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Abstract

We study the speed of convergence of the explicit and implicit space-time discretization
schemes of the solution u(t, ) to a parabolic partial differential equation in any dimension
perturbed by a space-correlated Gaussian noise. The coefficients only depend on u(t, z)
and the influence of the correlation on the speed is observed; in the limit case, correspond-
ing to the space-time white noise in dimension 1, we recover the speeds obtained by I.
Gyongy.
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1 Introduction

Discretization schemes for parabolic SPDEs driven by the space-time white noise have been
considered by several authors. 1. Gyongy and D. Nualart [8] and [9], have studied implicit time
discretization schemes for the heat equation in dimension 1. J. Printems [13] has studied several
time discretization schemes (implicit and explicit Euler schemes as well as the Crank-Nicholson
one) for Hilbert-valued parabolic SPDEs, such as the Burgers equation on [0,1], introduced
several notions of order of convergence in order to deal with coefficients with polynomial growth
and proved convergence in the Hilbert space norm. This work has been completed by E.
Hausenblas [10], who studied several schemes for quasi-linear equations driven by a space-time
white noise or a nuclear noise, and taking values in a Hilbert or a Banach space X. Several
approximation procedures (such as the Galerkin approximation, finite difference methods or
wavelets approximations) were considered, but the coefficients of the SPDE were supposed to
depend on the whole function u(?,.) in X, and not only on the evaluation of the process u at
(t,z). Notice that, unlike [10], the coefficients considered in this paper do not depend on the
whole function u(s,.).

. Gyongy [6] has studied the strong speed of convergence in the norm of uniform convergence
over the space variable for a space finite-difference scheme u”™ with mesh 1/n for the parabolic
SPDE with homogeneous Dirichlet’s boundary conditions. He has also studied the speed of



convergence of an implicit (resp. explicit) finite-difference discretization scheme u™™ (resp.
u? ) with time mesh 7'/m and space mesh 1/n for the solution u to the following parabolic
SPDE in dimension 1 driven by the space-time white noise W'

Lx tox)+o(t,z,u(t,z))sz-+b(t,z,u(t,z
{U(t(,()):u(t,l):)o,( (820555 + b (), (1.1)

with the initial condition ug. He has proved that, if the coefficients o (¢, z,.) and b(¢, z, .) satisfy
the usual Lipschitz property uniformly in (¢, z) and if the functions o(t,z,y) and b(t, z,y) are
1/4-Holder continuous in ¢ and 1/2-Hélder continuous in z uniformly with respect to the other
variables, then for ¢ €]0,T], p € [1,+o0[, 0 < 8 < § and 0 < 7 < ; one has:

sup  (Ju™™(t,x) —u(t,2)) < K(t) (m_ﬁp +n7P) (1.2)
z€[0,1] '

Furthermore, if ug € C*([0, 1]), then (1.2) holds on [0, 7] with 8 = 1, ¥ = 1 and with a constant

K which does not depend on ¢. A similar result holds for the explicit scheme up if an <qg< 5.

J. Printems [5] has studied a discretization scheme for the KDV equation, and C. Cardon-
Weber [2] has studied explicit and implicit discretization schemes for the solution to the stochas-
tic Cahn-Hilliard equation. Since the bi-Laplacian A? is more regularizing than A, a function-
valued solution to this equation can be obtained in dimension d < 3 when the driving noise
is the space-time white noise. The polynomial growth of the drift term made her require the
diffusion coefficient o to be bounded; furthermore, she proved convergence in probability of the
scheme (respectively in L? with a given rate of a localized version of the scheme).

In the present paper, we deal with a d-dimensional version of (1.1). As it is well-known, we
can no longer use the space-time white noise for the perturbation; indeed, in dimension d > 2,
the Green function associated with % — A with the homogeneous Dirichlet boundary conditions
on [0,1]¢ is not square integrable. Thus, we replace W by some Gaussian process F' which is
white in time and has a space correlation given by a Riesz potential f, i.e., we require that for

some a €]0,2 A d[:
BIF(,2) F(t )] = (5 A 4) oy

See e.g. [11], [4], [12] and [3] for more general results concerning necessary and sufficient
conditions on the covariance of the Gaussian noise F' ensuring the existence of a function-
valued solution to (1.1) with F instead of W.

The aim of this paper is threefold. We at first study the speed of convergence of space
and space-time finite discretization implicit (resp. explicit) schemes in dimension d > 1, i.e.,
on the grid (%,(%,1 <k<d),0<i<m0<j <n and extended to [0,7] x [0,1]?
by linear interpolation. As in [6] and [7], the processes u” and u™™ (resp. u ) have an
evolution formulation written in terms of approximations (G4)", (G4)™™ and (Gy): of the
Green function G4, while u is solution of an evolution equation defined in terms of GGy. These
evolution equations involve stochastic integrals with respect to the worthy martingale-measure
defined by F' (see e.g. [15] and [4]).

As usual, the speed of convergence is given by the norm of the differences of stochastic
integrals; more precisely, the optimal speed of convergence for the implicit scheme is the norm

of the difference G4(., z,.)—(Gq)"™ (., z,.) in L*([0,T], Ha), where H, is the Reproducing Kernel



Hilbert Space defined by the covariance function. More precisely, if ¢ and ¥ are continuous
functions on Q = [0, 1]¢, set

< ot Sy /Q /Q (@) flle — yl) v(y)de dy. (1.3)

We denote by H, the completion of this pre-Hilbert space; note that H,; elements which are not
functions and that a function ¢ belongs to H, if and only if fQ fQ le(y)] f(ly—=z]) |p(2)| dydz <
+oo. However, unlike in [6] and [7], the functions

pi(x) = V2 sin(jre), j>1 and gj(sa(2)), 1<j<n, where ra(y)=[ny]n~",

are not an orthonormal family of H;. Thus, even in dimension d = 1, the use of the Parseval
identity has to be replaced by more technical computations based on Abel’s transforms. Similar
results could be obtained for more general covariance functions, but the speed would depend on
integrals including f and would be less transparent than that stated in the case of Riesz poten-
tials. The key technical lemmas, giving upper estimates of ||G4(.,z,.) = (Ga)" (-, 2, .)||r2([0,00[, )
and |[(Ga)"(,2,.) = (Ga)™™ (2, ) 2qormg (resp. [[(Ga)" (- 2,.) = (Ga)n (o 2, )|l 2o, 30)s
are proved in section 4.

We describe the discretization schemes in any dimension d > 1 and introduce some notations
in section 2. In section 3, an argument similar to that in [6] shows that for 0 < a < d A 2, and
p € [1,400], if ug is regular enough, then

sup (Ju(t, z) = u"(t, 2)|]*F) < Cpon™ =P, (1.4)
(t,z)€[0,+0[xQ

and extending [7] we prove in section 4 that

sup (|l (t, z) —u™™(t, ;L')HZP) <, m~(-32)p (1.5)
(t,z)€[0,T]xQ

In the "limit case” d = 1 and « = 1, which corresponds to the space-time white noise, we
recover the speed of convergence proved by Gyongy.

In dimension d > 2, the proof depends on the product form of the Green function and its
approximations, as well as of upper estimates of |z — y|=® in terms of H?Zl |z; — y;|~*¢ for some
well-chosen «;. Thus, estimates of the Hy-norm of the differences of Gy(s, x,.) — (Ga)"(s, z,.),
(Ga)"(s,z,.) — (Gg)""(s,z,.) and (Gg)*(s,z,.) — (Gq)k(s,z,.) in dimension d > 2 depend on
bounds of the H;-norm of similar differences as well as of H,-norms of G(s,z,.), G"(s,z,.) and
G (s, x,.) for r < d.

Section 5 contains some numerical results. For 7" = 1, we have implemented in C the
(more stable) implicit discretization scheme for affine coefficients o(t,y,u) = oy u + oy and
b(t,z,u) = byu+by and for o(t,y,u) = b(t,y,u) = cos(u). We have studied the ”experimental”
speed of convergence with respect to one mesh, when the other one is fixed and gives a "much
smaller” theoretical error. The second moments are computed by Monte-Carlo approximations.
These implementations have been done in dimension d = 1 for the space-time white noise W
and the colored noise F'. As expected, the observed speeds are better than the theoretical ones,
and decrease with a. For example, choosing N and M "large” with M > N? and considering
7small” divisors n of N, we have computed the observed linear regression coefficient and drawn
the curves of sup oy In(E(Ju™M (1, 2)—u™M[*(1,2)]?)) as a function of In(n) for various values
of a.



Note that all the results of this paper remain true if in (1.1) we replace the homogeneous
Dirichlet boundary conditions u(t,z) = 0 for z € JQ by the homogeneous Neumann ones
g—g(t,x) = 0 for x € 9Q. In this last case, the eigenfunctions of % — A in dimension one is

wo(z) =1 and for j > 1, @;(z) = v/2 cos(jmz). Since the upper estimates of the partial sums

Zle @;(x) used in the Abel transforms still hold in the case of Neumann conditions, the crucial
result is proved in a similar way in this case, and the speed of convergence is preserved.

2 Formulation of the problem

We denote by = = (z1,--+ ,z4) an element of . Let (Q,F, P) be a probability space, Q =
[0, 1] for some integer d > 1 and let F' = (F(p), ¢ € D( 4 xQ)) be an L*(P)-valued centered

Gaussian process, which is white in time but has a space correlation defined as follows: given
@ and ¥ in D( 4 x @), the covariance functional of F/(¢) and F(v)) is

to) =B P@) = [T f [ i tu-ave i, @

where (Q —Q)* ={y—2z 1 y,z € Q,y # z} and f: (Q — Q)" — [0,+00[ is a continuous
function. The bilinear form .J defined by (2.1)is non-negative definite if and only if f is the
Fourier transform of a non-negative tempered distribution pon (). Then F' defines a martingale-
measure (still denoted by F'), which allows to use stochastic integrals (see [15]). In the sequel,
we suppose that for z € 4z # 0, f(z) = |2|=*, where |z| denotes the Euclidean norm of the

vector z. Since z% + y* > 2zy, if a; = o277 for 1 < j < d and oy = o279 there exists a

positive constant C such that for any z = (zy,-++ ,z4) € ¢,

d

f(z) < CTL /o (20, (2.2)

i=1

where f,(¢) = |(|7® for any ( € , ( # 0. To lighten the notations, for this choice of f and
@ € Hy set

Il = [, [ letllly = =1 le(e) | duds. (2.3

For any ¢ > 0, we denote by F; the sigma-algebra generated by {F([0,s] x A):0<s<t, AC
Q}. Let o:[0,4+00[x@Q x — andb:[0,+o0[xQ x — satisfy the following conditions:

There exists a positive constant C' such that for every s,t € [0, 0], z,y € @, r,v € , the
linear growth condition

lo(t,z,r)[+ [b(t,z,r)[ < C(1+|r]), (2.4)
and either Lipschitz condition

lo(t,x,r)— o(t,z,v)| + [b(t,z,r) — b(t,z,v)| < C|r —v|, (2.5)
oty 2, 1) = a(t,y,0)| + [b(t, 2, 7) = b(L,y,0)] < Clz —y['7% + |r = v]), (2.6)

lo(s,z, 1) —o(t,y,v)| + [b(s,z,7) = b(t,y,v)| < C(Jt — s|%_% +lz—y['F +|r — v|), (2.7)



hold. For any function ug which vanishes on the boundary of @, let u(¢, z) denote the solution
to the parabolic SPDE, which is similar to (1.1)

{ Bu(t,w) = Ault,x) + ot o, u(t, 2)) 2L 4 b(t, 2, u(t, ),

u(t,z) =0 for z €0Q, (28)

with initial condition u(0,z) = ug(z). Let * denote the set of strictly positive integers; for

any € *and £ € |, set p;(§) =2sin(jn€) and for k = (ky,--- , k) € *4, set
d
|E|:Z I’ H%‘Qk zy,) for x=(zy,...,24) € d,
7=1
Let G4(t,z,y) denote the Green function associated with the operator E — A on @ with

homogeneous Dirichlet boundary conditions; then for ¢ > 0, z,y € Q,

Ga(l,z,y) = Z eXp(—|E|2 m? 1) er(r) e(y) ;
&E *d
when d = 1, set G; = (G. Then there exist positive constants ¢ and € such that for every ¢ > 0,
zy€ LGt x,y)| < C1% exp ( |rtdy| ) The equation (2.8) makes sense in a weak form

which is equivalent to the following evolution formulation:

u(t,z) = /Gd(t z,y) uoly dy—l—/ /Gd —s,2,y)
x [o(s,y,u(s,y)) F(ds, dy) + b(s, y, u(s,y)) dsdy] . (2.9)

We also consider the parabolic SPDE with the homogeneous boundary conditions g—Z(t, z)=0
for x € 0Q. In that case, the functions (¢;; 7 > 1) are replaced by ¢o(£) = 1 and ¢;(&) =
V2 cos(jm€) for £ € and j > 1. All the other formulations remain true with & € ? instead

on *9

2.1 Space discretization scheme

As in [6], we at first consider a finite space discretization scheme, replacing the Laplacian by
its discretization on the grid % = (l;—l, e ,’;—d), where k; € {0,--- ,n}, 1 <j < d. In dimension
1, we proceed as in [6], and consider the (n — 1) x (n — 1)-matrix D, associated with the
homogeneous Dirichlet boundary conditions and defined by D,(i,i) = =2, D,(i,7) = 1 if
li — 7] = 1 and D,(i,5) = 0 for |s — j| > 2; then 82;9(;@) is replaced by n? D,t,(t,.), where
u"(t) denotes the (n — 1)-dimensional vector of an approximate solution defined on the grid

j/n,1 < j < n. In arbitrary dimension, we proceed as in [2] and define DY by induction. Let
DY = D, and suppose that DI has been defined as a (n —1)%71 x (n — 1)1 matrix. Let
Idy, denotes the k x k identity matrix and given a (n — 1)47! x (n — 1)?~! matrix A, let diag(A)
denote the (n —1)? x (n — 1)? matrix with d — 1 diagonal blocs equal to A; let DY denote the
(n — 1)d X (n — 1)d—matrix ng) defined by

“9d e Tdas 0 - 0
Idy  —2Idar Ida . :
D\ = diag(D!"V) + 0 0
: . [dnd—l —2[dnd—1 [dnd—l
0 - 0 Idyr  —21d s



Let w"(t) denote the (n — 1)?-dimensional vector defined by w"(¢)y = Uun(t,%y ), with

ki —1

n

Xy = (Thy, -+, Tk,), where k; is the unique integer such that z;, =

and k; € {1,--- ,n—1}is suchthatk:(k‘d—l)(n—l)d_l—|—---—|—(k2—1)(n—1)—|—k1.

Let £ = {x, : k € {l,---,(n — 1)4}, xy be the lattice parallepiped of diagonal x, =
(Thys -+ s wr,) and (zp, 4+ £, , 25, + =), and set FMlx) = | x, dF(t,x). Given a function
h:[0,400[xQx — ,andd e 7, let h(t,z,@) = (h(t,z,u1),--- , h(t,z,u,)). Then @"(t) is
solution to the following equation
dii"(t) = n® DD (t) dt + no(t,z,a"(t))dF(t,.) + b(t, z, a™(t)) , 1<j<(n—1),
(2.10)

u"(0) = (uo (%)) ,1 <5 < (n—1)%). We then complete u" (¢, .) from the lattice £ to Q as follows.

IFd = 1, sot w*(1,0) = w*(t,1) = 0, w(t, 2) = @(1);, aly) = [yl 2i/n) = o5(i/n) for
0<:<n,and for z €)i/n, (1 +1)/n[, 0 <i < n,let

i i | i+l
et =i () + =) fes (
and let

. . . )
, , 4

A= —4sin? (22 ) 2 = —*r?c with ¢ = sin? 2l 2l €l|l—=,1]1,1<37<n—-1,
I 2n " " 2n 2n w2

denote the eigenvalues of n? D,, = n? DS); then for ¢t > 0, z,y € [0, 1],

N

|

S

.
TN
3 |N.
N
| I

—

n—

Gu(t,z,y) = ) exp(A}t)pi(z) p;(kn(y))- (2.11)

s,
Il

In dimension d > 2, we also complete the solution u" (¢, z) from = € L, defined as u”(¢,x, ) =

u"(t) to x € @ by linear interpolation, interpolating inductively on the points (z,y) for z €
and y = (kiy1/n, -+ ,kq/n). The eigenvalues and eigenvectors of n? DY are

! kym kgm
n n 1 d
)‘kzz/\k] and SOk(T,"'aT)a
71=1
and for t > 0, x and y € Q if 6,(y) = (kn(y1), -, Kn(ya)), let

(Ga)"(tmy) = Y expOAph)ep(z)ep(ka(y)) (2.12)

kE{lv“' 77L_1}d

when d = 1, simply set G; = GG and (G1)" = GG". Then the linear interpolation of u*(¢,.) from
the lattice £ to Q = [0, 1]? is solution to the evolution equation

i) = [@rteputsma [ [ Gre-sey
X [a(s, Kn(y), u" (s, 6, (y))F(ds,dy) + b(s, k,(y), u" (s, £,(y)) dsdy} (2.13)

6



The n X n matrix D, = DS) associated with the homogeneous Neumann boundary conditions
is defined by D,(1,1) = D,(n,n) = —1, D,(1,2) = D,(n,n —1) =1 and for 2 < i <n —1
and 1 < 35 <n, D,(1,1) = =2, D,(i,5) = 1 if |[j —i| = 1 and D,(i,j) = 0 for |7 — | > 2.
The inductive procedure used to construct D is similar to the previous one; one replaces 1
by Id,a. Then the eigenvalues of n* D, are \? = —4n? st(%’T) = —j*n*¢) with & € [%,1].
The corresponding normed eigenvectors (e;,0 < 7 < n — 1) are again evaluations of ¢;. More
precisely, e;(k) = \/— @](anl) for 0 <j<n-—1and 1 <k <n. The eigenvalues \X and the

(d)

eigenfunctions pg of n? D;,” are defined in a way similar to the Dirichlet case, taking sums over
k € {l,--- ,n}?% formulas similar to (2.11) and (2.12) still hold and (2.13) is unchanged.

2.2 Implicit space-time discretization scheme

We now introduce a space-time discretization scheme. Given T' > 0, n,m > 1 we use the space
mesh 1/n and the time mesh T'/m, set ¢; = iT'm ™" for 0 < i < m and replace the time derivative
by a backward difference. Thus for d = 1, in the case of Dirichlet’s homogeneous boundary
conditions, set g = (ug(j/n),1 < j <n—1) and for i < m, set u; = (u""(iTm™ ', jn"1),1 <
j<n-—1),and for g = o and g = blet g(t;,.,u;) = g((t;, jn~ ", (W™ (L jn~1)), 1 < j <n-—1).
Let ., F(t;,.) denote the (n — 1)-dimensional Gaussian vector of space-time increments of F
on the space-time grid, i.e., for 1 <7 <n —1, set

wm F (i, 3) = nmT [F(tigr, G+ D)™ = F(t;, (5 + Dn™") — F(tigr, jn™") + F(t;, jn™")];
then for every 0 <1 < m
ﬁi-l—l = ’JZ + n2 Tm_l Dnﬁi-}—l + Tm_l [O'(ti, . ﬁz) mmF(ti, ) + b(ti, . ﬁz)] . (214)

Since I'd — T'm™'D,, is invertible,

ﬁi+1 = ([d — Tm_an)_(H_l)ﬁo + Z([d — Tm_l)_(i_k_l) [O‘(tk, . ﬁk) mmF(tk, ) + b(tk, . ’Jk)] .
k=0

(2.15)

Ifd>2 weset ., F(li,x)=n IpT—! ft”rl f dF (t,z), and for homogeneous Dirichlet

resp. Neumann) boundary conditions, define smrnlarl @1y as the (n — 1)%dimensional (resp.
P y ) Y Ui+ P

nd—dimensional) vector such that (2.15) holds with ng) instead of D,. We only describe
the scheme in the case of Dirichlet’s conditions; obvious changes will give it in the case of
Neumann’s conditions. The process u™™ is defined on the space-time lattice L7 = {(¢;,xy) :
0<i<m,ke{l,-- ,n—1}"}as (uW"(t;x),0<i<m,ke{l, .- ,n—1}}) =, ;itis
then extended to the time lattice (¢;,2), 0 < i < m,x € Q as in the previous subsection, and
then extended to [0, 7] x @ by time linear interpolation. Since Ay = 2?21 AL and @y (x,) are

the eigenvalues and eigenvectors of ng), if

(G (tey) = S (1=Tm M) T o) eilkaly)) (2.16)

kE{lv“' 77L_1}d



then for ¢t =iTm™", 1 < i < m,if for s € [0,7T], one sets A,.(s) = [msT~'m~! one has:

um(t ) = /Q(Gd)n’m(t,x,y)uo(ﬁn(y))dy—}—/0 /Q(Gd)”’m(t—s—l—Tm_l,x,y)
< [(An5) R (), ™ (Ar(5)s in(9))) P, dy)
FH(An (), (), w0 (A (), on () s (2.17)

Again for d = 1, let G™™ = (G1)™™.

2.3 Explicit schemes

For T' > 0, a space mesh n~! and a time mesh T'm™', we now replace the time derivative by a
forward difference. Thus if u” denotes the approximating process defined for ¢t = ¢; = iTm™"

and zy; € {1,--- ,n — 1}, setting u; = u,(1;,.), we have
ﬁi-l—l = ﬁZ + n2 Tm_l ng)ﬁz + Tm_l [O‘(ti, .y 172) n,mF(th ) + b(ti, .y 172)] . (218)

In the case of homogeneous Dirichlet boundary conditions, let (G4)7 (¢, z,y) denote the corre-
sponding approximation of the Green function GGy defined by

Gty = S @+ Tm )" oh(e) eilraly)) (2.19)

h€{17 7n_1}d

again for d = 1, let G2 = (G1)%. Then for ¢t = t; = iTm™', when completing the solution

T

up (1;,.) from the space lattice £ to (), we obtain the solution to the following equation

i (L) = /Q (Ga)r (2 y o rn()) dy + / /Q (Ga)(t — s+ T~ 2, y)

% |0 (Am(5), ), i (Are(5), () F(ds, dy)

F5(An(5), (1), (A (5), ()|

(2.20)

We then complete the process ul (., z) by time linear interpolation and obvious changes yield
the explicit scheme for homogeneous Neumann boundary conditions.

3 Convergence Results for the discretization schemes

In this section, we study the speed of convergence for the d-dimensional space scheme and then
of the d-dimensional implicit and explicit space-time schemes.
We first prove moment estimates of the solutions u, u”, v™™ and u}, uniformly in n,m.

Proposition 3.1 Let ug € C(Q) satisfy the homogeneous Neumann or Dirichlet boundary con-
ditions, and suppose that the coefficients o and b satisfy the conditions (2.4) and (2.5); then
the equation (2.9) (resp. (2.13), (2.17) and (2.20)) has a unique solution u (resp. u", u™™
and ul,) such that for every p € [1,4+oo and T > 0:

qupsup sup sup (Ju(t, ) + Ju (1,2 a1, 2) ) 4 [y (6 2)7) < boo . (31)
n>1 m>10<t<T z€Q



Proof: The existence and uniqueness of the solution to (2.9) and the control of moments
stated in (3.1) for u(¢,x) have been proved in [11] and [4]. The proofs of the existence of u”
to (2.13), ™™ to (2.17) and u” to (2.20) are similar; we briefly sketch the argument for u™.
Consider the Picard iteration scheme u”(0)(¢,z) = fQ(Gd)”(t,:c,y) uo(kn(y)) dy and for k >0,

(k4 1)) = w(0)(te)+ / /Q (Ga)™(t — 5,2,) [o(5, mny), u" (k) (5, mu(y))) F(ds, dy)

(s, mn(y) " (k) (s, 5a(9))) dyds]

Then Burkholder’s and Hélder’s inequalities, the Lipschitz property (2.5) on the coefficients o
and b, (A.19) and (A.20) imply the existence of A €]0, 1] such that for any p € [1, 00| there
exists a constant C, > 0 such that for every t € [0,7T],n > 1 and k& > 1:

sup (lu™(k + 1)t 2) = w (k) (L 2)[7) < €, ( / Tégu|<Gd>“<t—s,a:,'>|H%a)ds)p'

></SHPHI(Gd)”(t—sa%-)lea) sup  (Ju”(k)(s,y) —u"(k —1)(s,y)|"") ds
0 z€Q yeqQ

t 2p—1
([ s G sl ds)
0

z€eQ

x / sup [[(Ga)"(t = s, 2, )|l sup (Ju"(k)(s,y) — u"(k — 1)(s,y)|"") ds
0 z€Q yeEQ

<0y [=0 s ()59 == D)) .

A similar argument using (2.4) instead of (2.5) shows that

t
supsup (" (1)(6,2)) < €y (14 [ (¢ =) ol ds) < o0,
n>1 z€Q 0

while sup,,»; sup,eo,715UPLeq " (0)(¢, ) < [[uo]|oo- Thus Lemma 3.3 in [15] and standard argu-
ments show that the sequence u™(k)(.),k > 0 converges in L?**(€2 x [0,T] x @) to the solution
to (2.13), and that this solution is unique. Finally, using again Burkholder’s and Hélder’s in-
equalities, (2.4), (A.19) and (A.20), we deduce that for some A €]0,1[ and p € [1,4o0[, there
exists a constant C' > 0 such that for every ¢t € [0,7T] and n > 1:

t
supsup (" (2)) < Gyl + [ IG5, [+ (Ga)' (¢ = 5.2,
0

r€Q n>1

x [14supsup  (Ju"(s,y)|*)] ds
yeQ n21

t
< Gt [(=9 supsup (s 0))ds
0 yeQ n21
and Gronwall’s lemma shows that (3.1) holds for u™. A similar argument based on the version
of Gronwall’s lemma stated in [7] Lemma 3.4, (A.25) and (A.26) proves that (3.1) also holds

n,m

for u™™ or u; this concludes the proof of the proposition.

We now prove Holder regularity properties of the trajectories of u and u”. Note that for
u, a similar result has been proved in [14] for the heat equation with free boundary with a
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perturbation driven by a Gaussian process with a more general space covariance; see also [3]
for a related result in the case of a more general even order differential operator.

Proposition 3.2 Suppose that the coefficients b and o satisfy the Lipschitz property (2.5), that
the initial condition ug satisfies the homogeneous Dirichlet or Neumann boundary condition.

(i) Suppose furthermore that ug € C'~3(Q) and fix T > 0. Then, for every p € [1,40oc],
there exists a constant C' such that for x,2' € Q and 0 <t < ' < T,

sup  (Ju(t, 2) — u(t, 2')*) < Cla’ — 2=, (3.2)
0<t<T

sup (Jult,a) = u(t ) 7)< Ol — (0D, (33)
reQ

(ii) Suppose furthermore that ug € C*(Q); then for every p € [1,+o0|, there exists a constant
C' such that for x,2' € @Q and 0 <t <t/ < T,

sup sup <|un(t’,x) —u"(t,z)*) < O - P2 (3.4)
n>1 z€Q ‘

Proof: (i) We sketch the proof of (3.2) and (3.3) for the sake of completeness. For every ¢ > 0

and = € @, set v(t,z) = / Ga(t, z,y)uo(y)dy and let w(t,z) = u(t,z) — v(t,z). We at first
Q

prove the corresponding regularity for v. As in Lemma A.2 of [1], the semi-group property of

(/g and (A.5) imply that

o(t', @) —v(t, x)| =

/ Galt,zy) / Galt! — t,y,2)uo(z) — uo(y)]dzdy
Q Q

< 0 [1Guttwl [ 160 = L)l o Fasdy
Q Q

< 0/|Gd(t,x,y)|/ [t — 178 e |y — 2|'7F dzdy (3.5)
Q d
< O =), (3.6)

A similar computation shows that for 0 = < t/,

o(t'2) — uo(a)] < C /Q Galt', 2, )| [uoly) — wo(2)] dy
< COtEY.
On the other hand, for Dirichlet’s boundary conditions, G(L, z,y) = é¢i(z +y) — ¢¢(z —y), where
di(z) = ﬁ ) exp (-%) : we remark that, since ug(y) = 0 if y; € {0,1} for some

i€ {1, ,d}, setting g, = 2% —x;, 1 <1< d, 2z, = (25,1 <7< d,j#1), denoting by e; the
1th unit vector of the canonical basis and assuming without loss of generality that n;, > 0, we

10



deduce:

lo(t,z) — v(t,2")] §Z/ledé‘i<l:[|G(t7$j7Z])<H|G7]7 )

j=1 j=ti+1
X[
B 1
i / (i + 7 )uol2)d | + / (i + 7)ol 2)d
0 1-mn;

< Clp|'-=. (3.7)

The case of Neumann’s boundary conditions is treated in [1], Lemma A2.

We now prove (3.2); since o and b satisfy (2.5), Burkholder’s inequality, then Holder’s
inequality with respect to || |G4(t — s, z,-) — Ga(t — s,2")| H%a) ds and |G4(t — s, z,y) — Ga(t —
s,x'y)|) dy ds, Schwarz’s inequality with respect to P along with inequalities (A.2), (A.12) and
(3.1) yield

+ / (s — =) [uo(2) — ol + miei)]dz

(z: + 2)[uo(2) — uo(z — mie;)]dz;

uwum—umfwwscﬁwm@—vmep

i p—1
+</HWN—&L)—GN—&fJW@%>
0

1
< [rds [ (Gt = s.0.) = Gatt = 5. )l (s, uls,))P) ly = =1
0 Q?
><|Gd(t - S,SIZ,Z) - Gd(t - 57x/72)||0(5727u(372))|p)) dy dz

i 2p—1
+ (// |Gd(t—s,$,y)—Gd(t—5,$',y)|dyds>
0JQ

¢
X / / |Ga(t — s,2,y) — Ga(t — s, 2", y)| |b(3,y,u(3,y))|2p) dy ds}
0JQ

(s,9)€[0,e]xQ
< Cple— 2|, (3.8)
Finally, in order to prove (3.3), we write

u(t' z) —u(t,z) =o' z) — v(t,z) + ui (4,8, 2) + ug(t, ', 2)

< G {Iv(t, 2) = o(t, )P+ (o = 2|0 e =2/ PP) sup (Jus, y)l2p)}

where
ui(t,t',x) = /O/Q[Gd(t’ —s,z,y) — Ga(t —s,2,y)]
< {b(s,y,u(s,y)) dyds + o(s,y,u(s, y)) F(dy,ds)},
us(t,t' x) = / / Ga(t' — s,z,y) {b(s,y,u(s,y))dyds + o(s,y,u(s,y)) F(dy,ds)}.

The inequalities (A.3) and (A.13) (with u = 1— %), and a computation similar to that used to
prove (3.2) show that
qup (us(t, £, 2)[) < Cy(t! — 105 (3.9
zE€Q
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Furthermore, Burkholder’s, Holder’s and Schwarz’s inequalities, together with (3.1), (A.4) and
(A.14) yield

sup  (Jur(t,1, 7))

zE€Q
z » z 2
< A { ([ 116t =50l tyds) + ([ 16 = s..91duas ) }
<[t supsup (luls,9))] < Gy (¢ = p0=D . (3.10)
s<t! yeQ
The inequalities (3.6), (3.9) and (3.10) yield (3.3).
(ii) The argument is similar ; for every ¢t > 0, let v™ (¢, z) = fQ (Ga)(t, z,y) uo(kn(y) dy and
w(t,x) = u"(t,x) —v"(t,z). Since (G4)" is the fundamental solution % — A, =0, where
d
, o [ny;] | [y +1 [ny] [ny;]l ey =1
At =t P V(o e+ ) —20 (F8) + U (SR e + = — )]
i=1 i#i i#i
(3.11)

and (e;,1 <7 < d) denotes the canonical basis of %, then if ug € C?(Q),

v (1, 7) = uo(z / / (Ga)™(t, 2, y) Anuoly) dy . (3.12)

Thus, using the fact that A,ug is bounded if ug € C*(Q), and (A.40), we deduce that for any
A > 0:

sup sup |v, (¢, z) — v, (1, 2)| </ / (G)"(s,2,9)| | Apuo(y)| dy < C |t — 1], (3.13)
n>1 z€Q

Furthermore, for any p € [1, 4 00|, there exists C}, > 0 such that for any ¢,¢" € [0,7] with ¢ < ¢/,

SUP,51 SUP,eo  (Jw'(t,x) —w™(t',2)|") < O S22 Ti(t,1'), where (with the convention that

(Ga)™(r,z,y) =0 for r <0,

! p—1
1) = spsup ([ G = ) = (Ga) (1,2, [ )
0

n>1 z€Q

tl
X supsup/ (Ga)" (¢ = s,2,.) = (Ga)" (2, )| [ sup (L4 (Ju"(t, 2)]™)] ds
ze

n>1l z€Q JO

-1

Tyt 1) = supsup(/OtlH(Gd)”(t'—s,a:,.)—(Gd)”(t,x,.)Hlds)Qp

n>1l z€Q

X sup sup/ (G (' = s,2,.) — (Ga)* (L, 2, )| |]x ilelg [1 + (|u”(t,z)|2p)] ds.

n>1 z€Q Jo

The inequalities (A.39)-(A.42) and (3.1) show the existence of C, > 0 such that for any 0 <
t<t!<T:

supsup (|w"(t,z) — w™ (', z)|?) < C, |[t' — t|P13) (3.14)
n>1 z€Q

The inequalities (3.13) and (3.14) conclude the proof of (3.4).

The first convergence result of this section is that of u” to wu.
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Theorem 3.3 Let o and b satisfy the conditions (2.4) and (2.6), u and u” be the solutions
to (2.9) and (2.13) respectively, where the Green functions Gy and (G4)" are defined with the
homogeneous Neumann or Dirichlet boundary conditions on ().

(i) If the initial condition ug belongs to C*(Q), then for every T > 0 and p € [1 + oo, there
exists a constant C,(T) > 0 such that:

sup (Ju(t,z) —u™(t,2)|*]) < Cu(T) p~(2elr (3.15)
(t,z)€[0,T]xQ

i e initial condition ug belongs to C' ™% en there exists v > 0 such that given an
(ii) If the initial conditi belongs to C'~2(Q), then th t 0 such that g y
p € [1,4+00], there exists a constant C, > 0 such that, for every t > 0:

sup  (Ju(t,2) = w"(L2)[7]) < Gyt n= @7, (3.16)

(111) Finally, if ug belongs to Co(Q), then for allp € [1,4+00[,  sup ( lu(t, =) — u™(t, ;L’)|2p|)
(t,z)€[0,T]xQ
converges to 0 an n — 400, and the sequence u"(t,z) converges a.s. to u(t,z) uniformly on

[0, 7] x Q.

Proof: For the sake of simplicity, we suppose that the boundary conditions are the homoge-
neous Dirichlet ones; an easy modification yields similar result for the homogeneous Neumann
boundary conditions. Asin [6], set u(t,2) = v(t, z)+w(t, z), u"(t,2) = v"(t, )+ w"(t,z), where
v(t,z) = fQ Ga(t,z,y) uo(y) dy and v"*(t,2) = fQ(Gd)”(t,;z:,y) uo(kn(y)) dy. If ug € C'~2(Q)
(and hence is bounded), using (4.1) and (A.19), we deduce that for any A €]0, 1[, there exists
>0, C >0 such that for t >0, v = AV pu,

sup o(t, ) = ota)| < [ [[Gatray) = (Ga) (0,2, o)
TEQ Q
+1(Ga)t 2, )| [uoly) — ol (y)| | dy

Cn =D (1417 1) e <O (1 +17") e n~073) (3.17)

IN

If ug € C*(Q), then since Gy (resp. (G4)") is the fundamental solution of % — A =0 (resp

% — A, = 0), where A,, is defined by (3.11), integrating by parts we deduce that v(¢,z) =

uo(x) + fg fQ Ga(s, z,y) Aug(y) dy and v"*(t,z) = uo(z) + fot fQ(Gd)”(s, z,y) Ayug(y) dy. Hence
lo(t,z) —v™(t,z)] < 2?21 Ai(t,z), where

At z) = uo(l, z) — uo(kin(x))],
Ay(t,z) = ‘/0 /Q[Gd(s,:z:,y)—(Gd)”(s,m,y)]Auo(y)dyds

J

As(t,z) = ‘/Ot/Q(Gd)”(s,x,y) [Aug(y) — Anuo(kn(y))] dy ds

Since Aug is bounded and |[ug(.) — wo(kn(.))|lo + |[Auo(.) — Anto(kn())]ee < Cn~', the
inequalities (A.19) and (4.1) imply

sup lv(t,z) — v (t,2)] < Cn'. (3.18)
(t,z)€[0,+0[xQ
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Furthermore, for every 0 < ¢t < T, sup (Jw(t,z) — w”(t,2)]**) < C Z Bi(t), where

z€eQ i1
Bt = ?J;B [ Galt = 5.2.9) oo, (5,9)) = oo ) s ) s ) ).
By(t) = sup Ga(t —s,z,y)
TEQ
(5 (), (5, 50 ())) = (5, (), 0" (5, ()] Fds, )| )
Bs(t) = ilelg Gd —s,2,y) = (Ga)* (1 = 5,2,y)]
< 08, aly), 0" (5, ()] F s, )| )
But) = sup (| [ ] a0 Do, ysu(s,) = s, o), s, )] dy s ).
Bs(t) = sup Ga(t —s,z,y)
TEQ
(5. (), s, n(9))) = b, (). 0" (s, ma(9)) ] dy | )
Be(t) = ilelg Gd —s,2,y) — (Ga)" (L = s, 2,y)] b(s, £n(y), u" (s, kn(y))] dy ds 2p)-

Burkholder’s inequality, (A.1), Holder’s inequality with respect to the measure |G4(t — s, z,y)|
ly— 2|7 |G4(t — s, s, 2)| ds dy dz, Fubini’s theorem, (2.6), Schwarz’s inequalities and (3.2) imply
that

Bi(t) < G, stelg
2—a

X (n + |u(5 y) — u(s, /in(y)|) (n_T + |u(s, z) — U(S,lin(Z)D dy dz ds

t 1 [t
< G ([ spt6ate = sa ity ds) ™ [ [ 16t sty -
0 x 0

><|Gd<t—s,:c,z>|[n—p<2-a>+ sup  (lu(s, &) — u(s, mn(€)[?) | dy d= ds
(s,£)€[0,¢]xQ

< Cpnr), (3.19)

IGd —s,z,y)| |y — 2|77 |Ga(t — s, 2, 2)]

)

A similar argument based on (A.1) and (2.6) implies that

B < ([l soallfye) ™ [ [ [16a-smllo-

X |Gyt — s, z,2)| sup <|u(5,x) —u (s,;r:)|2p> dy dz ds

TEQ

¢
< Cp/ (t—s)7% sgg lv(s,z) —v"(s,z)|* ds
0 T

a

—I-Cp/o(t—s)_5 sup (|w(3,x)—wn(s,x)|2p)} ds. (3.20)
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Again, a similar argument based on (4.2), (2.4) and (3.1) implies that for ¢ € [0, 7],
¢
P
Balt) < Cy ([ supl[Ga(t = 5,0, = (G (1 = 5,2, n@ ds)
0 reQ
X (1 +supsup  (Ju”(s,y)|* ) ds <C,n~ 2=a)p (3.21)

yeQ s<T

The deterministic integrals are easier to deal with; using Holder’s inequality with respect to

the measure |G(t — s, z, y)| dyds, (A.5), (2.6) and (3.2) we deduce that
t 2p—1
/ Galt = s,,)| dy ds)

/ / Galt = s.2.9)| (w77 4 (Juls,y) = uls,ma(w)) ) ) dy d= ds

< O P9 (3.22)

By(t) < C,sup

Similarly, the inequalities (2.6) and (A.5) imply

Bit) < / / Galt = 5,2,)] (lu(s,5) — u™(s,9) ") dy ds

t
< C’/ sup |v(s,z) —v" (s,:z:)|2pd5—|—0/ sup (|w(s,z) — w"(s,x)|*" ds (3.23)
0 TEQ 0 T€Q

while (2.4), (3.1) and (4.1) yield

Bs(t) < C, sup //‘Gd — s, — (Ga)™(t s,x,y)‘dyds)

reQ

2p—1

//|Gd -5 — (Ga)" (t—s,w,y)\<1+8up sup (Iu”(s,:c)|2p) dy ds

rzeQ s<T
< Cn?. (3.24)

The inequalities (3.19)-(3.24) imply that for any 7" > 0 and p € [1, +oc], there exists a constant
C' > 0 such that for 0 <t < T,

a

¢
sup (|Jw(t,z) — w”(t,:z:)|2p) < C{ —p(2=a) 4 / (t—s)72 sup|v(s,z) — v”(s,x)|2p ds
TEQ 0 TEQ

+/0 (t—s)"% sup (Jw(s,z) — w(s,z)|?)ds.  (3.25)

TEQ
Thus, (3.18) and Gronwall’s lemma (see e.g. [7], lemma 3.4) imply that if vy € C*(Q),

t
sup ([w(t,z) — w"(t,z)[*) < C, {n—p“—w / (t—5)"% sup (Jw(s,z) —w"(s,2)|*) ds
z€Q 0 r€Q

< C,n7? 2-a) .

?

this inequality together with (3.18) yield (3.15). If u € C'~2(Q), using again Gronwall’s lemma
and (3.17), we deduce that for some A €]0, 1], one has

¢
sgg (Jw(t,z) — w"(t,z)|*") < C, {n_p@_a) + / (t—s) % s P72 g
T 0

1
b =9 sup (s, — w2 ds] < e,
0 r€Q
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This inequality and (3.17) imply (3.16).

Finally, let ug € C°(Q); then for any ¢ > 0, let ug. denote a function in C3(Q) such that
|uo — toelloo < & Let u. = v + w. and u? = v + w? denote the previous decompositions of
the solution u. and its space discretization u” with the initial condition ug.; then

sup  |u(t,z) —o"(t, )| < sup  Ju(t,x) —ol(t, 2)|
(t,z)€0,T]xQ (t,z)€[0,T]xQ

] [ Gatt ) ooty o0y + | [ (a0, Bt (9) = s 0

<Ce+4+ sup |ve(t,z)—vl(t,x)|. (3.26)
(t,z)€[0,T]xQ

Hence (3.25) and (3.26) imply that

t
sup (lw(t,z) —w"(t,2)|*) < C |e + n7?C=) +/ (t—s)7% sup (lw(s,z) —w"(t,z)|*) ds |;
T 0 T

Gronwall’s lemma concludes the proof of the theorem.

m

We now prove the convergence of ©™™ and of u® to u" as m — 4+o0.
m

Theorem 3.4 Let o and b salisfy the conditions (2.4) and (2.7). Then
(i) If uo € C*(Q), then for every T > 0 and p € [1,+oc[, there exists a constant C,(T) >0
such that

sup sup sup (|u"(t,z) —u™"(t,2)|*) < C,(T) m~P(1=3) (3.27)
n>1 te[0,T] z€Q

(i1) If uo € C(Q), then sup,,s; suPyejo 1] SUP,eq [U" (L, ) — u™™ (¢, z)| converges to 0 as m —
+oo and for every t > 0 and p € [1,400[ there exists a constant C,(t) such that

wp sup([u(1,2) — 0 (1,2)[) < Cy(1) m=9),
n>1 z€Q

(1ii) The results of (i) and (ii) hold with u?, instead of u™™ if one requires that #TT <g< %

Proof: Again, we only prove parts (i) and (ii) of the theorem under the homogeneous Dirich-
let boundary conditions; the proof of the other cases, which is similar, is omitted. Let
vt x) = fQ(Gd)”(t,x,y) up(kn(y))dy and v™"(t,2) = fQ(Gd)”’m(t,:c,y) uo(kn(y))dy. Sup-
pose at first that wy € C*(Q) and as in the proof of (3.23) in [7], set for d = 1: [ =
SUP¢eio,7] SUPz¢[0,1] o™ (L) — ot (L )| < Z?:l I;, where

Iy = sup sup ‘vn’m([mtT_l] Tm_l,;r:) —v”([mtT_l] Tm_l,:r;)‘
te[0,T] z€[0,1]

I, = sup sup ‘vnqmtT_l] Tm_l,x> - U”(t,:r:)‘
t€[0,T] x€[0,1]

I3 = sup sup ‘vnq(mtT_l + 1)] Tm_l,x> - U”(t,:r:)‘ .
t€[0,T] x€[0,1]

The inequalities (3.27) and (3.28) in [7] imply that I, + I3 < C'm~z. Furthermore, using an
estimate of [7], we deduce that

n—1

mt, T mt T T
Iy <Csup sup sup » j=° eXP(z\’L — —)‘1—6Xp{— (A”—Hn(l—/\ﬂ—)H.
! n>1 t€[0,T] 1‘6[0,1]; ! [T} m [T] T m Tm
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Fort < Tt [mt] = 1 and the right hand-side of the previous inequality is null. If { > T'm™!

?

then there eX1sts a constant ¢ > 0 such that L [2Z] > ¢ and using (A.15) we deduce that
n—1
I, < Csup sup Z]_Qe“” ‘1—exp( —ttm” )‘
n>1 te[ ] =1
n—1 n—1
< sup sup m~ Z] teme’? < (Csup sup m~ Z —ety? <C’m_%.
n2l te[ L] =1 n2l te[ L] =1

Hence for d =1,

N

sup sup sup |[v"(t,x) — """ (t,2)| < Cm™2, (3.28)
n>1 t€[0,T] z€Q

and an easy argument shows that this inequality can be extended to any d > 1. Furthermore,
for any m > 1 and ¢ € [0, 7], sup,5; sup,eq (|0 (t,z) —w™™(t,z)[*") < C S0, Bi(t), where

Bi(t) = sg]gl) sgg

Gd —s,2,y) [o(s, kaly), u" (s, kn(y)))

2p
).

= 5,2, Y) [0(Am(s), fin(y), u" (A (5), K (y)))

—0(Am(s), kn(y), u"(s, kn(y))] F(ds, dy)

By(t) = sg;l) sgg

Bs(t) = sgll) sgg

[ Ga)"(t = s,2,y) = (Ga)""(t = 5,2, y)]

B4(t) = sg]gl) sgg

Gd — 5, 2,y) [b(s, kn(y), u" (s, £ (y)))

Bs(t) = sg;l) sgg

/ Ga)™ (L= 5,2, ) [B(An(5), in (1), 0" (Amn(s), 5 (1))

Bs(t) = sgll) sgg

/[ Ga)"(t —s,z,y) — (Gg)""(t — s, z,y)]

2p
(), ), 0™ (A (5), in ()] s | )
The argument is similar to that used in the proof of Theorem 3.3; the inequalities (2.7), (A.25),
(3.1) and (3.4) provide an upper estlmate of By, (4.60) and (3. 1) give an upper estimate of Bs

so that Bl( )+ Bg( ) < C'm~U=2)? On the other hand, (A.26) and (2.7) show that for some
A €]0, 1],

By(l) < /0 (t—s)"" sup sup  (Ju"(Au(s), u(y)) — u™™ (Asa(s), £a(y))|*") ds.

n>1 yeQ
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A similar argument based on (A.25), (4.59), (3.1) (3.4) provide an upper estimate of 34(t) +
Bs(t) < Cm~" for any u €]0, 1] and show that for some A €]0, 1],

t

Ba) < [0=9)™ supsup (107 (An (), 5)) = 0 (A (), ) .
0 n2l yeq

Thus, Gronwall’s lemma concludes the proof of (3.27). The rest of the proof of the theorem,

which is similar to that of Theorem 3.3 is omitted.

4 Refined estimates of differences of Green functions

This section is devoted to prove some crucial evaluations for the norms of the difference between
(¢4 and its space discretizations (Gg)" , (G4)™™ or (G4)%; indeed, as shown in the previous sec-
tion, they provide the speed of convergence of the scheme. We suppose again that these kernels
are defined in terms of the homogeneous Dirichlet boundary conditions. Simple modifications
of the proof yield the same estimates for the homogeneous Neumann ones.

Lemma 4.1 There exists some constant C' > 0 such that fort >0 and n > 2,

+oo
/ sup/ |Ga(t, z,y) — (Ga)"(t, z,y)| dydt < Cn~", (4.1)
0 TERJQ

+oo
/ sup || |Ga(t, z,) = (Ga)" (2, )| |[{ydt < Cn=C7), (4.2)
0 r€Q

Proof : Let v > 0 to be fixed later on; the inequalities (A.11), (A.19), (A.1) and (A.21) imply
that for 0 < X < 1,

—2

yn
/ sup [|Ga(t,2,.) — (Go)*(t,z, )|idt < Cln™?+n? <O, (4.3)
0 TEQ

—2

yn
/ sup [[|Gat,2,.) = (Ga)" (s ) [y dt < O™t (4.4)
0 T

To estimate fjnoi sup, || |Ga(t, z,.) — (Gq)"(t,z,.)| || dt, where || || denotes either the || ||; or
|| l(a) norm, we first deal with the case d =1 and o < 1. As in Gydngy, we write

4
Gt z,y) — G (L2, y)| < Y Tit,,y)

=1

where

Tita,y) = |Y e pi(@) ¢ily)

Ty(t,z,y) = | [e%"f - e_ﬁﬁ} wi(®) vi(y)

Ts(t,z,y) = | [pi(x) — 7 ()] @)

Ty(t,z,y) = eV @ () [ei(y) — @ilka(y))]| 5 (4.5)




fort >0
H|G(t,;l?,-)—Gn(t,;l? |H < CZHT t :E

Using (A.15) with 8 =0 and .Jy = n, we have

sup |Ti(t,z,y)| < C Z — < e 4 T ] (4.6)

z,y€[0,1] i>n

. . 2,2 . .
Furthermore, since j — ¢™7"™ ' decreases, Abel’s transform implies that

2 1 1
T (t <Ce ! 4.7
(050 £ 0 |+ e 0
Thus, for A € [0,1] and ¢ > 0 we have:
1 2
sup / Ti(t,z,y)dy < C et 1+ t_%] / N dy < C et 1+ t_%] . (4.8)
z€[0,1]Jo 0
For z € [0,1] and ¢ € {1,2,3}, let
Al(z)={ye[0,1]:ly—z|<inlor y+z<inlor 2—z—y<in'}. (4.9)

Then dy(A(z)) < Cn~! and for z € [0,1], y,z € A'(x), |y — 2| < 2in~'; furthermore, for
]E {17 74}7

IT5(t, 2, oy < 2 [Tt 2,) Laz oy Ol ey + 1758 2,) Laz oy ()l ] -

Thus, for A €]a, 1[, x €]0,1 — X[ and ¢ > yn™%, Set Al (m):{(y,z)eéf ly—z|V]|z—z| <
207}, AP () = {(y,2) € Q% ly —al v (¢ +2) < 207"} and AV (@) = {(y,2) € Q* :
ly —z|V(2—2—2) <2n7'}. For X €], 1], p €]0,1] and ¢ > yn~?, exchanging y and z if
necessary in AL (;r:) and using the two above estimates of T (¢, z,.), using (4.6) and (4.7), we
deduce that:

sup [ Tty ly— o e ) dyde < 0o (1+1°%)
z€[0,1] A&l)(x) lz—y|<|z—2|<2 n—!

xly = 2|0y — 217 (14475) Jo = 270 dy d

4n~1 2n~1
< (1 + t_ﬂg_p> (/ u~(1=A+2) du) (/ p= (=4 dv)
0 0

S (! e—cn 24 ne (1 _I_t——) n—()\+,u) S Oe—cn2t ne .

Similar computations for integrals over the sets Al )( ), 1= 2,3, yield

sup ||Tv(4,2,.) Laz ) ()] () e (4.10)

z€[0,1]

Let B(2) = {(y,2) € Q* : 2n~ < |y — x| Alz —a|, [y — 2| < 207"} and BP(x) = {(y,2) €
Q%+ 207t < |y—z|Aly—a|Ale—al}. Then sup,epo I Ti(L 2, ) Lagy (DI, < 2500, Tailt ),
where

10 = [ bl 2 dyde
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Then, for T'> 0 (4.7) implies:

sup T\ (1,2) < Ce /m( (y=slA o= o)y — 2| dydz < Ce n . (4.11)

z€[0,1]
Similarly, for (y,z) € B®, let I(y,z) < M(y,z) < S(y,z) denote the ordered values of |z —
yl, | — z|, ly — z|; then (4.7) implies that

sup T1(2)(t7 z) <C emetn’ /32( )u_(1+%) M(y,z) 02 dzdy < C e e (4.12)

z€[0,1]
The inequalities (4.11) and (4.12) yield:

sup [|Ty(t,2,.) Laneye(Ey < Cn e (4.13)

z€[0,1]
The inequalities (4.10) and (4.13) imply that for ¢ > yn™?, we have

sup ||Ti(t, z, )H < COn®et, (4.14)
z€[0,1]

To study Ty, set A%(t) := Nt — e=°™t then for any A € [0,2] we have
0 <At < C(j/n)? 2 te™ < Cn~A jA et (4.15)
so that (A.16) with K = A yields

sup To(t,z,y) < Cn™ = e (4.16)
z€[0,1]

Furthermore, since Ty(t,z,y) < | Y07, LeMt i) oi(y)| + 12005 Le T o (2) ;(y)], Abel’s
transform yields that for every 1 < Nl( )< Na(n) <n—1,

2 1 1
An (y) S e—ch(n) t { — + — } (417)
; NZ 2 [sin(H52)] - Jsin(Z5H))
Hence for A €]0,2] and X €]0, 2 17 N 1[; we have for any ¢ > 0:
1 2
sup / To(t,z,y)dy < C e n=4 VR / u T du < C e A I (4.18)
z€f0,1]Jo 0

In order to bound the || ||(a) norm of Ty(t,x,.) for t > yn=2, let To(l,z,y) < Zf’zl Ty(t,x,y),
with

[\/n] Ni(n
Latey) =Y MOl Ttz =| Y AWe@ew)| =23
=1 j=Ni—1(n)+1

with Ni(n) = [\/n], N2(n) = [n/2] and N3(n) = n — 1. The inequalities (4.15) with A = 2 and
(A.15) with 8 = 0 yield

(V7]
sup Toi(t,z,y) < C Z nle < O p7! 1+ t_%] e .
z,y€[0,1] =1
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1*} < Cy/n. Hence, raising the first up-

,1[ and the second one to the power §

€]0, +-o0[x[0,
o E]

Furthermore, sup{T21(t,z,y); (,2,y)
3

per estimates of Ty (¢, z,¢) to the power 1 —
separately for ¢ = y and ¢ = z, we deduce that

< Ce_d/ ns (1—|—t_(1_%)) _2+2_a|y z|™*dydz
[0,1]

sup HTQJ(taxa')H?a)
z€[0,1]

< Ce(14171+5)

() 1 <2< 3and 1 < 5 < 2 denote the sets

Al, using (4.17) and (4.16)

=2t (4.19)

Thus, for ¢ > yn=2, if Al ( ) and BY
introduced to estimate |7} (¢, z, )|| . Let X €]a, 1] and p €]0,1 —

with A = 0, we have for A €]a, 1] and p €0, 1],

sup / 0, )Tg s(tyz,y) |y — 2| Top(t,z,2)dydz < Ce™™ ! (1+t=2)
2|)T " dy dz

z€[0,1]
x(Jlo =yl Az —z)) 7 |y — 27 (Jle — y| V |z -

4n~!t 4n~1
< Oe—cn2t(1 + t—kg—“)</ —1+A—«a du) (/ p-1H dU) < Cnae—ctn2[1 + (nt%)—(/\ﬁ-#)] .
0 0

Similar computations for integrals over the sets Al )( ) for @ = 2,3 yield
sup || Taa(t,2,.) Lz () (- )H < Cn®e e, (4.20)
z€[0,1]

Furthermore, (4.17) implies that

) 2n~1 2n~1
/ Tos(t,z,y) |y — 2|7 Tos(t,z,2)dydz < Ce™™ t(/ u™? du) (/ v dv)
BY (z) 0 0

< Ce™ip”, (4.21)

For (y,z) € 37&2)(:{;) let I(y,z) < M(y,z) < S(y, z) denote the ordered values of |z —y, |y — z|

and |z — z|; then we have:

/3(2)( Tt z,y) |y — 2|77 Top(t, z,2) dy dz

a

§C’e_cn2t/ I(y,2)"""2 M(y,2)"'"2 dy d=
20~ <I(y,2) <M (y,2)<S(y,2) <2
< Ce i, (4.22)

The inequalities (4.20) - (4.22) yield that for ¢ > yn =%

sup [|Toa(t, 2, .)|[1f,) < Cn® e (4.23)

z€[0,1]

Let Cy > 0 be a "large” constant to be chosen later on and suppose that ¢ > Coyn™?; in
order to use Abel’s transform for Ty, and ¢ > Con™2, we set S (&) =301 fcos(mf) then
Doaltir.) < |[Siymests =) = Sy v+ 2)) Ayt
[n/2]
HOX [S-o) =Sy + ] (A1) - A7)
i=lv/nl+2
(4.24)

[Stojar1(y = 2) = Spajara (y + 7)] AFn/g](t)‘ :

_I_
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We study the monotonicity of j € [[\/ﬁ] +1, [n/QH — A%(t). For fixed n and ¢, let ¢(j) :=
A%(t); then ¢(j) = exp [—4n2t sin? (%)] — exp[—j2m?t] and

i (4T 92 .
P'(j) = 252t eXp[—jQWQt] 1-— - ( ”) exp |n’t JT 4 sin® J7 .
% n? on

Let u := ;—; and, for [\/n] +1 < j <[n/2], which implies 2\7;5 Sus %7 set
in(2
o B i,
u

in order to study the sign of ¢'(j), we must compare ¢)(u) to 1.
For 0 <u < % we have

5 . ) 3 5\ 2 u 9 . ud w0 ut 9 5
vtz —<“—§+a> IR TR Ty (“ﬁ“ >;
hence we deduce

4n?t(u? —sin®u) 24n2t—1— > —nitut.

Furthermore, the inequalities ¢* > 1 + x and % >1-— %uQ > 0 for 0 < u < § imply that

for 0 <u<7%
I 1+11 t
——u —nttut
3 9

u? 11 22 5,
> 1 - — 2 — —n?tuP+ Z=ntiu .
3 3 9

(u)

v

Set R(X) = 2n?1X? - 1n?t X 4 2 and suppose that Cy > 1%: then R has two zeros

11’

3 16 3 16
X =2 [1 —J1- } d X=11 — |
' mn2e) M Sl 11n?t
Clearly, X3 > (§)? fix e > 0 and suppose that 110 < (1+ ((ESEE which holds for Cy large enough.
Then X; = i with C} < 1+€). For u E] =, 4], R(u?) < 0 and hence t(u) > 1. Let

Cy = (%) - note that for ¢t > & =L, we have nc_\% < #, which implies that ¢(j) decreases for
[Vn] <5 <[n/2].

On the other hand, for 0 < u <

< 7, sin(u )>u—ﬁsothat

3!

while




hence

= (12 ) e (i),

For ¢ € [%, %] and u € [2”\/5, nc—\l/z], we have

41;2tu4[ u}glle

Furthermore, if 0 < r < Aand e® =1+ DA (i.e., D = [e* —1]A7" > 1), then we have
" <1+ Dr. Thus, if Cy is large enough, for A = ::)C % and D defined above, D < 2 (e% — 1)

we have:

2 2 An?t u?
P(u) < (1 3u + 1+ D T u 1 12}
2 1 A4Dn%t u? u?
< 9= 2{ ot 2\, .2 40 U _u }
< l-zutl (5+antﬁ¢+ u' (1 5)@ 1&

2 2

\/andt> 2,0nehas( —x) (1_u_) >

5 12/ —

If g— <1 (Whlch holds if Cy is large enough), for u <

(1-— %)(1 — 120 ) > 0. Let (3 be a positive constant such that €7 < (\/5—1)3 then Cy < C4
Co C42
and for ¢t > =% and u € [, m/;]a
2 u? 20C?
l—(—+42Dn’tv’)>1-"—"-2DC; >0
( 5 + n-tu ) 500 9 Z U,

which implies that ¢ (u) < 1. Hence, for ¢ € [—S, ], the function ¢(j) increases for [y/n] <
H+1< 5 <[5], while for t > 255, ()

7 < [72“0/2%] with 0 < Cy < C; < 1 and decreas?s for [m/{
decreases for [\/n] < j <[n/2]. Fort € [, %] and i = 1,2, set B; =

t
o €

ks

[Bﬁ‘%] [n/2]
Typa(t,zy) = Z A ) @iy )“"‘ Z A ei(y)|
Jj= j=[B1t~ 2]
[B1 ¢~ %]
Toasltyay) = | 3 Aj0ei@) eily)].
i=[B2 174

Trivially, for such ¢, T, 5(t, z,y) < Zle T5,; and there exists a constant (' such that

sup  Tyoi(t,z,y) < Cne ™ (4.25)
(=y)€[0,1]?

for every t > %. For ¢ > Ol Jet Too1(t,x,y) = Too(t, z,y). Using (4.18) and (4.24), we deduce
that for ¢ > ng and B e [0 1]

e ey | (e 0+ 3 Ay 0 oz )

2 i=1 ¢

(N S
lz -yl z+y 2-z-y

T27271(t,$,y) < O[

0[ } [n_le_cm+n—wt—ﬁ1{:_g$ts%}}. (4.26)
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For t € [& 7], it remains to deal with the values of u in the interval [nc—\;%, nc—\};], ie., to

bound directly the sum 75 2 5(¢, z,y). The inequality (4.15) implies that for B 173 < j < By 173,
A%(t) < Cn=24t=4 =17 for any A € [0,1]. Therefore, the inequality (A.15) implies that for
any A€ [0,1],

sup Thoo(t,z,y) < Cn™24 = (A+3) (4.27)
z€[0,1]

Furthermore, (4.17) implies that

1 1 1

sup Tho9(t,2,y) < C + + 4.28
z€[0,1] 222( ) |$—y| r+y 2—-z-y ( )
Finally, for ¢ € [—3 71] and u € [M\ﬁ - i/] with D; = B;m,1=1,2:

¥'(u) = exp[dn®t (u® — sin® u]u™? [2u cos(2u) — sin(2u) + 4n® tu (2u — sin(2u))];

Set L(z) = 2u cos(z) —sin(z) + 2n*tx (z — sin(z)) for z € [2 D, 73,2 Dy t7%]; then

I S x> 4xb 2T 9 x> z°
@) = gty
Dg’ 1 1 2D5 1 4D2 1 DI 1
L DE 12D D
3oyl \3 P T B (i T (i
D3 1 1,1 2D3\ 1 D7 1
N RIRETIE A
3 ni D3 "3 51 Co’ 6! D5 Cf

if Cy is large enough. Thus % in increasing on the interval [ T 2nDi/_] and one of the following

holds: the function ¢ remains larger than 1 on this mterval or it remains less than 1 or there

exists a unique Dy € [%,71] such that ¥ (u) < 1 for u € [Qan/f’an/?] and ¢(u) > 1 for
D1 ]

u € [ AT Hence the function ¢ is either decreasing, or increasing, or first increasing
and then decreasing on the interval [72 7] Therefore, since supge(g, ;] qo(%) < Cn~%41,

Abel’s transform implies that for ¢ € [ =0 il],

1 1
sup Tyao(t,z,y) < Cn 2t} + Y } . (4.29)

z€[0,1] | sin(m %N | sin(7r (z%
The inequalities (4.26) applied with 3 = £ and § = 1 respectively and (4.25) 1mply that for
A €]0,af and g €]0,1 — A[ there exists a constant C' > 0 such that for every ¢ > yn=?

o, /“)( )Tm’l(t’x’y) ly — 2|7 Tapa(t, v, 2) dydz <
Ay (z

z€[0,1]
2n~1

4n—1
C p i g2t gmetn (/ u A du) (/ p it dv)
0 0

4n—1 2n~1
+O Mt p 420 0) 4= () (/ u A du) (/ p A dv) 1{00 n=2<t<Cy n=1}
0 0

< ¢ [h-rratOm —4+a+2(Ap) t‘(“““)}. (4.30)

—ctn 5
—I_ 1{00 n—2§t§01 n_l}n
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Similar computations for the integrals over the sets .Agf)(:c), i = 2,3 imply that forv =A+pu €
10,1[ and ¢ > yn~%:

Sl[lp] | T221(t, ,.) 1A(n2) (@(')H%a) <C {n‘l"'a e~ 4 Licyn-2<i<cn n_l}n_4+a+2” V. (4.31)
z€|0,1

Furthermore, (4.26) with 3 €], 1] yields:

1
27

e /(1)( ) Toon(t,z,y) |y — 2|7 Tapa(l,z, 2) dy dz
B («

z€[0,1]

<C {n” R e e F e n—l}} /B<1)( )(Iw —yl Az —2))7 y — 2" dy dz

n T

<c (n_m R T et VR n—1}> . (4.32)

Finally, as in the proof of (4.22), let I(y,z) < M(y,z) < S(y, z) denote the ordered values of
|z —y|, |z — z| and |y — 2|; using (4.26) with 3 €]3,1[, we deduce:

sup / Toon(t,z,y) |y — 2| Taoa(t,x, z) dy dz
z€[0,1]JBP ()
2

. 2
<C {n‘Q e 4 T2 1{00 n=2<t<Ch n—l}:| (/ w2 du)

2n—1

<C (n—2+a e=Cin 4 p—4B+a =28 Loy n-2<i<éy n_1}> . (4.33)
The inequalities (4.30)-(4.33) yield that for v €]a, 1[ and 3 €]1, 1],

sup ||T22,1(, z, )||?a) <C {n‘Ha e 11

(n—4+a+21/ 1V + n—4ﬁ+a t_Qﬁ):| . (434)
xE[O,l

(G<<fy
For t € [Con~2,Cy n™'] we give an upper estimate of | T2,2,2(1, x, .)H(Qa); the inequalities (4.27)
and (4.28) yield that for A € [0,1], A €]0, af and g €]0, 1

sup / Topa(t,z,y) ly — 2|7 Topa(t, @, 2) dydz <
z€l0,1]J AL ()
—1 —1

4n 2n
€ =404 (=)0 ( / w ) / b )
0 0

< O pm@AEDOHLa = (A+])O4n) (4.35)

A similar computation for the integrals over .Agf)(:z:), 1 = 2,3 yields for the same choice of A,

A pand v =X+ p €]0,1+ af:

Sl[lp] | T22,.2(t, x,y) 1,0 (x)(.)H%a) < O p~ ATt =(At3)v (4.36)
r€(0,1
The inequalities (4.27) and (4.28) yield that for A €]1,1] and A E]Mlﬁ, 1[:
sup / Topa(t,x,y) ly — 2|7 Tapa(t, @, 2) dy dz <
=€[0.1] /B ()
O p~44) =2 A4+3) / (lz =yl Ao — 220N Jy — 2|7 dy d=
{lz—ylV]z—2|>2n=1 |Jy—z|<2n~"}
§ O n—2)\(2A+1)+a t—)\(QA-I—l) ) (437)
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As in the proof of (4.22), let [(y, z) < M(y, z) < S(y, z) denote the ordered values of |z — y|,
|z — z| and |y — z|; then for a €]2,1[, £ < X < %, the inequalities (4.29) and (4.27) with A =1
imply that for A €]0, 5
sup / : Topa(t, =, y) ly — 2|7 Tapa(t, x, 2) dy dz <

1B (2)

z€[0,1
O =X =33 = 4(1=2) p=2(1-3) ( /
2

The inequalities (4.36)-(4.38) used with A = 1 imply that for u €]%, 1| there exists a constant
C > 0 such that for every ¢ € [Con=2,Cyn™]:

2

. 2
u~ A2 du) < Cnp~toy?, (4.38)

n—1

Sl[lp] | T5,2,2(2, x, )H%oz) <C {n_4+a 172 4 Oty 3 “} . (4.39)
z€|0,1

The inequalities (4.34) and (4.39) imply that for v > Cy with Cy large enough, v €]a, 1],
A =3p =23 €]1, 3], there exits a constant C' > 0 such that for all ¢ € [yn™?, o0,

Sl[lopl] HTQ,QH%OZ) S Cnoz n—l e—ctn _I_ 1{00 n—2§t§dl ety (n—4+2u t—u _I_ TL_4 t—? _I_ n—?A t—)\) :| )
ze|0,

(4.40)
The inequalities (4.19), (4.23) and (4.40) yield for X €]1,3[, v €]a,1[ and t > yn~? > Con~?

sup || To(t 2, )|y < Cn® {G_M +n e (14T fnT e

z€[0,1]
gy ey <n—4+2” £ i g t‘A” L (441)
) [+1
We now turn to the term T5. For [ € {0,--- ,n — 1} and — < 2 < , one has
n
. [+1 7 . [ o :
wi(z) — ¢j(z) = V2n { (— - ;L’) Jmeos(jmu) du — (:1; - —> Jmcos(jmu) du} .
n L n/ J,
Hence using (A.16) we deduce that
L1
Ts(t,z,y) < C’/ ' cos(jmu) sin(jmy)| du, (4.42)
where
n—1
‘ Z] e cos(jmu) sin(jmy) ‘ <C {1 + t_l} e . (4.43)
=1

Let Sy(z) == SN sin(ima) for N > 2 and Sy(z) = 0. Then for z €]0, 2], SUp s [Sn(7)] <
|51n(7rx)| ; thus Abel’s transform yields

141

Ta(t,,y) < / (= 1) e[Sy + u) + Suly — u)| du

141

+ /l_ ’ ‘ Z (G —1) e — j €™ [Si(y +u) + Si(y — u)]| du.  (4.44)
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For1 <z<n-—1,set H(z) = z exp {—4n2t sin? (;—Wﬂ, then
n

H'(z) = (1 — o2 gin <ﬁ>> exp [—4n2t sin? (;—W)} .

n n n

2773
is the unique solution in the interval |Z, 22 to the equation (9—|—tan 6 = 0. Therefore, if t > Cyn=2

. 27 3
with Cy = m then H’(”‘go) < 0. Furthermore, if ¢ > m ~ (7 then H'(1) <0 and
if ¢ > m ~ =22 then H'(n — 1) < 0. Hence, for Con2 <1< W there
exists two integers jo € [1 2] and j; € [egr”, n —1] such that H(j) increases for 1 < ] < jo and
for n+1<j53<n-—1and decreases for jo+1 <7< If ——L——~<t< then

D) S T

there exists a unique integer jo € [1, 60”] such that H(j) increases for 1 < j < j; and decreases
for jo+1 <73 <n—1. Finally, if t > 7@) then the function H decreases on [1,n — 1].

Suppose that ¢ > 77! n™?; then H'(n/2) < 0, which implies that jo < [r/2]. The inequalities
%u < sin(u) < u, Which hold for 0 < u < 7 imply that for = < n, H(z) < z exp(—41t2?) <
C17 e~ and that H(n—-1) < Cnect" < Ot 5e " and finally that H(1) < Ce*".
Set A(1) = [0,1] 1 ([=2, 2] U |0, 2] U [(2 = H2) A 1,1] )5 then da(A()) < Cn~". Tet

n ' n n

The map § — 1—2n2t0sin § decreases on [%, 90] and increases on [90, (n_nl)r] , where 0, €]Z, 2~

Co > 0 to be chosen later on; the upper estimates of H(j) for j =1, jo and n — 1 together with
(4.43) imply that for y > 7'V Cyand t > yn™2, 0 < A <1 and y € A(]),

sup  Ts(t,z,y) < C(1+t_A)(1+t_%)e_Ct

ce[L, 1]
I+1
n . T (u _ y) —14A . T (u _I_ y) 14X
></L { sin <T> + | sin <T) }du
< OO+t (4.45)
while for y ¢ A(l),
1 i 2041 |- 20 4+ 1 -1 20 4+ 1 -1
sup Tyt < Ot (1) e [y = ST [y |7 4 ey - T
et 121 z n n
(4.46)

Then, using the partition A(/), A(/)° and the inequalities (4.45), (4.45) and (4.43), we deduce
that for A €]0,1[ and ¢ > yn~2

) ) ) o )
sup Ts(t,z,y) < Ce [(1+t" ) _1_’\+n‘1(1+t"\)(1+t—7*)/ u_(l_A)du}
2

z€[0,1]

< Cet (1417 F)n ", (4.47)

Similarly, for ¢ > yn~% and A €]0, 1] (4.45) implies that there exists a constant C' > 0 such
that for every [ € {0,--- ,n — 1} and x € [l H—l]7

4n~1 4n~1
Tt Ly < Ce N [0 [ o dudo
0 0
< Ce (1417 yp et (4.48)
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Furthermore, for ¢ > v n~? the inequalities (4.43) and (4.46) and separate estimates in the cases
y,z & A(l) and either [y —z| <n lor|y—z| > n" yield that v €]0, 5[ there exists a constant
C > 0 such that for every [ € {0,--- ,n — 1} and z € [1], &1]:

IT5(t 2, ) g Ey < Cn72 e (141704737 173)

2 2
X { /_1 /_1 Ljempicn—y €11 € — |~ dEdn

2 2
+/_1 /_1 emnlznm1y €17 € = | *n~"|d¢ dn}

2

< Cnte @ (1 —I-t_1_§) { (/ it du) (/4n_1 v dv)
-1 0

n

+ / 1 w1 ) ( / 1 ot ao) |

< Cn e (1447178, (4.49)
The inequalities (4.48) and (4.49] imply that for ¢ > yn™, XA = £ €]0, 5[ and v €]0, 3|,

sup ||75(t, z, )H%a) < Cep o= (1 44717, (4.50)
z€[0,1]
[
We finally give upper estimates of Ty. We suppose that x = —, 1 <[ < n — 1; the general
n
k k+1
case is easily deduced by linear interpolation. For — < y < L, 0 <k <n-—1, one has
n n
k
k.(y) = — and using (A.16), we deduce
n
n—1 y
Ta(t,z,y) = Ze”y sin(j mx) / Jmcos(jmu)du
7=1 %
1Y S
< §[€ Zjetﬂ {sin(jw(m—l—u))—l—sin(jﬂ(;z:—u))} du
n | j=1
< Cn™! {t-l + 1} et (4.51)

LetB(l)::{UE[O,l];‘i— ‘gior u§%0r2—%—u§%};asusual dz(B(l)) < en™'.
Let then C'(1) := {y € [0,1];3u € B() N [kn(y),y]} and for i = 1,2 C¥(1) := {z € [0, ]

C'(0).ly 2| < £ Then de(C*(1)) < Cn™t and for y ¢ C1(0), one has Iy~ o] A (y + o
(2—2 —y) > n~". The computations made to prove (4.45) and (4.46) yield for A €]0, 1] the
existence of a constant C > 0 such that for every [ € {0,--- ,n},

Ta(t, 1/, y) Leagy(y) < Cn (1+1775) e,
1 [ I _ I,
Ta(t ) loae(y) < O (L4075 e |y ——[T 4 (y =)+ 2y — =7

Computations similar to those proving (4.47), (4.48) and (4.49) imply that for A €]0,1[ and
v €]0, 5[ there exists a constant C' > 0 such that:

sup Ty(t,z,y) < Ce (14 t_%i) n! (4.52)
z€[0,1]
up Ta(tz, )Gy < n7 2 e (1470 =2 (4.53)
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The inequalities (4.8), (4.18) with A = 2 and A = 1, (4.47) and (4.52) with A = 1 imply
that for some p €0, 1| there exists a constant C' > 0 such that for every t > yn~? with a
constant v > 0 large enough, one has

sup ||G(t,z,. — G™(t,2, )1 < C {n_l (1 +t—%> et (14| (4.54)
z€[0,1]

On the other hand, the inequalities (4.14), (4.41), (4.50) and (4.53) imply that for v €]0, £,
A €]1,2[, p €]a, 1], there exists a constant C' > 0 such that for ¢ > yn™? and v > 0 large
enough, one has

Sup H |G(t’x’ T Gn(t7$7 )| |H?a) <Cn” {e_c”ﬁ +n~temm

z€[0,1]
Lp2 et (1 y () =2 _I_t—1+%>

(T ) T e | (4.55)

which proves the desired estimate for d = 1.
To conclude the proof, it remains to extend the inequalities (4.54) and (4.55) to any dimen-
sion d and to integrate with respect to {. We use the fact that for any d > 2, we have

d i—1
Galt,a,y) = (G (L)l <Y (TTIGE2590)1) Gt 20 w0) = G (2 i)
=1 7=1

< 1 @ (L)) (4.56)

j=i+1
Hence, the inequalities (A.5), (A.19), (4.54) and (4.56) imply that for any A €]0,1[,and any
v €]0,1/4[, there exists a constant C' > 0 such that for any ¢ > yn™2

sup ||Galt, z,.) — (Ga)"(tz, )| < Ct™ {n“l (1+t-%) pett (L4 )] (457)
r€Q

Using (4.3) and integrating (4.57) with respect to ¢ on [yn~2, +oc[ we obtain (4.1). Finally,
for1 <k <d-—1set ay=a2"and set oy = ag_q; then using (4.56), ( 2), (A.1), (A.21) and
(4.55), we deduce that for o €]0,2[, Cy > 0, A €]a, 1[, p €]1, 3], v €]0, 24 and for ¢ > yn~?2 for

~ > 0 large enough, one has since {2 < C'n on the time interval [yn~ ,—I—oo[

d
supH |Gd(t7$7'_( ) ( |H Z T2 ;; @

r€Q
A 16 2,) = Gty g e
< Cn” [e"Ct”Q +nlem ™ fnTE e (t—(1+”) n= 1m0+ =22 4 )

+(n‘4 IR T R e S A t_“) 1{W_2§t§ém_1}} . (4.58)
Integrating (4.58) on the time interval [y n=2, +oc[ and using (4.4), we deduce (4.2).

We now estimate the norm of the difference (Gy)" and (G4)™™.
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Lemma 4.2 Given any T > 0 and v > 0 there exists C > 0 such thal

sup// (Ga)"(t,z,y) — (G)"™ (t+ Tm™ " z,y)|

z€Q
+H(Ga) (L, z,y) — (Ga)p(t+ Tm™" 2, y)| | dydt < Cm™"*", (4.59)
T
sup [ TG (1) = (G (04 T 2, I
zeQ Jo
HG) (42, — (Gal (e, ey ] di < €1 (4.60)
Proof : We only prove these inequalities for G — G™™ under the homogeneous Dirichlet

boundary conditions and first suppose that d = 1; let Gn = G" — CN?:; and G™™ = Grm — G
where G™™ is defined by (A.27), i.e

(nAVm)—1

Gy = Y (1=Tm™ M) T g @)eulra(y).
7=1
and CN?:; is defined by
) (nAy/m)=1
Grta,y)= Y N ep(a)en(raly)). (4.61)
7=1

Then (A.35) and (A.38) provide upper estimates of the norms of G™™. Furthermore, if G" is
different from zero, then \/m < n and (A.15) with Jo = y/m and 8 = 0 implies the existence
of positive constants ¢, C' such that for every ¢t > 0 and =,y € [0, 1]:

Gr(tz,y)| < Cem™™ (1+17%). (4.62)
Since j — A7 in decreasing, Abel’s transform implies that for z = [/n:

1 1 1
+ +
[z —kn(y)l 2+ raly) 22—z —ka(y)

Thus, if D2 (1) is defined as in the proof of lemma A.5, for some ¢ > 0

|G (L2, y)| < C e (4.63)

/ / G (b2 y) [y — 2 |G (8 2, 2)| dy de
D3, (l)e J D2, (1)

< (Cemctm [/ X _Qdu/cm %v_adv—}— (/2 ) u_l_%du>2}
-2 0 -2

m
[a]

§ O e—ctm )

3

while for © = [/n, p €], 1[, v €]0,1 — p] and § = p + v €]a, 1], we deduce that

/ / G (1 2y Ly — 2 |G (1, 2, )] dyds
D3 (1) J D3 (

1
cm” 2 cm
(1 ‘|’t_§) e—ctm / u—l-HL—oz du/ v—l-}-u dv
0 0

N



Thus, for A €]0, 1[ and 8 €]a, 1],

IG (L, ) < C(14+17Y)eem, (4.64)

a—p

NG (e, )y < Camimam™. (4.65)

Let ¢ be a positive constant to be fixed later on; for ¢ < ¢T'm~! we estimate separately the
norms of G™™(t,z,.) and G (t, z,.). Inequalities (A.31) and (A.32) provide us the estimates of
G for (7, we proceed in a similar way. Indeed, j — exp(A7 ¢) is decreasing and exp(A” 1) <
e~ for some positive constant ¢, and |é%(t,$,y)| < C(n A /m). The arguments used to
prove (A.31) and (A.32) immediately yield that these inequalities hold with G instead of G"™™;
hence for any ¢ > 0 there exists a constant C' > 0 such that for t < éT'm™!,

Gn (b2, ) — Grm (o, )]y < C(1+17Y), (4.66)
G () = G (2, )]Gy < C(nAym). (4.67)

Furthermore, if ¢ € [¢T'm™, T}, then :

|(~;:Ln(t7x7y) - ém,n(t’x’yﬂ § T(t,:l?,y) = Tl(taxay) + TQ(t7$7y)

where
(nAvm)-1 T mt n (%))

Ti(t,z,y) = Z exp (([ 7 -|-m1) Al T) _ (1 — A7 %) ] @7 (z)ei(ka(y))|
(nAV/m)=1 T mt n

Ta(t,z,y) = Z exp (A}t) — exp (([ il +m1) ¢ T)] e (2)pi(ka(y))| -

We first study T1(t,z,y); for = €]0,n A \/m][, set

B.(s) = exp [_ ([mﬂ .\ 1) . (1 ., 4Tm <%>)] e (_ (5] +1) A;mw <%>) |

Then ®(z) > 0 and ®)(z) = % ([%t] + 1) 2nm sin (%) -ty (z), where for a = [%t] + 1 and
u = 4n? L sin? (%) >0,

m

Ui(z) = Alu) = ™™ — (1 4 u)~F)

We remark that for fixed { > 0, a increases to +oo with m and that for ¢ < é¢I'm™, a >
[¢] + 1 > ¢. We then write

Au) =e " (u), §(u) =1—explau — (a+ 1) In(1 + u)].

It is easy to see that § increases on [0, 1] and decreases on [1,+oc[. Since §(0) =0, > 0 on
[0, ug) and § < 0 on [ug, +oof for some ug > L. We remark that for any ¢ >0

5<E> =1—exp {c—(a—l—l) 1n(<1—|—§)

a

<0

if
2 2 33

(a+1)1n(1+§)§(a+1) E—“—Z+3“—3] <ec.
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This last inequality holds if and only if for X = £, II(X) = : X* -1 X + a+1 <0. Ifa+1>%
which holds if ¢ > %, then the discriminant of II(.X) is positive and II(X) < 0 for X €]X1, X5,

where

3 (1 [ 4 4 3 (1 [ 4 3
Xi=2 (== /-- < dXy=2(-4,/>— > 2.
' 2(2 4 aa+u) at1 e 2<2+ 1 3@+1J 4

Fora25,aj_—1<%andﬂ()()<00ﬂ[ +174]

Furthermore, for this choice of ug = £, if ug = 4n? E s1n2( T, then

that is H( ) >0 for £ = 114?, i.e., for some ¢ < 4.

c cT
0 S q)l(.’l,'o) S e ? ln(1+—) —e ¢ < C (€2a _ 1) .
‘mi
For t > %, using Abel’s transform, we have for z = — and &, (y) = %,
n
T 1 1 1
Tito,y) <€ — | + + | 4.68
T (EEr ) A P 09

We now estimate Ty(¢,z,y) by Abel’s transform if ¢ > ¢T m™" for large enough ¢ > 0. For

z €]0,n A /m[, set

Oy(z) = exp {— 4n*t sin® (%)} — exp {— 4n® ([mtT~' +1]) T m™" sin’ (%)} :

Then ®5(z) >0 and for b= ([mtT']+1) Tm™" and U(z) = 4n? sin®(Z), one has

®y(z) =2nm sin <E> {b etV _y e—tU(z)} ‘

n

Since Z[ze V] = [1 — 2U(z)] e7?V("), we deduce that for bU(z) < 1, i.e., 2 < Cyt=3, we
have ®,(x) > 0 while for t U(z) > 1, i.e., x > Cy1~%, we have ) (z) < 0. Suppose finally that
tU(z) <1 <bU(z) and let eg > 0 be fixed small enough; then for ¢ > ¢T'm=" for ¢ large
enough, we have b < {4+ Tm™! < C+Tl t, which implies that b = (1 +¢) ¢ for € €]0,&0]. Thus, for
tU(z) € [(14+¢e)7 1]

®\(z) = 2nmsin

Je—tU@) {(1 +e) o—etU(@) _ 1}

LU e (1= t0(2) — 21 (1 - tUQﬂ) +0(%)].

wn
&
N
Il
S

and set II(7) = %ZQ — (1 4+ ¢€)Z + 1; then II has two roots, Z; = e (1 +
2

(e?) and Z; = e7' (14 e+ V1+e?) = 241+ 0(g). Thus, for
5(x) > 0 while for ¢ U( ) €]1=5,1] ®4(z) < 0. Therefore the function

tU( )€ [(1—|—£
,n 2(j) increases on {1,--- ,j0} and decreases on {jo + 1,n A \/m}, for

j el
some jg = C’t and

,(jo) < eXp<—4nQb sin? <2;7T\/¥)) {exp <4n2Tm_1 sin? (2;”:/9) — 1} < %

Therefore, given ¢ large enough, for ¢ > ¢I'm™!, we have using Abel’s transform:

OT 1 ! !
Ts(t, < —

(4.69)
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Furthermore,
(L, 2, y)| < [T1(t, 2, y)| + [ Ta(t, 2, y)| < C (n A v/m). (4.70)

Hence for )\ €

10, [ usmg (4.70), (4.68) and (4.69) we deduce that there exists a constant C' > 0
such that for ¢ > = AT

IT(L 2, )]s < o7 m™+5 (4.71)

and for p €]a,1[, v €]0,1 — y[ and 8 = p + v €]a, 1], using the sets ./4(/)\\/—( ) for i <3 and
50

n/\\/—( z) for j = 1,2 and the fact that + < %\/—, using (4.68) and (4.69), we deduce that
given ¢ large enough, there exists constants ¢,C > 0 such that for every ¢ € [=- T T

H |T(t, z, )| H(2a) < C (n A \/E)AH-U (T m—l t—l)?—u—u / u—l-}—u—a du/ ’U_H_y dv
0 0

+%§[(/2 u—zdu)</ﬁv—adv)+(/2 2 )]
o : o
< CnAvm)m 2172 < Om 5172, (4.72)

For d = 1, the inequalities (A.35), (4.64), (4.66 and (4.71) imply the existence of A €]0, 1[ and
positive constants ¢, C' such that for any ¢ €]0,7:

sup [[(Ga)" (L, @,.) = (Ga)"" (L2, )1 < C {(1 FtN) e 4 t_l“m_H%} : (4.73)
T€Q

while the inequalities (A.38), (4.65), (4.67) and (4.72) yield the existence of 3 €]0,a A d] and
positive constants ¢, ¢ and C' such that for every ¢ €]0,T]:

e

sup |[|(Ga)" (4, 2,) = (Ga) ™™ (4, ) |2 < Cm? [ (14 (tm)”

) +m~27? 1[6Tm_1,T](t):| .
z€Q

(4.74)

As in the proof of Lemma 4.1, let a, = a2k for 1 <k < d—1 and ay = a4_;. The inequalities
(4.73) for d = 1, (A.19) and (A.25) yield (4.73) for any d, while the inequalities (4.74) for
d =1, (A.21) and (A.26) yield (4.74) for any d. Integrating with respect to ¢ we deduce the
inequalities (4.59) and (4.60).

5 Some numerical results

In order to study the influence of the correlation coefficient o of the Gaussian noise on the
speed of convergence, we have implemented in C the implicit discretization scheme u™™ in the
case of homogeneous boundary conditions in dimension d = 1 for the equation (2.15).

To check the influence of the time mesh, we have fixed the space mesh n~! with n = 500
and taken the smallest time mesh mj' with mgo = 20736. Using one trajectory of the noise F,
we have approximated by the Monte-Carlo method e(m;) = (Ju™™(1,.5) —u™™i(1,.5)|*) and
é(mi) = sup,epq (Ju™™ (1, 2) —u™™ (1, 2)[?) for 13 divisors m; of mg, ranging from m; = 854
to my3 = 144. These simulations have been done for various values of «, including the case of
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the space-time white noise which corresponds to the limit case @ = 1. Assuming that «™™0 is

close to u, according to (3.15) and (3.27), these errors should behave like C [m;(l_%)—kn‘(?‘a)] ~
m;(l_%) for this choice of n and m;. Thus, we have computed the linear regression coefficients
c(t) and d(t) (resp. ¢é(t) and cZ(t)) of In(e(m;)) (resp. of In(é(m;))), i.e., of the approximation
of In(e(m;)) by ¢(t)In(m;) + d(t) as well as the corresponding standard deviation sd (reps. sd)
for K = 3200 Monte-Carlo iterations in the case o(z) = 0.2z + 1 and b(z) = = + 2, which are

summarized in the following:

o Theoretical | observed ¢(t) sd observed ¢&(t) sd

exponent T = % T = % sup sup
White noise 0.5 0.6664727 0.006270 0.6329907 0.0107664
0.9 0.55 0.6954329 0.0120673 0.6852743 0.0129754
0.8 0.6 0.7547656 0.0098305 0.7203216 0.0134158
0.7 0.65 0.7511618 0.0089021 0.7507985 0.0185679
0.6 0.7 0.8158496 0.0143157 0.8006539 0.0089716
0.5 0.75 0.8826439 0.0144247 0.8512296 0.0088718
0.4 0.8 0.8986740 0.0099570 0.9111777 0.0112821
0.3 0.85 0.9592507 0.0116868 0.9134532 0.0116631
0.2 0.9 0.9890983 0.0115842 0.9562799 0.0147068
0.1 0.95 1.1797052 0.0114345 1.0219011 0.0120427

The study of the influence of the space mesh is done in a similar way; we fix the time mesh
m ™1 with m = 32000 and let the smallest space mesh ng = 432. Again for various divisors of ng,
using one trajectory of the noise F' we have approximated e(n;) = (Ju™"™(1,.5)—u™"™(1,.5)|?)
and é(n;) = (Ju™™(1,.5) — u™™(1,.5)|*) for the 7 divisors n; of ng ranging from 72 to 12.
Assuming that u"*" is close to u, according to (3.15) and (3.27), these errors should behave like
C [m=1-2) —I—ni_( ~ n;(Q_a) for this choice of n; and m. Thus, we have computed the linear
regression coefficients y(z) and §(z) (resp. 4(t) and 5(t)) of In(e(n;)) (resp. of In(é(n;))), i.e.,
of the approximation of In(e(n;)) by v(z)In(n;) + §(z) as well as the corresponding standard
deviation SD (reps. SD) for K = 3200 iterations in the case o(z) = 1 and b(z) = 2z 4 3; these
results are summarized in the following:

2—0[)]
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a Theoretical | observed () SD observed () SD

exponent r=1 r=1 sup sup
White noise 1.0 1.2512638 0.0345607 1.2503774 0.0267767
0.9 1.1 1.3466928 0.0340313 1.3360574 0.0200828
0.8 1.2 1.43471 0.0335898 1.4250593 0.0210765
0.7 1.3 1.5460363 0.0305230 1.5050464 0.0298206
0.6 1.4 1.5869267 0.0209759 1.5859167 0.0273728
0.5 1.5 1.6713847 0.0279707 1.667131 0.0271759
0.4 1.6 1.7704079 0.0282726 1.7259275 0.0258797
0.3 1.7 1.8380935 0.0280384 1.7910783 0.0231881
0.2 1.8 1.8978477 0.0274440 1.8503569 0.0208426
0.1 1.9 1.9236069 0.0208369 1.9054399 0.0229467

Finally, since our method applies in the case of non-linear coefficients, we have performed
similar computations for e(m;), é(m;), e(n;) and é(n;) for I < ¢ < 13 and 1 < 7 < 7 with
K = 3000 iterations in the case o(x) = b(z) = 1 4 0.2 cos(z); the corresponding results are
summarized in the following:

o Theoretical | observed ¢(t) sd observed ¢é(t) sd
exponent T = % T = % sup sup
White noise 0.5 0.4914526 0.0602499 0.5200141 0.0430660
0.8 0.6 0.5550415 0.0449213 0.6069792 0.0495536
0.5 0.75 0.7243992 0.0176232 0.7946869 0.0430660
0.2 0.9 0.8606597 0.0225398 0.8571082 0.0429083
a Theoretical | observed v(z) SD observed () SD
exponent T = % T = % sup sup
White noise 1.0 1.0277942 0.0789985 0.8263350 0.1056492
0.8 1.2 1.3628039 0.0830278 1.127607 0.0684362
0.5 1.5 1.5626127 0.0710379 1.5506996 0.0685654
0.2 1.8 1.7350629 0.0707697 1.4874854 0.0768065

In this semi-linear (non-linear) case, the speed of convergence is worse and the precision is less
than in the previous cases.

Acknowledgments: The authors wish to express their gratitude to Olivier Catoni and Jacques
Portes for their helpful advise when writing the C codes.
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A Appendix.

We start this section by stating and proving some results concerning the Green kernel Gy
in arbitrary dimension d > 1. As in the previous sections, we will suppose that G; and
its discretized versions are defined with the homogeneous Dirichlet conditions on 4Q); all the
results stated remain true if one replaces the Dirichlet conditions by the Neumann ones.

Lemma A.1 Let d > 1 and o €]0,2 A d[. There exists some constant C > 0 depending only
on a, such that for all z, ' in Q =[0,1]? and 0 <t <¥' < T :

sup | 1Galtyy, 1L, < C17F, (A1)
yEQR
+oo 5 )
I 1 2—a
|Gt = Gatta Iyt < Cle o (A2)
t (2]
sup/ H|Gd(t’—s,x,-)—Gd(t—s,x,-)|H?a)ds < CW -tz (A.3)
z€Q Jo
tl
sup [ 16t = s )|y ds < Ol =1 E (A4)
r€Q Jt

Proof: To prove (A.1), recall first the usual upper estimate of |G4]:

2
|Ga(t, z,y)| < Ci 2 exp (—c%) . (A.5)

We remark that, if |z —y| > |y — z|, one has exp (—c |z — y|2t_1) < exp (—c ly — Z|2t_1), while
if |[xt —y| < |y — 2|, one has |y — 2|7 > | — y|~. Hence

+oo 2 +oo0 B
sup [|Ga(t, @, )H?a) < o (/ e du) . </ e e it dv)
z€Q 0 0

< Cts.
We now prove (A.2) and set 2’ = z 4+ v. Then, for 0 < ¢ < |v]*, we have
H |Gd(t7$7 ) - Gd(taxlv )| H?a) <2 [ H |Gd(t7$7 ) Hi + H |Gd(t7$/7 ) ”i] :
E

The change of variables defined by x —y = |v|n, z — z = |v| € and ¢ = |v|* s in the first integral

(and a similar one with z’ instead of = in the second one), combined with (A.1), yields
v ) 1
—d |, |-2d
| NGt = Gt NI i < [ st o
el o ol
N G e e 2

1 2 2
< C’|v|2_a/ s_dds{// T |§—n|_ae_clﬁs| dédn
0 {le=n[<Inl}

nl? lef?
+// e |7 e dedn |
{lE=nI>Inl}

1
C |v|2_a/ s 2ds = C |v|*7. (A.6)
0

|2

IN
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On the other hand, if ¢ > |v|?, for every j € {1,---,d}, we use the following well-known
estimate

0 _d41 |z — y|?
- < 2 —c—7 i
‘axj(?d(t,:z;,y)‘ < Ct exp( c— (A7)

and the fact that, if G = G, we have

d i—1
|Gd(t7$7y) Gd 2 ' y < Z (H t l’j,yj)|> |G(t7$i7yi) - G(t $27y2)|

=1

x<Hmw%m)

j=i+1

Thus, Taylor’s formula implies that

+oo
/HWM%%%@%M@ﬁ

v|?
d +o0 kP foy =2, 2
_ Zy J i
< CE vf/ (a4 dt/ dy/ dz H ly; — 2|7 e / dyd),
i=1 vl a4 ¢ i=1 [0,1]?
d
ezt P o —plzitrovi—zf? _b” —y]|2 — _clrz—zﬁ
X € ! ly: — 2| ™" e ! H e ly; — 2™ e ! :
]:2+1

Then, for every ¢ € {1---,d} such that v; # 0, the changes of variables x; — y; = v;n;,
;r:—z]—v,tf]for]<z;z; —y; =vin, '.—zj—vzfjfor]>z—|—1 and ¢ = v? s for every j
yield

+oo
/HWM%%%@%M@ﬁ

K

d oo
< O vt [ e s [y [ e o
=1 1
In; 12 le; 12 ;4211 S Imtal?
X l_Ie_C = |v:| =% |y — &7 e™° E / dXy d)y e~ & v, | 7 e‘“%
i#i [o.1]?

d +o0 1 In, 12 le; 12
< C Zl{uﬁéo} |vi|2_a/1 s~(+D) ds/l d\ (H 2 e s = &7 e T dE; dn;
i=1 - i

ol . o leial
></ e Iy — &7 e
2

Splitting again the integrals between {|&; — ;| < |n;|} and {|&; — n;| > |n;|} for 7 # ¢ and
1€ = mil < [ni + A} and {[& —mil = |ni + Al} yields

400 +oco
/lmew@mww@ﬂmWJ S0Rds < o (AR
1

v|?
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The inequalities (A.6) and (A.8) give (A.2). We now prove (A.3) and set b = ' —¢; an argument
similar to that used to prove (A.6), based on the change of variables defined by t — s = hr,
y—x=+vhnand z —z = Vh ¢ yields

hAt
/ HGa(t' = s,2,) = Ga(t = s,2,)] (o) ds
0
2

< C/ h- d+1dr{r+1 /dn/ de b h e~ B =8 16 — o e

o],

< C’hl__/ {(r—}—l) +r- 2}ds§0h1__. (A.9)

2 |¢—n™ e

On the other hand, for s > h, we use Taylor’s formula and the estimate

‘%Gd(t,fc,y)‘ < C’t_%ﬁe_clm_tyl , (A.10)

combined with the previous change of variables used to prove (A.9); thus we obtain

t
/ VGalt = 5,2,) — Galt — 5,0, )| 2, ds
hAt

| 2

! s _lz=ul _lz=zp?
< ChQ/ ds/ dXy d/\g/ (s 4+ Ah)~ 5 (3+/\2h) SRR ly — 2|7 e “s¥Reh dy dz
hAt

—|—OO d+1 1
< / d+2>hdr/ A 1dXy (r+ M) (r4 M)~ T
01]
/ W % | — | e W dgdy
1-2 dt1 _dp o dul? vl
< Ch dr d/\ld)\g (r+ A1)~ =R (r+ X))~ RN |ul T eT TR |u| T du do
0

< Ch'TE drr~ 0+ < O =% (A.11)

I
< hl“/+oo /dAl/dAng) za(rHQ)—ﬂ
J

The inequalities (A.9) and (A.11) yield (A.3). Finally, (A.1) implies that for h = ' — ¢ > 0,

t! h
[ NGt sl as< o [ mtar— ot
which completes the proof of (A.4).

We recall the following well-known set of estimates, and briefly sketch their proof for the
sake of completeness:
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Lemma A.2 Forz,2' € @Q,0<t <t <T and u €]0,1],

+oo
/ /|Gd(t,:1:,y)—Gd(t,x’,y)|dydt < Clz -2, (A.12)
0 Q
t
//|Gd(t—s,$,y)—Gd(t'—s,x,y)|dyds < O =t (A.13)
0JQ
tl
/|Gd(t—5,x,y)|dyds§C|t'—t|. (A.14)
t

Proof : The inequality (A.14) is a straightforward consequence of (A.5); on the other hand,
(A.12) is deduced from Taylor’s formula and (A.7). Finally, to prove (A.13), one writes for
p €10,1],

|Ga(s + h,z,y) — Ga(s, z,y)|
1
< C{IGuls +hoa) 7+ (Gl r )0} 0 [
0

I

0
%Gd(s + A, z,y)| dX.

(A.10) yields fot fQ |Ga(s + hyx,y) — Ga(s,z,y)| dyds < h* fg s7"ds, which implies (A.13).

The following technical result are needed to obtain refined estimates for the discretized

kernels G™ and G™™.

Lemma A.3 For any ¢ > 0 there exists a constant C > 0 such that, for K > 0, 8 € [0,1],
t>0,a>1and Jy > 1,

Zj_ﬁe_ct]Q S Ce—cth |:1_|_t—%:| , (A15)
7=Jo
z:jﬁ'e—cl‘j2 § O |:1_|_t_£2+_1:| e_Ct7 (A16)
7=1

i T2\ -1 1 1

Z<1+C ]) < C?’)’LET_E, (Al?)

m

7=Jdo

> cT'j?\ - m T J2\

Z<+ m - JOT(G_1)<+ m ) ( )

J=Jo

cta?

Proof : Since the functions 2 — 2z %e™°**" are decreasing for 0 < 3 < 1, we have

= -2 2 +eo 2
Z j—ﬁe—ct] S Jo—ﬁe—ctJO + / l,—ﬁe—ctz dx
J=Jo Jo
< J—ﬁ —cth t_l;_,@ —cth ! —ﬁd 1 oo _cz2d
< o € + e x x {JOﬁS1}+ e x| .
JO\/f (Joﬁ)Vl

For 0 < 8 < 1, the last inequality yields (A.15) and also (A.16) for K = 0. Finally, given

| K | K
0,4/ 35| and decreases on M,—I—oo{.

Therefore, if t > K/(2¢), a change of variables and integration by parts yield

> - -2 too - 2 K41 too - 2
Z]'I& e—ct] S e—ct + / xhe—ctm‘ dx S e—ct L4 / y[&e—cy dy S C e—ct
i=1 1 v

’e . S 2 .
K > 1, the function z — z%e™" increases on
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and on the other hand, if t < K/(2¢), if J; := { K/(th)} , then

= -2 S 2 2 teo 2
E j]& e—ct] S / xf& e—ctr dx + Jlfx e—ctJ1 T / .,L,Ixe—cta: dr
=1 1 J

1

< +oo - 4 4
< o [ eh ot <o
NG

To prove (A.17) and (A.18), we use the fact that j — (1 + %) ™ decreases for any a > 1, we

deduce that
00 T.2 —a 00 T2 —a
> () = () e
m Jo m

J=Jo

direct integration for @ = 1 and the obvious estimate 1 < = for a > 1 yield the inequalities

(A.17) and (A.18).

The following lemma provides bounds for the || ||; and || ||, norms of |(G4)" (¢, ,.)|.

Lemma A.4 There exists a constant C' > 0 such that for every t > 0, d > 1, A > 0 and
I<a<f<dAN?2,

sup sug (G (t,z, )| < Ct=re™, (A.19)
n xre
sup sug [(Ga)™ (¢, x, )Hfa) < C1=5 et , (A.20)
n xTe
s l(Ga 1 Iy < Cnt e, (A21)

Proof: It suffices to check these inequalities for z = [/n, 0 <[ < n; we at first prove them for
j—1

d=1. Let S;(z) := Zcos(iwx); using Abel’s transform and well-known estimates for S;(z)

=1

we have, since j — A7 = —4n? sin? <;—7T> is decreasing, for kK = K, (y),
n
n—1
. et A -k x [+ & -~ 1—k -~ I+ k
G (L2 y)| = C Y e[S (r—=) = S (r——) = §j(n——) + Sj(r—]
= n n n n
. . - - . .
< O | [Su(m—=) = S ;’i)]‘ +0 3 [Silr—=) = S(m ;"”)] (417 — &77]
Jj=2
-1 -1
< AT . T — Kn(Y) . T + Ka(y)
< Ce { sin (7‘[‘72 ) + |sin <7T72 ) ) (A.22)

Fix 0 < A < 1 and ¢ > 0; using (A.15) with 3 =0, Jo = 1, and (A.22) we deduce that

! 1 1
sup ||G"(t, x,. < Ce @ (14+t7) sup / { +
relo0] H ( ) Hl ( ) refo.1]Jo |$ _ /in(y)|1_2)\ |l, + lin(y)|1_2/\
1
d
B
< Ce (1417, (A.23)
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Let Al (z) be the sets defined by (4.9); for 0 < [ < n, set Dﬁf)(l) = A!(I/n). Then dx (DSN[)) <
2 2
% and, il y & Dﬁf”)(l), one has |z — k,(y)| > §|{L’ —yl, |z + ku(y)| > §|:1: + y| and similarly,

1 1
ify & Df)(l), |z — kn(y)| > §|;c —yl, |+ ku(y)| > §|:r; + y|. Thus, for every n > 1 and
0<I1<n,||G"t1/n,.) H%a) < C(Ty 4+ Ty + T3), where T; is the integral of |G™(t,1/n,y)||y —
z|7*|G(t,1/n, z)| respectively on the sets Ay = {(y,2) : y € Dg)(l),z € D%Q)(l)}, Ay ={(y,2) :
y € DO, 2 € DO, [y—2[ <n™'}and As = {(y,2) : y € D), = € D), Jy—=2| >
n~1}.
Thus, using (A.15) and (A.22), we deduce that for 0 <a <A< 1,0< pu <1,

—1 —1

3n 3n
Tl < Ce—ct (1 + t—%&) (/ u—l—oz+/\ du) (/ U—I-HL dv) :
0 0

a similar computation implies that

Ty < Ce (14173 (/i g1t du) (/1 p- 1+ dv) .

n

Finally, for 0 < p < 1,

Ty < Ce (141 % )n' </”_1 u~” du) (/2 U_H'“) :
0 et

The upper estimates of T; for 1 <7 < 3 clearly imply (A.20) when d = 1.
Again, to prove (A.21), it suffices to show that this inequality holds for # = [/n, i.e., that

SUPg<i<y || 1G™ (L, 1/n, )] H?Q) < Ce *n®. Using the sets A;, 1 < i < 3, the inequality (A.22),
the crude estimate

G*(t,z,y) < Cne ™, (A.24)

and replacing in products involving two of the terms |z — y|™!, |t — z|7* and |y — z|7% the
largest norm by the smallest one, we obtain for « < A <1 and 0 < p < 1,

3n~1 3n~1
n / u A dy / v do
0 0
n~t 2 2 . 2
X + / u * du (/ v? dv) + </ w72 du)
0 n—1 n—1

S C [n/\+,u n—/\—,u-l—oz _I_ na} e—ct S Ona e—ct )

H|Gn(t7$7>|”%a) < Ce

Since (Gg)*(t,z,y) = H?Zl G"™(t, 2, v:), (A.23) immediately yields (A.19). For d > 2, and
1<i<d—1,set a; = a27" and set ay = ay_1; then using (2.2), the inequality (A.20) (resp.
(A.21)) for d = 1 yield (A.20) (resp. (A.21)) for every d.

We now prove a similar result for the norms of (G4)™"™ (¢, z,.).

Lemma A.5 For every A €]0, 2[and 8 €]a,d A 2[, there exist positive constants ¢ and C' such
that for every t €]0,T],

sup [|[(Ga)"™ (1,2, )L < Ce™™ (14+17%), (A.25)
r€eQ
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and

s () (2. [y € O™ [(n Ay (14178 4 Cemird (a20)

TEQ

Proof : For m > 1, set (G)"™(t,z,y) = (Ga)"™(t,z,y) — (éd)”’m(t,;c,y),

d
(Gd)ﬂ,m(t7 xZ, y) = Z H 1 — Tm_l /\TL )_[T] 99@(;5) g‘ok(lin(y)) . (AQ?)
ke{l, [(nAy/m)—1)]}d 1=1

Let (CN%)nm = G and (Gy)m™ = G™™. Since j — (1 — % )\”) 7 4 decreasing,

G (4 Tm™ 2, y)| < C (n A /m) e (A.28)
and Abel’s transform yields that for z = L and r,(y) = &:
. 1 1
G (4 Tm™L 2, y)| < C e hw_ﬁn(y)' e +2_$_Kn(y)}. (A.29)
Finally, since for § < +/m, In (1 + Lap? sin () > C 2 Tm,
N (nA/m)—1
G (t+ Tm™ z,y)| < C e < et (14172). (A.30)

1

J
Thus, repeating the arguments used to prove (A.19) - (A.21) we deduce that for A > 0, 0 <
a<fB<dA2,

sup ||én’m(t,x, N < Ce™ (1 + t_’\) , (A.31)
TEQ
sup [|G7m (1,2, )2, < C e {(1 +H A (A m)ﬂ (A.32)
r€Q

We finally give an upper estimate of the norms of |(G4)™™ (¢, z,.)| and thus we suppose that

vm < n. Using (A.17) we deduce that there exist positive constants ¢, C' such that for any
1< _T

= +oo T ([t too 1 m
sup |G™" (L, z,y)| < C / (1 + = 3?2) 7Y gy <C / (mT)™2 (1 + yz)_([T]—H) dy .
IvyEQ m—1 m VeT2-1

Hence for ¢ < 2T'm™", since [%] =1 or 2, for z,y € Q, |G (tz,y)| < C < y/m < =% while
for t > 2T'm™1,
— 1 +oo 'ITL 1 1
) <t [y g # e ay < ortmt <ot
VeT
This implies that
sup |G (1, x,y)] < C (1 4+477). (A.33)
z,y€Q '
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Furthermore, since j — (1 -7 m™" /\?)_[mTt] decreases, Abel’s transform implies that for x = [/n

and k,(y) = k/n,

~nm - iy \—(2E41) 1 1
|(’;’7 (t—I_Tm 1,$,y)| S C<1_Tm 1)\ m) T |: . mr—kK + . mr+K :|
\/_ |Sln( ( 2n(y))| |Sln( ( +2n(y))|
1 1 1
< Cetm [ n i } A.34
|t — kn(y)| 4 kaly)  2—2—kKu(y) ( )

An argument similar to that used to prove (A.19) implies that for A €]0, [, there exists C' > 0
such that for ¢ €]0, 77,

sup |G (¢, z, )| < C (1 + t_A) . (A.35)
r€Q
Finally, for = [/n let Di (1) = {z€[0,1]: |z —z| <iy/m,orz+2z < iy/m,or2—z—z < iy/m}.
Then since n > \/m, for y ¢ D3 (1) we deduce that |z — r,(y) > Lz —y|, |z + Ka(y) > Lz —y|

and |2 — 2 — k,(y) > 1]z — y|. Hence, the arguments used to prove (A.20) with d = 1 and
(A.21) show that

/ / G (4 T2, y)| Jy — 2 |G (0 T 2, 2)| dy d=
D3 cDSlc

—

-2 2 2
< Ce_dm / , / u o dudv + (/ ) u=(1-3) du) }

<Cem . (A.36)
Furthermore, (A.33)-(A.34) imply that for p €]a, 1], v €]0,1 — p[ and 5 = p + v €]a, 1],

/ / GP™ 4+ Tm™ 2 y)| ly — 2|7 |G+ Tm ™z, 2)| dy dz
D3

cm
E DR
<(Ct 7 ¢ 7‘Lm/
0

The inequalities (A.36) and (A.37) imply that for 3 €]a,d A 2],

u TR dy / v o < C e mT (A.37)
0

D=
D=

e

sup [[|G™7 (1,2, )|[f,) < C e m% [1+ (tm)~=] . (A.38)

z€[0,1]

Hence (A.38) and (A.32) imply that (A.26) holds for d = 1. We conclude that this last inequality
holds for any d > 1 as in the proof of Lemma A.4

We finally prove upper estimates for the norms of time increments of (G4)".

Lemma A.6 For any A > 0 and T > 0, there exists C' > 0 such that for any h > 0

sup sup sup / I(Ga)"(t —s,z,.) — (Ga)"(t+ h —s,z,.)||1ds < C’h%, (A.39)

n>1 z€Q t€[0,T]

sup sup sup / (G (t +h —s,2,.)|1ds < C R, (A.40)

n>1 z€Q t€[0,T]

sup sup sup / | 1(Ga)*(t —s,2,.) = (Ga)*(t+ h — s, 2,.)| H?a) ds < C'h'™% (A.41)

n>1 z€Q t€[0,T]

sup sup sup / I 1(Ga)"(t+h —s,z,.) |H(2a) ds < Ch'"%. (A.42)

n>1 z€Q t€[0,T] /¢
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Proof: Inequality (A.19) implies that for z € @, A > 0 and n > 1, foh fQ (Ga)*(s,z,y)| dyds

<C foh s~ ds < C h'=*, which proves (A.40). Using (A.21) we deduce that for any ¢ > 0 and
h<n?

?

ch ch
/ I1(Ga)™ (s, 2, )] [{ay ds < / n®ds < Cn®h < h'"% . (A.43)
0 0

Suppose that s > n~? and suppose that d = 1. Then by (A.15), |G"(s,z,y)| < C (1 + s_%);
using (A.22) and proceeding as in the proof of (A.21), replacing the sets A’ (z) defined by (4.9)
by the sets A% (z) = {y €[0,1] : |y — z| <ivhor y+a<ivhor 2—z—y <ivh}, since we
have assumed that n=' < /s, we deduce that |[|G"(s,z,.)| H%a) < Cs 2e . Let ap = a27F
for 1 <k <d—1and ag = a;_1; using the inequality (2.2), we deduce that for s > n~2, then

11(Ga)" (552, )| [I{.) < Cs™2 e (A.44)

Hence the inequalities (A.43) and (A.44) imply

h hAn=—2 h . .
[ NG seolityas<c[ [ wass [ sl <cws,

An—2

which proves (A.42). To prove (A.39) and (A.41), set ¢’ = ¢ + h; then for d =1 and z = In~!
n—1
o @ tsn = [ o ) [ oons2 )] o]
7=1

Thus (A.16) implies the existence of a constant C such that for any n > land z = [n~",

t n—1 +
/ / |G*(t = s,2,y) = G"(t' — s,2,y)|dyds < C Z/ e~ dr [1 - e-4”2hsi“2(%)}
0 JQ =1 Y0

< CY TP RA] < ChE,
which proves (A.39). The inequality (A.43) proves that given any ¢ > 0,

eh
sup sup / IG"(s,z,.)|+ |G" (s + h,x,.)| H?a) ds < Ch'~% . (A.45)
o)

n>1 zefo,1]

Fix ¢ > 0 large enough, let ¢ > ¢/ and set ®(j) = exp(—4n?t sin (é—))—exp(—4n2t’ sin2(£—2)) >

0. Then
®'(7) = 2nsin (‘ﬂ> 1" exp <— 4n*t' sin? (—)) — 1 exp < 4n*t'sin (;r)) }
n n

Then the arguments used to estimate ®y(z) and then |T3(¢, z,y)| in the proof of Lemma 4.2
show that there exists C' > 0 such that for any s € [¢h,T], x = [n~' and y € [0, 1],

n—1
| = 50 3(@) r{mnly)] < Cexp (X _y,
i= [h_%]
x{ 1 n 1 n 1 }
|z — kn(yl 4 ka(y) 2—2—£Ku(y)l’

)
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while (A.15) implies that

n—1
‘ (eAJ"t _ e%"t’) ©;(z) c,oj(/{n(y)‘ < C exp </\Fh—%]t) )
]

=2
Using again the sets A; (), we deduce that for any s € [¢h, T

sup. sup |67 (s,,.) = G (s + by ) Iy < CRIE

nz1 z€l0,1]

Thus,
T o
[h IG"(s,z,.) — G"(s+ h,z,.)| H%a) ds < Ch'"2 . (A.46)

The inequalities (A.45) and (A.46) yield (A.41) for d = 1. Using (A.39) for d = 1 and (A.19)
we deduce that (A.39) holds for every d. Let oy = a2 Ffor1 <k <d—1and ag = az_1; then
using (2.2) and either (A.45) for t < ¢h, (A.44) and (A.46) for t > ¢h, we deduce that (A.41)
holds for any d; this concludes the proof.
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