≤ C3

{

P (F`)
1/2

(

δSn
)2

+ P (F`)
}

log n ,

b3(`) = P (F`)
∞
∑

j=JS+1

∑

k :Sjk∩Ij0` 6=∅

β2
jk ≤ C2 P (F`) ,

uniformly in g ∈ Λt. Since ∆n/δ
S
n → ∞ (see the second part of (3.5)) then, using a

bound for a moderate deviations of a Normal random variable, P (F`) = O(n−B) for

all B > 0, the order relation holding uniformly in g ∈ Λt and 1 ≤ ` ≤ p. Combining

the results from (4.9) down we deduce that

p
∑

`=1

∫

Ij0`

bS(t) dt = O
(

n−1
)

,

uniformly in g ∈ Λt. This implies (4.8).

Combining (4.3), (4.6), (4.7), (4.8) and the analogue of the latter for bF rather

than bS, we deduce that

∫

I

E|ĝ∗ − g|2 = O

[ p
∑

`=1

I(A`)

∫

Ij0`

E
∣

∣ĝS − g
∣

∣

2
+

p
∑

`=1

{1 − I(B`)}

∫

Ij0`

∣

∣ĝF − g
∣

∣

2

+ min
{

(

δSn
)4s/(2s+1)

,
(

δFn
)4t/(2t+1)

}

]

,

uniformly in g ∈ Λt. Result (3.9) follows from this formula and Proposition 2.

Note that when A` = A`(g) holds and g ∈ Λt, we may equivalently view g as the

restriction to Ij0` of a function in Λs.
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4.5. Proof of (3.10). It suffices to show that

sup
g∈Λt

p
∑

`=1

JS

∑

j=j0

∑

k :Sjk∩Ij0` 6=∅

sup
g∈Λt

πjk(g) → 0 , (4.10)

where πjk(g) = Pg(|β̂
S
jk −βjk| >

1
2η∆n). For this it is adequate to prove that (4.10)

holds with

πjk(g) = Pg

(
∣

∣β̂S
jk − Eβ̂S

jk

∣

∣ > 1
2
η∆n

)

(4.11)

and with πjk(g) = I(|Eβ̂S
jk − βjk| >

1
2η∆n). However, |Eβ̂S

jk − βjk| = O(δSn)

uniformly in g ∈ Λt, since t > 1
2 . Moreover, in view of the second part of (3.A1),

δSn/∆n → 0. Therefore it suffices to treat the case where πjk is given by (4.11).

There we have, using a moderate deviation bound for the normal distribution,

supg∈Λt πjk(g) = O(n−B) for all B > 0. The number of indices k in the series

at (4.10) is uniformly bounded, and so the number of indices (j, k, `) there equals

O(pJS) = O(nξ/(2r+1) log n), uniformly in g. Therefore (4.10) holds.
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Eds. A. Le Méhauteé, C. Rabut and L.L. Schumaker, pp. 191–208. Vander-

bilt Univ. Press, Nashville, TN.

KERKYACHARIAN, G. AND PICARD, D. (2000). Thresholding algorithms and

well-concentrated bases. Test 9
¯
, 283–344.

LIU, Y. (1996). Irregular sampling for spline wavelet subspaces. IEEE Trans. Inform.

Theory 42, 623–627.

LIU, Y. AND WALTER, G.G. (1996). Irregular sampling in wavelet subspaces. J.

Fourier Anal. Appl. 2, 181–189.


