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Abstract: We estimate the common probability density of i.i.d. random variables that we observe with white
noise. The unknown density belongs to some class of supersmooth functions. The errors in variables have
an ordinary smooth distribution, that is their characteristic function decays polynomially asymptotically.
In this problem, we evaluate the minimax pointwise and L2 risks.

Déconvolution de densités super régulières avec un bruit régulier

Résumé : Nous estimons la densité de probabilité commune de variables aléatoires i.i.d. observées avec un
bruit blanc. La densité inconnue appartient à une classe de fonctions super-règulières. Les erreurs ont une
distribution régulière, i.e. leur fonction caractéristique décroit de manière polynomiale asymptotiquement.
Dans ce problème, nous évaluons les risques minimax ponctuel et en norme L2.

1. INTRODUCTION

Let us consider X1, . . . ,Xn, i.i.d. random variables having common probability density f . Let always
Φf (u) = Φ(u) =

∫
exp(−iux)f(x)dx denote the Fourier transform of the function f . Moreover, we assume

that f belongs to the class of supersmooth densities of order r:

Aα,r(L) = {f density|
∫
|Φ(u)|2 exp(2α|u|r)du ≤ 2πL}, (1)

where α > 0, L > 0 and 0 < r ≤ 2 are real numbers. Note that stable laws with autosimilarity index r
belong to such a class for adequate values of α and L. The most encountered examples are in such classes,
such as the Gaussian law (r = 2) or the Cauchy distribution (r = 1).

We want to estimate the unknown density from noisy observations

Yi = Xi + εi, i = 1, . . . , n,

with noise variables εi i.i.d. and independent of Xi, of known distribution having density fε. The methods
described here are valid for a collection of problems with different noise distributions of the same type.
We suppose here, that the noise is ordinary smooth, that is its characteristic function Φε is asymptotically
decreasing as a polynomial function:

b

(1 + |u|2)s/2
≤ |Φε(u)| ≤ B

(1 + |u|2)s/2
, when |u| → ∞. (2)

For technical reasons, we assume that the density of the noise fε is in L1 and in L2 and that its characteristic
function Φε is continuously differentiable.
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We describe in this paper the minimax rates of convergence of the pointwise and L2 estimation risks,
with an accent on the lower bounds.

Definition 1. Let f̂n = f̂n(Y1, . . . , Yn) be an arbitrary estimator (based on observations Y1, . . . , Yn) of
the unknown deconvolution density f . We define

1. the pointwise risk of the estimator f̂n of f , at an arbitrary point x: r(f̂n, f, x) = Ef [|f̂n(x)− f(x)|2],

2. the L2 risk of the estimator f̂n of f : r(f̂n, f,L2) = Ef [‖f̂n − f‖22],

where the expectation is taken with respect to the convolution model, with true underlying deconvolution
density f .

Definition 2. A minimax rate of convergence ϕn for estimating a function f over the class Aα,r(L) in (1)
is such that:

1. there is an estimator f̂n called optimal in the minimax sense attaining this rate, i.e.

lim sup
n→∞

sup
f∈Aα,r(L)

ϕ−2
n r(f̂n, f, ·) ≤ C <∞;

2. no other estimator can attain a better rate

lim inf
n→∞

inf
fn

sup
f∈Aα,r(L)

ϕ−2
n r(fn, f, ·) ≥ c > 0,

for some constants C, c > 0 and where the infimum is taken over all possible estimators of f .

Minimax estimation of a density in a deconvolution model was intensively studied since Carroll &
Hall (1988) who gave rates of convergence of the kernel deconvolution estimator. We can briefly cite for
estimation over Hölder classes of functions with smooth and supersmooth noise, respectively, the papers by
Stefanski & Carroll (1990), Fan (1991) and Masry (1991) (for mixing data). They used kernel estimators
as well.

Efromovich (1997) gave efficient minimax estimators by projection (that is, he computed the exact
asymptotic expression of the pointwise and L2 risks) over L2-periodic Sobolev classes, with supersmooth
noise. Goldenshluger (1999) generalized the minimax rates to adaptive rates over more general Lp Sobolev
classes in association to both smooth and supersmooth noise.

Deconvolution densities in analytic functions’ class (r = 1) mixed with Cauchy type noise were esti-
mated by Tsybakov (2000), in a discrete model. Surprisingly, a logn loss in the rate is inevitable when
passing from minimax to adaptive estimation with L2 risk in this model.

The case where both the unknown density and the noise are supersmooth is separately solved in
Butucea & Tsybakov (2002). Different behaviours are distinguished, associated to different convergence
rates. We note that kernel estimators attain in some cases better rates then wavelet estimators in Pensky
& Vidakovic (1999) and they are efficient in some cases.

In our context, upper bounds of L2 risk where already attained by wavelet estimators, over classes
similar to Aα,r(L) in Pensky & Vidakovic (1999). Therefore we describe briefly in this context how kernel
estimators attain the same convergence rates, for both pointwise and L2 risks. Nevertheless, these rates
are not known to be optimal unless lower bounds are given which is our main statement. We give here
lower bounds for both pointwise and L2 risks.

There is some similarity between deconvolution with ordinary smooth noise and direct estimation of
the generalized s-derivative of a density in Aα,r(L).

Let us mention former results when estimating a density having infinitely many derivatives with direct
observations X1, . . . ,Xn available. Starting with Ibragimov & Hasminskii (1983) minimax rates were
computed over classes of density functions with bounded analytic continuation in a strip around the real
axis, corresponding to our class Aα,1(L) (r = 1). The efficient estimation of such densities with pointwise
risk and second order evaluations of the risks, together with efficient estimation of a derivative of order
integer s were found by Golubev & Levit (1996a, b). Efficient estimation with L2 risk was given by
Schipper (1996). Let us note that the constants we obtain in Corollary 1 below, for s = 0 and r = 1, are
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the same for pointwise risk in Golubev & Levit (1996b) and for the L2 risk in Schipper (1996). The case
s = 0 in our problem corresponds indeed to no-noise, direct estimation and our estimator becomes the
optimal sinc-kernel estimator.

Analytic densities were also considered by Belitser (1998) in the random-censorship model. For a good
review of minimax results for analytic functions we refer to Ibragimov (2002).

Direct estimation over more general classes of infinitely differentiable functions similar to Aα,r(L)
was done in minimax and adaptive approach by Lepski & Levit (1998) in white noise model and by
Artiles (2001) in density model and can be generalized to estimation of the s-derivative. The kernel
estimators are different in deconvolution and direct estimation problems but they have almost the same
bias which is much smaller than the variance. So, the same kernel estimator is optimal and the rate is
given by the variance which is the same. Nevertheless, in deconvolution problem, the variance is mainly
explained by the behaviour of the noise. Therefore, the techniques for proving the lower bounds are
essentially different as far as the choice of our hypotheses is concerned.

We remark also that even though we can describe constants associated to the minimax upper bounds,
we have not developped efficient lower bounds. Indeed, since the noise distribution gives the risk expression
(rate and constant) the constants change for each noise distribution verifying the general assumption (2).

A slightly different assumption can be introduced for the supersmooth unknown density f , namely that∫
|Φ(u)|2 (u2 + 1)m exp(2α|u|r)du ≤ 2πL, (3)

for some m > 0. This doesn’t change anything for our results as it is stated in Remark 1.
If m is an integer and f ∈ Aα,r(L) then the derivative f (m) verifies the inequality (3). Estimating the

m-th derivative is a similar problem and the rate is given in Remark 2.
The next section presents the estimation procedure based on kernels attaining the minimax rates and

evaluates the associated pointwise and L2 risks. The last section proves the lower bounds for these risks.

2. OPTIMAL ESTIMATION PROCEDURE

Let us consider the estimator:

f̂n(x) =
1

nh

n∑
i=1

Kn

(
Yi − x
h

)
,

where h→ 0, nh→∞, when n→∞ and a kernel whose Fourier transform is

ΦKn(u) = 1[−1,1](u)(Φε)−1(u/h). (4)

Note that for the no-noise problem s = 0, we get the sinc-kernel known to be optimal in direct estimation
of supersmooth functions.

Theorem 1. The above kernel estimator with bandwidth h = (logn/(2α))−1/r is optimal in the sense of
Definition 2 for the rate

ϕ2
n =

1

n

(
logn

2α

)(2s+1)/r

,

with respect to both pointwise and L2 risks. More precisely, for MY > 0 defined in Lemma 1:

sup
f∈Aα,r(L)

ϕ−2
n Ef [|f̂n(x)− f(x)|2] ≤ MY (x) + o(1)

πb2(2s+ 1)
,

sup
f∈Aα,r(L)

ϕ−2
n Ef [‖f̂n − f‖22] ≤ 1 + o(1)

πb2(2s+ 1)
.
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Proof Let us start with the pointwise risk. We write the usual decomposition

Ef [|f̂n(x)− f(x)|2] ≤ |Ef f̂n(x)− f(x)|2 + Ef [|f̂n(x)− Ef f̂n(x)|2].

Then, on one hand, the bias can be written in terms of characteristic functions, using the inverse Fourier
transform: f(x) = 1/(2π)

∫
exp(iux)Φ(u)du. We obtain:

|Ef f̂n(x)− f(x)|2 =

∣∣∣∣Ef ( 1

h
Kn

(
Y1 − x
h

))
− f(x)

∣∣∣∣2
=

∣∣∣∣ 1hKn

( ·
h

)
∗ fY (x)− f(x)

∣∣∣∣2
≤ 1

(2π)2

(∫ ∣∣∣ΦKn(uh)ΦY (u)− ΦX(u)
∣∣∣ du)2

.

In the convolution model, ΦY = Φ · Φε and we use Cauchy- Schwarz inequality to get

|Ef f̂n(x)− f(x)|2 ≤ 1

(2π)2

(∫
|1[−1,1](uh)− 1| · |ΦX(u)|du

)2

≤ 1

(2π)2

(∫
|u|>1/h

|ΦX(u)| exp(α|u|r) exp(−α|u|r)du

)2

≤ L

2π

∫
|u|>1/h

exp(−2α|u|r)du ≤ L

2παr
hr−1 exp

(
−2α

hr

)
.

On the other hand, for the variance of our estimator, use Lemma 2 below:

V arf f̂n(x) = Ef [|f̂n(x)− Ef f̂n(x)|2] ≤ 1

n
V arf

(
1

h
Kn

(
Y1 − x
h

))
≤ 1

nh

∣∣∣∣ 1hK2
n

( ·
h

)
∗ fY (x)

∣∣∣∣ ≤ MY

πb2(2s+ 1)

1 + o(1)

nh2s+1
.

By putting the bias and the variance together, minimising the mean square error of f̂n(x) comes down
to choosing h = (logn/(2α))−1/r which makes the bias infinitely smaller than the variance. Then

r(f̂n, f, x) ≤ MY

πb2(2s+ 1)
ϕ2
n(1 + o(1)).

Very similarly, for the L2 risk we have the same decomposition. By Plancherel formula we get for the
L2 bias:

‖Ef f̂n − f‖22 =
1

2π

∫
|ΦKn(uh)ΦY (u)− ΦX(u)|2du

≤ 1

2π

∫
|u|≥1/h

|ΦX(u)|2 exp(2α|u|r) exp(−2α/hr)du ≤ L exp

(
−2α

hr

)
.

For the L2 variance

Ef [‖f̂n − Ef f̂n‖2] ≤ 1

nh
Ef

(
1

h

∫
K2
n

(
Y1 − x
h

)
dx

)
≤ ‖Kn‖22

nh
≤ 1 + o(1)

πb2(2s+ 1)nh2s+1
.

Thus, the same bandwidth is optimal, giving:

r(f̂n, f,L2) ≤ 1

πb2(2s+ 1)
ϕ2
n(1 + o(1)).

2

4



Remark 1. When estimating a density function verifing (3), only the bias changes, respectively:

|Ef f̂n(x)− f(x)|2 ≤ L

2π

∫
|u|>1/h

(u2 + 1)−m exp(−2α|u|r)du ≤ L

2παr
h2m+r−1 exp

(
−2α

hr

)
and

‖Ef f̂n − f‖22 ≤ Lh2m exp

(
−2α

hr

)
.

Then, the same bandwidth is optimal in this problem as well and we get the same convergence rate.

Remark 2. As we already noted, if f ∈ Aα,r(L) then f (m) checks the inequality (3), for an integer m > 0.
The mean square error (MSE) and the mean integrated square error (MISE) for evaluating f (m) have the

same bias as in Remark 1, but a dominating variance slightly larger V arf (f̂
(m)
n (x)) ≤ O(1)/(nh2s+2m+1).

This gives a normalizing rate of order (logn)(2s+2m+1)/r/n.

Corollary 1. If the noise distribution is exactly known to have Φε(u) = (1 + u2)−s/2, then the above
estimator with the same h and for the same ϕ2

n is such that

lim sup
n→∞

sup
f∈Aα,r(L)

ϕ−2
n Ef [|f̂n(x)− f(x)|2] ≤ MY

π(2s+ 1)
,

lim sup
n→∞

sup
f∈Aα,r(L)

ϕ−2
n Ef [‖f̂n − f‖22] ≤ 1

π(2s+ 1)
.

This is immediate by the previous theorem and precise computation of ‖Kn‖22.

Lemma 1. Probability density functions in the class Aα,r(L) given in (1) are uniformly bounded, i.e.

sup
f∈Aα,r(L)

‖f‖∞ ≤M,

for some M > 0 depending only on α, r and L. Moreover, if fε is the density of a smooth noise in (2),
then the resulting convolution densities fY = f ∗ fε are uniformly bounded, i.e.

sup
f∈Aα,r(L)

‖f‖∞ ≤MY ,

for some MY > 0 depending only on α, r, L, s and B.

Proof We use inverse Fourier transform and Cauchy-Schwarz inequality:

|f(x)|2 =
1

(2π)2

∣∣∣∣∫ e−iuxΦ(u)du

∣∣∣∣2 ≤ 1

(2π)2

∫
|Φ(u)|2e2α|u|rdu

∫
e−2α|u|rdu ≤ L

2π

∫
e−2α|u|rdu

and this bound doesn’t depend on f in Aα,r(L). Similarly,∥∥∥fY ∥∥∥2

∞
≤ 1

(2π)2

(∫
|Φ(u)Φε (u)| du

)2

≤ L

2π

∫
B2(

1 + |w|2
)s exp (−2α |w|r) dw,

which finishes the proof. 2

Lemma 2. The kernel Kn defined in (4) is such that

1. ‖Kn‖22 ≤
1 + o(1)

πb2(2s+ 1)h2s
;

2.

∣∣∣∣ 1hK2
n

( ·
h

)
∗ fY (x)

∣∣∣∣ ≤ ‖Kn‖22(fY (x) + o(1)).
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Proof 1. By Plancherel formula:

‖Kn‖22 =
1

2π

∫
|ΦKn(u)|2du =

1

π

∫ 1

0

du

|Φε(u/h)|2 ≤
1

πb2

∫ 1

0

(
1 +

(u
h

)2
)s

du

≤ h

πb2

(∫ M

0

(1 + v2)sdv +

∫ 1/h

M

(1 + v2)sdv

)
,

for some constant M > 0 large enough. The first integral in the right-hand side term can be denoted by
C(M). Let us evaluate

Is =

∫ 1/h

M

(1 + v2)sdv =
[
v(1 + v2)s

]1/h
M
− 2s(Is − Is−1).

Reiterated on s, this gives

Is =
1 + o(1)

(2s+ 1)h2s+1
and ‖Kn‖22 ≤

1 + o(1)

πb2(2s+ 1)h2s
.

2. Let us study first the asymptotic behaviour of Kn. We assumed that Φε is a continuously differentiable
function, then

Kn(x) =
1

2π

∫ 1

−1

eixu
du

Φε(u/h)
=

[
eixu

2πixΦε(u/h)

]1

−1

− 1

2πix

∫ 1

−1

eixu
Φε′(u/h)

h(Φε(u/h))2
du,

meaning that |Kn(x)| = O(|x|−1), as |x| → ∞.
We integrate first over the interval |hu| ≤ ε, for an ε which tends to 0 such that ε/h→∞ when n→∞

(take e.g. ε = (log logn)−1). By continuity of our functions fY we get for a small δ > 0 :∣∣∣∣∣
∫
|hu|≤ε

K2
n (u)

[
fY (x)− fY (x− hu)

]
du

∣∣∣∣∣ ≤ δ‖Kn‖22.

By Lemma 1, densities fY are uniformly bounded, then we can deduce that∣∣∣∣∣
∫
|hu|>ε

K2
n (u)

[
fY (x)− fY (x− hu)

]
du

∣∣∣∣∣ ≤ 2MY

∫
|hu|>ε

K2
n (u) du ≤ O (1)

h2s

∫
|u|>ε/h

du

u2

and
∫
|u|>ε/h 1/u2du = 2h/ε = o (1), by our choice. This finishes the proof as ‖Kn‖22 = O

(
1/h2s

)
. 2

3. LOWER BOUNDS

In order to prove that the previous rates are optimal, we show that no other estimator can achieve better
rates. Because of the pointwise risk, one more point must be considered. Indeed, the pointwise minimax risk
depends on the unknown f(x). We must avoid having a different model at each n such that f ∗ fε(x)→ 0
when n→∞. For this reason, we restrain our class of densities to

Aδα,r(L) = {f ∈ Aα,r(L) : f ∗ fε(x) ≥ δ > 0},

for some fixed δ > 0 arbitrary small.

Theorem 2. The rate ϕ2
n = (logn/(2α))(2s+1)/r/n is minimax in the sense of Definition 2, i.e.:

lim inf
n→∞

inf
fn

sup
f∈Aδα,r(L)

ϕ−2
n r(fn, f, ·) ≥ c,

where r(fn, f, ·) denotes successively the pointwise and the L2 risks of an arbitrary estimator fn and c > 0
depends only on δ, α, r and s.
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Proof Since we do not search exact lower bounds, for the L2 risk, we reduce the integration domain to a
compact set [a, b]. We can check that (fn − f)2 is a uniformly bounded function, by a constant depending
on n, α, r, s and L. We can write the L2 norm as as a limit of a Riemann sum, then:

Ef‖fn − f‖22 = lim
k→∞

b− a
k

k∑
i=1

Ef
[
(fn(xk)− f(xk))2] ,

with xk = a+(b−a)i/k. It is then enough to prove the lower bounds on the pointwise risk r(fn, f, x) ≥ cϕ2
n

for arbitrary x in order to deduce a lower bound on the L2 risk.
In order to do this, we apply the Van Trees inequality, following the lines of proof in Golubev &

Levit (1996b). Let us introduce a parametric subfamily of hypothesis in our class of functions. We choose
a symmetric centered stable law f0 such that, for R = max{r, 1}, f0 > 0 belongs to the classA2R−1α,r(L/2).
Remark that f0 is slightly more regular for the proof of the lower bounds.

The main idea is to choose functions fθ as far apart as possible from f0 at the estimation point x,
such that the resulting models {fθ ∗ fε}θ be as close as possible to f0 ∗ fε in some distance. In Van
Trees inequality, the distance between models is of the order of the χ2 distance. Due to the particular
construction we describe later on, this distance is upper bounded by n times the variance of a certain
perturbation function K. It is convenient therefore to take again the sinc-function as K. The price we
have to pay is more computation to evaluate |fθ − f0| which is related to K via Fourier transformation.

For θ ∈ [−θn, θn] define the functions

fθ(x) = f0(x) + θH(x),

such that for a function K and K̄(x) =
∫
K(x− y)fY0 (y)dy

fYθ (y) = fY0 (y)(1 + θ(K(x− y)− K̄(x))).

Functions H and K are defined via their Fourier transforms ΦH and ΦK , by

ΦK(u) = 1[−1,1](uh),

ΦH(u) =
1

2πΦε(u)

∫
eixwΦY0 (u+ w)ΦK(w)dw − Φ0(u)

2π

∫
eixwΦY0 (w)ΦK(w)dw,

such that h→ 0, θn → 0 when n→∞ and

θ2
n

h2(s−r+1)
exp

(
2Rα

hr

)
= O(1). (5)

We assume without loss of generality that we estimate the deconvolution density at point x = 0. We
note that K is a symmetric function and we can write

ΦH(u) =
1

2πΦε(u)

∫
ΦY0 (u+ w)ΦK(w)dw − Φ0(u)

2π

∫
ΦY0 (w)ΦK(w)dw, (6)

with K̄ =
∫
K(y)fY0 (y)dy = 1/(2π)

∫
ΦY0 (w)ΦK(w)dw.

Let λ0 be a probability density on [−1, 1], such that λ0(−1) = λ0(1) = 0 and having finite Fisher
information I0 =

∫ 1

−1
(λ′0(u))2/(λ0(u))du. We consider λn(u) = λ0(u/θn)/θn defined on [−θn, θn] to be

specified later and having the Fisher information In = Iλn = I0/θ
2
n.

Then, for the pointwise risk, we can write

r(fn, f, x) = inf
f̂n

sup
f∈Aδα,r(L)

Ef

[∣∣∣f̂n(0)− f(0)
∣∣∣2]

≥ inf
f̂n

sup
|θ|≤θn

Eθ

[∣∣∣f̂n(0)− fθ(0)
∣∣∣2]

≥ inf
f̂n

∫
[−θn,θn]

Eθ

[∣∣∣f̂n(0)− fθ(0)
∣∣∣2]λ(θ)dθ.
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We apply at this point the van Trees inequality (see Gill & Levit 1995) for the Bayesian risk in the
deconvolution model and get

r(fn, f, x) ≥

(∫
[−θn,θn]

∂fθ(0)

∂θ
λ(θ)dθ

)2(
n

∫
[−θn,θn]

I(θ)λ(θ)dθ + In

)−1

, (7)

where I(θ) is the Fisher information of (fθ ∗ fε)θ∈[−θn,θn] = (fYθ )θ∈[−θn,θn] in the deconvolution model.
On one hand, the numerator in (7) becomes ∂fθ(0)/∂θ = H(0) and it doesn’t depend on θ. As for the
denominator, we write the Fisher information as given by Lemma 3 below

I(θ) =

∫
(∂fYθ (y)/∂θ)2

fYθ (y)
dy ≤

∫
K2(y)fY0 (y)dy(1 + o(1)).

We obtain from (5), (7) and the results in Lemma 3 below the following lower bound

r(fn, f, x) ≥ (H(0))2

nI(θ) + I0θ
−2
n

≥ O(1)
(fY0 (0))2/h2s+2

nfY0 (0)/h+ I0h−2(s−r+1) exp(2Rα/hr)
.

At this point we choose

h =

(
logn

2Rα
− 2s+ 1

2Rαr
log

(
logn

2Rα

))−1/r

,

which is equivalent to (logn)−1/r and it is such that

I0h
−2(s−r+1) exp(2Rα/hr) ≤ I0

(
logn

2Rα

)(2s−2r+2)/r

n

(
logn

2Rα

)−(2s+1)/r

= o
(n
h

)
.

Thus we get the needed lower bounds

rn ≥ O(1)fY0 (0)
(logn)(2s+1)/r

n

if we add the fact that under our assumption: f0 ∗ fε(0) ≥ δ > 0. 2

Lemma 3. For θn such that (5) holds, the auxiliary functions H and K are such that

1 H(0) ≥ O(1)fY0 (0)/hs+1 and
∫
H(u)du = 0;

2 fYθ (y) = fY0 (y)(1 + o(1)), where o(1)→ 0, when n→∞, uniformly in y and |θ| ≤ θn;

3 functions fθ are density functions belonging to Aα,r(L);

4 I(θ) ≤
∫
K2(y)fY0 (y)dy ≤ fY0 (0)‖K‖22(1 + o(1)) ≤ fY0 (0)(1 + o(1))/(2πh).

Proof 1. By construction, in (6),

H(0) =
1

2π

∫
ΦH(u)du ≥ 1

2π

∫ ∫
1[−1,1](h(u− w))ΦY0 (w)/Φε(u)dwdu

≥ 1

2π

∫
ΦY0 (w)

∫ w+1/h

w−1/h

(1 + u2)s/2dudw

≥ O(1)

∫
ΦY0 (w)dw

∫ 1/h

−1/h

(1 + u2)s/2du ≥ O(1)
fY0 (0)

hs+1
.

We have to check also that

1

2π

∫
Φ0(u)

2π

∫
ΦY0 (w)ΦK(w)dwdu = f0(0)K̄ = o

(
fY0 (0)

hs+1

)
.
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Indeed,

K̄ =

∫
Φ0(w)Φε(w)ΦK(w)dw

≤ B

2π

∫
|w|≤1/h

(1 + w2)−s/2Φ0(w)dw

≤ B
√
L

2π

(∫
|w|≤1/h

(1 + w2)−se−2α|w|rdw

)1/2

≤ O(1)hs+(r−1)/2e−α/h
r

= o(1),

which is an o
(
1/hs+1

)
, too.

Moreover,
∫
H(u)du = ΦH(0)/(2π) = 0.

2. Indeed, by construction

|θK(y)| ≤ θn‖K‖∞ ≤ θn
∫

ΦK(u)du = O

(
θn
h

)
= o(1).

Remark that the densities fY0 in our class are uniformly bounded (see Lemma 1), that is ‖fY0 ‖∞ ≤ O(1).
Finally, by previous results of this Lemma

|θK̄| ≤ o(θn) = o(1).

3. We need to check that fθ is a positive function for n large enough, it is summable to 1 and it belongs
to our class of functions. It is easy to check that it integrates to 1. Let us write now (see (6))

fθ(x) = f0(x)(1− θK̄) + θG(x),

where G has Fourier transform

ΦG(u) =
1

2πΦε(u/h)

∫
|w|≤1

Φ0(u+ w)Φε(u+ w)dw.

We can say that ΦG is smoother than Φ0 because of the convolution with the identity function in the
integral above. Roughly speaking, that means G is decreasingly faster than f0 when |x| → ∞ and thus fθ
is a positive function as soon as n is large enough.

At last, fθ belongs to our class of function (use the generalized Minkowski inequality):

θ2

∫
|ΦH(u)|2e2α|u|rdu

≤ θ2
n

∫
|
∫

ΦY0 (u+ w)ΦK(w)dw|2(Φε(u))−2e2α|u|rdu+ θ2
nK̄

22πL

≤ θ2
n(

∫
(

∫
(ΦY0 (u+ w)/Φε(u))2e2α|u|rdu)1/2ΦK(w)dw)2 + o(1)

≤ θ2
n(

∫
(

∫
Φ2

0(u)e2Rα|u|rdu)1/2e2R−1α|w|r/Φε(w)ΦK(w)dw)2 + o(1)

≤ θ2
n2πL(

∫
|w|≤1/h

B(1 + w2/2)s/2e2R−1α|w|rdw)2 + o(1)

≤ O(1)
θ2
n

h2(s−r+1)
exp

(
2Rα

hr

)
+ o(1) <∞,

and this constant can be smaller than πL by our choice of θn.

We used the facts that e2α|u|r ≤ e2R|u+w|re2R|w|r , where we recall that R = max{r, 1} and that

(1 + |u|2)s

(1 + |u+ w|2)s
≤ (1 + |w|2/2)s.
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4. The crucial point is to see that
∫
K2(y)(fY0 (y)− fY0 (0))dy = o(1/h). We split this integral into two

parts, on a neighbourhood of 0 denoted Oε(0), respectively on the remaining part, where h/ε = o(1). Then∫
Oε(0)

K2(y)(fY0 (y)− fY0 (0))dy ≤ o(1)‖K‖22 = o(1/h),

by continuity of fY0 . On the other interval note again that the densities in our class are uniformly bounded
(see Lemma 1), then we write

|
∫
OCε (0)

K2(y)(fY0 (y)− fY0 (0))dy| ≤ O(1)

∫
|y|≥ε

sin2(y/h)

π2y2
dy ≤ O(1/ε)

and this is an o(1/h) by construction. 2
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