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ABSTRACT. We derive sharp asymptotic minimax bounds (that is, bounds which
concern the exact asymptotic constant of the risk) for nonparametric density esti-
mation based on discretely observed diffusion processes. We study two particular
problems for which there already exist such results in the case of independent and
identically distributed observations, namely, minimax density estimation in Sobolev
classes with Ls-loss and in Holder classes with Ly,-loss.

We derive independently lower and upper bounds for the asymptotic minimax
risks and show that they coincide with the classical efficiency bounds. It is proven
that these bounds can be attained by usual kernel density estimators. The lower
bounds are obtained by analyzing the problem of estimating the marginal density in

certain families of processes, {{Xf 1, fe€ }'n}, which are shrinking neighborhoods

of around some central process, {Xzf °}1, in the sense that the set of densities F,
forms a shrinking neighborhood centered around fo.

Keywords: Density estimation, dependent data, diffusion processes, discrete sam-
pling, exact asymptotics, minimax risk, nonparametric estimation.

1991 Mathematics Subject Classification Primary 62G07, 60J60; secondary 62C20,
62G20



DENSITY ESTIMATION FOR DIFFUSION PROCESSES 1

1. INTRODUCTION

In this paper, we study nonparametric estimation of the marginal density based
on discrete observations from a real-valued diffusion process. Such density estimators
can either be used themselves for further inference or be used as an intermediate step
when one intends to estimate the volatility function on the basis of time-discrete
observations; see Ait-Sahalia (1996a). There are already many contributions related
to our work from two different communities. On one hand, probabilists working in
the field of stochastic processes studied parametric and nonparametric estimators of
model parameters or related quantities for time-continuous or time-discrete observa-
tions from diffusion processes. On the other hand, researchers from the statistical
community derived minimax results for nonparametric estimators in various settings
(regression, density estimation, spectral density estimation), up to the level of “ex-
act asymptotics” which concerns both the rate of convergence and the asymptotic
constant.

Some motivation for our work emerged from Ait-Sahalia (1996a) who used non-
parametric diffusion processes in financial mathematics for modelling interest rate
processes. Because of the lack of time-continuous observations it was not possible
to estimate the model parameters (a drift function described by a finite-dimensional
parameter and a volatility function to be estimated nonparametrically) directly; in-
stead, Ait-Sahalia proposed to estimate first this parameter and the stationary density
and then to use these results for estimating the volatility function. For estimating
the density, he used classical kernel methods on an ad hoc basis; however, theory
supporting the appropriateness of these methods is still lacking.

To find an answer whether the use of classical nonparametric estimators should be
recommended in the case of observations from diffusion processes, we intend to derive
asymptotic minimax optimality of these methods. In other frameworks (regression,
density estimation, spectral density estimation), there already exist such results in the
statistical literature. Most of them concern optimal rates of convergence in certain
smoothness classes (Holder, Sobolev, Besov), for different loss functions. For a given
class of functions, there is usually a wide range of estimators that achieve such a
minimax rate of convergence. For example, for kernel estimators only some qualitative
characteristics of the kernel function (number of vanishing moments) are important,
whereas there is still much freedom for the particular shape of the kernel. To narrow
the set of methods which deserve the term optimal, a minimax theory which also
focuses on the optimal asymptotic constant is considered. There are several set-
ups in nonparametric curve estimation where exact asymptotic minimax results are
known: ellipsoidal restrictions on the class of functions in connection with the Ly-loss
(a case first studied by Pinsker (1980)), Holder restrictions together with the L.-loss
(initiated by Korostelev (1993)), and with the Bahadur risk, finally, analytic functions
with the L, and pointwise losses (Ibragimov and Hasminskii (1983) and Golubev and
Levit (1996)), or more general classes of infinitely differentiable functions known as
supersmooth or functions with rapidly decreasing Fourier transforms (Lepski and
Levit (1998)).



2 C. BUTUCEA AND M. H. NEUMANN

We will develop exact minimax asymptotics for the first two of these classical
cases. The derivation of such results usually consists of two parts: on one hand,
a particular estimation procedure is proposed, which attains the presumed optimal
asymptotic risk bound; on the other hand, it is proven that this asymptotic bound
cannot be improved by any other estimation method. The analogy of the upper
bounds to those known in the case of i.i.d. observations is perhaps not very surprising.
Indeed, it is known that certain kernel estimators are asymptotically minimax in the
i.i.d. case, and for such estimators there is (for any fixed density f) an equivalence
of the (pointwise) asymptotic behavior between the two cases of independent and
weakly dependent observations. Actually, we derive the upper bounds in the more
general context of absolutely regular (8-mixing) processes. We devote some efforts
to showing that the efficiency bounds can be achieved by standard kernel methods
which form the most popular class of nonparametric density estimators.

Lower bounds will be obtained by studying asymptotically least favorable para-
metric subexperiments. For that, we consider statistical experiments based on dis-
crete observations from families of processes (th )t>0, where the density f parametriz-

ing this class varies in certain subclasses F? or F* of the Sobolev or Holder class,
respectively. The link to the case of Gaussian shift experiments is achieved by proving
local asymptotic normality for appropriate one-dimensional subexperiments. Since
the corresponding families of marginal densities are basically given by perturbations
supported on subintervals of decreasing (as n — oo) length, one could already con-
jecture that some sort of whitening-by-windowing effect is responsible for a behavior
of the likelihood processes that is asymptotically equivalent to that in the case of
independent observations.

The efficiency bounds obtained in this paper complement existing results about
the similar behavior of nonparametric estimators in the cases of independent and
weakly dependent observations by the assertion that one cannot use partial knowl-
edge about the dependence structure to achieve essentially better results than in the
case of independent observations. This gives a strong justification for the practical
application of nonparametric methods that were usually designed in the context of
independent data. Furthermore, the coincidence of the first order minimax asymp-
totics sets a limitation for eventual improvements by specific modifications that can
possibly be devised in order to make use of some partial knowledge about the de-
pendence structure. As a by-product, since the minimax bounds are achieved by
kernel estimators with corresponding uniquely defined kernel functions, one can use
such results as an objective criterion for finding kernels that are optimal in some
reasonable way. This optimality goes beyond the well-known results on kernels that
are optimal under additional side conditions. Moreover, in view of the uniqueness of
the optimum kernels, we deduce that these estimators are asymptotically admissible
in the class of kernel methods.

The paper is structured as follows. Since this paper possibly addresses researchers
from different communities, theoretical statisticians primarily interested in nonpara-
metric curve estimation as well as probabilists working in the field of statistics for
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stochastic processes, we decided to present an overview of existing results in both
areas in the next section. In Section 3, we state asymptotic lower bounds to the min-
imax risks. After describing appropriate subexperiments that are difficult enough
for generating the desired bounds, we first state approximations to the likelihood
ratios which are the basis for proving local asymptotic normality. Then we formulate
theorems with the lower risk bounds. In Section 4, we describe particular kernel
estimators which are asymptotically minimax and state upper risk bounds. Section 5
contains proofs of the technical LAN results, of the lower and upper risk bounds, and
of a Bernstein-type inequality under mixing.

2. OVERVIEW OF EXISTING RESULTS

There are several set-ups in nonparametric curve estimation where exact asymp-
totic minimax results are known: ellipsoidal restrictions on the class of functions in
connection with the Lo-loss (the Pinsker case), Holder restrictions together with the
L-loss (Korostelev case) and Holder restrictions with the Bahadur risk and super-
smooth functions with L, and pointwise losses. Research in the first case was initiated
by the seminal paper of Pinsker (1980) who already solved all essential problems in
the particular context of signal estimation in Gaussian white noise. Later, these re-
sults were transferred to spectral density estimation (Efromovich and Pinsker (1981)),
density estimation (Efromovich and Pinsker (1982)), nonparametric regression with
Gaussian errors (Nussbaum (1985)), which was extended to nonnormal error dis-
tributions (Golubev and Nussbaum (1990)). Other generalizations, for example, in
Belitser and Levit (1995) consisted of studying the case of more general ellipsoids and
the second-order behavior of the minimax risk. An extensive overview on this topic
is given in Nussbaum (1999). The developments in the second case of L.-loss started
with the paper by Korostelev (1993) who found exact asymptotic efficiency bounds
for nonparametric estimation in Holder classes with smoothness index 0 < § < 1.
Using completely different arguments (issued from the theory of optimal recovery),
Donoho (1994) extended these results to Holder classes with smoothness index 5 > 1.
The same problem for density estimation from i.i.d. observations and for # > 0 was
solved by Korostelev and Nussbaum (1999). Exact asymptotics in the third case was
first developed by Korostelev (1996), in Gaussian regression, and generalized by Ko-
rostelev and Leonov (1996) to the non-Gaussian case. Density functions with analytic
continuation on a strip around the real axis were estimated in the minimax sharp ap-
proach by Ibragimov and Hasminskii (1983) with the L,-loss. Efficient estimation of
such functions was done in the Gaussian white noise model with L, risk by Guerre
and Tsybakov (1998), with pointwise and L., risks by Golubev et al (1996), while
density estimation with pointwise risk was given by Golubev and Levit (1996) and
a more general density estimation under random censorship by Belitser (1998). For
a good review of these results we refer to Ibragimov (2001). Recently, more general
classes of infinitely differentiable functions were considered and sharp estimation was
given for the pointwise risk in both the minimax and adaptive approaches by Lepski
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and Levit (1998) in the Gaussian white noise model and these results were translated
to the density model by Artiles (2001).

Estimation of diffusion processes was studied both in a parametric and nonpara-
metric setup. The available data are usually supposed to be continuous in time or
discrete with decreasing to 0, respectively constant, time gap. For a recent review of
parametric estimation of the drift and volatility function we refer to Jacod (2001).
Efficient estimation in this context is based on the local asymptotic normality (LAN)
property. In the case of low frequency data, the LAN property at rate 1//n was
established by Roussas (1972). Nevertheless efficient maximum likelihood estimators
are not, available since the explicit forms of transition densities are unknown. Other
practical methods were found (see Jacod for more precise description). Recently, the
LAN property for general ergodic diffusions with high frequency data was proven by
Gobet (2002) using Malliavin calculus.

Nonparametric estimation of the coefficients is usually done via the marginal den-
sity of the process or the spectral decomposition of the infinitesimal generator. For
estimators of the marginal density of a process observed on a whole time interval,
Castellana and Leadbetter (1986) first found superoptimal (parametric in the length
of the time-interval T') estimation rates in the case of very irregular sample paths
processes. Analogous results were obtained by Leblanc (1997) for certain stationary
processes and Kutoyants (1997) who gives efficiency bounds in the context of ergodic
diffusion processes. A review of available results on superoptimal rates in density or
regression estimation that are preserved under some particular discretization models
is given in Bosq (1998). For nonparametric estimation of discretely observed diffu-
sions with a decreasing time-gap, we refer to Kessler (1997), Hoffmann (1999) and
references therein.

Spectral methods in parametric setups were developed in Hansen et al (1998)
and in parallel by Kessler and Sgrensen (1999). An extension of these methods
to diffusions on a compact interval with reflecting boundary conditions, observed
discretely at low frequency, can be found in Gobet et al (2002).

3. ASYMPTOTIC LOWER BOUNDS TO THE MINIMAX RISKS

In this section, we derive asymptotic lower bounds to the minimax risks in esti-
mating the marginal density of a real-valued and stationary diffusion process which
is observed at equidistant time points. We basically show that we cannot do better
than in the case of independent and identically distributed observations, even if we
have prior knowledge of the dependence mechanism. This case is adequately mod-
eled by a statistical experiment consisting of a family of discretely observed diffusion
processes with different marginal densities but one and the same copula function. We
devise efficiency bounds in two classical cases for which analogous bounds are already
known in the framework of i.i.d. data, that is, we derive exact asymptotic bounds for
the Lo-risk in Sobolev classes as well as for the L,-risk in Holder classes.
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In the former case, we assume that the marginal density f is in the class

Fa(f L) = {feL2<—oo,oo>:/_:f<x>dx:1,f(x>zov9c,
and /j:)(]”(ﬁ)(ar,"))2 d:rSL},

where (3 is an integer, 5 > 0. In the latter case, we assume that f lies in the class

Fe,1,8) = {1 [ jwar=1 021w <B v

and | fPD(z,) — FD(2y)] < Llay — 22P~ 1P} Yy, 2},

where | 3] denotes the greatest integer strictly less than g (8 > 0). We would like
to mention that results similar to ours can be derived for Holder classes without the
additional parameter B. Actually, it was shown in Korostelev and Nussbaum (1999)
that densities satisfying a Holder condition for some 3 and L are uniformly bounded
by some B, = B,(,L). We decided to state the results for Holder classes with the
additional parameter B since this constant shows up in the minimax bound, which
makes the role played by || f||cc more transparent.

For any given f, we assume that n observations le ..., XI are available, where
the underlying process (in continuous time), (X{);so, is a real-valued and stationary
diffusion process obeying the Ito6 stochastic differential equation

dx| = p!(X{)dt + o' (X])dw,,

where (W;);>¢ is standard Brownian motion.
Lower bounds for the minimax risk are obtained by considering appropriate fami-
lies of diffusion processes, (th )t>0, indexed by the corresponding marginal density f

which varies in appropriate subclasses .7—",&2) and ]—"éoo) of the Sobolev or Holder class,
respectively. These subclasses of densities are centered around suitable basic func-
tions, féQ) and féoo), which are the stationary densities of diffusion processes with
sufficiently regular drift and diffusion functions. For notational convenience and since
there should not occur any confusion, we drop the indices 2 and oo referring to the
two cases of Ly or L risk.

We begin by fixing a basic process (th ®)t>0. In order to ensure certain smoothness
properties of the conditional densities needed below it is important to choose the drift
and diffusion functions sufficiently regular. For positive constants g, po and further
constants —oo < K7 < Ky < K3 < K4 < 00, we define

ofo(z) = oy (3.1)
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and choose a three times continuously differentiable function p/© with

Mo, z < Ky,
c [0,/,1/()], S (Kl,Kg),
plo(z) = {0, z € [Ky, K3, . (3.2)
c [—/,Lo,O], T € (Kg,K4),
—Ho, X Z K4

According to Karlin and Taylor (1981, Section 15.5) and Ait-Sahalia (1996b, p. 390),
the stationary density fo then satisfies

folz) = Jﬁem{/j%du}. (3.3)

This definition implies in particular that f; is monotonously nondecreasing on (—oo, K5,
constant on [Ks, K3], and nonincreasing on [K3, 00). Choosing the above parameters
0o and g accordingly, we can obtain basic functions that will turn out to be suitable
for deriving the desired lower bounds in the two cases, Lo-risk combined with Sobolev
classes and L..-risk with Holder classes. In the first case, we choose the parameters
such that K3 — K is large and [~ ( 72 is small; for more details see the proof of
Theorem 3.1. In the second case, the parameters will be chosen such that

féw)(xl) _ féLﬁJ)($2)‘ < L‘$1—$2|’37L6J V1, T
and, for some B in accordance with this restriction,
fo(z) < B Vx and fo(z) = B Vzx € [Ks, Kj).

For any fixed choice of the above parameters, the process (tho)tzo is absolutely
regular (S-mixing) with exponentially decaying coefficients; see e.g. Veretennikov
(1984, Section 2). Furthermore, it is well known that (tho)tzo is Markovian.

The processes (th )i>0, for f € .’F?gQ), or f € .7-}(L°°), respectively, are obtained by
the quantile transform as

X! = FH(FR(X])),
where Fj and F' are the cumulative distribution functions corresponding to the den-

sities fy and f, respectively. It is clear that (th )e>o is also a diffusion process and
from It6’s formula we readily see that its drift and volatility function have the form

(with gg(x) = F~(Fy(x)) )

W(z) = q;lg; (@)’ (g7 (=) + 1q;i(q;l(x))(Uf"(q;l(fC)))Z,

2
o/ (z) = q;lg; (@)o"(q; " (x)).
The exact form of these functions is, however, not important for that what follows
since the behavior of the process (th )t>o0 is completely described by the particular
quantile transform and the copula function which is of course equal to that of the basic
process (X °)i>0. For example, mixing properties of (x} )i>0 are exactly the same as
those of (th ®)i>0 since one and the same dependence mechanism is underlying them.
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3.1. Local asymptotic normality. As already mentioned, we derive lower bounds
to the minimax risks by considering the problem of estimating the marginal density for

certain subfamilies of processes, {(X/ Jiz1,..n» [ € Fun}, where F,, denotes either F2

or F* which are appropriate parametric subclasses of Fy(f5, L) and Fo(f, L, B),
respectively.

For the case of Lo-risk in Sobolev classes, a sequence of sufficiently hard subex-
periments is given by functions of the type

S qn

fo = (52) + ZZH',kcﬁj,k,n-

j=1 k=1

Here § = (6, ) parametrizes the class of functions under consideration based on the
perturbations

Gipn(r) = 07220 (@ — app)/hn) — Tinfs) (@),

where 75, = n™/2hy/? [ ¢;(x) dz. The ay, are chosen such that ai, < ... < dg, n,

s is large enough and the sequences (g)nen and (A 1),en increase at rate n'/(28+1).

An exact description of these functions is given in the proof of Theorem 3.1 below.
For the case of L..-risk in Holder classes, a sequence of asymptotically least fa-

vorable subexperiments is given by a class of functions of the type

M,
fo = £+ 0m,

7j=1
where 6 = (01,...,0x,) € {—1,1}M» and
Yig(@) = ((n) 20~ 2h Py (@ — bjg) /ha),

for a suitable function v, b1, < ... < by, n and (hy)nen tending to zero with rate
(In(n)/n)Y@8+Y) " The exact choice of the function 1 is described in the proof of
Theorem 3.2 below.

Both families of functions (¢;((- — akn)/hy)) and (¢;,) have shrinking support
and have shrinking uniform bound. Moreover, their integral is 0, so that the resulting
functions fy are density functions for large enough n.

The key step in deriving lower bounds to the risks consists of studying likelihood
ratios and then proving local asymptotic normality. We will actually show that the
likelihood ratios behave asymptotically as in the case of independent and identically
distributed observations. The following lemma provides an approximation which
underlines this fact. Here and in the sequel we denote by p/(- | -) and p/(-,...,")
conditional and joint densities of the process (Xzf )i=1,... n, respectively.

Lemma 3.1. Let f € F, and, for ¢, being one of the perturbations, either from the
Gjkn Or the Y, fu = f+udy,, where u is bounded. Then

pf“(ﬂfi | Zi1) _ Ju(;)
pf(l"z' | $i—1) f(ﬂUz)

Rn (:Eia xi—l)a



8 C. BUTUCEA AND M. H. NEUMANN

where
|Rn(z3,721) — 1] £ O (n_l/th/Z exp {6(yi — yi—1)® + Oulyi — yi1]})

and y; = Fy*(F(zy)), for j € {i — 1,i}. & > 0 is an arbitrarily small constant,
8, = O(n=2hY/?).

The following proposition provides an approximation of the logarithmic likelihood
ratio of certain one-dimensional subexperiments. This result will be the basis for the
LAN property used in the proof of asymptotic lower risk bounds.

Proposition 3.1. Suppose that the assumptions of Lemma 3.1 are fulfilled. Then

2 MmN\ >
—%%@(?ﬁ%g F el
1

pl(my, ... xn) " ()
In pl(zy,...,2,) u; f(z)

where, for any constant uy < 00,

sup {Pf (|Rf,u(Xf,--- X)) > CA"_E)} =0 (n™?)

FE€Fn, [ul<uo

holds for some € > 0 and arbitrary A < oo.

The validity of this approximation does not depend on the particular form of the
perturbations ¢, , and 1);,. Analogous results can be expected whenever the basic
process is “regular enough” and the perturbations have shrinking support.

3.2. Lower risk bounds. On the basis of the LAN property stated in the previous
subsection, we are now in the position to prove the desired asymptotic lower risk
bounds in the two cases under consideration.

Theorem 3.1. Suppose that a family of statistical experiments with observations

(Xif )iz1,...n 1S given, where these processes are constructed as described at the begin-
ning of Section 3. Then

liminf inf sup {nQﬁ/(Qﬁ“Ll)Efo— f
"o f feF(B.L)

b > e,

where v(B) = (28 + 1)YBHV[B/(x(B + 1))]?P/2P+D s Pinsker’s constant.

2
Lo

The next theorem states the asymptotic risk bound for the L., case. Because
of the degenerate behavior of the supremum deviation we can state the efficiency
bounds for a general loss function that may be not explicit.

Theorem 3.2. Suppose that a family of statistical experiments with observations
(Xif)izl,___,n 18 given, where these processes are constructed as described at the be-

ginning of Section 3. Let w be a continuous and monotone nondecreasing function.
Then

liminf inf sup Epw ((n/log(n))’g/(wﬂ) )‘f— fHoo> > w(k(B, L, B)),

O f feFo(B,L,B)
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where

B/(2B+1)
2(B A B,)LY?

Ag = max {g(0) |lglle, <1, [gPD (1) — ¢V (2,)| < |y — 2o~V Vg, 0},
and
B, = B,(3,L) = max {9(0) HQ(L’BD(%) - Q(L'BJ)(372)| < Lz, —~”L‘2|’3_LﬂJ V$1,$2}-

The constant B A B, that appears in Theorem 3.2 requires a few words of expla-
nation. In the problem of estimating a density from i.i.d. data, this constant would
be equal to B, (53, L); see Korostelev and Nussbaum (1999). In our context, we have
an additional restriction since we define our basic process for technical reasons with
constant volatility which, in turn, restricts the set of possible densities that fulfill
(3.3).

The asymptotic lower risk bounds in Theorems 3.1 and 3.2 are the analogues to
the well-known bounds in density estimation from i.i.d. data. That means that there
is no gain by knowing the particular dependence structure of the process; we can at
best hope to get the same efficiency bounds as in the i.i.d. case.

4. ASYMPTOTIC UPPER BOUNDS TO THE MINIMAX RISKS

In this section we describe kernel estimators which are optimal from the exact
asymptotic minimax point of view. We stress the fact that these methods attain the
same upper bounds in a more general context than in Section 3. The only condition
on the dependence structure is the following one.

(A1) Let Ff = o(Xj,..., Xy) be the o-field generated by Xj, ..., X;. We assume
the the coeffi(:lents of absolute regularity (/5-mixing),

B(k) = max { Besssupyern, {IP(V | F) = P(V)]}},

satisfy
B(k) < Cexp(—Cik).

It is well-known that Pinsker’s bound can be attained by certain kernel estimators,
see Golubev (1987), for nonparametric regression, and Schipper (1996), for density
estimation. To achieve the desired asymptotic bound in our context, we may employ
exactly the same estimator. Let us denote

R = g s (52). (1)
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where K 5 is the kernel described by its Fourier transform F' (Kz5) () = (1 — |t]? ) )
+

(recall that F (K) (t) = [~ K (y) €¥'dy) and the bandwidth has the expression
B 1/(28+1)
b = ( ) n-1/(@8+1)
7L (B4+1)(28+1)
The kernel function Kg2 can be alternatively written as
B - (4
B! sin® (z)
K = —— —_ 4.2
5,2(2) T ; (B — j)lazit! (4.2)

The following theorem states the efficiency of the given kernel estimator.

Theorem 4.1. Suppose that (A1) is fulfilled. Then

2
limsup sup {n%’/(?ﬁﬂ) EfH i f)
n Lg

b < e,
n—oo  feF(B,L)
where y(B) was defined in Theorem 3.1 above.

Similarly to the Lo-case, a kernel estimator,

0] _ 1 - K Xi—l'
= g ot (5

nhy,

).

will attain the efficiency bound in the L..-case. This time the optimal bandwidth is
o= 2(B A B,) logn\ /Y
"\@B+1)L2 n '

An appropriate kernel is given by Kz o (t) = ¢ (t) / [ ¢ (z) dz, where ¢ is the solution
to the optimization problem

¢ = argmax {g(0) |llgllz, <1, ¢ (21) — gD (@)] < |my — 271 Wy, 20}
g

Korostelev (1993) and Donoho (1994) have shown that, for 0 < 5 < 1,
26 +1) (8+1)\"/*+Y
o = o= (D)

453
6) = (60)=17)  and Ko ()= 22 (0(0) F o (0).

For $ > 1, uniqueness of the solution ¢ and compactness of its support are proven in
Leonov (1997). The explicit solution is then known only in the case of § = 2.

In the context of density estimation from i.i.d. data supported on [0, 1], Korostelev
and Nussbaum (1999) used a different type of estimator whose risk attains the mini-

Y

max bound. They used the same kernel estimator ﬁlio] as we do at certain grid points
and interpolated between these points with the aid of appropriate estimators of the
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derivatives up to the order |3].
Theorem 4.2. Suppose that (A1) is fulfilled. Let w be a continuous and monotone

nondecreasing function satisfying w(z) < C(1+ |z|?) for all x > 0 and some q < oco.
Then

limsup sup  Ejw ((n/ log(n))?/(26+1)
n—oo  fEF(B,L,B)

=)L) < wists LBy,

where k(8, L, B) was defined in Theorem 3.2 above.

Since in both cases the lower and upper efficiency bounds coincide it follows
that certain kernel estimators are asymptotically minimax. In each case, there is
a unique (up to scaling) kernel function with which the optimum can be attained.
Consequently, our minimax approach defines a family of kernel functions which are
optimal w.r.t. some well-defined criterion. In practice, one still has to decide for one
of these kernel functions and to choose the bandwith on the basis of the information
given by the data. We suggest to use cross-validation to choose both of them in a
reasonable data-driven way.

5. PROOFS

5.1. Proofs of the results on local asymptotic normality.
Proof of Lemma 3.1. First of all, from the equality

P(x/ <a,

XL = l“z'—l)

= P(F(R(XP) <u

FHE(X]) = a1 )

- P (Xifo < Fy H(F () ‘Xz'ffl = FO_I(F(xi‘l))) ’

we immediately obtain that

plai | zia) = dia:ip (X,f <z | Xio = $i—1>
— o p-1 ) -1 ' f(z:)
=D (FO (F(ml)) ‘ FO (F(xlfl)))fO(FO—l(F(l_Z)))
Analogously we get, with F,,(z) = [*_ f.(y) dy, that

fe(zy | i) = pP 0_1 ulZs 0_1 ulLi-1 —1 )
P i) = PR (Falaw)) | B (Fulei) et (o
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With the short hands y; = Fy ' (F(z;)), y* = Fy " (Fu(z:)), yie1 = Fy "(F(zi-1)), and
y* | = Fy ' (Fy(w;_1)), we obtain the following explicit form of the residual term :
(-’L'zaxz 1)
fO(yz) PPy | yis)
fo(yt) pPo(yi | yi-1)
L,

if z; & supp(¢n), xi—1 & supp(dn),

fo (y; l .
= % if z; ¢ supp(¢n), Ti—1 € supp(¢n), . (5.1)
D plo(ytlyy ) .
R Ty if @i € supp(d)

We have that

| - | O ((n(m) 20~ 217) , if 6, = By
wo= Y = Y+ i - Y] =
! ! O (n~12mf?), if G = i

So, it follows from the construction of f; that

Jolws) = 1 + O((In(n))Y2n=Y/2p1/?) for all z; € supp(¢y,). (5.2)
Jo(i)
Therefore, all we need to derive the desired bound for R,, are appropriate smoothness
properties of the conditional densities p/(- | -).
From Azencott (1984, page 478), we obtain that, for any ¢, ¢ with ¢; > 1/07 > co,
there exist finite positive constants K; and K, such that

3 x —1y)? o
Kyt (eth/2 exp{—clﬂ} < ‘a—yapfo(x | y)

2t 2t

a € {0,1}, t € (0,1]. We also need such a result for the partial derivative with
respect to x, however, we could only find the following upper bound with a certain
constant ¢z, not necessarily close to the desired value 1/02:

2
e y>\ < Kt e {aETEY e )

see Friedman (1975, Section 6, Theorems 4.5 and 4.7). Indeed, the volatility is a
constant function and the drift together with its first derivative are bounded, con-
tinuous functions and Hoélder continuous of some exponent 0 < a < 1 (since the
drift is supposed to be three times continuously differentiable and nonconstant only
on compact sets). However, putting these two estimates together, we readily obtain
that

p{O—t(Z | y) dz

_ »)\2 a2
< KoKst /2 /tl/2 exp {—@,u} (1—1t)"Y2exp {—02 (z—y)

9 1o 0 i
< _— nl0
el < [| Tt

2t

Y
< Kyt @72 oxp {_CQM} ,
(5.3)
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Choosing ¢ sufficiently small we obtain for any ¢, > ¢, that there exists a finite
constant K, such that

9 0 / x_yQ
‘a—xp{ ($|y)‘ < K4exp{—02( 5 ) } (5.4)

Equipped with the estimates (5.3) and (5.4) we can now find estimates for the ratios
involving conditional densities.
If ; & supp(¢,) and z; | € supp(¢,), it follows from (5.3) that

‘pf"(yi (i)
po(yi | yi-1)
Yi—11+Vn exp {_CQ(yi _ y)2/2} dy

2 Yi—1—"Tn
B Kiexp{—ci(yi — yi-1)*/2}
K2 Yi—1+7n 9 9
= f/ exp {—02(yz' — Y1+ Y1 —¥Y)/2 + cyi — yio1) /2} dy
L Jy;1—m
K, 9
< EQ% exp{(c1 — e2)(yi — ¥i-1)"/2 + coMlyi — yi1|}- (5.5)

If z; € supp(¢,) and z;_1 € supp(¢,), we obtain from (5.3) and (5.4) immediately
that

‘pf‘)(yé‘ |y )

_ _ n(n 1/2n—1/2 1/2) .
pho(yi | yi-1) 1‘ B O((l () fi ) (56)

Finally, if z; € supp(¢,) and x;_; & supp(¢n), we obtain from (5.4) in complete
analogy to (5.5) that

i )
PP (yi | yi1)
K.
< ﬁz% exp{(c1 — &) (yi — vi1)%/2 + yvnlys — yi1|}- (5.7)
The assertion is now obtained from (5.1), (5.2), and (5.5) to (5.7). 0

Proof of Proposition 3.1. Define 1, = fo(X{)/f(X!) =1 and, for 2 < i <n,

_ o] X))
pf(Xif | Xif—l)

TN
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We obtain from a Taylor series expansion of In(1 + x) that

fo(xt, o XS "
0T S )
=1

o/ (XS, XD
n 1 n n

o (X)) v (6uxD\
uzz_;if(Xzf) 5 nky (T(le) ) + 11 + Ty + Ts,

say, where |a;,| < 1/3 and

- ~ on(X))
Tl = an,n_uz f(Xf)’

=2 =2
2
u? qﬁn(Xf)) 1<
T2 = _nEf - - 5 771272
2 (f(X{) 22
T3 = Qim’l’]zn.
i=1

From Lemma 3.1 we see that
Cug(x)) _ XX )
Fx7) P! xly
= 0O ((ln(n))lﬂn’lﬂh}/2 exp {(5(Xif - XZ.Jil)2 + (5n\Xif - Xif71|}> .

Furthermore, it is obvious that E[(;., — u¢n(X])/f(X])] = 0. Therefore, we obtain
by a Rosenthal inequality for absolutely regular random variables (see Doukhan (1994,

Theorem 1.4.1.2)) that
. = O(n~5,n2).
By the Cauchy-Schwarz inequality we get

o (6D s JusxD) ( wsaxH)]
bt = 7"Ef(fmf)) B 2ZE’°! ) ("z’"_ fxh) )]

= O(n ).
Again, by the Rosenthal inequality, we have that
Ty — EfT, = O(n~¢,n™?).

Since % -1 = “??ﬂii‘)’) + f;((;")) [R(z;, ;1) — 1] we obtain, using once more the

Rosenthal inequality, that

which completes the proof. Il
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5.2. Proofs of the theorems on the lower bounds.

Proof of Theorem 8.1. The basic idea of this proof is similar to that of the proof of
the lower minimax bound in Golubev and Nussbaum (1990). We include it since the
case of density estimation from dependent data requires some modifications.

Let € > 0 be arbitrary. We actually show that

fin =1uf sup 7 { e |7 } > (B)LYEI e (5.8)
feFy
for n > n,, holds, where
= {fea XS ®n}

is an appropriate sequence of asymptotically least favorable parametric subclasses of
Fo(B, L). These densities are of the form

s n
fo (@) = fo(z) + ZZ%,/«%,k,n (z), (5.9)
j=1 k=1
where ¢; ,, are perturbations described below.
To find an appropriate basis function fy, we first choose a second small constant
g’ > 0 and an arbitrarily large constant A. We start with any choice of oy and g in
(3.1) and (3.2), where we only assume that pug is a sufficiently regular odd function.
According to (3.3), we obtain that the corresponding stationary density is an even
function with fo(z) = ¢, for z € [-K, K| (K = —K, = K3). If we replace now p/o(-)
in (3.2) by

h=tulo(x/h), if v € [-Kh, Kh|,
pfo = h lulo(z — Kh+ K), ifz> Kh,
htple(z + Kh— K), ifz<Kh
(take, e.g. h = cy(24 + 1)), we obtain a stationary density f} satisfying
co/h, if x € [-Kh, Kh|,
filx) = ¢ hlfo(x — Kh+ K), if £ > Kh,
hlfy(z + Kh — K), if v < —Kh

Hence, by choosing /o appropriately, we obtain a stationary density f, € Wf with
folx) = 557, for |z] < A, andffo )2dx < e'/4.

The functions ¢; are members of the Sobolev space of periodic functions m°/§ =
{p € Ly ([0,1)) = ¢ € Ly ([0,1]) ¢*®)(0) = ¢®)(1) =0, k=0,...,8—1} and are
solutions of the eigenvalue problem

(—1)P¢)(2) = Ag(x)
with supp(¢) C [0,1] and the boundary conditions ¢*)(0) = ¢*)(1) = 0, for k =
0,...,8—1. We arrange the solutions in such a way that the eigenvalues ()\ )jen are

nondecreasing and choose the corresponding eigenfunctions (¢;) ey such that they
are orthonormal. (They are automatically so if they belong to different eigenvalues;
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otherwise we can use the Gram-Schmidt othonormalization algorithm.) It is known
that the eigenvalues satisfy the asymptotic relation

A= (m)P(A +0(1) as j—oo;

see e.g. Section /7.4.9 in Neumark (1960) for details. From integration by parts we
obtain that

1
/ 6P (2)6P (@) dw = Ndyx Vi k€N
0

We define g, = [2AKn'/®D) | where

K2+ = (L - %) / (S%H /0 b)) (1 b (@) da:)

and b(z) = [1 — (7z)?].. With h, = 24/¢, and arn = (2(k—1) —qn) A/ ¢y, for
k=1,...,q,, we define the perturbations as

Sk () = 0 2h 205 (@ — apa) [ha) — Tiafol@), (5.10)

where 7;, = n_l/Zh}/quﬁj(x) dzx. Note that the density fy belongs to the class

F2(B, L) if and only if the parameter 0 = (0%);_, .4, ., 1S contained in

S dn 2 s n
" n \?
O, = { f € R (1 - erj,n%k> 1570 + 33 0 (2A) =L
j=1 k=1 J=1 k=1

The left-hand side of (5.8) will be estimated by a certain Bayesian risk which
will enable us to calculate a lower efficiency bound explicitly. A sharp asymptotic
risk bound will then be obtained by taking a sequence of asymptotically least favor-
able prior distributions. In view of available results in related settings, it could be
anticipated that this can be achieved by sequences of asymptotically normal priors.

Let {yc, ¢ > 0} be a family of distributions with supp (u.) C [—c¢, ], [ zpc(z)dz =
0, [2®uc(dz) =1 and g, 5 N(0,1), as ¢ — co. Let pie; be the distribution of a
random variable s;Z,, where Z. has law p., s5 = a(j/s)/(2nA), j = 1,...,s and
a(z) = (rz) P[1 — (7z)?],. As prior measure for the parameter vector 6, we take
the product measure ,u&" = ®‘;:1 ,u?g", where 0; ~ fic ;.

Now we obtain that

R, > iqf{n”/@ﬂ*” f Eg\If = foll} 1 (dﬂ)} > Ray — Rap,
f On (5.12)
say, where

Ray = n?/C8+0int / EpIF = foll2, ™ (d6),
7 Jsupp(ui™)

Ry = nCP 0 sup {||fo, — fall2,} ui™ (©5).
01,02 €supp(pd™)

(5.11)
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(The second inequality in (5.12) follows from convexity of { fp,# € ©,} which implies
that the Bayes estimator lies in this set.)

Since (qn/ (2A4))*"™ /n < K21 we obtain that

n \?P < 2,3+1K2,3+11 - - J %
S5 BB (&) < el Yag (<
] 1 k=1 ]:1
S -\ B -\ B
< s25+1K2’3+1l Z 1- 7rZ ’/TZ
- s~ s s ’

which tends to L — 3¢'/4, as s — oo.
Hence, it follows that, for s sufficiently large,

28
ZZENCJOi ( A) SL—‘E//Q:
=1 k=1
which implies in conjunction with 7%, 70" | r;,6;, = Op(n~'/?) that
M (@) -0, asn— oo. (5.13)

Since n*/CF*+1) sup oy [|.for — fo,]I7, = O(1) we obtain that

,02€supp(tie
Rn,2 — 0, asn— oo. (5.14)

Now we analyze the term R, ;. To this end, we consider first the term

2
R — n2B/(28+1) inf ~~ %kn ™) (dh).
Ry I FE R 3 SR e | e
PP (ke ) j=1 k= 1 )
Using the orthonormality of the perturbations we obtain that
~ 2
Ry = w030y D inf / e — O3] 1" (d9)
()
j=1 k=1 Yk Jsupp(ue
> p2B/@5+1) min inf
a n Zl<k<qn 01,m €5UPP (fic,5),(,m)#(4,k)
~ 2
1~Ilf/ Eg , _Hj,k He,j (dﬁj,k), (515)
0 Jsupp(ui™)

that is, we can reduce our considerations to a separate analysis of certain one-
dimensional estimation problems.

To establish the link to Gaussian shift experiments whose analysis finally leads to
explicit lower bounds, we are going to prove local asymptotic normality (LAN) for
the family of one-dimensional subexperiments given by

fqgj) = fO + Z el(%l)él,m,n + ’U'Qsj,kn,"’ u € [_Csj’ Csj] ?
(Lm): (1;m)# (4 kn)
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Lm are sequences through which the minimum is attained

where k,, and (00’"))
(Lm)£(iokn)

on the right-hand side of (5.15).
Using Proposition 3.1 we obtain that
P (X, X

)
pféj) (Xh s aXn)

n 2
i=1 Pf‘gj) (Xi) 2 Pfé]) (X1)

AP = log

RY|> e }—>O,forallu0,e>0.
0

Applying a central limit theorem for a triangular array of strongly mixing random
variables, see Politis et al (1997, Theorem A.1), we obtain that

where SUP || <ug {Pf(j) (

G)  d w1

wiva AT o
where Z; ~ N (0,1/ (24 4+ 1)).
Now we can proceed in the same way as Golubev and Nussbaum (1990) in the

proof of their Theorem A1l. Because of the LAN property (5.16), we obtain, for any
fixed truncation parameter c,

inf / Eqi)
0;,kn, Jsupp(pic,;)

Z lpf / Egj
6; Jsupp(pc,;)

where 619 is the parameter vector consisting of (01(77: ))(l,m#(j,kn) and 0;,, and Egj is
the expectation in a Gaussian shift experiment where

Y}' :0j+€j (518)

is observed and ¢; ~ N (0,1/(n(2A4 + 1))). Moreover, it follows from the arguments
given in the proof of Theorem A1l of Golubev and Nussbaum (1990) that the right-
hand side in (5.17) converges to the Bayesian risk for experiments (5.18) with normal
priors 1 ~ N (0, s7) as the truncation parameter ¢ tends to infinity; see also Theo-
rem 3.1 of Neumann and Spokoiny (1995). Therefore, we obtain that

lim ~1nf / Eg(j)
€7 0; 1y, Jsupp(pic,;)

kn

2 lllf/EgJ
0;

1-¢/2 a(j/s)
nA 1+a(j/s)’

A (5.16)

2
Ojkn — Oikn| Hej (db;n,)

~ 2
Oj — HJ‘ ,uc,j (dOJ) + Op (n_l) s (517)

2
Oikn = Oikn| Hej (dO;k,)

2
0; — 0;| P, (65)dO;

if A is sufficiently large.
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Hence,

~ 1—€72 S~ a(j/s)
R,, > ") %Zm

(1-¢" % (1 — (mc)ﬂ>+ dx

> 5 ()L — e (5.19)

Y4

for ¢’ sufficiently small and s sufficiently large.
Moreover, it is easy to see that

s @ 2
T (ZQZH'W«"> IfollZ, = O(nH/7¥0), (5-20)
j=1 k=1
which implies, in conjunction with (5.19), that
R,y = R,1 + O (n~V/06+2) (5.21)
From (5.19) and (5.21) we obtain, for n sufficiently large,
R, > v(B) LYY _ ¢, (5.22)
The assertion follows from (5.12), (5.14) and (5.19).
U
Proof of Theorem 3.2. Let € > 0 be arbitrary. We will show that
inf sup Eyw ((n/108(n)"/ )7 = fll) > (1w (1 £)n(B, L, B)
P operl™ (5.23)

holds for all n sufficiently large. Here the class F) C Fwol(B, L, B) is defined as

Mn
fnyoo N {f9 - fo + Zejwj’n’ (01""’0Mn) E {_]-7 1}Mn}’
j=1

where the basic density f, and the perturbations 1;, are defined below.

Let 01,09 € (0,1) be constants such that (1 —¢)/[(1 — 61)(1 — §2)] < 1. Now we
can choose a density fo € Foo(, L, B) such that fy(z) = (1 — 6;)(B A B,) for all
x € [0,T] and some T > 0.

According to Leonov (1997), there exists a compactly supported solution ¥, to
the optimization problem

max {g(0) [llgllz, <1, g7V (@1) — ¢V (22)] < |21 — 22"~ Va1, 20}

where, in particular, ¥,(0) = Agz. Hence, we can choose a function 9 with compact
support [—D, D], satisfying the properties [ 9 (z)dz = 0, [ B (z)) — (1B (25)] <
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21 — 2o|P7 Bl Wy 3y, ||¢]l, = 1, and ¥(0) = (1 — 65)As. Now we define the
perturbations as

Uin(e) = 15 LAEU((@ = bia) o)

where b;, = (2j — 1)h,D, for j =1,... , M,

o 2(B A B,) logn\ /@Y
" \@2B+1)L2 n

and

It follows from the construction that 7> C Fo(B, L, B).
We have that

R, = inf sup w((1-e)k(B,L,B)" Eyw ((n/10g(n))/ V] = fll)
J f€Fu(B,L,B)

> inf sup Py |(n/log(n)”/ V)]~ fll > (1 - k(B L, B)]
f f€Fs(B,L,B)

> inf sup Pf[ max {\f( in) — f(bj,n)|} > (1—5)Lh§¢(0)/(1—52)].

f J€Fn,00

,...

The latter inequality holds since (log(n)/n)?/5+Vk (B, L, B) = Lhf4,(0) = LhS(0)/(1—

52).
Since estimation of f at the points yi p, ..., Y, » is not harder than estimation
of f in the supremum norm we obtain that

R, > inf sup P [ max  |0;(Xy,...,X,) — 0;] > 1}
6 9c{—1,1}Mn j=1,u., My

! ~
> inf S Z Py [__ma?gw 0,(X1,...,X,) — 0] > 1]

‘ pe( T M LT
= i o / > I IG(x)—(J\ooz 1) p'(z) dz.
0e{—1,1}Mn

(The latter two terms are just the Bayes risk with a corresponding product prior.)
Now it is clear that the right-hand side is minimized by a maximum likelihood esti-
mator. Hence,

1 pfel(Xla"' 7Xn) / M,
R, > 50, 96{_121}1\4 Py [pfﬁ(Xl,... X)) >1 for at least one #' € {—1,1}

So(=i)
. pleN(Xq,..., Xy)
> .24
- ee{r—ql,{l}Mn P0 |:1;rll§al)\§n {log pfe(}( 19--- 7‘(71) ” 0 ’ (5 )
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where 009 = (0y,...,0; 1,—0;,0;11,...,0x,). Now we obtain the desired result
(5.23) if the term on the right-hand side of (5.24) tends to 1 as n — oco. To show this,

we will use Proposition 3.1 which allows us to approximate the logarithmic likelihoods
by

o 1/’]71 - 1/)jn(X1) 2
ALL(j 20, Z 2nFE; <f9(X1) )

According to the whitening-by-windowing principle, it can be shown that each par-
ticular term ALL(j) behaves asymptotically as if the X; were independent. In order
to obtain an asymptotic approximation to the distribution of the maximum of these
terms, it would be helpful if we could replace ALL(1),... , ALL(M,) by independent
random variables. The classical Poissonization method is, however, not applicable
since the dependence between Xi,...,X, does not allow this. Nevertheless, it is
possible to approximate the unordered set {X1,...,X,} by a set of realizations from
a Poisson process with intensity function nfy(x). To this end, we successively embed
the observations Xi,..., X, in a Poisson process N on (0,00) x R with intensity
function p(z,y) = 1; see Neumann (1998, Section 2.2) for a detailed description. Let
(T, Z1), (T, Z3), . .. be a realization of N, ordered such that

Tv/fo(Z1) < Tn/ fo(Zs) <

It is clear that Z;, Z,,... form a sequence of independent random variables with
common density fp. Let v = #{j: 1; < nfy(Z;)}. According to Proposition 2.1 in
Neumann (1998), we can embed the random variables X;, ..., X, in N such that

PEje{l,....M}: #{({X1,..., X }A{Z,..., Z,}) Nsupp(th;n)} > Cay/nhy log(n))
= O(n™), (5.25)

where A;AAs denotes the symmetric difference of the two sets A; and A,. (The
coupling is organized in such a way that it may well happen that the Xy, ..., X,, and
the Z1, Z, ... appear in a different chronological order; (5.25) merely means that the
We obtain by Proposition 3.1 that
= O(n™). (5.26)

unordered sets {X1,... ,X,} and {Z;,... ,Z,} are nearly the same which is sufficient
for our purposes.)

fo—i) , 2

pe (Xla"' aXn) Tﬁy (d’jn(Xl)) _
Pyl |lo — —20; il — 2nEf | ———= > Chn ¢

0( 8 pr(Xla"' aXn) Z ! fQ(Xl) A
Since [|Yjn/ folloo = O(hZ), (5.25) implies that
( Z 1/&, Z TPJ,

Ci(log(n ))3/2%/2) = O(n™),
(5.27)
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Furthermore, it is clear that

Yin(X1)\* _ (1= e)’L2h2T /(1 = 5,)?
nEk, (m) = "1 =6)(BAB,)?
(1—¢)*  2log(n)
(1—061)2(1—6)2 28+1"

(5.28)

Let ZZ-(j) be the jth member of the sequence Z;, Z,,... which falls into supp(v;,),
and v; = #{1 < i < v : Z € supp(¥jn)}. It is clear that v; ~ Pois(n);),

where ), fsuppw fo(z) dz. Since P(|lv; — [nA;]| > Cxy/log(n)v/nh,) = O(n™?)

and Z?), Zéj), .. form a sequence of independent random variables we obtain by
Bernstein’s 1nequality (see, e.g., Shorack and Wellner (1986, p. 855)) that

«/f, w, (z . .
Py Z S ATAY Z YN )| > Cy(nhn) 4 (log(m))* | = O(n~).
By (5.26) to (5.29) we obtain that
Fo=i)
plo D (Xy,..., Xy)
Pfa (151?2])\(411 {log pfo(Xla s aXn) >0
% n ) (1 —¢)? 2log(n)
> Py | max { —6; Z Z(J) > + R,

1<j<Mn — (1 —=101)%2(1—09)2 28+1

+ 0(n™), (5.30)

where R, = C’,\[7f€—{—(log(n))?’/Zhl/2 +(nhy, ) /4 (log(n))®/ ] It is clear from the above

construction that the terms S ") bin(Z9) ) fo(Z9), 5 = 1,..., My, are indepen-
dent. Moreover, we obtain from Theorem 4 in Nagaev (1965) that

n;] (i)
% Zl HZ9) T U= - ) \/QIOg(” /e3+D) | = (1 — @(2))(1 + o(1))

holds uniformly in 0 < z < C4/log(n) for any C < oco. This implies that the
right-hand side of (5.30) converges to 1. Hence, we obtain the assertion. 4

5.3. Proofs of the theorems on the upper bounds.

Proof of Theorem 4.1. In order to prove the theorem, we use for the kernel estimator
(4.1) the decomposition in bias and variance term,

B | - 1

2

= HEfA/[zi] —f
Ly

+ By HA,E — B 72]“ . (5.31)
Lo Ly
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The bias is treated analogously to the case of independent data, that is,

_ —HF (Ef[z]) - F(N),
= I (Ks2) ()~ 1) F (I,

< o [l PO @) de <IHE, (532
™

2
|5

where we used successively the Plancherel formula for Fourier transforms and the
expression of the kernel.

In the variance term, there are covariances that do not appear in the independent
case. Nevertheless, due to the weak dependence of data, the dominating term is the
same as in the independent case. We have

2
2 2
EfHﬁ[zn] — B .
1 1 X~z 1 X, —z\\”
- ﬁEf/ (h—nKﬂﬂ( hn )‘th—nK“( o )) d””

1 X, —x X, —zx
— K ¢ K J d
+(nhn)2 : Z ()/Covf< m( b, ) ﬂ’2< P )) !

1<]i—j|<Cy log(n

1 X, —z X, —x
K Ky (22 d
T ) /Covf< “( i > “( T )) ’

|i— J|>C>\ log(n

= T1 + T2 + T3, (533)

say. We have
1 (1Ksell;, 1 2 1Ks.2I7
" ( —=2 — —||F (Kpp) () F (7, | < —5—2

It holds that ||Kpa|le < (27) " [(1 — |w|#)4 dw < 1/, which implies in conjunction
with (4.2) that [ |Kpo(z)|dz < co. Therefore, we obtain

1 x; — T;—T
nos g S [ e () e (% )‘
"/ 1<]i—j|<Cy log(n) "

x [ (x| 2i) + p’(x))] p (2:) da; dz; d

= O(log(n)/n). (5.35)

Define

-z X —z 22— X —x
Hy,(y, 2) :/[Kﬂ,z (yh )-Eme( lh ﬂ [Kﬁ,2< . >_EfKﬂ,2( lh

We can replace X, by some X ]’ which has the same distribution as X}, is indepen-
dent of X;, and satisfies P (X; # X}) < B(|i — j|). Since E;H,(X;,X}) = 0 and
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sup, ,{|Hn(y, z)|} = O(1) we obtain

1 '
T, = e Y B [Hu(X:, X)) — Ha(X, X))
i—j|>Cx log(n)
= 0O(n™), (5.36)
provided C) is sufficiently large. Hence, we obtain from (5.33) to (5.36) that
2 _ 1Kol log(n)
By |F2 - B 2| < R o (R, 5.37
e = Bl < o F - (5.37)

Since || Ksal2, = |F (Ks2)I%, / (27) = 28%/ (x (8 +1) (28 + 1)) we obtain

1 Kp2ll7 Bnt 25/(26+1) TS
Pl L +928L) = LY/ (26+1) 3B+1
h. (WL(ﬁ+1)(25+1)> (L+25L) 7 (B)n” 2,

which yields the assertion in conjunction with (5.31), (5.32), and (5.37).

L2 +

O

Proof of Theorem 4.2. Let € > 0 be arbitrary. We will actually prove that, for r, =
(log(n)/n)?/@5+1),

7ol - fH ) < w((1+¢)k(B, L, B))

limsup sup Eyw (r; !
o (5.38)

holds for n > ng(e). The fact that we have the additional factor 1 + € to our
disposition facilitates our task essentially: we are therefore not forced to undertake
some sort of “exact calculations”, and can actually apply rough exponential estimates
in conjunction with a suitable chaining technique.

We divide the constant (3, L, B) describing the asymptotic size of || A,Eio] —fllso
into a term caused by stochastic fluctuations and a bias term, that is,

(8, L, B) = 1, 0(my\/2log(1/h,) + r LREB(B),

where

VB A B,

Uy = = o= | K 00]]2-
Indeed, for all f € Fo(5, L, B),
| B - | < LaiBos), (5.39)
is fulfilled, where
BE)= s | [ Ky ()lg(w) =g (0)du (5.40)
9€F 0 (B,1,B)
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and || Kg ||z + B(8) = Ag. We have, for ¢’ to be chosen below,
it -a,)
< w((+e)k(8, L, B) Pr (IIFE = Erfi o < (1+ )0 v/2108(1/hr) )
+w ((1+¢€")x(8, L, B))
Pr (1 + )0 v/2108(1 /) < 152 = Erfi oo < (1+ )0 v/210g(1/Rn) )
+w (ry ! [hy [ Kpeolleo + LEGB(B)])
P (172 = BeJE oo > (14 &) v/2108(1/Rr) ) - (5.41)

According to this decomposition, we will prove (5.38), and hence the assertion of the

Erw (r;l

theorem, by deriving exponential inequalities for r, 1||]/”;[1i°] — E;f C:Lo]||oo.

Since the support of f is not necessarily restricted to a set of bounded size, we
first reduce the problem to the supremum deviation on a certain set with appropri-
ately bounded Lebesgue measure. This boundedness will be used later on, see the
derivation of (5.46) below. To this end, we consider overlapping intervals

Iy, = [khp, (k4 1)h,) © supp(Kp o (-/hn))

and restrict our primary attention to the set

Xy = | [khn, (k + 1)), (5.42)
kETn

where

I, = {k Pf(XiEIk)Zn_l}.
We decompose the set of remaining indices Z \ Z,, into disjoint subsets Ji,... , 7.,
such that

n~t < Pf (Xz € U I]> < 2n7L.

JE€Tk

Using the Bernstein-type inequality given in Lemma 5.1 we obtain

P (#{z X, € U L} > C,\log(n)) = O(n™),

J€Tk
which implies, by ¢, = O(n*), that

P( sup {|Fiz) — Erfid(@)]} > Ca(nha)™ 1og(n>) = O(n™).
T€ER\ X, (543)

To get probabilistic bounds for the supremum deviation on X,,, we apply a simple
chaining technique based on two grids, a coarse one with grid size g, close to h,,
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and a fine one with grid size g, 2 = gn,1/K,, for some integer K,, that is, we define

xj = 9o + jgn,la ] € Z;
Tjp = Tj + kgnay JE€Z, k=1,...,K,.
7 ()

Before we apply Lemma 5.1 to — Eff io] (z;)|, we derive an upper estimate

for

1 , _x — Xipme
ot = gy (5 [ (57) + 1o (522 )}

which determines the constant in the exponent of the Bernstein-type inequality given
in Lemma 5.1. Analogously to (5.37), we obtain the pointwise estimate

1
0 = Kol 1w + O (log(n)/n) (544
as well as the estimate
*° 1
| ot = sl + O (log(n)/m).

The latter relation implies that there exists a go such that

Zo-wj —

jez

ngn 1 -
Furthermore, it holds that
#{j: =z € X} = O(n"),

for some k < oc. We obtain by Lemma 5.1 that, for n > ny,
P (ma 77w ~ BB > a1+ 2/3)00 v 2Iox(1/)

< Y dexp{-T,} + O(n™),  (5.45)

Jimi€Xn
where
(1= 0)(1 +¢/3)*u’o7, log(1/hn)
B oz, + Crxsu(l+¢/3)o \/Wlog
Since #{j : z; € Xn} = O(n*) we can use for those j where o, is below a certain

threshold the estimate

Z exp{-T,}

j:zj€X, and Oz, 5030(2")
= O (n"exp{—Cylog(n)}) = O(n™?), (5.46)
provided the constant Cj is sufficiently small. For 02, > CgO'(Qn), we have that
a -+ Chsu(l+¢/3)0m)v/210g(1/hy) log(n
2,2 2
g V1 "‘5/3%]- < (1 +5/3)0(n) < (1- )(1 +6/3) u o, log(1/hy).
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This implies, in conjunction with the inequality (1/x) exp(—c/x) < (1/x9) exp(—c/xzo)
which holds for z < x5 < ¢, that

Z exp{—T,}

jiz;€X, and Oa; >C’30(2n)

= O |exp{—(1-6)(1+¢/3)u’log(1/h,)} Z ng

Jizj€Xn T(n)
hn _ 1—(5 2
= O 2 p 0-00+e/3u ) (5.47)
gn,l "
We choose § such that (1—6)(14¢/3) > 1. Now we obtain from (5.45) to (5.47) that
P (max ‘ﬂf](xj) - Ef}f](xj)‘ > (14¢/3)0(m) 210g(1/hn)) = o(1)

CE]‘EXn

if K, = [n"] and k > 0 is sufficiently small. Furthermore, we have

1+¢
1+¢

Fioy) — By (ay)

P (max >

Tj eX,

(14 ¢/3)00 2log(1/hn>) - ot

if ¢’ is sufficiently large.
Since |z; — x| < gn1 and Kp o is Lipschitz of order 5 we obtain that

HKﬂ""’ (x]h: ) ~ Kpoo (%) Hoo = O ((gn,1/hn)"™) (5.50)

o .
HKﬂ’W<Jh )‘Kﬂ’W<Jh )

The latter relation implies, in complete analogy to the derivation of (5.37), that

1 - Ty — X, Tjk — Xz T — XZ'I Tjk — X,’I
i Z cov (K,B,oo ( Iy ) — Kg,oo <T> ;Kﬂ,oo ( b - K,B,oo T

n -1
oa() (Gn1 /)PP n’\) . (5.51)

1
= 1/ by ) 2PN
0 (il /15 +
From (5.50), (5.51), and the fact that #{(j,k) : z;x € &,} = O(n”) for some fixed
~v > 0, we obtain by Lemma 5.1 that

as well as
2

= O (h’n(gn,l/hn)z(ﬂ/\l)) .

2

P(max

wj,kEXn

F@e) = Bl ) - (B2 = Brfi2 @) > Sow 2log<1/hn>)

= O(n™). (5.52)
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Finally, for z € [xj ks xj k+1), we have the nonstochastic estimate
‘ — N, ‘ = O (b (gnz/hn)*P"V) < %U”) 2log(1/hy,)
(5.53)
if g, 2 = O(n™") and n > ny. Putting all things together, we obtain that
P (sup {17 @) - EFP @} > 1+ oy 01/ ) = o)

z€R

(5.54)
and
P (sup{|f E; i) 1+¢ 21og(1/hy) | = O(n?),
(s {I7576@) = B, @1} > (14 oV 2ToBT1/R) ) = O -

provided ¢’ is sufficiently large. (5.38) now follows from (5.39), (5.41), (5.54), and
(5.55). O

5.4. A Bernstein-type inequality.

Lemma 5.1. (adapted from Doukhan (1994, Theorem 1.4.2.4))
Let X1,...,X, be geometrically B-mixing. Then, for arbitrary A < oo and § > 0,
there exist X1, ..., X] with

P((X1,...,Xn) #(X],..., X)) = O(n™)
p ( & (1—06)u?

>_9(x)| = “> . 46Xp{_2(n0§ + ucx,glog(n)ngnoo)}

holds for all functions g with Eq(X;) = 0 for all i, where

3 = max{ LB (g(X) + - + om0}

i,m

such that

Note that there are two differences to the formulation in Doukhan’s theorem.
First, we make explicitly clear that there exists some universal substitution of the
sample Xy,...,X, by X],...,X] which does not depend on the particular func-
tion g. Therefore, the term of order n= occurs only once even when we apply the
Bernstein-type inequality simultaneously to several different g. Second, in Doukhan’s
formulation, the term which plays the role of our 03 was bounded from above by
max; ,{(1/m)E (9(X;) + - - - + g(Xitm))’}, that is, the variance of m + 1 successive
observations was divided by m. Our slightly different formulation is actually crucial
in our context, since we focus on the exact asymptotic constant.

Proof of Lemma 5.1. The proof is of course similar to that in Doukhan (1994) and is
only included for completeness.

The basic argument why we get (up to the factor 1—4) basically the same constant
in the exponent as in the case of independent random variables is that we split
Xi,...,X, into alternating large and small blocks. Let [,, = [Cy1log(n)] be the
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length of the large blocks and s, = [C2log(n)] be the length of the small blocks
(Cx1 > Cy2). (An appropriate choice of these constants is described below.)
We define sets of indices

TV = {k=1)(ln+s0)+1,..., (kln+ (k — 1)s,) An},
T = kil + (k—1)sn+1,..., (k(ln + 5)) An}.
According to Lemma 2 in Doukhan, Massart and Rio (1995), we can replace the large
blocks (X;,i € Jk(l)) by independent blocks (X, i € Jk(l)) such that
(Xiie J) £ (Xiie 7))
and

P((Xuieg") # (Xhie J") < Blsa+1).
Analogously, we can replace the small blocks (X;,i € jk(s)) by independent blocks
(X!,i € ) such that

(Xnie 3V) = (Xii€ 3Y)

and

P((Xiie g?) # (Xhie TP)) < Bla+1).
We choose Cl o such that 3([Cy2log(n)] +1) = O(n™*!), which implies that

P((X1,..  Xn) # (X750, Xp)) = O(n7?). (5.56)

Applying Bernstein’s inequality for independent random variables (see, for ex-
ample Shorack and Wellner (1986, p. 855)) we obtain, with n) = >, #Jk(l) and
n) =Y, #J, that

! v’
P ;ig)g(&) >v| < 2exp{_2(n(z)g§ + vlnllglloo/?)} (5.57)
and
! ’U]2
P zk:g;s)g(Xi) >w | < 2exp{—2(n(s)0§ - wsn”g”w/?)}. 559

We choose C) 1 such that

- [ (v/Cri + /Chp2)?
2 Ch1+ Cha

This implies that

o RmeR:
5= 1 Wn J; n)”
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holds for n > ng(),d). Therefore, we obtain from (5.57) and (5.58), with v =
uy/1 = 6,Vn®/\/n and w = uy/1 — §,Vn) /\/n, that

P> gX)| > u
=1

u?(1 — 6,)n /n

< 2expg —
2(noy + ulnllgllov'l — 0 (Vn®/\/n)/3)
2(1 — (s)
L 2expd - u*(1 — 6,)n'*) /n

2(n(02 + usy||gllovI — 6,(VnE) /y/n)/3)
u?(1 —6)

< 4 — :

= eXp{ 2(no? + uC,\,5||9||oo)}

0
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