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Abstract. We consider the small-time asymptotics of the diffusion process associated
to an elliptic or sub-elliptic second-order operator, conditioned by its initial and final
positions. When these points lie outside the cut-locus of the operator, we establish con-
vergence, to a Gaussian limit, of the fluctuations of the process about the unique path
of minimal energy. The Gaussian limit is characterized in terms of the second variation
of the energy functional on paths at a minimum, the formulation of which is new in the
sub-elliptic case. In the elliptic case our result agrees with one derived by Molchanov.
The methods of stochastic differential equations and Malliavin calculus allow us to give a
complete proof of Molchanov’s result and to extend it to sub-elliptic operators.

1. Introduction

Let M be a compact, connected C∞ manifold and let L be a second order differential
operator on M with C∞ coefficients. Assume that the principal symbol a of L is non-
negative definite and that L1 = 0. In local coordinates L has the form

L = 1
2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
.

In the case where a is positive definite, L is elliptic and can be written in the form

L = 1
2∆ + β

where ∆ is the Laplace–Beltrami operator corresponding to the Riemannian metric a−1

and where β is some vector field. For the main results of this paper, we do not require a
to be positive definite. However, we do assume that the following weaker non-degeneracy
condition holds: there exist m ∈ N and C∞ vector fields X0, X1, . . . , Xm such that

L = 1
2

m∑
l=1

X2
l +X0

and such that the Lie algebra of commutators generated by X1, . . . , Xm spans TM at every
point. This is called the bracket condition. Under this condition, the principal symbol
a defines a sub-Riemannian structure on M . A detailed study of this structure is made
in §2, extending some standard notions of Riemannian geometry, as a precursor to our
main result. On the other hand, since we judge that the simpler, elliptic, case may be
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of more general interest, we have tried to arrange the paper so that the complexities of
sub-Riemannian geometry can be ignored easily when appropriate.

Under the bracket condition, it is known that the heat semigroup (Pt : t ≥ 0) associated
with L is given by a positive C∞ density function

p : (0,∞)×M ×M → (0,∞)

with respect to any positive C∞ reference measure µ on M . The existence and smoothness
of p follow from Hörmander’s criterion for hypoellipticity [Hör67], applied to the heat
operator ∂/∂t− L. Positivity is established in [AKS90].

We shall be concerned here, for a given pair of points x, y ∈ M , with the asymptotic
behaviour as t ↓ 0 of the diffusion process (xs : 0 ≤ s ≤ t) associated with L, conditioned
by x0 = x and xt = y. Denote by Ωx,y,t the set of continuous paths s 7→ ωs : [0, t] → M
such that ω0 = x and ωt = y. Then there exists a unique probability measure µx,y,t on
Ωx,y,t such that, for all k ∈ N, for all 0 < t1 < t2 < . . . < tk < t and all x1, . . . , xk ∈M ,

µx,y,t({ω : ωt1 ∈ dx1, . . . , ωtk ∈ dxk})

=
p(t1, x, x1)p(t2 − t1, x1, x2) . . . p(t− tk, xk, y)

p(t, x, y)
µ(dx1) . . . µ(dxk).

This measure µx,y,t does not depend on the choice of reference measure µ.
In order to describe the asymptotic behaviour of µx,y,t as t ↓ 0, it is convenient to rescale

time so that all measures considered are defined on the same space Ωx,y = Ωx,y,1. So define
τε : Ωx,y,ε → Ωx,y by (τεω)t = ωεt and set

µx,yε = µx,y,ε ◦ (τε)−1.

Then µx,yε is the law of the diffusion process (xεt : 0 ≤ t ≤ 1) associated with εL and
conditioned by xε0 = x, xε1 = y.

Given a locally Lipschitz path ω ∈ Ωx,y, there may exist a measurable path ξ : [0, 1] →
T ∗M over ω such that, for almost all t,

(1.1) ω̇t = a(ξt).

In that case we define the energy of ω by

I(ω) =
∫ 1

0
a(ξt, ξt) dt,

where a(ξ, ξ) = 〈ξ, a(ξ)〉. This quantity does not depend on the choice of ξ satisfying (1.1).
We extend I to the whole of Ωx,y by setting I(ω) = ∞ in all other cases. The subset of
Ωx,y where I is finite is denoted Hx,y.

We make the following assumption on x and y throughout: there exists γ ∈ Hx,y such
that I(γ) < I(ω) for all ω ∈ Hx,y \{γ}. To set this assumption in context, we note that the
bracket condition ensures that I(γ) < ∞ for some γ ∈ Ωx,y, see [Bis84, Str86]. Moreover,
a standard weak compactness argument shows that there exists at least one γ ∈ Hx,y of
minimal energy. The real content of our assumption is thus that there is not more than
one path of minimal energy. The case where there are a finite number is not substantially
more difficult, but we leave it aside.

The first order asymptotics of µx,yε are given by the following well known result.
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Proposition 1.1.

µx,yε ⇒ δγ as ε ↓ 0.

Here ⇒ denotes weak convergence of measures on Ωx,y, that is with respect to the class
of continuous bounded functions, and δγ denotes the unit mass at γ. The topology on Ωx,y

is that of uniform convergence.
The aim of this paper is to identify the second order asymptotics of µx,yε . We seek to refine

the ‘law of large numbers’ of Proposition 1.1 by a central limit theorem, where the deviation
of the process (xεt : 0 ≤ t ≤ 1) from its deterministic limit γ, suitably renormalized, is shown
to converge to an explicit Gaussian limit.

Let us discuss now, briefly, two obvious questions about the generality of the class of
measures µx,yε . The first concerns time-reversal. Since M is compact, L has a smooth,
positive invariant measure µ. If we use this as our reference measure in defining the heat
kernel p(t, x, y), then p̂(t, x, y) = p(t, y, x) is also a heat kernel, for another operator L̂,
which satisfies the same conditions as L. Hence the class of measures µx,yε is preserved
under time-reversal. The second question concerns the role of compactness. Compactness
plays an obvious role in guaranteeing the existence of minimal paths in Ωx,y, but all we
really need is the local condition that there exists a compact subset of M which contains
all nearly minimal paths in Ωx,y. Without compactness, we have to decide on boundary
conditions for the heat flow. Of course it is always possible to choose Dirichlet conditions,
for which certainly the measures µx,yε are still well defined. The time reversal argument,
just given, now runs into some further difficulties. However, by standard estimates, the
asymptotics of µx,yε as ε ↓ 0 are unaffected by modifications to L away from a relatively
compact neighbourhood of the unique minimal path in Ωx,y. Thus, our results for the
compact case are also informative for diffusion in non-compact manifolds. By sticking
to the compact case, we simply avoid some difficulties in the general formulation of the
problem, which are irrelevant in any case to the considered asymptotics.

The second order results that we have rely on a further geometric condition, which
expresses that I has a non-degenerate minimum at γ ∈ Hx,y. In the elliptic case, this is
equivalent to the standard condition that x and y are non-conjugate along γ. Some care is
needed in formulating the condition precisely when a is not positive definite, as Hx,y is then
not guaranteed to have any reasonable differentiable structure. Instead, for now, following
[Bis84], the condition will be given in terms of the bicharacteristic flow of L, which is the
Hamiltonian flow on T ∗M associated with the principal symbol a. Define H : T ∗M → R

by

H(ξ) = a(ξ, ξ)

and let Y denote the C∞ vector field on T ∗M given by

β(Y, .) = dH,

where β is the canonical symplectic two-form on T ∗M . Then let (ψt : t ∈ R) be the flow of
diffeomorphisms ψt : T ∗M → T ∗M given by

ψ̇t(ξ0) = Y (ψt(ξ0)), ψ0(ξ0) = ξ0.
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In local coordinates ψt(ξ0) = (xt, pt), we have

ẋt = a(xt)pt,

ṗt = −∇a(xt)(pt, pt).

The integral curves of Y are called bicharacteristics. We assume that the unique minimal
path γ ∈ Hx,y is the projection of a bicharacteristic:

γt = πξt, ξt = ψt(ξ0), ξ0 ∈ T ∗xM.

This is always the case if a is positive definite. More generally, a useful sufficient condition
was obtained by Bismut [Bis84], in terms of the deterministic Malliavin covariance matrix.
Under this assumption, we define linear maps

Jt : T ∗xM → TγtM, Kt : T ∗yM → TγtM

by

Jtη0 =
∂

∂ε

∣∣∣∣
ε=0

πψt(ξ0 + εη0), Ktζ1 =
∂

∂ε

∣∣∣∣
ε=0

πψ−(1−t)(ξ1 + εζ1).

In the elliptic case Jtη0 and Ktζ1 are Jacobi fields along γ.

Proposition 1.2.
J1 = K∗0 .

Proof. Since Y is Hamiltonian, its flow preserves the symplectic form β. See for example
[Mar74]. For η ∈ T ∗M let us write η̃ for the corresponding vertical vector in TT ∗M and
write ψ∗t for the action of ψt on TT ∗M . Then

〈J1η, ζ〉 = 〈π∗ψ∗1 η̃, ζ〉 = β(ψ∗1 η̃, ζ̃) = β(η̃, ψ∗−1ζ̃) = 〈η, π∗ψ∗−1ζ̃〉 = 〈η,K0ζ〉.
�

If J1 is invertible we say that x and y are non-conjugate along γ. We follow [Bis84],
[BA88] in defining the cut locus Cut(a) ⊆ M ×M . In fact we define its complement. We
say that (x, y) 6∈ Cut(a) if:

(i) there exists a unique path of minimal energy γ ∈ Hx,y;
(ii) there exists ξ0 ∈ T ∗xM such that γt = πψt(ξ0) for all t ∈ [0, 1];
(iii) x and y are non-conjugate along γ.

This notion coincides with the usual cut locus of Riemannian geometry when a is positive
definite.

We now describe a class of rescaling procedures for µx,yε , which we use to express our
main result. Take any C∞ map θ : [0, 1]×M → TM such that, for 0 ≤ t ≤ 1 and z ∈M ,

θ(t, z) ∈ TγtM, θ(t, γt) = 0,
∂θ

∂xi
(t, γt) =

∂

∂xi

∣∣∣∣
x=γt

.

In the case where a is positive definite, a natural choice is provided by the exponential
map θ(t, z) = exp−1

γt (z), at least when z is close to γt. However our result is insensitive to
the choice of θ. Denote by TγΩx,y the set of continuous paths y : [0, 1] → TM such that
yt ∈ TγtM for all t and y0 = 0, y1 = 0. Define σε : Ωx,y → TγΩx,y by

(σεω)t = θ(t, ωt)/
√
ε, 0 ≤ t ≤ 1
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and set

µ̃x,yε = µx,yε ◦ σ−1
ε .(1.2)

Proposition 1.3. Assume that (x, y) 6∈ Cut(a). Then there exists a unique zero-mean
Gaussian measure µγ on TγΩx,y such that, for all 0 ≤ s ≤ t ≤ 1∫

TγΩx,y
ys ⊗ yt µγ(dy) = JsJ

−1
1 K∗t .

Our main result is the following, generalizing a result of Molchanov [Mol75], which is
restricted to the elliptic case:

Theorem 1.4. Assume that (x, y) 6∈ Cut(a). Then

µ̃x,yε ⇒ µγ as ε ↓ 0.

The proof of Proposition 1.3 is given in §2, along with a reformulation of the cut-locus
and an alternative characterization of µγ , both in terms of the second variation of the
energy near γ. The analysis needed for Theorem 1.4 is done in §3. The techniques used
there enable us to give a more complete proof than that offered by Molchanov.

For the remainder of the introduction we focus on the case where a is positive definite.
The Gaussian measure µγ then has a number of alternative characterizations, which we
now review, making use of some standard notions of Riemannian geometry. We write ∇
for the Levi–Civita connection and R for the Riemannian curvature tensor. Let us fix a
minimal path γ ∈ Hx,y. Define Rt ∈ EndTγtM by Rt = R(., γ̇t)γ̇t. Let TγHx,y denote the
set of paths v : [0, 1]→ TM over γ with v0 = 0 and v1 = 0 such that∫ 1

0
|∇vt|2 dt <∞.

Then the second variation of the energy I at γ defines a quadratic form on TγH
x,y, given

by

(1.3) Q(v) =
∫ 1

0
|∇vt|2 dt−

∫ 1

0
〈vt, Rtvt〉 dt.

See, for example, [Kli82]. The map Jt : T ∗xM → TγtM , defined above, satisfies the Jacobi
equation

∇2Jt +RtJt = 0, J0 = 0, ∇J0 = a(γ0).

Let (bt : 0 ≤ t ≤ 1) denote a Brownian motion in TxM , starting from 0, and set zt = bt−tb1,
so (zt : 0 ≤ t ≤ 1) is a Brownian bridge from 0 to 0 in time 1. For 0 ≤ t ≤ 1, write τt for
the parallel translation TxM → TγtM along γ. Let ν denote the law of (τtzt : 0 ≤ t ≤ 1)
on TγΩx,y. The property that x and y are non-conjugate along γ can be expressed in a
number of different ways:

Proposition 1.5. Assume that a is positive definite. Let γ ∈ Hx,y be minimal. Then the
following are equivalent:

(i) J1 is invertible;
(ii) Q is positive definite on TγH

x,y;
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(iii) there exists a unique path A ∈ C1([0, 1) : EndTM) over γ solving the Riccati
equation:

∇At +A2
t +Rt = 0, (1− t)At → −I as t ↑ 1;

(iv) we have ∫
TγΩx,y

exp
{∫ 1

0
〈yt, Rtyt〉 dt

}
ν(dy) <∞.

Equivalence of (i),(ii) and (iii) is standard in Riemannian geometry. In §2, we establish
a generalization of the equivalence of (i) and (ii) to sub-Riemannian manifolds. For (iv),
we refer to [Bis84], Theorem 4.17.

Theorem 1.6. Assume that a is positive definite. Let γ ∈ Hx,y be minimal and suppose
that x and y are non-conjugate along γ. Let µ be a zero-mean Gaussian measure on TγΩx,y.
Then the following are equivalent:

(i) for all 0 ≤ s ≤ t ≤ 1,∫
TγΩx,y

ys ⊗ yt µ(dy) = JsJ
−1
1 K∗t ;

(ii) µ has reproducing-kernel Hilbert space (TγHx,y, Q);
(iii) under µ, the coordinate process y on TγΩx,y satisfies a covariant linear stochastic

differential equation over γ of the form

Dyt = τtdbt +Atytdt, y0 = 0;

(iv) µ is absolutely continuous with respect to ν, with Radon–Nikodym derivative

(1.4)
dµ

dν
(y) ∝ exp

{∫ 1

0
〈yt, Rtyt〉 dt

}
.

Proof. There is exactly one zero-mean Gaussian measure satisfying (ii). The same is true
for (iii) and (iv). There is at most one zero-mean Gaussian measure satisfying (i). The
equivalence of (i) and (ii) is established in a more general context in §2.

Suppose that µ satisfies (iii). Note that AtKt+∇Kt = 0 and Kt is invertible for 0 ≤ t < 1.
Set wt = K−1

t yt, then Ktdwt = τtdbt, so

wt =
∫ t

0
K−1
s τsdbs.

Hence, for 0 ≤ s ≤ t ≤ 1,

E(ys ⊗ yt) = Ks

(∫ s

0
K−1
r (K−1

r )∗dr
)
K∗t = JsJ

−1
1 K∗t ,

the last equality obtained by verifying that Ks(
∫ s

0 K
−1
r (K−1

r )∗dr)J1 satisfies the Jacobi
equation. Hence (i) is equivalent to (iii).

Given (1.3), it is a routine exercise in Gaussian processes to establish the equivalence of
(ii) and (iv). See for example [?]. �
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We examine now how our result specializes in some simple cases. When L is the Laplacian
on Rn, the analysis is trivial, because µ̃x,yε = µγ for all ε > 0. We have Js = sI,Kt = tI
and At = −(1 − t)−1I, so the alternatives in Theorem 1.6 recover some of the standard
descriptions of the Brownian bridge in Rn.

In the case where L is the Laplace–Beltrami operator on a sphere or on hyperbolic space,
we can rewrite (1.4) in the form

dµγ
dν

(y) ∝ exp
{
Kd(x, y)2

2

∫ 1

0
|yt|2 dt

}
,

where K, the sectional curvature, is 1 for the sphere and −1 for hyperbolic space. Thus, on
a sphere, the variance of the fluctuations is larger than in Rn, whereas, in hyperbolic space
it is less. This does not contradict the tendency of Brownian paths to separate quickly in
hyperbolic space because we are conditioning on the endpoint. Thus we tend to see those
paths which have never deviated far from the geodesic.

2. Second variation of the energy for sub-Riemannian manifolds

In this section we develop the geometric notions needed to express our central limit
theorem for conditioned diffusions. We shall show that, for a certain class of paths ω in
Hx,y, there is a well-defined tangent space TωHx,y and, when ω is minimizing, there is a
non-negative quadratic form Q on TωHx,y, which arises as the second variation of the energy
function. The form Q is positive when x and y are non-conjugate along ω. This is standard
for Riemannian geometry, see for example [Kli82]. The essentials of the sub-Riemannian
case were worked out by Bismut [Bis84]. Our contribution here is to demonstrate that
certain objects introduced by Bismut are intrinsic to the principal symbol a and do not
depend on the choice of vector fields X1, . . . , Xm in the representation

(2.1) a(x) =
m∑
l=1

Xl(x)⊗Xl(x).

The section finishes with a number of equivalent formulations of the Gaussian process which
appears as a limit in our main theorem.

Denote by Ω the set of continuous paths ω : [0, 1]→M and by H the set of finite-energy
paths. Recall that ω is of finite energy if ω is absolutely continuous and there exists a
measurable path ξ : [0, 1]→ T ∗M over ω such that, for almost all t,

(2.2) ω̇t = a(ξt)

and such that

I(ω) =
∫ 1

0
a(ξt, ξt) dt <∞.

We say that ξ is a regular lifting of ω if (2.2) holds and, for some smooth Riemannian metric
on M , ∫ 1

0
|ξt|2 dt <∞.

Obviously this condition does not depend on the choice of metric. We say that a finite-
energy path ω is regular if it has a regular lifting. If a is not of constant rank, then not all
finite-energy paths are regular. We write Hx for the set of finite-energy paths starting at
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x and Hx,y for the set of such paths terminating at y. We say that ω ∈ Hx,y is minimal if
I(ω) ≤ I(ω′) for all ω′ ∈ Hx,y. Write H0(Rm) for the space of absolutely continuous paths
h : [0, 1]→ R

m starting from 0 such that

‖h‖2 =
∫ 1

0
|ḣt|2dt <∞.

Given the representation (2.1) and ω ∈ Hx, we denote by h(ω) the unique element in
H0(Rm) such that

ḣt(ω) = X(ωt)∗ξt
whenever ξ satisfies (2.2). Here X(x) : Rm → TxM is given by

X(x) = (X1(x), . . . , Xm(x)).

We can define a map φ : M ×H0(Rm)→ Ω by the differential equation

φ̇t(x, h) = Xl(φt(x, h))ḣlt, φ0(x, h) = x.

Here and throughout, the repeated index l is summed from 1 to m. Denote by pX(x) the
orthogonal projection Rm → (kerX(x))⊥. Given k ∈ H0(Rm), define π(x, h)k ∈ H0(Rm)
by

π̇t(x, h)k = pX(φt(x, h))k̇t, π0(x, h)k = 0.
The following result gives the basic parameterization of Hx used by Bismut.

Proposition 2.1. For all x ∈M and h ∈ H0(Rm),
(i) imφ(x, .) = Hx,
(ii) φ(x, h) = φ(x, π(x, h)h),
(iii) I(φ(x, h)) = ‖π(x, h)h‖2 ≤ ‖h‖2,
(iv) h(φ(x, h)) = π(x, h)h.

Proof. Claim (ii) and the inequality in (iii) are obvious. Fix x ∈ M and h ∈ H0(Rm). Set
ωt = φt(x, h). Since (kerX(x))⊥ = imX(x)∗, there is a measurable map ξ : [0, 1] → T ∗M
over ω such that π̇t(x, h)h = X(ωt)∗ξt. Then ω̇t = X(ωt)X(ωt)∗ξt = a(ξt) and

I(ω) =
∫ 1

0
a(ξt, ξt)dt =

∫ 1

0
|X(ωt)∗ξt|2dt = ‖π(x, h)h‖2.

Hence imφ(x, .) ⊆ Hx and (iii) holds.
On the other hand, given ω ∈ Hx, we have ω̇t = X(ωt)ḣt(ω), so φ(x, h(ω)) = ω. Hence

Hx ⊆ imφ(x, .). �

We now define the space of finite-energy variations of a regular finite-energy path ω ∈ Hx.
Fix a regular lifting ξ : [0, 1] → T ∗M of ω and denote by TωH

x the set of absolutely
continuous maps v : [0, 1]→ TM over ω such that

(2.3) v̇t = ∇a(ξt)vt + a(ηt), v0 = 0

for some η : [0, 1]→ T ∗M over ω, with

‖v‖2ξ =
∫ 1

0
a(ηt, ηt)dt <∞.
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The differential equation for v is independent of the coordinate system in which it is written.
It is a consequence of the next proposition that the space TωHx does not depend on the
choice of ξ, that the norms ‖ . . . ‖ξ are all equivalent, and that all make TωHx into a Hilbert
space.

By standard arguments, the map φ : M ×H0(Rm)→ H, defined above, is differentiable.
Set ωt = φt(x, h). Also set

ut =
∂

∂x
φt(x, h) ∈ TωtM ⊗ T ∗xM

and, fixing k ∈ H0(Rm), set

vt =
(
∂

∂h
φt(x, h)

)
k ∈ TωtM.

Then u and v satisfy the differential equations

u̇t = ∇Xl(ωt)utḣlt, u0 = I,

v̇t = ∇Xl(ωt)vtḣlt +Xl(ωt)k̇lt, v0 = 0.

Note that

(2.4) vt = ut

∫ t

0
u−1
s Xl(ωs)k̇lsds.

Proposition 2.2. Let ω ∈ Hx be regular and set h = h(ω). Then

im
∂

∂h
φ(x, h) = TωH

x.

Moreover, given v ∈ TωH
x, a regular lifting ξ of ω, and some η satisfying (2.3), let us

define k = k(ξ, v) by

k̇lt = 〈ξt,∇Xl(ωt)vt〉+ 〈ηt, Xl(ωt)〉, k0 = 0.

Then k ∈ H0(Rm) and

v =
∂

∂h
φ(x, h)k.

Moreover there is a constant C <∞, depending only on ξ, such that

C−1‖k‖ ≤ ‖v‖ξ ≤ C‖π(x, h)k‖.

Proof. Fix a Riemannian metric on M and a regular lifting ξ of ω. Given k ∈ H0(Rm), set
v = (∂φ/∂h)(x, h)k. Then v satisfies

(2.5) v̇t = ∇Xl(ωt)vtḣlt +Xl(ωt)k̇lt, v0 = 0,

so we have an estimate
‖v‖∞ ≤ C‖π(x, h)k‖.

Define g by
ġlt = 〈ξt,∇Xl(ωt)vt〉, g0 = 0.

Since ξ is regular we have an estimate ‖g‖ ≤ C‖v‖∞. We can find a measurable map
η : [0, 1]→ T ∗M over ω, such that

(2.6) a(ηt) = Xl(ωt)(k̇lt − ġlt).
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Note that
∇a(x) = ∇Xl(x)Xl(x)∗ +Xl(x)∇Xl(x)∗.

Then v satisfies the equation

(2.7) v̇t = ∇a(ξt)vt + a(ηt), v0 = 0

and, moreover

‖v‖2ξ =
∫ 1

0
a(ηt, ηt)dt = ‖π(x, h)(k − g)‖2 ≤ C‖π(x, h)k‖2.

Hence v ∈ TωHx.
On the other hand, given v ∈ TωHx, from (2.7) we obtain the estimate ‖v‖∞ ≤ C‖v‖ξ.

Now k = k(ξ, v) satisfies
k̇lt = ġlt + 〈ηt, Xl(ωt)〉

so v satisfies (2.5) and ‖k‖ ≤ C‖v‖ξ. �

We say that a regular path ω ∈ Hx,y is elliptic if

{v1 : v ∈ TωHx} = TyM.

This condition is obviously independent of the representation (2.1). Moreover, it is easy to
see that ω is elliptic if and only if its time-reversal is elliptic. When a is non-degenerate,
every ω ∈ Hx,y is elliptic. By Proposition 2.2, a regular finite-energy path ω is elliptic if
and only if the linear map

∂

∂h
φ1(x, h(ω)) : H0

ω(Rm)→ TyM

is onto. By (2.4), this in turn is equivalent to Bismut’s condition that the deterministic
Malliavin covariance matrix

C(ω) =
∫ 1

0

(
u−1
t Xl(ωt)

) (
u−1
t Xl(ωt)

)∗
dt(2.8)

is invertible.
Suppose now that ω ∈ Hx,y is elliptic. Fix a representation (2.1) and set h = h(ω). Let

K = ker
∂

∂h
φ1(x, h).

Then
K⊥ = {k ∈ H0(Rm) : k̇lt = 〈η0, u

−1
t Xl(ωt)〉, η0 ∈ T ∗xM}

and (∂/∂h)φ1(x, h)|K⊥ is invertible. So, by the implicit function theorem, there exist δ > 0
and a C∞ map

θ : {k ∈ K : ‖k‖ < δ} → K⊥

such that, for k ∈ K, k′ ∈ K⊥ with ‖k + k′‖ < δ,

φ1(x, h+ k + k′) = y if and only if k′ = θ(k).

Note that θ(0) = 0. For k ∈ K sufficiently small, we have

(2.9) φ1(x, h+ k + θ(k)) = y
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so
∂

∂h
φ1(x, h)(k + θ′(0)k) = 0.

This forces θ′(0) = 0. On differentiating (2.9) twice, we obtain the following formula which
determines θ′′(0):

(2.10)
∂2

∂h2
φ1(x, h)(k, k) +

∂

∂h
φ1(x, h)θ′′(0)(k, k) = 0.

We note also the following useful identity: for k, k′ ∈ K⊥ with

k̇lt = 〈η0, u
−1
t Xl(ωt)〉, η0 ∈ T ∗xM

and
∂

∂h
φ1(x, h)k′ = v1

we have

(2.11) 〈k, k′〉 =
∫ 1

0
〈η0, u

−1
t Xl(ωt)〉(k̇′t)l dt = 〈η0, u

−1
1 v1〉.

Theorem 2.3. Let ω ∈ Hx,y be elliptic and let ξ be a regular lifting of ω. Let v ∈ TωHx,y

and suppose that η in (2.7) can be chosen so that

(2.12)
∫ 1

0
|ηt|2dt <∞.

Then there exists a measurable map

(ε, t) 7→ ξεt : (−1, 1)× [0, 1]→ T ∗M

such that ξ0 = ξ and:
(i) ωε = πξε ∈ Hx,y for all ε, with ω̇εt = a(ξεt );
(ii) in any system of coordinates along ω, there is a constant C <∞ such that, for all

ε,
sup
t
|ωεt − ωt − εvt| ≤ Cε2,

and, writing ξε = (ωε, pε) and η = (ω, q),∫ 1

0
a(ωεt )(p

ε
t − pt − εqt, pεt − pt − εqt)dt ≤ Cε4.

For any such map, the map ε 7→ I(ωε) is differentiable at ε = 0 and

L(v) =
∂

∂ε

∣∣∣∣
ε=0

I(ωε)

is a densely defined, bounded linear form on TωH
x,y. In the case where ω is minimal, the

map ε 7→ I(ωε) is twice differentiable at ε = 0 and

(2.13) Qξ(v) =
1
2
∂2

∂ε2

∣∣∣∣
ε=0

I(ωε)

is a densely defined, bounded quadratic form on TωH
x,y. Finally, given a representation

(2.1), for h = h(ω) and k = k(ξ, v), we have

L(v) = 2〈h, k〉
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and, when ω is minimal, then h ∈ K⊥ and

Qξ(v) = ‖k‖2 + 〈h, θ′′(0)(k, k)〉.

Proof. We will first use the representation (2.1) to construct a map ξε having the claimed
properties. Set h = h(ω) and k = k(ξ, v). Since v1 = 0, we have k ∈ K. Set ωεt = φt(x, hε),
where hε = h+εk+θ(εk) and where θ is given by (2.9). Choose a system of local coordinates
along ω and write ξ = (ω, p) and η = (ω, q). Then, for some C <∞, for ε sufficiently small,
we have ωε ∈ Hx,y and

sup
t
|ωεt − ωt − εvt| ≤ Cε2.

Moreover
ω̇εt − a(ωεt )(pt + εqt) = Xl(ωεt )ġ

ε,l
t ,

where
ġε,lt = ḣlt + εk̇lt + θ̇lt(εk)− 〈pt + εqt, Xl(ωεt )〉

= −〈pt, Xl(ωεt )−Xl(ωt)− ε∇Xl(ωt)vt〉
− ε〈qt, Xl(ωεt )−Xl(ωt)〉+ θ̇lt(εk).

For some C <∞, for ε sufficiently small, we have∫ 1

0
|ġεt |2dt ≤ Cε4

so we can find a measurable map rεt such that

Xl(ωεt )ġ
ε,l
t = a(ωεt )r

ε
t

and ∫ 1

0
a(ωεt )(r

ε
t , r

ε
t )dt ≤ Cε4.

If we now set pεt = pt + εqt + rεt , then ξεt = (ωεt , p
ε
t ) has the required properties.

Suppose now, more generally, that ξε = (ωε, pε) and η = (ω, q) denote maps having the
properties described in the statement. Define hε by

ḣε,lt = 〈pεt , Xl(ωεt )〉, hε0 = 0.

Then
ḣε,lt − ḣlt − εk̇lt

= 〈pεt − pt − εqt, Xl(ωεt )〉+ ε〈qt, Xl(ωεt )−Xl(ωt)〉
+ 〈pt, Xl(ωεt )−Xl(ωt)− ε∇Xl(ωt)vt〉

so
‖hε − h− εk‖ ≤ Cε2.

Now φ1(x, hε) = y, so, for ε sufficiently small,

hε = h+ εkε + θ(εkε)

where kε denotes the orthogonal projection of ε−1(hε − h) onto K. Since k ∈ K, we have
‖kε − k‖ ≤ Cε. Hence, as ε→ 0,

I(ωε)− I(ω) = ‖h+ εkε + θ(εkε)‖2 − ‖h‖2 = 2ε〈h, k〉+O(ε2).

Hence ε 7→ I(ωε) is differentiable at ε = 0 with the claimed derivative.
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Now, if ω is minimal, we must have L(v) = 0 for all v ∈ TωHx,y. For any k′ ∈ K, if
v = (∂φ/∂h)(x, h)k′, then 〈k′ − k(ξ, v), h〉 = 0, so L(v) = 0 forces h ∈ K⊥. Hence, for ω
minimal, we have, as ε→ 0,

I(ωε)− I(ω) = ε2‖kε‖2 + 2〈h, θ(εkε)〉+ ‖θ(εkε)‖2 = ε2{‖k‖2 + 〈h, θ′′(0)(k, k)〉}+O(ε3).

This shows that ε 7→ I(ωε) is twice differentiable at ε = 0 with the claimed second deriva-
tive.

Finally, we note that L and Q are bounded, by the estimates of Proposition 2.2, and
that (2.12) can be satisfied on at least a dense subspace in TωH

x,y. �

We now investigate the relationship between minimal paths, the quadratic forms Qξ, and
the bicharacteristic flow, introduced in §1.

We recall that

K⊥ = {k ∈ H0(Rm) : k̇lt = 〈η0, u
−1
t Xl(ωt)〉, η0 ∈ T ∗xM}.

By Theorem 2.3, if ω is elliptic and minimal, then h = h(ω) ∈ K⊥. So we can write
ḣlt = 〈ξ0, u

−1
t Xl(ωt)〉 for some ξ0 ∈ T ∗xM . Write, in some system of local coordinates along

ω, ξ0 = (ω0, p0), and set ξt = (ωt, pt), where pt = (u−1
t )∗p0. Then

ω̇t = Xl(ωt)ḣlt,

ṗt = −〈pt,∇Xl(ωt)〉ḣlt,
ḣlt = 〈pt, Xl(ωt)〉.

It follows by uniqueness of solutions that ξt = ψt(ξ0). In particular, ω is the projection of
a bicharacteristic.

The preceding argument is of a standard type and is copied from [Bis84]. The crucial
observation is that, when ω is elliptic and minimal, then, for some representation (2.1),
ω = φ(x, h) with h ∈ K⊥. This observation in fact holds under the weaker conditions that
ω = φ(x, h) is minimal and (∂/∂h)φ1(x, h) is of maximal rank. See [Bis84] or the proof of
Theorem 2.3. In particular, if we make these, representation-specific, conditions then no
a priori assumption of regularity is needed – but regularity comes out as a conclusion, as
bicharacteristics are smooth.

Proposition 2.4. Let ω ∈ Hx,y be elliptic and minimal. Let ξ denote some bicharacteristic
over ω and let v ∈ TωHx,y. Fix some representation (2.1) and set h = h(ω) and, for k ∈ K,
set

q(k) = ‖k‖2 − 〈ξ1, (∂/∂h)2φ1(x, h)(k, k)〉.
Then

Qξ(v) = inf
{
q(k) :

∂

∂h
φ(x, h)k = v, k ∈ H0(Rm)

}
.

Proof. Note that ḣlt = 〈ξ0, u
−1
t Xl(ωt)〉 and ξ1 = (u−1

1 )∗ξ0, so by (2.10) and (2.11), for k ∈ K,

(2.14) q(k) = ‖k‖2 + 〈h, θ′′(0)(k, k)〉.
So by Theorem 2.3, we have Qξ(v) = q(k(ξ, v)). Let k′ ∈ H0(Rm) with

∂

∂h
φ(x, h)k′ = 0.
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Then, since ω is minimal and ‖h‖2 = I(ω),

q(k′) =
1
2
∂2

∂ε2

∣∣∣∣
ε=0

‖h+ εk′ + θ(εk′)‖2 ≥ 0.

So it suffices to show that, for such k′ and for k = k(ξ, v), we have q(k, k′) = 0.
Note that Xl(ωt)(k̇′t)

l = 0 for all t. We differentiate the identity

(2.15)
(
∂

∂x
φ1(x, h)

)−1 ∂

∂h
φ1(x, h)k′ =

∫ 1

0

(
∂

∂x
φt(x, h)

)−1

Xl(φt(x, h))(k̇′t)
l dt

in h, in the direction k, to obtain

u−1
1

∂2

∂h2
φ1(x, h)(k, k′) =

∫ 1

0
u−1
t ∇Xl(ωt)vt(k̇′t)

l dt.

Hence

〈ξ1,
∂2

∂h2
φ1(x, h)(k, k′)〉 = 〈ξ0,

∫ 1

0
u−1
t ∇Xl(ωt)vt(k̇′t)

l dt〉

=
∫ 1

0
〈ξt,∇Xl(ωt)vt〉(k̇′t)l dt = 〈k, k′〉.

This shows that q(k, k′) = 0 as required. �

Proposition 2.4, together with (2.14), shows that the quadratic form Q = Qξ does not
depend on the choice of bicharacteristic ξ over ω. So from now on we shall drop the subscript
ξ.

For s ≤ t, define Jts : T ∗γsM → TγtM by

Jtsηs =
∂

∂ε

∣∣∣∣
ε=0

πψt−s(ξs + εηs).

Set Jt = Jt0, as in §1, and set vt = Jtη0. By differentiating the equations

ωt = φt(x, h),

ḣlt = 〈ξ0,

(
∂

∂x
φt(x, h)

)−1

Xl(φt(x, h))〉,

in ξ0, in the direction η0, we find that v = (∂/∂x)φ(x, h)k, where k satisfies

(2.16) k̇lt = 〈η0, u
−1
t Xl(ωt)〉+Al0t(ξ, k)

and

Al0t(ξ, k) = 〈ξ0,
∂

∂h

[(
∂

∂x
φt(x, h)

)−1

Xl(φt(x, h))

]
k〉.

By writing a differential equation for Al0t(ξ, k), we obtain the estimate, for 0 ≤ t ≤ 1,

|A0t(ξ, k)|2 ≤ C
∫ t

0
|k̇s|2 ds.

It follows that the equation (2.16) uniquely determines k.

Proposition 2.5. Let ω ∈ Hx,y be elliptic and minimal and let v ∈ TωHx,y. Then Q(v) = 0
if and only if vt = Jtη0, for some η0 ∈ T ∗xM .
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Proof. Suppose that Q(v) = 0. Set k = k(ξ, v), where ξ is some bicharacteristic over ω.
Then q(k) = 0. Since ω is minimal, q is non-negative, so q(k, k′) = 0 for all k′ ∈ K. On
differentiating the identity (2.15) in h, in the direction k, we obtain

u−1
1

∂2

∂h2
φ1(x, h)(k, k′)

=
∫ 1

0
(k̇′t)

l

{
u−1
t Xl(ωt)vt +

∂

∂h

[(
∂

∂x
φt(x, h)

)−1

Xl(φt(x, h))

]
k

}
dt

so

0 = q(k, k′) =
∫ 1

0
(k̇′t)

l

{
k̇lt − 〈ξ0,

∂

∂h

[(
∂

∂x
φt(x, h)

)−1

Xl(φt(x, h))

]
k〉

}
dt.

Hence there exists an η0 ∈ T ∗xM such that

k̇lt = 〈η0, u
−1
t Xl(ωt)〉+Al0t(ξ0, k).

As we argued above, this forces vt = Jtη0 for all t.
The reverse implication is now obvious. �

Proposition 2.6. Let ω ∈ Hx,y be elliptic and minimal. Then, for η0 ∈ T ∗xM , Jtη0 = 0
for all t implies η0 = 0.

Proof. Fix a representation (2.1) and set k = k(ξ, v), where ξ is some bicharacteristic over
ω and vt = Jtη0. Then v = 0 implies k = 0, by Proposition 2.2, which implies

〈η0, u
−1
t Xl(ωt)〉 = 0

for all t, by (2.16), which implies η0 = 0 since ω is elliptic. �

Theorem 2.7. Let ω ∈ Hx,y be elliptic and minimal. Then Q is positive-definite on TωHx,y

if and only if J1 is invertible.

Proof. Suppose J1η0 = 0, then vt = Jtη0 ∈ TωHx,y and Q(v) = 0. Hence, if Q is positive-
definite, then Jtη0 = 0 for all t, so η0 = 0, by Proposition 2.6.

On the other hand, if Q(v) = 0 for some v ∈ TωHx,y, then vt = Jtη0 for some η0 ∈ T ∗xM
by Proposition 2.5, and J1η0 = 0. So, if J1 is invertible, then η0 = 0, so v = 0. �

Recall from §1 that we define Kt : T ∗yM → TωtM by

Ktζ1 =
∂

∂ε

∣∣∣∣
ε=0

πψ−(1−t)(ξ1 + εζ1)

and, for 0 ≤ s ≤ t ≤ 1, set

C(s, t) = C(t, s)∗ = JsJ
−1
1 K∗t ∈ TωsM ⊗ TωtM.

Proposition 2.8. Let ω ∈ Hx,y be elliptic and minimal. Suppose that x and y are non-
conjugate along ω. Given β ∈ T ∗ωtM , set vβ,ts = C(s, t)β. Then, for all v ∈ TωHx,y,

Q(v, vβ,t) = 〈β, vt〉.
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Proof. Set η0 = J−1
1 Jt1β and set

w = Jsη0 − Jstβ1s>t
so that w1 = 0 and w ∈ TωHx,y. Then k = k(ξ, w) = k1 + k2, where

(k̇1
s)
l = 〈η0, u

−1
s Xl(ωs)〉+Al0s(ξ, k

1)

and (k̇2
s)
l = 0 for s ≤ t and, for s > t,

(k̇2
s)
l = 〈β, u−1

st Xl(ωs)〉+Alts(ξ, k
2) = 〈u∗tβ, u−1

s Xl(ωs)〉+Al0s(ξ, k
2).

Now, for k′ ∈ K and for v′ = (∂/∂h)φ(x, h)k′ we have

Q(w, v′) = q(k, k′) =
∫ 1

0
(k̇′s)

l
{
k̇ls −Al0s(ξ, k)

}
ds

=
∫ 1

0
〈η0 + u∗tβ, u

−1
s Xl(ωs)〉(k̇′s)l ds

= 〈β, v′〉.
By uniqueness in (2.16), w is the unique element of TωHx,y having this property. For s ≤ t
we have

ws = Js0J
−1
10 J1tβ = JsJ

−1
1 K∗t β = C(s, t)β.

By time symmetry, for s > t, we have

ws = Ks1K
−1
01 K0tβ = Ks(J−1

1 )∗J∗t β = C(t, s)∗β.

Hence w = vβ,t, and vβ,t has the claimed property. �

We can now prove a strengthening of Proposition 1.3:

Theorem 2.9. Let ω ∈ Hx,y be elliptic and minimal. Suppose that x and y are non-
conjugate along ω. Then there exists a unique zero-mean Gaussian measure µω on TωΩx,y

such that, for all 0 ≤ s ≤ t ≤ 1∫
TωΩx,y

ys ⊗ yt µω(dy) = JsJ
−1
1 K∗t .

Moreover, µω has reproducing-kernel Hilbert space (TωHx,y, Q).
Furthermore, given a representation (2.1), we can construct µω as follows. Let ν denote

the unique Gaussian measure on Ω0(Rm) such that∫
Ω0(Rm)

ei〈w,k〉ν(dw) = e−‖Pk‖
2/2

for all k ∈ H0(Rm), where P denotes the orthogonal projection H → K. Set

yt(w) = (∂/∂h)φt(x, h)w,

S(w) = 〈ξ1, (∂2/∂h2)φ1(x, h)(w,w)〉
where ξ is some bicharacteristic over ω and h = h(ω). Then we can define a new probability
measure ν̃ on Ω0(Rm) by

dν̃/dν ∝ e−S/2

and µγ is the law of (yt : 0 ≤ t ≤ 1) under ν̃.
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Proof. Choose an orthonormal basis {ki : i ∈ I} in K to diagonalize S, considered as a
quadratic form on K:

S(k) =
∑
i

λi〈k, ki〉2.

Note that S is Hilbert–Schmidt on K and, since x and y are non-conjugate along ω, for all
i,

1 + λi = ‖ki‖2 + S(ki) = q(ki) > 0.
Note also that, for the standard Gaussian distribution γ on R,∫

R

ei(1+λ)uxe−λx
2/2γ(dx) =

1√
1 + λ

e−(1+λ)u2/2.

Hence ∫
Ω0(Rm)

e−S(w)/2ν(dw) =
∏
i

1√
1 + λi

<∞

so ν̃ is well-defined, and ∫
Ω0(Rm)

eiq(k,w)ν̃(dw) = e−q(k)/2.

Hence, if µω denotes the law of (yt : 0 ≤ t ≤ 1) under ν̃, then, by Proposition 2.4, for all
v ∈ TωHx,y, ∫

TωΩx,y
eiQ(v,y)µω(dy) = e−Q(v)/2.

It remains to check that µω has the claimed covariance. For α ∈ T ∗ωsM and β ∈ T ∗ωtM , we
have ∫

TωΩx,y
〈α, ys〉〈β, yt〉µω(dy)

=
∫
TωΩx,y

Q(vα,s, y)Q(vβ,t, y)µω(dy) = Q(vα,s, vβ,t) = 〈α,C(s, t)β〉.

�

3. proof of Theorem 1.4

3.1. Sketch of the proof. Throughout this section, (x, y) 6∈ Cut(a). Without loss of
generality, we assume that M is an embedded submanifold of Rn for a suitably large n ∈ N
and that the vector fields X̃0, ..., X̃m are the restrictions of the vector fields X0, ..., Xm

with coefficients in C∞b (Rn,Rn) (i.e bounded derivatives of all orders).
Our problem should then be reformulated as follows : Given ε > 0, let (zεt : 0 ≤ t ≤ 1)

be defined as

∀t ∈ [0, 1], zεt =
xεt − γt√

ε

where (xεt : 0 ≤ t ≤ 1) denotes the unique solution of the SDE

dxεt =
√
εX̃l(xεt ) ◦ dBl

t + εX̃0(xεt )dt, xε0 = x,

and (γt : 0 ≤ t ≤ 1) stands for the unique solution of the ODE

dγt = X̃l(xεt )ḣ
l
tdt, γ0 = x.
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In the first equation, B1, ..., Bm are n-dimensional independent Brownian motions defined
on some underlying probability space (Ω,F , µ). In the second equation, h is the unique
element in H0(Rm) such that the unique minimizer γ of the energy may be written γ =

φ(x, h). In both equations, we have omitted the symbol
m∑
l=1

and ◦d denotes Stratonovich

integration. Denote by µ̃x,yε the law of (zεt : 0 ≤ t ≤ 1) conditioned by the terminal condition
xε1 = y. Then, according to the statements of Theorem 1.4, one has to show that

(3.1) µ̃x,yε =⇒ µγ .

In order to describe µγ , we adopt the notation of Theorem 2.9. Set B = (B1, ..., Bm) and

yt(ω) =
∂

∂h
φt(x, h)B(ω),

S(ω) = 〈ξ1,
∂2

∂h2
φ1(x, h)(B(ω), B(ω))〉

.

Denote by ν the law of (yt(ω) : 0 ≤ t ≤ 1) under µ and define a new probability measure
by

dν̃

dν
(ω) =

e−S(ω)/2∫
Ω
e−S(ω)/2 ν(dω)

.

Then µγ is the law of (yt : 0 ≤ t ≤ 1) under ν̃. To show (3.1), we shall mainly proceed in
two steps :

(i) We show that the finite-dimensional distributions of µ̃x,yε converge weakly to those
of µγ as ε ↓ 0 (Proposition 3.1).

(ii) We show that the family of measures {µ̃x,yε : ε > 0} is tight (Proposition 3.2).

From now on, given a measure β on (Ω,F), Eβ denotes the expectation operator associ-
ated to β.

Proposition 3.1. Given any finite sequence 0 < t1 < ... < tk < 1 and any k-tuple
(ζ1, ..., ζk) ∈ (Rn)k :

(3.2) lim
ε↓0
Eµ

exp

i k∑
j=1

〈ζj , zεtj 〉

 xε1 = y

 = Eν̃

exp

i k∑
j=1

〈ζj , ytj 〉


Proposition 3.2. We may find positive constants ε0 > 0, C > 0, q > 1 and γ > 1 such
that

∀(s, t) ∈ [0, 1]2, t 6= s,∀ε ∈ [0, ε0], Eµ

(
|zεt − zεs |

2q xε1 = y
)
≤ C |t− s|γ

To prove these above results, we establish a lemma which shall be crucial in our study.
The below result deeply relies on the existence of a positive density w.r.t. the Lebesgue
measure on Rn for the law of xε1 (thanks to the bracket condition).
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Lemma 3.3. Let g be a bounded continuous map from C ([0, 1],Rn) to C, then, given any
bounded continuous map F from R

n to R, it holds

(3.3) Eµ (g(zε) xε1 = y) =

∫
Rn

Eµ

(
g(zε) exp

(
i〈ξ, x

ε
1 − y
ε
〉 − F (xε1)

ε

))
dξ∫

Rn

Eµ

(
exp

(
i〈ξ, x

ε
1 − y
ε
〉 − F (xε1)

ε

))
dξ

Proof. Denote by pε1(x, •) the density of the law of xε1 w.r.t. the Lebesgue measure on Rn.
Write

Eµ

(
g(zε) exp

(
i〈η, xε1〉 −

F (xε1)
ε

))
=
∫
Rn

exp
(
i〈η, y〉 − F (y)

ε

)
Eµ (g(zε) xε1 = y) pε1(x, y) dy

(3.4)

and use an inversion Fourier formula to get

Eµ (g(zε) xε1 = y) pε1(x, y) e−
F (y)
ε

=
1

(2π)n

∫
Rn

Eµ

(
g(zε) exp

(
i〈η, xε1 − y〉 −

F (xε1)
ε

))
dη.

(3.5)

Observe that, taking g ≡ 1, we get

(3.6) pε1(x, y) exp
(
−F (y)

ε

)
=

1
(2π)n

∫
Rn

Eµ

(
exp

(
i〈η, xε1 − y〉 −

F (xε1)
ε

))
dη.

Next, divide (3.5) by (3.6) and make the change of variables ξ = εη to get (3.3). �

3.2. Proof of Proposition 3.1. The main ingredients of our analysis is Laplace method
and Malliavin Calculus. Since our proof is mainly the same as the one of Ben Arous [BA88],
we only outline the main steps and give references to the place where the reader may find
explanations in [BA88]. On the other hand, since Malliavin calculus is now a classical
tool in the analysis of Wiener functionals (see [Nua95] for instance), we do not review the
Malliavin calculus used in our proof but only introduce the notation needed.

Fix 0 < t1 < ... < tk < 1 and (ζ1, ..., ζk) ∈ (Rn)k. In order to lighten our expressions, we
let k = 1 and we set :

g(t1, ζ1, •) = exp (i〈ζ1, •t1〉)

LF (ε, ξ, •) = exp
(
i〈ξ, •〉 − F (•)

ε

)
Moreover, given h ∈ H0 (Rm), we set :

G(ε, h, ω) = exp

(
− 1√

ε

m∑
l=1

∫ 1

0
ḣls dB

l
s(ω)− 1

2

m∑
l=1

∫ 1

0

∣∣∣ḣls∣∣∣2 ds
)
.
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Thanks to Lemma 3.3, we may write

Eµ (g(t1, ζ1, z
ε) xε1 = y) =

∫
Rn

Eµ (g(t1, ζ1, z
ε)LF (ε, ξ, zε1)) dξ∫

Rn

Eµ (LF (ε, ξ, zε1)) dξ

The first step is to find the limit as ε ↓ 0 of the expectations :

Eµ (g(t1, ζ1, z
ε)LF (ε, ξ, zε1)) and Eµ (LF (ε, ξ, zε1))

We only explain our method on the first expectation. To deduce the limit of the second
one, the reader may set g ≡ 1 in all our expressions below. To study the limit of the first
expectation, we write a Cameron-Martin formula corresponding to the transformation on
Wiener space ω 7→ ω + h√

ε
(where h is given by Theorem 2.9) :

Eµ (g(t1, ζ1, z
ε)LF (ε, ξ, zε1)) = Eµ (g(t1, ζ1, z̄

ε)LF (ε, ξ, z̄ε1) G(ε, h, ω))

where

∀t ∈ [0, 1], z̄εt =
x̄εt − φt(x, h)√

ε

and (x̄εt : 0 ≤ t ≤ 1) evolves according to

(3.7) dx̄εt =
√
εX̃l(x̄εt ) ◦ dBl

t + εX̃0(x̄εt )dt+ X̃l(x̄εt ) ḣ
l
t dt, x̄ε0 = x,

The next step is to write a stochastic Taylor expansion of x̄ε w.r.t.
√
ε. In order to indicate

the meaning of our expansion, we introduce the Sobolev space Dp,k (p > 1, k ∈ N) of
Wiener functionals in Lp(Ω,F , µ) which have a kth-derivative in the sense of Malliavin
and we denote by ‖•‖p,k the associated Sobolev seminorm. It is well known that, since
the coefficients X̃l are C∞b , the unique solution of (3.7) is regular in the sense of Malliavin,
namely belongs to Dp,k for any p > 1 and k ∈ N. Moreover, x̄ε satisfies, for any p > 1 and
k ∈ N

(3.8) ∀t ∈ [0, 1], lim
ε↓0
‖x̄εt‖p,k < ∞

Ben Arous [BA88, formula (3.12) and Lemma (3.10)] shows that, x̄εt , t ∈ [0, 1], may be
written (with the notation of Theorem 2.9) as

x̄εt = φt(x, h) +
√
ε yt(ω) +

ε

2
∂2

∂h2
φt(x, h) (B(ω), B(ω))

+
ε

2
φ?t

∫ t

0
φ?−1
s X̃0(φs(h, x)) ds + ε3/2R3(ε, ω)

(3.9)

where, for any p > 1 and k ∈ N

(3.10) ‖yt(ω)‖p,k +
∥∥∥∥ ∂2

∂h2
φt(x, h) (B(ω), B(ω))

∥∥∥∥
p,k

+ lim
ε↓0
‖R3(ε, ω)‖p,k < ∞.

In the above expressions, φ?t denote the Jacobian matrix of x 7→ φt(x, h) and φ?−1
t the

inverse of φ?t . Assume now that F is C∞b . We now expand F (x̄ε1) using (3.9) [BA88,
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formula (3.35)] :

(3.11) F (x̄ε1) = F (φ1(x, h)︸ ︷︷ ︸
y

) +
√
εF (1)(y)(y1(ω)) + +

ε

2
U(h, ω) + ε3/2V (h, ε, ω)

where

U(h, ω) = F (1)(y)
(
∂2

∂h2
φt(x, h) (B(ω), B(ω))

)
+ F (2)(y)(y1(ω), y1(ω))

+F (1)(y)
(
φ?t

∫ t

0
φ?−1
s X̃0(φs(x, h)) ds

)(3.12)

and such that, for any p > 1 and k ∈ N, [BA88, Lemma (3.36)]

(3.13) ‖U(h, ω)‖p,k + lim
ε↓0
‖V (h, ε, ω)‖p,k < ∞.

Ben Arous shows then that, given (x, y) 6∈ Cut(a), we may find a C∞b function F : Rn → R

such that [BA88, Lemma (3.8) and Lemma (3.18)]

F (y) = −1
2

m∑
l=1

∫ 1

0

∣∣∣ḣls∣∣∣2 ds
F (1)(y)(•) = 〈λ, •〉

F (1)(y)(y1(ω)) = −
m∑
l=1

∫ 1

0
ḣls dB

l
s(ω)

(3.14)

and there exists p > 1 such that [BA88, Lemma (3.25)]

(3.15) lim
ε↓0
Eµ

(
exp

(
−p
(

1
2
U(h, ω) +

√
εV (h, ε, ω)

)))
< +∞.

Equalities (3.14) implies that

Eµ (g(t1, ζ1, z̄
ε)LF (ε, ξ, z̄ε1) G(ε, h, ω))(3.16)

= Eµ

(
g(t1, ζ1, z̄

ε) exp
(
i〈ξ, z̄ε1〉 −

1
2
U(h, ω)−

√
εV (h, ε, ω)

))
.

Note now that

lim
ε↓0

Eµ

(
g(t1, ζ1, z̄

ε) exp
(
i〈ξ, z̄ε1〉 −

1
2
U(h, ω)−

√
εV (h, ε, ω)

))
(3.17)

= Eµ

(
g(t1, ζ1, yt1(ω)) exp

(
i〈ξ, y1(ω)〉 − 1

2
U(h, ω)

))
We now wish to conclude that

lim
ε↓0

∫
Rn

Eµ

(
g(t1, ζ1, z̄

ε) exp
(
i〈ξ, z̄ε1〉 −

1
2
U(h, ω)−

√
εV (h, ε, ω)

))
dξ(3.18)

=
∫
Rn

Eµ

(
g(t1, ζ1, yt1(ω)) exp

(
i〈ξ, y1(ω)〉 − 1

2
U(h, ω)

))
dξ

To this end, we use the dominated convergence. So we need to show that the right-hand
side of (3.17) is integrable w.r.t. ξ over Rn and that the left-hand side of (3.17) is dominated
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uniformly in ε by a function which is integrable w.r.t. ξ over Rn. To this end, we are going
to use an integration by parts in the sense of Malliavin. First of all, note that (3.9) and
(3.10) imply that, for any p > 1 and k ∈ N,

(3.19) ∀t ∈ [0, 1], lim
ε↓0
‖z̄εt ‖p,k < +∞.

On the other hand, Ben Arous [BA88, Lemma (3.36)] proves that, thanks to (3.13) and
(3.15), we may find p0 > 1 such that, for any k ∈ N,

lim
ε↓0

∥∥∥∥exp
(
−1

2
U(h, ω)−

√
εV (h, ε, ω)

)∥∥∥∥
p,k

< ∞,∥∥∥∥exp
(
−1

2
U(h, ω)

)∥∥∥∥
p0,k

< ∞.
(3.20)

To be able to use an integration by parts in the sense of Malliavin, we require the Malliavin
covariance matrices of z̄ε1 and y1(ω) to be invertible and that their inverses belong to⋂
p>1

Lp(Ω,F , µ). Note first that the Malliavin covariance matrix of y1(ω) is is deterministic

and invertible whenever (x, y) 6∈ Cut(a) (see formula (2.8) p. 10). Furthermore, it has been
shown that [Mes96, Proposition (4.1) p. 30] the Malliavin covariance matrix σ̄ε1 of z̄ε1 is
uniformly non-degenerate, i.e. is, µ-almost surely, invertible and satisfies, for any p > 1,

(3.21) lim
ε↓0
Eµ

(
(det σ̄ε1)−p

)
< +∞.

As Ben Arous [BA88, Lemma (3.48)], using sufficiently enough integrations by parts on
Wiener space , we may find η > d+ 1 and a positive constant C such that, for all ξ ∈ Rn,

(3.22) lim
ε↓0

∣∣∣∣Eµ(g(t1, ζ1, z̄
ε) exp

(
i〈ξ, z̄ε1〉 −

1
2
U(h, ω)−

√
εV (h, ε, ω)

))∣∣∣∣ ≤ C (|ξ| ∨ 1)−2η

and

(3.23)
∣∣∣∣Eµ(exp

(
i〈ξ, y1(ω)〉 − 1

2
U(h, ω)

))∣∣∣∣ ≤ C (|ξ| ∨ 1)−2η

which, jointly with (3.17), implies (3.18). Take g ≡ 1 in (3.18), we then get

lim
ε↓0

∫
Rn

Eµ

(
exp

(
i〈ξ, z̄ε1〉 −

1
2
U(h, ω)−

√
εV (h, ε, ω)

))
dξ(3.24)

=
∫
Rn

Eµ

(
exp

(
i〈ξ, y1(ω)〉 − 1

2
U(h, ω)

))
dξ > 0
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The positivity of the right-hand side of (3.24) is establish in [BA88, formula (3.55)]. At
this stage of our proof, we have shown that

lim
ε↓0
Eµ

exp

i k∑
j=1

〈ζj , zεtj 〉

 xε1 = y



=

∫
Rn

Eµ

(
g(t1, ζ1, yt1(ω)) exp

(
i〈ξ, y1(ω)〉 − 1

2
U(h, ω)

))
dξ∫

Rn

Eµ

(
exp

(
i〈ξ, y1(ω)〉 − 1

2
U(h, ω)

))
dξ

(3.25)

Since y1(ω) is a centered Gaussian which covariance matrix C(ω) given by (2.8) is invertible.
One can get using an inversion Fourier formula :

lim
ε↓0
Eµ

(
exp

(
i〈ζ1, z

ε
t1〉
)
xε1 = y

)

=

√
2π

d
(detC(ω))−1/2

Eµ

(
g(t1, ζ1, yt1(ω)) exp

(
−1

2
U(h, ω)

)
y1(ω) = 0

)
√

2π
d

(detC(ω))−1/2
Eµ

(
exp

(
−1

2
U(h, ω)

)
y1(ω) = 0

)
Next, observe that on {y1(ω) = 0}, it holds

(3.26) U(h, ω) = S(ω) + 〈λ, φ?t
∫ t

0
φ?−1
s X̃0(φs(h, x))ds〉

Since the second term in the right-hand side of (3.26) is deterministic, we finally get,

lim
ε↓0
Eµ

(
exp

(
i〈ζ1, z

ε
t1〉
)
xε1 = y

)
=

Eµ

(
g(t1, ζ1, yt1(ω)) exp

(
−1

2
S(ω)

)
y1(ω) = 0

)
Eµ

(
exp

(
−1

2
S(ω)

)
y1(ω) = 0

)

=
Eν

(
g(t1, ζ1, yt1(ω)) exp

(
−1

2
S(ω)

))
Eν

(
exp

(
−1

2
S(ω)

))
= Eν̃ (g(t1, ζ1, yt1(ω)))

which is the desired result.

3.3. Proof of Proposition 3.2. Fix (s, t) ∈ [0, 1]2 such that s 6= t. We may redo the
same calculations as the previous subsection until (3.21) replacing g(t1, ζ1, z

ε) by |zεt − zεs |
2q.

Next, classical results about stochastic differential equations with C∞b coefficients yield that,
given any k ∈ N and q > 1, we may find ε0 > 0, C > 0 and γ > 0 such that

(3.27) ∀(s, t) ∈ [0, 1]2, s 6= t, ∀ε ∈ [0, ε0], ‖zεt − zεs‖k,2q ≤ C |t− s|γ .
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From this result, one can show that, we may find ε0 > 0, C > 0, q > 1, γ > 1 and η > d+ 1
such that,

∀(s, t) ∈ [0, 1]2, s 6= t, ∀ε ∈ [0, ε0],∣∣∣∣Eµ(|zεt − zεs |2q exp
(
i〈ξ, z̄ε1〉 −

1
2
U(h, ω)−

√
εV (h, ε, ω)

))∣∣∣∣ ≤ C |t− s|γ (|ξ| ∨ 1)−2η .

The desired result follows then from the positivity of the right-hand side of (3.24).
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