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Abstract
This paper is devoted to the problem of estimating functionals of

type µ(f) =
!

fdµ from observations drawn from a positive recurrent
atomic Markov chain X = (Xn)n∈N with stationary distribution µ.
The properties of different estimators are studied. Beyond an accurate
estimation of their bias, the estimation of their asymptotic variance is
considered. We also show that the results of Malinovskii (1987) on the
validity of the formal Edgeworth expansion for sample mean statistics
of type Tn = n−1

"n
i=1 f(Xi) extend to their studentized versions,

normalized by the asymptotic variance estimates we consider.

Résumé
Cet article est consacré au problème de l�estimation d�une fonc-

tionnelle linéaire µ(f) =
!

fdµ à partir de l�observation d�une chaîne
de Markov récurrente positive X = (Xn)n∈N possédant un atome ac-
cessible et de distribution stationnaire µ. Les propriétés de plusieurs
estimateurs sont étudiées. Au delà d�une estimation précise de leurs
biais respectifs, nous nous intéressons également à l�estimation de
la variance asymptotique de ces estimateurs. Nous montrons aussi
que les résultats de Malinovskii (1987) concernant le développement
d�Edgeworth de l�estimateur Tn = n−1

"n
i=1 f(Xi) s�étendent à la ver-

sion studentisée, lorsqu�il est normalisé par l�estimateur de la variance
asymptotique que nous proposons.



1 Introduction
In Malinovskii (1987) the validity of the Edgeworth expansion has been estab-
lished for a sample mean statistic Tn = n−1

"n
i=1 f(Xi) of a Harris recurrent

Markov chain X under very general conditions. The main limitation for ex-
ploiting these asymptotic results is of practical nature. As a matter of fact,
a practical use of these results, for constructing asymptotic conÞdence inter-
vals for instance, requires the knowledge of the asymptotic variance, which
is used to standardize the sample mean. Therefore, the asymptotic variance
is generally unknown in practice and must be estimated. In the setting of
Markov chains with a known accessible atom (which includes the whole case
of Markov chains with a countable state space, as well as numerous speciÞc
chains widely used in queuing/storage models) we study in the present paper
a speciÞc estimator of the asymptotic variance and show the validity of the
Edgeworth expansion for studentized sample mean statistics, when normal-
ized by this estimator. The construction of the estimator relies on a practical
use of the so-called regenerative method, which consists, in the case when the
chain possesses an accessible atom, in dividing the trajectory of the chain
into i.i.d. blocks of observations (namely, regeneration cycles) corresponding
to the successive visits to the atom. As in Malinovskii (1987), the proof of the
asymptotic results is also based on the regenerative technique. Beyond the
legitimate investigation of the normal approximation for studentized statis-
tics, it is noteworthy that the arguments put forward in this paper are crucial
to show the gain in accuracy provided by speciÞc regeneration-based block
bootstrap methods for Markov chains (see Datta & McCormick (1993a) and
Bertail & Clémençon (2003a, b)).
This paper is organized as follows. In section 2, notations, as well as the

assumptions needed in the next sections, are set up. In section 3, we Þrst
consider the problem of estimating functionals of type µ(f) =

!
fdµ from a

realization X1, ..., Xn of an atomic Markov chain X with stationary proba-
bility measure µ. In the nonstationary case, we give an accurate estimation
for the bias of estimators constructed by suitable truncations of the sample
mean statistic #µn(f) = n−1"n

i=1 f(Xi). In the case when the chain possesses
a known Harris recurrent atom, an estimate of the asymptotic variance of
the sample mean statistic is exhibited in section 4, and an asymptotic bound
of its bias is also given. In section 5 a speciÞc way of studentization of the
sample mean statistic based on this estimate (which we call regeneration-
based studentization) is considered. The validity of the Edgeworth expansion
is shown for this studentized version of the sample mean. Proofs are given
in section 6.
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2 Assumptions and notation
Throughout this paper, we consider a time-homogeneous Harris recurrent
Markov chain X = (Xn)n∈ℵ valued in a countably generated measurable
space (E, E) with transition probability Π(x, dy) and stationary distribution
µ(dy) (refer to Revuz (1984) or Chung (1967) for the basic concepts of the
Markov chain theory). For any probability distribution ν on (E, E) (respec-
tively, for any x ∈ E) we denote by Pν (resp., Px) the probability on the
underlying space such that X0 ∼ ν, (resp., X0 = x) and by Eν(.) (resp.,
Ex(.)) the Pν-expectation (resp., the Px-expectation).
For any subset C ∈ E, we denote the successive return times to C by

τC = τC(1) = inf{n ! 1, Xn ∈ C},
τC(j + 1) = inf{n ! 1 + τC(j), Xn ∈ C}, for j ! 0.

The initial distribution of the chain will be denoted by ν and 1A will
denote the indicator function of the event A.
In the present paper we assume that the chain X possesses a known

accessible atom A, that is to say a subset A ∈ E such that for all x, y
in A, Π(x, .) = Π(y, .) and µ (A) > 0. We denote by PA (respectively,
EA(.)) the probability on the underlying space such that X0 ∈ A (resp.,
the PA-expectation). In this setting, the stationary distribution µ may be
represented as an occupation measure. By virtue of Kac�s theorem (see
Theorem 10.2.2 in Meyn & Tweedie (1996)), we have:

µ(B) = EA(τA)
−1EA(

τA$
i=1

1{Xi∈B}), for any B ∈ E .

The main step in the application of the regenerative method for investigating
the asymptotic properties of such an atomic chain consists in dividing the
sample paths of the chain into �blocks� corresponding to consecutive visits
to the atom:

B1 = (X1+τA(1), ...,XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ... .
The strong Markov property implies that the blocks Bj are i.i.d. random
variables valued in the torus T = ∪∞n=1En.
Beyond the case of a Markov chain with a countable state space, for which

any recurrent state is an atom, it is noteworthy that many speciÞc atomic
Markov chains are widely used in the applications, especially in the area
of operations research for modeling storage and queuing systems (refer to
Asmussen (1987) for an exhaustive overview). We give below an example of
such a Markov chain, which is a reÞnement of the classical GI/G/1 queuing
model (see Browne & Sigman (1992)).
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Example 2.1 (Work-modulated single server queue) Consider a general sin-

gle server queuing model, evolving through the random arrival customers and

the service times they bring: there is one server and customers are served

in order of arrival. Denote by (Tn)n∈ℵ the sequence of arrival times of cus-

tomers into the service operation (by convention the Þrst customer arrives at

time T0 = 0) and by (τn)n∈ℵ the sequence of end of service times. Hence the

nth customer arrives at time Tn and leaves at time τn). If Wn denotes the

time he has to wait before he begins being served, we have W0 = 0 and

Wn+1 = (Wn +∆τn −∆Tn+1)+,

for all n ∈ ℵ, with (x)+ = max(x, 0), ∆τn = τn − τn−1 and ∆Tn = Tn −
Tn−1. Let K(w, dx) be a transition probability kernel on &+. Assume that,
conditionally to W1, ..., Wn, the service times ∆τ1, ..., ∆τn are independent

from each other and independent from the interarrival times ∆T1, ..., ∆Tn and

the distribution of ∆τi is given by K(Wi, .) for 1 " i " n. Then, assuming
further that (∆Tn)n∈ℵ is an i.i.d. sequence with common distribution G,

independent from W = (Wn)n∈ℵ, the waiting time process W is a Markov

chain with transition probability Π given by

Π(Wn, {0}) = Γ(Wn, [Wn,∞[),
Π(Wn, ]w, ∞[) = Γ(Wn, ]−∞, Wn − w[),

for any w > 0, where Γ = G∗
#
K is the convolution product between G and the

transition kernel
#
K image of K by the mapping x )−→ −x. The study of the

stochastic stability is made easy when the atom {0} is accessible. One shows
that W is δ0-irreducible as soon as K(w, .) has inÞnite tail for all w ! 0.

In this case, the chain is positive recurrent if and only if there exist a test

function V : &+ → [0, ∞] such that V (0) <∞ and b > 0 such that%
Π(x, dw)V (w)− V (x) " −1 + b1{x=0},
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for any x ! 0 (refer to Meyn & Tweedie (1992) for further detail).

3 On estimating the mean
Let X(n) = (X1, ..., Xn) be a realization of length n of the chain X. We
consider the problem of estimating a functional of type µ(f) =

!
f(x)µ(dx),

where f is a µ-integrable real valued function deÞned on the state space
(E,E) (note that µ(f) = µ(A)EA(

"τA
i=1 f(Xi)), cf section 2). A simple and

natural estimator of µ(f) is the empirical estimator #µn(f) = n−1"n
i=1 f(Xi).

By virtue of the LLN for additive functionals of a positive recurrent Markov
chain (refer to Theorem 17.1.7 in Meyn & Tweedie (1996) for instance), this
estimator is strongly consistent as soon as the initial distribution ν fulÞlls
the regularity condition

Pν(τA <∞) = 1.

Remark 3.1 By the representation of the stationary distribution µ using

the atom, one may show that in the stationary case, this condition is always

fulÞlled since Pµ(τA = k) = µ(A)PA(τA ! k).

Whereas the estimator #µn(f) is zero-bias when the chain is stationary, its
bias is signiÞcant in all other cases. In Malinovskii (1985) (see also Theorem
3 in Malinovskii (1987)) an accurate evaluation of the Þrst order term in the
bias of the sample mean #µn(f) is given, when the starting distribution is not
the stationary one.

Proposition 3.1 Let f : (E, E) → & be a measurable function and ν be a
probability distribution on (E, E). Let us suppose that the following �block�
moment conditions are satisÞed

EA((

τA$
i=1

|f(Xi)|)4) <∞, EA(τ 4A) <∞,

Eν((

τA$
i=1

|f(Xi)|2)) <∞, Eν(τ2A) <∞,
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as well as the Cramer condition lim
t→∞

|EA(exp(it
"τA

i=1 f(Xi)))| < 1. DeÞne

α = EA(τA), β = EA(τA

τA$
i=1

{f(Xi)− µ(f)}),

ϕν = Eν(

τA$
i=1

{f(Xi)− µ(f)}), γ = α−1EA(
τA$
i=1

(τA − i){f(Xi)− µ(f)}).

Then, we have as n→∞

Eν(#µn(f)) = µ(f) + (ϕν + γ − β/α)n−1 +O(n−3/2). (1)

DeÞne also the sample mean based on the observations (eventually) collected

after the Þrst regeneration time only by

&µn(f) = (n− τA)−1 n$
i=1+τA

f(Xi)

with the convention &µn(f) = 0, when τA > n, as well as the sample mean

based on the observations collected between the Þrst and last regeneration

times before n by

µn(f) = (τA(ln)− τA)−1
τA(ln)$
i=1+τA

f(Xi)

with ln =
"n

i=1 1A(Xi) and the convention µn(f) = 0, when ln " 1. We have,
as n→∞

Eν(&µn(f)) = µ(f) + (γ − β/α)n−1 +O(n−3/2), (2)

Eν(µn(f)) = µ(f)− (β/α)n−1 +O(n−3/2). (3)

Remark 3.2 We recall that �block� moment conditions may be classically

replaced by drift criteria of Lyapounov�s type, which often appear as more

tractable in practice. One may refer to chapter 11 in Meyn & Tweedie (1996)

for further details about such conditions as well as many examples.
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This result points out that, by using the data collected from to the Þrst
visit to the atom A only, one eliminates the only quantity depending on
the initial distribution ν in the Þrst order term of the bias (more precisely,
the term ϕν is induced by the component

"τA
i=1 f(Xi) of the sum, while

γ is induced by
"n

i=1+τA(ln)
f(Xi)). This observation is crucial, when the

matter is to approximate the sampling distribution of such statistics by using
Bootstrap procedures in a nonstationary setting. Given the impossibility to
approximate the distribution of the �Þrst block sum�

"τA
i=1 f(Xi) from one

single realization of the chain starting from ν, it is thus better to use the
estimators &µn(f) or µn(f) than #µn(f) in practice: for these estimators, it is
actually possible to implement speciÞc Bootstrap methodologies, in order to
construct second order correct conÞdence intervals for instance (see Bertail
& Clémençon (2003a, b)). We also emphasize that other consistent estimates
may be considered, such as

µ∗n(f) = n
−1

n$
i=1+τA

f(Xi),

with the usual convention regarding empty summation. But unfortunately,
as an elementary calculation shows, the latter estimator does not keep the
property regarding to the Þrst order term in the bias mentioned above in the
nonstationary case. The proof of (2) and (3) goes exactly along the same
lines as the proof of (1) in Malinovskii (1985) and is thus omitted.

4 Estimation of the asymptotic variance of

the sample mean statistic
Beyond strong consistency, sample mean statistics may be shown to be as-
ymptotically normal in some cases, since it is proved that the CLT holds,
under speciÞc moment conditions, for additive functionals of type

"
f(Xi).

Condition 4.1 (CLT Moment condition for f and ν) The Markov chain X

is such that

EA(τ
2
A) <∞, Eν(τA) <∞

and

EA((

τA$
i=1

|f(Xi)|)2) <∞, Eν((
τA$
i=1

|f(Xi)|)) <∞.

6



Remark 4.1 Note that these conditions do not depend on the accessible

atom chosen.

We have the following result (see Theorem 17.2.2 in Meyn & Tweedie
(1996) for instance).

Theorem 4.2 If the Markov chain X fulÞlls the CLT Moment Condition

for f and ν , then we have the convergence in distribution under Pν :

n1/2σ−1(f)(µn(f)− µ(f)) d−→ N (0, 1) , as n→∞,

with a normalizing constant

σ2(f) = µ (A)EA((

τA$
i=1

{f(Xi)− µ(f)})2),

for µn(f) being any of the three estimates #µn(f), &µn(f) or µn(f).
Remark 4.2 It is noteworthy that the asymptotic variance σ2(f) differs

from the variance of f(Xi) under the stationary distribution (except in the

i.i.d. case, which corresponds to the case when the whole state space is an

atom), that is equal to varµ(f) = µ (A)EA(
"τA

i=1{f(Xi)− µ(f)}2).
We now address the problem of estimating the asymptotic variance from

the observations X1, ..., Xn. Let us consider the number of visits to the atom
A between time 0 and time n, ln =

"n
i=0 1A(Xi), and form the ln − 1 blocks

B1 = (XτA(1)+1, ...,XτA(2)), ..., Bln−1 = (XτA(ln−1)+1, ..., XτA(ln)),

when ln > 1. We set for 1 " j " ln − 1, f(Bj) =
"τA(j+1)

i=1+τA(j)
f(Xi). From the

expression of the asymptotic variance

σ2(f) = µ (A)EA((

τA$
i=1

f(Xi)− µ(f)τA)2),

we propose the following estimators of σ2(f), adopting the usual convention
regarding to empty summation,

σ2n(f) = n
−1

ln−1$
j=1

(f(Bj)− µn(f)sj)2, (4)
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where s1 = τA(2) − τA(1), ..., sln−1 = τA(ln) − τA(ln − 1) denote the lengths
of the blocks dividing the trajectory. Observe that this estimator is inde-
pendent from the observations collected before the Þrst visit to A and after
the last one before time n. Whereas it is all the same from the estimation
point of view, whether µn is replaced by #µn or &µn in (4) and the blocks sums
f(B0) =

"τA
i=1 f(Xi) and f(Bn,ln) =

"n
i=1+τA(ln)

f(Xi) are used in the com-
putation of the estimate or not, it will make much easier the calculation in
the forthcoming Edgeworth expansion.
Recall that ln →∞ a.s. and ln/n → µ(A) a.s. as n→∞. Hence, when

the CLT Moment Condition is fulÞlled, a straightforward application of the
LLN shows that this estimator is strongly consistent under Pν.

Proposition 4.3 (Strong consistency) If X fulÞlls the CLT Moment Con-

dition for f and ν, then we have as n→∞, σ2n(f)→ σ2(f), Pν a.s.

Remark 4.3 In the case of a general irreducible chain X with a transition

kernel Π(x, dy) satisfying a minorization condition

∀x ∈ S, Π(x, dy) ! δψ(dy),

for an accessible measurable set S, a probability measure ψ and δ ∈ ]0, 1[
(note that such a minorization condition always holds for Π or an iterate

when the chain is irreducible), an atomic extension (X, Y ) of the chain may

be explicitly constructed by the Nummelin splitting technique (see Nummelin

(1984)) from the parameters (S, δ, ψ) and the transition probability Π. In

Bertail & Clémençon (2003b), a full methodology based on the simulation of

a sequence (X1, Y ∗1 ), ..., (Xn, Y
∗
n ) with a distribution approximating in some

sense the one of the regenerative extension (X, Y ) from the parameters (S, δ,

Φ), the original observation segment X1, ..., Xn and an estimate of the tran-

sition kernel Π based on the latter, has been developed. This allows to extend

a speciÞc Bootstrap procedure (namely the Regenerative Block-Bootstrap, see

Bertail & Clémençon (2003b)) for Markov chains with a known atom to the

case of irreducible chains. It is likely that such a methodology could be ap-

plied successfully to the problem of asymptotic variance estimation, so as to
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extend the statistical procedure described above to the much more general case

of positive recurrent Markov chains. This goes beyond the scope of the present

paper, but will be the subject of further research.

The result below gives an order of magnitude of the bias of this estima-
tor. The Cramer conditions appearing (which will not be assumed later) are
maybe not necessary but make the proof easier.

Proposition 4.4 Let f : (E, E) → & be a measurable function and ν a

probability distribution on (E, E). In addition to conditions of Proposition
5, assume that the Markov chain X fulÞlls the �block� moment conditions

EA((

τA$
i=1

|f(Xi)|)6+ε) <∞, EA(τ 6+εA ) <∞

for some ε > 0, as well as the Cramer conditions

lim
t→∞

'''''EA exp
(
it(

τA$
i=1

(f(Xi)− µ(f))2
)''''' < 1,

lim
t→∞

'''''EA(exp
(
itτA

τA$
i=1

(f(Xi)− µ(f))
)''''' < 1.

Then, we have

Eν(σ
2
n(f)) = σ

2(f) +O(n−1), as n→∞.

Remark 4.4 We mention that a precise study of n(Eν(σ2n(f)) − σ2(f)), as
n → ∞, could be carried out, if one Þrst establishes a non uniform limit

theorem for U-statistics of m-lattice i.i.d. random vectors, similar to the

result established in Dubinskaite (1982) for sample mean statistics of m-

lattice i.i.d. random vectors (extensively used in Malinovskii (1985) and in

our proof to derive the expansion (1)). This will be dealt with in further

investigation.

We emphasize that in a non i.i.d. setting, it is generally difficult to con-
struct an accurate (positive) estimator of the asymptotic variance. When no
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structural assumption, except stationarity and square integrability, is made
on the underlying process X, a possible method, currently used in practice,
is based on so-called blocking techniques. Indeed under some appropriate
mixing conditions (which ensure that the following series converge), it can
be shown that the variance of n−1/2#µn(f) may be written var(n−1/2#µn(f)) =
Γ(0) + 2

"n
t=1(1 − t/n)Γ(t) and converges to σ2(f) =

"∞
t=∞ Γ(t) = 2πg(0),

where g(w) = (2π)−1
"∞

t=−∞ Γ(t) cos(wt) and (Γ(t))t!0 denote respectively
the spectral density and the autocovariance sequence of the discrete-time
stationary process X. Most of the estimators of σ2(f) that have been pro-
posed in the literature (such as the Bartlett spectral density estimator, the
moving-block jackknife/subsampling variance estimator, the overlapping or
non-overlapping batch means estimator) may be seen as variants of the basic
moving-block bootstrap estimator (see Künsch (1989))

�σ2M,n =
M

Q

Q$
i=1

(µi,M,L − µn(f))2, (5)

where µi,M,L =M
−1"L(i−1)+M

t=L(i−1)+1 f(Xt) is the mean of f on the i-th data block
(XL(i−1)+1, . . . , XL(i−1)+M). Here, the sizeM of the blocks and the amount L
of �lag� or overlap between each block are deterministic (eventually depending
on n) and Q = [n−M

L
] + 1, denoting by [·] the integer part, is the number

of blocks that may be constructed from the sample X1, ..., Xn. In the case
when L = M , there is no overlap between block i and block i + 1 (as the
original solution considered by Carlstein (1985)), whereas the case L = 1
corresponds to maximum overlap (see Politis & Romano (1995)). Under
suitable regularity conditions (mixing and moments conditions), it can be
shown that if M → ∞ with M/n → 0 and L/M → a ∈ [0, 1] as n → ∞,
then we have

E(�σ2M,n)− σ2(f) = O(1/M) +O(
*
M/n), (6)

V ar(�σ2M,n) = 2c
M

n
σ4(f) + o(M/n), (7)

as n → ∞, where c is a constant depending on a, taking its smallest value
(namely c = 2/3) for a = 0. This result shows that the bias of such esti-
mators may be very large. Indeed, by optimizing in M we Þnd the optimal
choiceM = n1/3, for which we have E(�σ2M,n)−σ2(f) = O(n−1/3). Various ex-
trapolation and jackknife techniques or kernel smoothing methods have been
suggested to get rid of this large bias (refer to Politis & Romano (1995),
Götze & Künsch (1996) and Bertail & Politis (2001)). The latter somehow
amount to make use of Rosenblatt smoothing kernels of order higher than
two (taking some negative values) for estimating the spectral density at 0.
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However, the main drawback in using these estimators is that they take nega-
tive values for some n, and lead consequently to face problems, when dealing
with studentized statistics.
In our speciÞc Markovian framework, the estimate σ2n(f) is much more

natural and allows to avoid these problems. This is particularly important
when the matter is to establish Edgeworth expansions at orders higher than
two in such a non i.i.d. setting. As a matter of fact, the bias of the variance
may completely cancel the accuracy provided by higher order Edgeworth ex-
pansions (but also the one of its Bootstrap approximation) in the studentized
case, given its explicit role in such expansions (see Götze & Künsch (1996)).
The purpose of the next section is to show that for the particular class of
positive recurrent Markov chains with an atom, we can get an Edgeworth
expansion with a rate OP (log(n)n−1), close to the optimal rate OP (n−1) that
can be obtained in the i.i.d. case, under rather weak assumptions (including
nonstationary situations).

5 Edgeworth expansion for the studentized

sample mean statistic
According to Proposition 4.3, under the assumption that the CLT Moment
Condition is fulÞlled, the sample mean statistic #µn(f) (respectively &µn(f),
µn(f)), when renormalized by the sequence σ

2
n(f), is thus asymptotically

pivotal. Now we show that it admits an Edgeworth expansion. The main
difficulty in establishing such an expansion arises from the random character
of the number of blocks, namely, ln−1 (note that conditioning on ln is useless,
since, conditionally to ln, the f(Bj)�s, 1 " j " ln − 1, are obviously not
i.i.d.). Thus, we can not directly apply the results on studentized Edgeworth
expansions (see Hall (1987)).
To derive an Edgeworth expansion for the studentized sample mean,we

will assume that speciÞc �block� moments and Cramer conditions hold.
These hypotheses are stated below in the same spirit as in Malinovskii (1987).
Assume that the chain X fulÞlls the following conditions.
(i) (Cramer condition)

lim
t→∞

'''''EA exp
(
it

τA$
i=1

(f(Xi)− µ(f))
)''''' < 1.

(ii) (Non degenerate asymptotic variance)

σ2(f) > 0.
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(iii) (�Block� moment conditions) For some integer s ≥ 2,

EA(τ
s
A) <∞,

EA(

τA$
i=1

|f(Xi)|)s <∞.

(iv) (�Block� moment conditions for the initial law ν)

Eν(τ
2
A) <∞,

Eν(

τA$
i=1

|f(Xi)|)2 <∞.

(v) (Non trivial regeneration set)

EA(τA) > 1.

Note that, in the case when f is bounded, the �block� moment conditions
(iii)-(iv) may be obviously replaced by some regularity conditions involving
τA only (see Clémençon (2001)). Besides, links between conditions of type
(iii) above and conditions on the rate of decay of strong mixing coefficients
of a noncyclic chain have been studied in Bolthausen (1982).
(vi) (Boundedness of the density of the block sums) The density of the"τA(j+1)
i=1+τA(j)

f(Xi)�s is bounded.
This last condition is mainly technical but is clearly satisÞed in many

practical situations. In what follows, µn(f) denotes indifferently any of the
estimates #µn(f), &µn(f) or µn(f). We deÞne the standardized sample mean

tn = n
1/2σ−1(f)(µn(f)− µ(f)),

the studentized sample mean

&tn = n1/2σ−1n (f)(µn(f)− µ(f)),
and the renormalized asymptotic bias

b = lim
n→∞

n σ−1(f)Eν(µn(f))− µ(f))

which is given in Proposition 3.1, depending on whether µn(f) is equal to#µn(f), &µn(f) or µn(f). The expansions for these different estimators only
differ from one another in the bias term. We are now ready to state our
main result.
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Theorem 5.1 Under assumptions (i)-(vi) with s = 4, the following Edge-

worth expansion is valid uniformly over R,

∆n = sup
x∈R

|Pν (tn ≤ x)−E(2)n (x)| = O(n−1) as n→∞

with

E(2)n (x) = Φ(x)− n−1/2
k3(f)

6
(x2 − 1)φ(x)− n−1/2bφ(x), (8)

and

k3(f) = α
−1(M3,A − 3β

σ(f)
),

where

M3,A = EA

(
τA$
i=1

(f(Xi)− µ(f))
)3
/σ(f)3,

Φ(x) denotes the distribution function of the standard normal distribution

and φ(x) = dΦ(x)/dx. A similar result holds for the studentized statistic

under (i)-(vi) with s = 8 + ε, for some ε > 0

∆S
n = sup

x∈R
|Pν(n1/2σ−1n (f)(µn(f)− µ(f)) ≤ x)− F (2)n (x)| = O(n−1 log(n)),

(9)

as n→∞, with

F (2)n (x) = Φ(x) + n−1/2
1

6
k3(f)(2x

2 + 1)φ(x)− n−1/2bφ(x).

Remark 5.1 Note that in the i.i.d. case we may choose A = E (so that

τA = 1, α = 1) and we have then b = 0. Hence, the Edgeworth expansion

of the studentized sample mean reduces in that case to the well known form

Φ(x)+n−1/2 1
6
k3(2x

2+1)φ(x) with k3 = Eµ({f(Xi)−µ(f)}3)/σ(f)3, given in
Hall (1987). Besides, under the hypothesis that the following series converge,

13



we have (see Theorem 6 in Malinovskii (1987))

σ(f)−3k3(f) = Eµ( &f3(Xi)) (10)

+ 3
∞$
i=1

{Eµ
+ &f 2(X1) &f(Xi+1),+ Eµ + &f(X1) &f2(Xi+1),}

+ 6
∞$

i=1,j=1

Eµ
+ &f(X1) &f(Xi+1) &f(Xi+j+1), ,

where &f = f − µ(f).
Remark 5.2 When formulated in terms of decay of strong mixing coeffi-

cients, our conditions are weaker than the usual ones, which assume an ex-

ponential rate for the decay (see for instance Nagaev (1961), Götze & Hipp

(1983), Datta & McCormick (1993b)): condition (iv) with s = 8 + ε is typ-

ically fulÞlled in the bounded case as soon as the strong mixing coefficients

sequence decreases at a polynomial rate n−ρ for some ρ > 7 + ε. However,

the condition s = 8 + ε is clearly not optimal (see Hall(1987) for optimal

results in the i.i.d. case) and is technically required because we proceed in the

proof by conditioning Þrstly on the variance estimate: it seems reasonable to

expect that the result actually holds when condition (iv) is satisÞed for some

s > 4, as in the i.i.d. case if we also assume EA(τ sA(
"τA

i=1 f(Xi))
s) < ∞.

Finally, note that, for the Cramer condition (i) to hold, it is sufficient to

prove that at least one term in the sum has an absolutely continuous part. Of

course condition (i) is more general and may hold even in the discrete case,

when
"τA

i=1 f(Xi) is non-lattice.

The writing of the terms involved in the Edgeworth expansions using the
atom A allows to deduce easily empirical counterparts, which is not the case
when they are expressed by using inÞnite sums (10). We set

-M3,n = n
−1

ln−1$
j=1

{f(Bj)− µn(f)sj}3/σn(f)3,

14



#βn = n−1 ln−1$
j=1

sj{f(Bj)− µn(f)sj}/σn(f)

and consider the empirical estimator of the skewness deÞned by

#k3,n = -M3,n − 3#βn.
A straightforward application of the SLLN (see Theorem 17.1.7 in Meyn &
Tweedie (1996)) shows that it is strongly consistent.

Proposition 5.2 Under the assumptions that the initial distribution fulÞlls

the regularity condition Pν(τA < ∞) = 1 and that condition (iii) is satisÞed
with s = 3, we have as n→∞

#k3,n −→ k3(f), Pν a.s. .

Following the work of Abramovitz & Singh (1985), it may be easily shown
that, under further moment assumptions, the Edgeworth expansion may be
inverted to yield better conÞdence intervals for the sample mean statistic.
These results also pave the way for studying the second order validity of the
regeneration-based Bootstrap procedure proposed in Datta & McCormick
(1993a) (see Bertail & Clémençon (2003a)) for atomic chains, as well as vari-
ants for general Harris recurrent Markov chains (refer to Bertail & Clémençon
(2003b)).

6 Proofs

6.1 Proof of Proposition 4.4

Set &f = f − µ(f) and consider the variances σ2τ = EA((τA − α)2), Σ2(f) =
EA(((

"τA
i=1

&f(Xi))2 − ασ2(f))2) and Γ2(f) = EA((τA"τA
i=1

&f(Xi) − β)2) (re-
call the notations α = EA(τA) and β = EA(τA

"τA
i=1

&f(Xi)) introduced in
Proposition 5). Decompose n(σ2n(f)− σ2(f)) into six terms as follows

n(σ2n(f)− σ2(f)) =
6$
i=1

Di,

15



with

D1 =
ln−1$
j=1

{( &f(Bj))2 − ασ2(f)},
D2 = ασ

2(f)(−1 +
n$
i=1

{1A(Xi)− µ(A)}),

D3 = (µ(f)− µn(f))2
ln−1$
j=1

s2j ,

D4 = 2(µ(f)− µn(f))
ln−1$
j=1

{sj &f(Bj)− β},
D5 = 2β(µ(f)− µn(f))(ln − α−1n),
D6 = 2β(µ(f)− µn(f))(α−1n− 1).

� The proof that Eν(D1) = O(1) as n→∞ straightforwardly results from
the argument given in the proof of Theorem 1 in Malinovskii (1985), based
on a non uniform limit theorem established in Dubinskaite (1982, 1984) (see
Lemma 6.5 below), which must be applied in our case to the i.i.d. sequence
of 1-lattice two dimensional random vectors (Σ(f)−1(( &f(Bj))2 − ασ2(f)),
σ−1τ (sj − α))j!1. Details are thus omitted.
� The application of bound (1) in Proposition 3 to the indicator function

1A (respectively to f) particularly entails that Eν(D1) = O(1) (respectively,
Eν(D6) = O(1)) as n→∞.

� By using Cauchy-Schwarz�s inequality, we have

Eν(D3)
2 " Eν((µ(f)− −

µn(f))
4)Eν(

ln−1$
j=1

s2j)
2).

Therefore, under our �block� moment conditions, we have according to The-
orem 4 in Malinovskii (1987), Eν((µ(f) − −

µn(f))
4) = O(n−2). Besides, by

simply using the fact that ln is bounded by n and that (s2j)j!1 is an i.i.d.
sequence by virtue of the strong Markov property, we derive that

Eν(
ln−1$
j=1

s2j)
2) " EA((τ2A − EA(τA))2)n+ (EA(τ 2A))2n2.

Combining these two bounds, we obtain that Eν(D3) = O(1) as n→∞.
� Apply Cauchy-Schwarz�s inequality to get

Eν(D4)
2 " Eν((µ(f)− µn(f))2)Eν((

ln−1$
j=1

{sj &f(Bj)− β})2).
16



From Theorem 2 in Malinovskii (1985) (see also Theorem 3 in Malinovskii
(1987)), we have Eν((µ(f)−µn(f))2) = O(n−1) as n→∞. Moreover, the ar-
gument proving this result may also be used to show thatEν((

"ln−1
j=1 {sj &f(Bj)−

β})2) = O(n), as n→∞, by considering the i.i.d. sequence of 1-lattice two
dimensional random vectors (Γ(f)−1(sj &f(Bj) − β), σ−1τ (sj − α))j!1. Hence,
we have Eν(D4) = O(1) as n→∞.
� Finally, the bound Eν(D4) = O(1) as n→∞ may be deduced exactly

the same way, using Þrst Cauchy-Schwarz�s inequality and then applying
twice Theorem 2 in Malinovskii (1985), to the function f on the one hand
and to the indicator function 1A on the other hand.

6.2 Proof of the main theorem

� In the following we only consider the case µn(f) = #µn(f). The cases
µn(f) = &µn(f) and µn(f) = µn(f) differ in the treatment of the bias only
and may be derived in a similar fashion. The Þrst Edgeworth expansion
and control of ∆n follows immediately from Malinovskii (1987)�s Theorem
1 and its simpliÞed form given in Theorem 5 except that one should read
− Eν(Σf,n)

(Eπ(Σ2
f,n))

1/2 instead of
Eν(Σf,n)

(Eπ(Σ2
f,n))

1/2 of course in his result (notice that this

term corresponds to the bias, and vanishes in the stationary case).
� To make the reading of the proof much more easy and emphasize the

dependence of the statistics considered on the i.i.d. regeneration blocks we
introduce the following notations. We denote by l(Bj) = sj = τA(j+1)−τA(j)
the length of block Bj, j ! 1, of which the mean is EA(τA) = α and the
variance is EA((τA − α)2) = σ2τ . We also denote by l(B0) = τA and l(B(n)n ) =
n−τA(ln) the lengths of the Þrst and last (nonregenerative) blocks. Consider
the following decomposition

n(µn(f)− µ(f))− ϕν − γ

= F (B0) +
ln−1$
j=1

F (Bj) + F (B(n)ln )

with for i ! 1,

F (Bj) =
τA(j+1)$
τA(j)+1

{f(Xi)− µ(f)}

= f(Bj)− l(Bj) µ(f)
and

F (B0) = f(B0)− l(B0)µ(f)− ϕν,
F (B(n)ln ) = f(B

(n)
ln
)− l(B(n)ln )µ(f)− γ.

17



By the strong Markov properties the F (Bj)'s, j ≥ 1 are i.i.d. r.v.�s with
mean zero and variance σ2F =

def
α σ2(f). Notice also that by construction (see

Proposition 3.1), we have
Eν(F (B0)) = 0

and
Eν(F (B(n)ln )) = O(n−1/2) as n→∞.

We also recall that with these notations, for j ! 1,

β = cov(l(Bj), F (Bj)).

The matter is here to extend Malinovskii (1987)�s results to derive an Edge-
worth expansion for &tn. In the following we shall derive such an expansion
up to O(n−1 log(n)).

6.2.1 Preliminary lemmas

The following classical lemma (see Chibisov (1972)) will be used extensively
in the proof.

Lemma 6.1 Assume that Wn admits an Edgeworth expansion on the nor-

mal distribution up to O(n−1l(n)), for some function l(n) such that l(n)/n→
0 as n → ∞. Assume that Rn is such that P (n|Rn| > ηl(n))is either

O(n−1l(n)) or O(n−1) as n→∞ for some constant η > 0, then Wn+Rn and

Wn/(1 + Rn)
1/2 (when deÞned) have the same Edgeworth expansion as Wn

up to O(n−1l(n)).

In the following we will typically choose l(n) to be nε, 1 > ε ≥ 0 or
l(n) = log(n) or log(n)1/2. In the same spirit, we will also use the following
inequalities and estimates.

Lemma 6.2 Suppose that the following �block� moment condition is fulÞlled

EA(|
τA$
i=1

�

f(Xi) |2) <∞,

18



then there exists some constants c0 and c1 such that we have for all n,

Pν(n
−1 |

ln−1$
j=1

F (Bj) |! x) " c0{exp(− nx2

c1 + yx
)

+nPA( |
τA$
i=1

�

f(Xi) |! y) + Pν(τA > n/2) + PA(τA > n/2)}.

In particular under the condition (iii) and (iv) with s = 8 + ε, ε > 0, there

exists some constant η > 0 such that, as n→∞,

Pν(n
−1/2 |

ln−1$
j=1

F (Bj) |! η log(n)1/2) = O(n−1)

and

Pν(n
1/2 | 1

n

ln−1$
j=1

F (Bj)l(Bj)− α−1β) |! η log(n)1/2) = O(n−1).

Proof. The Þrst inequality may be derived from the argument of Theo-
rem 15 in Clémençon (2001) based on the Fuk & Nagaev�s inequality for sums
of unbounded r.v.�s (see also Theorem 6.1 in Rio (2000) for an argument based
on block mixing techniques). In particular, for x = η log(n)1/2n−1/2 , y =
log(n)−1/2n1/2, if we choose η > 0 such that η2 ≥ c1+η, applying Chebyshev�s
inequality to the last three terms in the right hand side of the inequality yields

Pν(n
−1/2 |

ln−1$
j=1

�

f(Bj) |! η log(n)1/2)

" c0{exp(−η
2 log(n)

c1 + η
) +

(log n)2+s/2

n1+s/2
EA(|

τA$
i=1

�

f(Xi)|4+ε/2)

+ 2n−1Eν(τA) + 2n−1EA(τA)}
≤ C1n−1.

The second bound may be established similarly, using Cauchy-Schwarz in-
equality.
The lemma below shows how the estimated variance may be linearized

with a controlled remainder.

Lemma 6.3 Under the hypotheses of Theorem 5.1 we have

σ2n(f) = n
−1

ln−1$
j=1

g(Bj) + rn (11)
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with, for j ! 1,
g(Bj) = F (Bj)2 − 2α−1βF (Bj)

and for some η1 > 0,

P (nrn > η1 log(n)) = O(n
−1), as n→∞.

Proof. We have

σ2n(f) = n
−1

ln−1$
j=1

F (Bj)2 − 2(µn(f)− µ(f))n−1
ln−1$
j=1

F (Bj)l(Bj)

+ (µn(f)− µ(f))2n−1
ln−1$
j=1

l(Bj)2

= n−1
ln−1$
j=1

g(Bj) + rn

with rn = r1,n + r2,n + r3,n

r1,n = −2((µn(f)− µ(f))(n−1
ln−1$
j=1

F (Bj)l(Bj)− α−1β)

r2,n = (µn(f)− µ(f))2n−1
ln−1$
j=1

l(Bj)2

r3,n = 2(1− (1− l(B0)/n− l(B(n)ln )/n)−1)n−1
ln−1$
j=1

F (Bj)α−1β

The control of the remainder follows from Lemma 6.2, we have for η1 > 0
large enough

Pν(n|r1,n| > η1 log(n)) ≤
Pν(n

1/2|µn(f)− µ(f)| ≥ 2η1/21 log(n)1/2)+

Pν(n
−1/2|

ln−1$
j=1

F (Bj)l(Bj)− α−1β| ≥ η1/21 log(n)1/2)

= O(n−1),

as n→∞. We also have, using the same arguments, that
Pv(n|r2,n| > η log(n)) = O(n−1), as n→∞.
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Finally, since Eν(l(B0)2) = Eν(τ
2
A) < ∞ and E(l(B(n)ln )2) " EA(τ

2
A) <

∞, we have by virtue of Markov inequality
Pv(l(B0) > n1/2) = O(n−1),
Pν(l(B(n)ln ) > n1/2) = O(n−1),

as n → ∞. Besides on the event {l(B0) ≤ n1/2} ∩ l(B(n)ln ) ≤ n1/2}, we have
for n ≥ 4, |1− (1− l(B0)/n− l(B(n)ln )/n)−1)| ≤ 4n−1/2. Thus, for η2 > 0,

Pv(nr3,n > η2 log(n)) = Pν(|n−1/2
ln−1$
j=1

F (Bj)|α−1β > η2 log(n)) +O(n−1)

= O(n−1)

as n→∞, by applying Lemma (6.2).
The following lemma implies that we may restrict the study of the stan-

dardized sums to values of ln in an interval In(ε) = [nα−1 − n1/2+δ, nα−1 +
n1/2+δ]∩ [1, n]. It derives from the same argument as Lemma 6.2, applied to
the indicator function 1A of A.

Lemma 6.4 Let X = (Xn)n∈ℵ be a Markov chain with an atom A. Sup-

pose that X is positive recurrent with stationary distribution µ. Let ln ="n
i=1 I {Xi ∈ A} be the number of visits of X to A between time 1 and time

n. Assume further that there exists p ! 2 such that EA (τpA) < ∞, and that
there exists q ! 1 such that the initial distribution ν satisÞes Eν (τ qA) < ∞.
Then as n→∞, we have

Pν
.
n1/2 |ln/n− µ (A)| ! nδ

/
= O

.
n−1

/
,

for all δ such that δ > (2/p− 1/2)+ and δ ! (1/q − 1/2)+.
The following lemma (which is a non-uniform version of Malinovskii

(1987), see Lemma 1 p. 283) is a consequence of Dubinskaite (1984)�s The-
orem 2 and its corollaries 8 and 9. To state the result, we use the usual
notations for characteristic functions and Edgeworth expansion in the mul-
tidimensional case (see section 7 of Battacharya & Rao (1975)). Let φ0,W be
the density of the normal density with mean 0 and variance W . Its Fourier
transform is given by

0φ0,W (t) = exp1−1
2
(t'Wt)

2
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For some square integrable r.v. ξ taking its values in Rp with covariance
matrix W , the polynomial associated with the cumulants {χθ} of order
θ = (θi)1"i"p ∈ Np such that |θ| ="p

i=1 |θi| is less than 3 is denoted by

&P1(it, {χθ}|θ|≤3) = i3

6
E
.
(t'ξ)3

/
and let

P1(−φ0,W , {χθ}|θ|≤3)(t) = −
$
|θ|"3

χθ
θ1!...θp!

φ(θ)0,W (t)

be the corresponding transformation, the explicit form of which is given p.
55 of Battacharya & Rao (1975).

Lemma 6.5 Edgeworth Expansion for 1-lattice distribution [Dubin-

skaite (1982, 1984)]: Let ξ = (ξ1, ξ2, ξ3) a centered random vector such that

ξ3 is lattice with minimal span H > 0 and is valued in {kH+α}k∈Z. Suppose

that ξ1 satisÞes the Cramer condition and that ξ2 has a bounded density. As-

sume further that the covariance matrix W = var(ξ1, ξ2, ξ3) is non singular

and that E|ξi|4 <∞, 1 " i " 3. Then, for an i.i.d. sequence (ξ1,i, ξ2,i, ξ3,i)i!1
drawn from ξ, we have up to a constant C > 0

|
√
m

H
P (
√
m

m$
i=1

ξ1,i ≤ x,
m$
i=1

ξ3,i = kH + αm | √m
m$
i=1

ξ2,i = z)pfm(z)

−E(2)W,m(x, z,
kH + αm√

m
)| ≤ C.m−1

1
1 + |kH + αm√

m
|+ |z|

2−4
,

with

E
(2)
W,n(x, z,

kH + αm√
m

) =

% x

−∞
DE

(2)
W,n(y, z,

kH + αm√
m

)dy,

where

DE
(2)
W,n(y, z,

kH + αm√
m

) = φ0,W (y, z,
kH + αm√

m
)

+
1√
m
P1(−φ0,W , {χv})(y, z, kH + αm√

m
)

and pfm denotes the density of fm =
√
m
"m

i=1 ξ2,i.
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Proof. Given that s = 4 is even, it is legitimate to choose s∗ = s and r =
0 in Dubinskaite (1984)�s Theorem 2. Condition Pl−m of this theorem holds
because of the boundedness condition on the density of ξ2. Since W is as-
sumed to be nonsingular, the smallest eigenvalue of W is strictly positive.
The function Ls,n may be thus bounded by C

"
E(ξ41,i), so that all the terms

of the bound may be swallowed into the constant C (depending on the under-
lying probability). Note that Lemma 1 in Malinovskii (1987) is the uniform
version (over x) of this lemma, with the choice s1 = 3 and δ = 1.
The following lemma is interesting for other calculations of the same type

and will allow us to control the terms in the sums appearing in the Edgeworth
expansion.

Lemma 6.6 Let an,m = (n − αm)/(στ√m) and DEm(y,λ) = φV (y,λ) +

m−1/2P (y,λ)φV (x,λ), where P (y,λ) is a polynomial in y ∈ Rp and λ ∈
R, and V a nonsingular covariance matrix, then there exists some nonnega-

tive constant K and a polynomial Q(.) independent from n with a Þxed degree

such that(
n$

m=1

α

στ
√
m
DEm(y, an,m)−

% ∞

−∞
φV (y,λ)dλ−

√
α√
n

% ∞

−∞
P (y,λ)φV (y,λ)dλ

+
1

2

στ
α1/2

√
n

% ∞

−∞
λφV (y,λ)dλ)

3
≤ Q(y) exp(−K||y||2) n−1.

Moreover, for some nonnegative constant K and a polynomial R(.), we have

that

|
n$

m=1

1

m3/2
P (y, an,m)φV (y, an,m)| ≤ R(y) exp(−K||y||2) n−1. (12)

Proof. The proof follows from the argument given in Malinovskii (1985)
(see his equations (10) to (15))). By Taylor expansion, for any function F
with continuous derivatives ∂

(i)F (y,λ)

∂λ(i) with respect to λ, we have that'''''
% an,1

an,n

F (y,λ)dλ−
n$

m=1

(an,m − an,m+1)F (y, an,m)− (13)

n−1$
m=1

1

(2)!

∂(1)F (y,λ)

∂λ

''''
λ=an,m

(an,m − an,m+1)2
''''' (14)

≤
n−1$
m=1

1

3!
|an,m − an,m+1|2 sup

λ∈[an,m,an,m+1]

∂(2)F (y,λ)

∂λ(2)
.
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Noticing that

an,m − an,m+1 = α

στ
√
m
+ an,m+1((1 +m

−1)1/2 − 1), (15)

use Þrst the Taylor expansion (13) with F (y,λ) = φV (y,λ). For these func-
tions, we obviously have for some non negative constants K, k and some
polynomial P i(y,λ) of degree less than i

sup
λ∈[an,m,an,m+1]

∂(i)F (y,λ)

∂λ(i)
≤ C P i(y, an,m) exp(−K||y||2) exp(−ka2n,m) (16)

In the following Pi, i = 1, 2, ... is a sequence of polynomials in y of Þnite degree
(typically lower than 8) and Ki, i = 1, 2, ... some non negative constants.
Proceeding as Malinovskii (1985, 1987) (see (13)), it is then easy to see that

n$
m=1

|an,m − an,m+1|2 sup
λ∈[an,m,an,m+1]

∂(2)F (y, an,m)

∂λ(2)
≤ n−1P1(y) exp(−K1||y||2).

Using successively (13) with F (y,λ) = φV (y,λ) and
∂φV (y,λ)

∂λ
, we get

|
% an,1

an,n

φV (y,λ)dλ−
n$

m=1

α

στ
√
m
φV (y, an,m)

− 1
2

α3/2

στ

1√
n

% an,1

an,n

∂φV (y,λ)

∂λ
dλ− 1

2

στ
α1/2

1√
n

% an,1

an,n

λφV (y,λ)dλ|

≤ n−1P2(y) exp(−K2||y||2).

It follows that

|
n$

m=1

α

στ
√
m
φV (y, an,m)−

% an,1

an,n

φV (y,λ)dλ

+
1

2

στ
α1/2

1√
n

% an,1

an,n

λφV (y,λ)dλ| ≤ n−1P3(y) exp(−K3||y||2).

Now following Malinovskii (1985) (equations (12) and (13) using (15), we
have

|
n$

m=1

α

mστ
P (y, an,m)φV (y, an,m)−

$ 1√
m
(an,m − an,m+1)P (y, an,m)φV (y, an,m)|

≤ C1n−1P4(y) exp(−K4||y||2),
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as well as

|
n$

m=1

1√
m
(an,m − an,m+1)P (y, an,m)φV (y, an,m)

− α
1/2

√
n

n$
m=1

P (y, an,m)φV (y, an,m)(an,m − an,m+1)|

≤ C2n−1/2
n$

m=1

|( n
αm

)1/2 − 1|am,nP (y, an,m) exp(−K5an,m) exp(−K5||y||2)

≤ n−1P6(y) exp(−K6||y||2).

And using (13) with F (y,λ) = P (y,λ)φV (y,λ), we have

|α
1/2

√
n

n$
m=1

P (y, an,m)φV (y, an,m)(an,m − an,m+1)−
% an,1

an,n

α1/2√
n
P (y,λ)φV (y,λ)dλ|

≤ n−1P7(y) exp(−K7||y||2).

The proof follows by combining these three inequalities and by observing
that for α > 1 the remainder in the integrals

! an,n
−∞ and

!∞
an,1

may be bounded
by Cn−1 for some constant C > 0. The proof of (12) is similar.

6.2.2 Edgeworth expansion of the standardized sum

The main problem for obtaining the Edgeworth expansion is to control the
Þrst and last blocks, which are not regenerative blocks, on the one hand and
the randomness of the number of blocks on the other hand. We use the same
techniques as the ones required to establish similar results in Bolthausen
(1980) and in Malinovskii (1987, 1989). Once some necessary basic tools
developed, we only give here the main ideas of the proof. We proceed in Þve
steps, as follows: reduce the original problem to a simpliÞed version (step
1), partition the probability space according to the number of regenerative
blocks and the length of the Þrst and last blocks (step 2), derive an Edgeworth
expansion for each element induced by the partition (step 3), then sum up
all the expansions and approximates the sums involved by Riemann integrals
(step 4) and Þnally compute explicitly the main term of the expansion (step
5).

Step 1 : reduction to a simplified statistic Lemma 6.1 and Lemma 6.3
imply that establishing the Edgeworth expansion of the original standardized
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statistic reduces, up to O(n−1 log(n)), to obtain the Edgeworth expansion of

Pν

 "ln
j=0 F (Bj)+"ln−1

j=1 g(Bj)
,1/2 ≤ x− φν

σ(f)
n−1/2 − γ

σ(f)
n−1/2


We thus focus on the Edgeworth expansion of

Ln =

"ln
j=0 F (Bj)+"ln−1

j=1 g(Bj)
,1/2

Combining Lemmas 6.1 and 6.4 with p = 4 and δ = ε yields that

Pν(Ln ≤ x) = Pν(Ln ≤ x, ln ∈ In(ε)) +O(n−1), as n→∞.

where In(ε) = [nα−1 − n1/2+δ, nα−1 + n1/2+δ] ∩ [1, n].

Step 2 : partitioning Consider the partition of the underlying probability
space into the following disjoint measurable subsets

Ur = {τA(1) = r, τA(2)− τA(1) > n− r},

Ur,l,m = {τA(1) = r, τA(m) = n− l , τA(m+ 1) > n}

= {τA(1) = r,
m$
j=2

τA(j)− τA(j − 1) = n− r − l, τA(m+ 1) > n}.

Now deÞne for j ! 1,

σ2G = E((g(Bj)− E(g(Bj))2)

and write

Tm(u, v) = u+ v +m
−1/2

m$
j=1

F (Bj)/σF ,

S2m = σ
2
F

.
1 + σG/σ

2
FGm

/1/2
,

with

Gm = m
−1/2

m$
j=1

(g(Bj)− σ2F )/σG.
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We have as n→∞

Pν(Ln ≤ x, ln ∈ In(ε)) = I + II +O(n−1),

with

I =
$
r

Pν({Ln ≤ x} ∩ Ur) ≤ Pν(τA(2) > n, Ln ≤ x) = O(n−1),

II =

√
n$

l=1

√
n$

r=1

$
m+1∈In(ε)

% %
P

:
Tm(u, v)

Sm
≤ x ,

m$
j=1

l(Bj) = n− r − l
;

Pν(L
r ∈ du, τA(1) = r)PA(Ll ∈ dv, τA(m+ 1) > l),

where Lr (resp.Ll) is the distribution under Pν of m−1/2F (B0)/σF when
τA(1) = r and Ll the distribution of m−1/2F (Bm+1)/σF when the length of
Bm+1 is l. To simplify the notations we set

Pr(du) = Pν(L
r ∈ du, τA(1) = r)

and
Pm,l(dv) = PA(L

l ∈ dv, τA(m+ 1) > l).
Notice that by Lemmas 6.4 and 6.1 we may indifferently put

"
m+1∈In(ε) or"n−1

m=0 in II up to O(n
−1).

Step 3 : Edgeworth expansion for 1-lattice distribution Thus we
essentially have to show that

III = P

:
Tm(u, v)

Sm
≤ x ,

m−1$
j=1

l(Bj) = n− r − l
;

admits an Edgeworth expansion with a remainder such that the sums and
integrals in II are of order O(n−1). The second component may be written
as a lattice sum

Lm ≡
def.

m−1/2
m$
j=1

(l(Bj)− α)/στ = an,l,m,r

where
an,l,m,r = (n− r − l − αm)/(στ

√
m).

Conditioning on Gm we get

27



III = Pm(x, an,l,m,r) =

%
pGm(z)×

P (
m−1/2"m

j=1 F (Bj)
σF

≤ x(z, u, v,m), Lm = an,l,m,r| Gm = z)dz

with
x(z, u, v,m) = x(1 +m−1/2σG/σ2F z)

1/2 − u− v,
and denoting by pGm(z) the density of Gm. Notice that one cannot condition
Þrst on the quadratic term and then directly apply Theorem 2 in Malinovskii
(1987) because of the form of the variance (which is a sum of functions of
the blocks and not of the original data) and the non uniformity of the bound
in y (see his last expression on p. 273). The Edgeworth expansion of
the expression under the integral in III may be deduced using Lemma 6.5.
For this, consider (ξ1,j, ξ2,j, ξ3,j)j!1 with ξ1,j = F (Bj)/σF , ξ2,j = (l(Bj) −
α)/στ (which is lattice with span H = σ−1τ ) and ξ3,j = (g(Bj)−σ2F )/σG, that
is by construction of the blocks an i.i.d. sequence. Note that the condition
E|ξ3,j|4 <∞, 1 " i " 3 reduces to condition (iii) with s = 8. From (6.5) we
get that

sup
x
|Pm(x, an,l,m,r)− σ−1τ√

m

% ∞

−∞
E
(2)
W,m(x(z, u, v,m), z, an,l,m,r)dz| (17)

≤ Cm−3/2 .1 + |an,l,m,r|3/−1 ,
where W = (Wi,j)1≤i,j≤3 is a symmetric (3,3) matrix with

W11 = W22 = W33 = 1,

W1,2 = σ
−1
G σ

−1
F cov(F (Bj), g(Bj)) = σ2FM3,A/σG − 2α−1βσFσ−1G ,

W1,3 = σ
−1
F σ

−1
τ cov(F (Bj), l(Bj)) = σ−1F σ−1τ β,

W2,3 = σ
−1
G σ

−1
τ cov(g(Bj), l(Bj)).

The last inequality in (17) straightforwardly results from the bound%
1/(1 + |λ|+ |x|)4dx ≤ C 1

(1 + |λ|)3 .

Step 4 : control of the sums of the expansions and their remainders
To prove that the remainder in the expansion of II is of order O(n−1), we
use the same arguments as the ones used to prove 3.5 in Bolthausen (1980).
As a matter of result, we have in our case

m−3/2 .1 + |an,l,m,r|3/−1 ≤ C
 m−3/2

(n− αm)−3
(n− 2√n− αm)−2

if
|n− αm| ≤ 2√n
αm > n+ 2

√
n

αm < n+ 2
√
n

28



so that by straightforward decomposition using the fact that
"√

n
l=1

"√
n

r=1! !
Pr(du)Pm,l(dv) ≤ C we have% % √

n$
l=1

√
n$

r=1

$
m+1∈In(ε)

m−3/2 .1 + |an,l,m,r|3/−1 Pr(du)Pm,l(dv)
= O(n−1),

as n → ∞. The matter is now to show that the main part has the form
indicated in (9), that is

IV =

√
n$

l=1

√
n$

r=1

$
m+1∈In(ε)

1

στ
√
m

% % % ∞

−∞
E
(2)
W,m(x(z, u, v,m), z, an,l,m,r) Pr(du)

× Pm,l(dv)dz
= F (2)n (x) +O(n−1).

We may rewrite this expression the following way% ∞

−∞

√
n$

l=1

√
n$

r=1

n$
m=1

1

στ
√
m

% %
E
(2)
W,m(x(z, u, v,m), z, an,l,m,r)Pr(du)Pm,l(dv)dz.

A Taylor expansion of E(2)W,m(x(z, u, v,m), z, an,l,m,r) at

x(z,m) := x(1 + zm−1/2σG/σ2F )
1/2

yields for some x∗ ∈ [x(z, u, v,m), x(z,m)]

E
(2)
W,m(x(z, u, v,m), z, an,l,m,r)

= E
(2)
W,m(x(z,m), z, an,l,m,r) + (u+ v)DE

(2)
W,m(x(z,m), z, an,l,m,r)

+ 2−1(u+ v)2∂DE(2)W,m(x
∗, z, an,l,m,r)/∂x.

Using the same arguments as in Malinovskii (1985, 1987) (see (4) and proof of
Theorem 2 with s = 4 ), it is cumbersome but rather straightforward (using
as in Bolthausen (1980) the fact that for some non negative constants k1, k2
and k3 , φ0,W (x, z,λ) ≤ exp(−k1x2) exp(−k2z2) exp(−k3λ2) and bounds of
type (16) combined with lemma 6.6 (see (12)) to show that, for either

v(z, u, v,m) = (u+ v)2
∂DE

(2)
W,m

∂x
(x∗, z, an,l,m,r)

or else

v(z, u, v,m) = m−1/2P1(−φ0,W , {χθ}|θ|"3)(x(z,m), z, an,l,m,r)(u+ v),
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we have
√
n$

l=1

√
n$

r=1

$
m+1∈In(ε)

m−1/2
% ∞

−∞

% %
v(z, u, v,m)Pr(du)Pm,l(dv)dz = O(n

−1),

as n → ∞. This is easier in our situation, since we have already recentered
the original statistic, so that

√
n$

l=1

√
n$

r=1

1% %
(u+ v)Pr(du)Pm,l(dv)

2
= O(n−1) (18)

and
n$
l=1

n$
r=1

1% %
(u2 + v2)Pr(du)Pm,l(dv)dz

2
≤ Cm−1, (19)

given the assumed moment conditions for τA and f(B0) under Pν. We thus
get

IV =

√
n$

l=1

√
n$

r=1

$
m+1∈In(ε)

1

στ
√
m

% ∞

−∞
E
(2)
W,m(x(z,m), z, an,l,m,r)dz

×
% %

Pr(du)Pm,l(dv) +

√
n$

l=1

√
n$

r=1

$
m+1∈In(ε)

1

στ
√
m

% ∞

−∞
φ0,W (x(z,m), z, an,l,m,r)

×
1% % ∞

−∞
(u+ v)Pr(du)Pm,l(dv)

2
dz + O(n−1).

Now use exactly the same arguments as in Malinovskii (1987) p. 279-280 (or
Malinovskii (1985), p. 331), that is to say, develop

F
(2)
W,m(x, an,l,m,r) =

% ∞

−∞
E
(2)
W,m(x(z,m), z, an,l,m,r)dz

at the point an,m = (n− αm)/(στ√m) to get that

IV = V + V I +OP (n
−1),
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with

V =
n$

m=1

1

στ
√
m
F
(2)
W,m(x, an,m)

√
n$

l=1

√
n$

r=1

Pν(τA(1) = r)PA(τA(m+ 1) > l)

+OP (n
−1)

=
n$

m=1

α

στ
√
m
F (2)W,m(x, an,m) +OP (n

−1),

V I =

√
n$

l=1

√
n$

r=1

$
m∈In(ε)+1

% ∞

−∞

1

στ
√
m

% x

−∞
φ0,W (y(z,m), z, an,l,m,r)×% 1% %

(u+ v)Pr(du)Pm,l(dv)

2
dydz +O(n−1).

But we have
√
n$

l=1

√
n$

r=1

% %
Pr(du)Pm,l(dv) =

√
n$

r=1

Pµ(τA = r)

√
n$

l=1

PA(τA > l)

= α +OP (n
−1).

Now the main difference with the calculations in Malinovskii (1987) lies in
the last term VI, which is is simply the second term in his expression A1,0 (see
also the term A1 p. 329 in Malinovskii (1985)). Once again we use the fact
that the original statistic is correctly recentered (see (18, 19)) and Lemma
6.6 to get

V I = O(n−1), as n→∞.
It should be noticed that in opposition to Malinovskii (1987)�s term A1,0,
which is the equivalent of VII in our expansion, VII does not contribute to
the expansion because of the recentering and the fact that we standardized
by
√
m instead of

*
n/α after having conditioned on the variance.

Step 5 : explicit computation of the main part The proof is Þnished
by observing that a straightforward Taylor expansion at x and a repeated
use of Lemma 6.6 yield

V =

% ∞

−∞

% x

−∞

% ∞

−∞

?
φW (y, z,λ) + n

−1/2α1/2P1(−φ0,W , {χv})(y, z,λ))
@
dλdydz

+ n−1/2
1

2

% ∞

−∞

% ∞

−∞
α1/2σG/σ

2
F xzφW (x, z,λ)dzdλ

− 1
2
n−1/2στα−1/2

% x

−∞

% ∞

−∞

% −∞

∞
λφW (y, z,λ)dzdλdy

− σ(f)−1(φν + γ)n−1/2φ(x) +O(n−1).
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The control of the remainder is uniform over x because of the exponential
bounds given in Lemma 6.6. Furthermore, some easy gaussian algebra yields% x

−∞

% ∞

−∞

% ∞

−∞
xzφW (x, z,λ)dzdλdy = x

2φ(x)W1,2,% x

−∞

% ∞

−∞

% ∞

−∞
λφW (x, z,λ)dzdλ = −W1,3φ(x).

Combining all the terms, the Þnal expansion becomes

Φ(x)− n−1/2α1/21
6
M3,A(x

2 − 1)φ(x)

+ n−1/2α1/2
1

2
M3,Ax

2φ(x)− n−1/2α−1/2β/σF x2φ(x)

+
1

2
n−1/2α−1/2β/σFφ(x)− σ(f)−1(φν + γ)n−1/2φ(x)

− n−1/2α−1/2β/σFφ(x) + n−1/2α−1/2β/σFφ(x)
= Φ(x) + n−1/2

1

6
α1/22(M3,A − 3α−1β/σF )(x2 − 1)φ(x)

+
1

2
n−1/2(M3,A − 3α−1/2β/σF )φ(x)

− α1/2(φν + γ)φ(x)n−1/2 + n−1/2α−1/2βσ−1F φ(x)
and the result follows by recalling that

σ2F = ασ(f)
2

and using Proposition 3.1 for the form of the bias.
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