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Abstract

The aim of this paper is to apply a nonparametric methodology devel-
opped by Donoho, Mallat, von Sachs & Samuelides (2003) for estimating
an autocovariance sequence to the statistical analysis of the return of secu-
rities and discuss the advantages offered by this approach over other exist-
ing methods like fixed-window-length segmentation procedures. Theoret-
ical properties of adaptivity of this estimation method have been proved
for a specific class of time series, namely the class of locally stationary
processes, with an autocovariance structure which varies slowly over time
in most cases but might exhibit abrupt changes of regime. This method is
based on an algorithm that selects empirically from the data the tiling of
the time-frequency plane which exposes best in the least squares sense the
underlying second-order time-varying structure of the time series, and so
may properly describe the time-inhomogeneous variations of speculative
prices. The applications we consider here mainly concern the analysis of
structural changes occuring in stock market returns, VaR estimation and
the comparison between the variation structure of stock indexes returns
in developed markets and in developing markets

1 Introduction
The modeling of the temporal variations of stock market prices have been the
subject of intense research for a long time now, starting with the famous Ran-
dom Walk Hypothesis introduced in Bachelier (1900), which claims that the
successive variations (Xt+1 −Xt)t>0 of a stock price are i.i.d. Gaussian random
variables. As numerous statistical studies showed, even if Xt is replaced by
log(Xt), this classic model does not allow to explain some prominent features of
return series, such as the number of large price changes observed, that is much
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larger than predicted by the Gaussian (see Lo & Mackinlay (1988) for instance).
As emphasized by many statistical works, that are far too numerous to mention
(refer to Campbell, Lo & Mackinlay (1997) for a comprehensive overview), the
following features of stock price series mainly came into sight (see Fig. 1).

Figure 1: Daily return series of the DJIA index, 1971-2002

1. Spells of small amplitude for the price variations alternates with spells of
large amplitude. This phenomenon is traditionally called volatility persis-
tence or volatility clustering.

2. The ”efficient markets assumption”, which claims, roughly speaking, that
financial returns are unforecastable, seems to be contradicted by the ex-
istence of very localized periods when return sequences exhibit strong
positive autocorrelation.

3. The magnitude of the variations evolves in the long run so as to reach
an ”equilibrium” level, one calls this feature mean-reversion in a stylized
manner.

Although the classic Random Walk model provides explicit formula for as-
set pricing and the economic doctrine is able to interpret it, the limitations
mentioned above motivated the emergence of an abundant econometric liter-
ature, with the object to model structure in financial data. Portfolio selec-
tion/optimization, Value at Risk estimation, hedging strategies are the main
stakes of this research activity, still developing. One popular approach consists
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in specifying an explicit model for the dynamic of return series, reflecting some
patterns such as heteroskedasticity. Even if the seminal contribution of Engle
(1982), which introduced the ARCH model, has been followed by a large number
of variants (GARCH models for instance), and although so called regime switch-
ing models (see Hamilton (1989), Hamilton & Susmel (1994) for instance) and
stochastic volatility models, assuming in some cases long memory in the process
ruling the amplitude of the temporal variations of return series, were taken into
consideration, the whole complexity underlying these data has not been cap-
tured yet by any parsimonious model and let the field of statistical analysis of
financial time series open to further investigation. Therefore, selecting a sta-
tistical procedure, which allows to deal properly with the time-inhomogeneous
character of return series, is not an easy task, as Mandelbrot emphasized (1963):
”Price records do not ”look” stationary, and statistical expressions such as the
sample variance take very different values at different times; this nonstationarity
seems to put a precise statistical model of price change out of the question”.
According to the estimation method chosen, one can either enhance specific
patterns in the data or else make them disappear (see the discussion in Cont
(2001)). This strongly advocates for the application of recent adaptive nonpara-
metric procedures to the statistical analysis of financial return series, which, by
selecting adaptively from the data a ”best” representation among a large (non-
parametric) class of models and including the type of structure that contributes
significantly to the fit of the model only, allow to achieve more flexibility (re-
fer to Ramsey (1996)). This alternative approach has been followed by some
authors for several years now. Among these attempts to deal with non sta-
tionarities in financial data, one may mention the following works. Greenblatt
(1996) considered the use of fast algorithms such as the Matching Pursuit, the
Method of Frames and the Basis Pursuit (refer respectively to Mallat & Zhang
(1993), Daubechies (1992) and Donoho & Chen (2001)) to select adaptively,
from a dictionary, the superposition of ”atoms”, that is to say elementary func-
tions localized both in time and frequency (wavelets for instance), that best
exhibit structure in a financial time series, viewed as a noisy signal. The au-
thor applied this methodology to obtain sparse/parsimonious representations of
exchange rate data in order to analyze the evolution of the frequency content
of the underlying data generating process. In a closely related work, Ramsey
& Zhang (1997) also applied the Matching Pursuit algorithm over a larger dic-
tionary, namely a waveform dictionary, to decompose more efficiently exchange
rates using tick-by-tick data, and noted particularly the presence of significant
low frequency components. In Capobianco (2002), the presence of pronounced
GARCH effects in high frequency financial time series is investigated after a
preliminary denoising of the data using the wavelet shrinkage procedure (see
Donoho & Johnstone (1998)). Several statistical procedures have been based
on an explicit ”functional” modeling of the nonstationarities occuring in finan-
cial time-series. Härdle, Herwartz & Spokoiny (2001) introduced and studied a
method consisting in a sequence of nonparametric tests to identify periods of
second-order homogeneity for each moment in time, as in Granger & Starica
(2001), who considered the application of a test based on the integrated peri-
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odogram (see Picard (1985)). In Fryzlewicz, van Bellegem & von Sachs (2002),
further developments of the general formalism defining the class of locally sta-
tionary wavelet processes (described at greater lenght in Kroisandt, Nason &
von Sachs (2000)) and applications to the prediction and the time-varying sec-
ond order structure estimation of the DJIA index are considered. The present
paper aims to promote the use of an adaptive nonparametric methodology de-
velopped by Donoho, Mallat von Sachs & Samuelides (2003) for estimating the
covariance of specific second-order nonstationary processes in the field of finan-
cial time-series statistical analysis. This method mainly amounts to analyze
the data to find which out of a specific massive library of bases, namely local
cosine packets bases, comes closest to diagonalizing the empirical covariance
and make use of the latter to perform estimation. The bases of this library have
localization properties both in the time domain and in the frequency domain,
and the selected basis may conveniently exhibit the time-varying character of
the second-order structure of the time-series. The paper is organized as follows.
In section 2, the class of time-series for which the inference method mentioned
above has been shown to surpass traditional procedures is described both in a
qualitative and quantitative manner. Its relevance for modeling economic and
financial phenomena is also discussed. The principle of the methodology is ex-
plained in section 3, and insights into the theoretical arguments explaining its
performance are also given. In section 4, several empirical studies based on this
analytical tool are carried out. From the resulting estimates, we investigate the
temporal inhomogeneities in the fluctuation of financial returns. The estima-
tion procedure is also applied via a simple plug-in approach to Value at Risk
forecasting, and is shown to have advantages over less flexible methods based
on moving averages. Finally, some concluding remarks are collected and several
lines of research are sketched in section 5.

2 Second order local stationarity

2.1 Heuristics

As emphasized in several papers (see Ramsey (1996) for instance), a prominent
characteristic of economic and financial data is the presence of temporal inho-
mogeneities. As a matter of fact, a significant part of the information carried by
economic and financial time series consists in non-stationarities: beginning or
end of certain phenomena, ruptures due to shocks or structural changes, drifts
reflecting economical trends, business cycles ... Stationarity is a concept in-
troduced to mean the independence of statistical properties from time. Hence,
nonstationarity is a ”non propriety”, simply expressing the need for reintroduc-
ing time as a necessary description parameter, so as to be able to speak about
the evolution through time of some properties of the time series and compute
meaningful statistics. A constructive fashion to deal with nonstationary time-
series consists in restricting oneself to a class of time series, for which one is able
to specify precisely how they diverge from stationarity, while keeping a certain
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level of generality. Thus, many approaches may be considered. On grounds of
parsimony, statistical analysis of stock prices variations mainly focused on the
second order properties (that is by no means restrictive in the gaussian case),
which amount to the covariance structure, since the assumption that financial
returns are zero mean is beared out by both empirical evidence and theoretical
economic arguments, and is carried unanimously. Consequently, it may be rel-
evant to start with making assumptions on the autocovariance function. This
approach has been followed by many authors, who considered the nonstationary
framework. Let us consider a zero mean second order time series X = (Xn)n>0
with autocovariance function ΓX (ΓX(n,m) = E (XnXm) , for all (n,m) ∈ ℵ2).
Note that the covariance between two observations at times n and m may be
viewed as a function CX((n +m)/2,m − n) of the length between these time
points and their midpoint (notice that CX is independent from its first argu-
ment in the stationary case). It seems natural to call X a locally stationary time
series, when it is ”approximately stationary” (i.e. in a sense that should be pre-
cised) on time intervals of varying size and the variables are uncorrelated outside
these intervals of quasi-stationarity. As this class of time series is supposed to
describe random phenomena, which mechanism may evolve through time, it is
legitimate to assume that the size l(n) of the interval of quasi-stationarity may
depend on the time n on which it is centered. Hence, a qualitative characteri-
zation of locally stationary processes could be as follows: on each time interval
[n− l(n)/2, n+ l(n)/2] , the covariance between observations Xm and Xm0 at
times m and m0 may be well approximated by a function depending only on
m0 −m as soon these time points are close enough

ΓX(m,m
0) ' CX(n,m0 −m) if |m0 −m| 6 l(n)/2

and is approximately zero when the length between the time points considered
is larger than a certain threshold d(n) measuring somehow the ”decorrelation
rate” of the time series

ΓX(m,m
0) ' 0 if |m−m0| > d(n)/2.

Under these assumptions it it can be shown that for any time points m ∈
[n− l(n)/2, n+ l(n)/2] and m0 > 0

CX((m+m
0)/2,m0 −m) ' CX(n,m0 −m).

Set out in such general terms, the concept of local stationarity seems to be
relevant for modeling financial data and account for the features 1-3 recalled in
Section 1. As a matter of fact, the returns of a security (or a market index) are
known to decorrelate rapidly when the market behaves in an ”efficient way”, on
equilibrium, but when the latter is ”evolving”, when a change of business cycle
occur for instance, the autocorrelation structure may evolve too and then one
may attend changes of regime.
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2.2 Assumptions

As recalled in the subsection above, there are many concepts of local station-
arity. Even if their goal is almost the same, namely to allow to extend the
statistical tools and concepts (mainly stemmed from Fourier spectral analysis)
available in the stationary framework to the class of time series to which they
are restricted (see Dalhaus (1997), Priestley (1965), Kozek (1996), Kroisandt,
Nason & von Sachs (2000) or Mallat, Papanicolaou & Zhang (1998) for in-
stance), not all the approaches yield a tractable statistical procedure for which
a precise study of its performance regarding error risks may be carried out. In
this respect, the one chosen in this paper combines several advantages. It has
been worked out by Donoho, Mallat, von Sachs & Samuelides (2003) (refining
the statistical method introduced in Donoho, Mallat & von Sachs (1998), which
extended the approach developped by Mallat, Papanicolaou & Zhang (1998)),
who both developped a full machinery to process the data (see Section 3 be-
low) and provided theoretical arguments (rates of convergence) to support it
(see also Mallat & Samuelides (2001) and Samuelides (2001)). Precisely, this
methodology applies to Gaussian triangular arrays of second-order processes
X(T ) = (Xt,T )06t6T (so as to formulate the properties of the time series with
respect to the length of the observation) for T = 2τ , τ = τ1, τ1 + 1, ... obeying
the assumption of uniform decay of the autocorrelation

T−tX
n=−t

³
1 + 2 |n|δ1

´2
Γ2X(T )(t, t+ n) 6 c1, (1)

and the assumption of quasi-stationarity of the covariance

1

T

TX
t=0

kΓX(T)(t, t+ .)− ΓX(T)(t+ h, t+ h+ .)kl2 6 c2
µ
|h|
T

¶δ2
, (2)

for any h, where δ1 > 1/2, 0 < δ2 6 1, c1 and c2 are constants. Beyond
the scaling character of these assumptions, their main attraction is due to the
averaging component in (2): a stochastic process X(T ) obeying this constraint
has a covariance matrix, which nearby rows ΓX(T )(t, t+ .) are, on average, very
similar, but might occasionnally be very different, thus, allowing for sudden
changes of regime. Note that the parameter δ1 controls the decorrelation rate,
while δ2 affects the magnitude of the number of changes of regime.

3 The statistical procedure

3.1 Insights

Estimating the covariance matrix Γ =
¡
γt,s

¢
06t,s6T−1 of a zero mean Gaus-

sian sequence X = (Xt)06t6T−1 from the observation of n independent re-
alizations X(i) is a classical problem in traditional statistical analysis, when
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T is fixed and n tends to infinity. In such a setting, the empirical covari-
ance C = (ct,s)06t,s6T−1 = n−1

Pn
i=1X

(i)X(i)0 is known to perform well: the
expected error E (l (C,Γ)) is in order of O(T/n) when measured by the per-
coordinate loss function

l (C,Γ) = T−1 kC − Γk2HS = T−1
X
t,s

¡
ct,s − γt,s

¢2
,

where kAkHS = (tr(AA0))
1/2 denotes the Hilbert-Schmidt norm. This method

is no longer successful when one gets out of this asymptotic framework, that is
of course the case for the statistical analysis of financial returns, where n = 1
and T tends to infinity. In a post-classical setting, that is to say for T tending
to infinity with n remaining fixed, it is neithertheless possible in some cases
to develop a consistent estimation methodology. In the well-known case of a
stationary time series for instance, an inference procedure may be built clas-
sically on the Toeplitz structure of the covariance matrix γs,t = γs+u,t+u to
recover: estimating first the covariance operator in the Fourier basis by its em-
pirical counterpart, getting the periodogram, and then going back into the time
domain (after a possible smoothing of the periodogram in the case when the
underlying spectral density is known to be smooth), yields an estimate with an
expected error in order of O(1) at least (refer to Chapter 8 in Anderson (1971)
for more details). A useful (with respect to further generalization to other set-
tings) way of considering the reason of the success of such a methodology in the
stationary situation has been carried in Mallat, Papanicolaou & Zhang (1998)
(see also chapter 10 in Mallat (1998)): the authors observed that the crucial
and paradygmatic point of the methodology lies in the fact that estimation is
performed in a basis, namely the Fourier basis, that diagonalizes the covariance
matrix, and thus by using such a sparse representation (in the sense that T
coefficients only are required to characterize the covariance in the Fourier basis,
instead of T (T +1)/2 in the original basis) one gets a statistical procedure with
drastically reduced bias (avoiding this way a substantial component of estima-
tion error). Mallat et al. (1998) noted also that for a time series satisfying the
”qualitative” assumptions of local stationarity (see subsection 2.1), it is reason-
able to expect the existence of a basis in the library L of cosine packets bases
introduced by Coifman & Wickerhaüser (1991), that ”almost diagonalizes” its
covariance matrix. Thus, in the case when one disposes of a method to select
such a basis empirically from the data, it becomes possible to make use of the
sparse representation so provided to compute an estimate of the covariance ma-
trix with low bias. Continuing this approach, Donoho et al. (2003) showed that
a specific tree pruning algorithm, as introduced in Coifman & Wickerhaüser
(1991), may be used to find empirically a basis in the library L that almost
diagonalizes the best (in the least squares sense over L) the covariance matrix
of a time series, and yields a statistical procedure with provable performance
properties (refer to Mallat & Samuelides (2001) and Samuelides (2001) for math-
ematical proofs of consistency) for the class of locally stationary processes they
introduced (see the quantitative assumptions (1) and (2) in subsection 2.2).
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3.2 The methodology

We now give precise details about the tools used in the statistical procedure and
the underlying principles so that the resulting estimate may be conveniently
interpreted.

3.2.1 Definitions

The library of cosine packets bases The crucial point in the statistical
analysis of a stationary time series (Xt)t∈ℵ consists in viewing it as a linear
superposition of uncorrelated periodic elementary time series Arer(t), where
the er’s denote the functions of the Fourier basis and the weights Ar are square
integrable r.v.’s. The estimation of the variances of the Ar’s from the record
of the past observations of the time series yields both a low bias estimate of
the covariance function and a spectral tool to analyze the structure of the time
series (that is not evolving since stationarity is assumed): a current ”physical”
interpretation consists in measuring the relative importance of each periodic
component Arer in the mechanism ruling the fluctuations of the time series by
the variance of Ar. Since the 60’s, spectral analysis has been in current use in
econometrics for investigating the structure of economic series and computing
predictions (see Granger (1964) for instance). The idea underlying the use of the
Coifman & Wickerhaüser system to describe locally stationary processes is to
keep the notion of an expansion of the time series in a basis made of mutually
orthogonal cosine functions, while introducing the point of view of temporal
localization. Hence, the construction of this system amounts to concatenate
adequately the sequences

ξM,m(t) =

r
2

M
cos (ωm(t+ 1/2)) , 0 6 t < M,

where M = 2j is a dyadic integer, 0 6 m < M and ωm = π(m + 1/2)/M
(note that

©
ξM,m

ª
06m<M is an orthonormal basis of <M ). For reasons of

a computational nature, the concatenations are induced by recursive dyadic
partitions (RDP) of the time interval {0, 1, ..., T − 1}, supposed to be of dyadic
length T = 2τ . We recall that a RDP of I0,0 = {0, 1, ..., T − 1} is any partition
reachable from the trivial partition P0 = {I0,0} by successive application of the
following rule: choose a dyadic subinterval Ij,k =

©
kT/2j , ..., (k + 1)T/2j − 1

ª
in the current partition and split it into two (dyadic) subintervals Ij+1,2k and
Ij+1,2k+1 of same size, creating a new (finer) partition of the time interval in
this way (see Fig. 2).
Note that recursive dyadic partitioning may generate a very inhomoge-

neous segmentation of the time interval, with both very short subsegments and
much longer ones for instance, so as to possibly properly describe the succes-
sive regimes of a nonstationary time series. Given a RDP P of the time axis
{0, 1, ..., T − 1}, one defines a local cosine packets basis BP of <T by setting

ϕIj,k,m(t) = {
ξ2τ−j ,m(t− kT/2j)

0
if t ∈ Ij,k
if t /∈ Ij,k

,
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Figure 2: Dyadic recursive partitioning scheme for a time interval
{0, ..., T − 1}, T = 2τ .

for all Ij,k in P, and 0 6 m < 2τ−j . Beyond their orthonormal character, the
vectors of such a basis have the crucial property of being localized both in time
and in frequency (see Fig. 3): ϕIj,k,m is supported on the subinterval Ij,k, on
which it oscillates at the frequency ωm.

Time-frequency representation Hence, every random sequence X(T ) =
(X0, ...,XT−1) may be expanded in the local cosine packets basis BP . Let
I1, ..., InP be the subintervals forming P. Then, one may write for 0 6 t < T

X
(T )
t =

nPX
u=1

2ju−1X
m=0

D
X(T ),ϕIu,m

E
ϕIu,m(t),

where h., .i denotes the usual scalar product in <T and 2ju the length of the
subinterval Iu. Thus, on each subsegment Iu of the time interval, one has a
”Fourier type” decomposition of the time series into periodic time series,

if t ∈ I1, X
(T )
t =

2j1−1X
m=0

D
X(T ),ϕI1,m

E
ϕI1,m(t),

...,

if t ∈ InP , X
(T )
t =

2jnP−1X
m=0

D
X(T ),ϕInP ,m

E
ϕInP ,m

(t).

If, for each subinterval Iu, the components
­
X(T ),ϕIu,m

®
were almost un-
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Figure 3: Heisenberg tiles representing the time-frequency localization of local
cosine functions.

correlated, that is to say

E
³D
X(T ),ϕIu,m

ED
X(T ),ϕIu,m0

E´
' 0 for m 6= m0,

or if BP almost ”diagonalizes” ΓX(T ) in an equivalent way (since BPΓX(T)BP
is the covariance matrix of the

­
X(T ),ϕIu,m

®
’s ), then one could interpret the

segments I1, ..., InP as successive regimes of quasi-stationarity for the time series
X(T ). As recalled in subsection 3.1, Donoho et al. (1998) proved that for a locally
stationary time series, there always exists such an ”almost” diagonalizing basis
and a data-driven method by complexity penalization has been introduced in
Donoho et al. (2001) to select such a basis and yield a consistent covariance
estimation procedure (see § 3.2.2 below).

3.2.2 The estimation algorithm

Let us now recall the inference procedure proposed by Donoho et al. (2003).
We are interested in estimating the covariance matrix Γ =

¡
γs,t

¢
of a zero mean

locally stationary gaussian sequence on the basis of the observation of a single
realization (X0, ...,XT−1) of this sequence. The method crucially relies on the
construction of the library L of local cosine packets bases on <T and the use of
the fast dynamic programming Coifman-Wickerhaüser tree pruning algorithm
(CW algorithm in abbreviated form) for entropy-based best basis selection (refer
to Coifman & Wickerhaüser (1992)). It requires no iteration and is performed
in four steps as follows. In the sequel we shall denote by #A the cardinal of
any finite set A.
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1. (Computation of the empirical variances)

Given the data X = (Xt)06t6T−1, compute the empirical variances

s2Ij,k,m =
D
X,ϕIj,k,m

E2
,

for 0 6 j 6 τ , 0 6 k 6 2j − 1, 0 6 m 6 2τ−j − 1.

2. (Best local cosine packets basis selection by complexity penalization)

Apply the CW algorithm to select a basis BP (or equivalently, a RDP
P= I1∪ ...∪InP ) and a subfamilyM(BP) of BP minimizing over all bases
in L the additive cost

C (BP) =
nPX
u=1

C (Iu,M∗ (Iu)) ,

where M∗(Ij,k) is the subset of the set of indices m ∈ {0, ..., 2τ−j − 1}
of the local cosine vectors ϕIj,k,m supported on Ij,k which minimizes the
cost

C (Ij,k,M (Ij,k)) = −
X

m∈M(Ij,k)

³
s2Ij,k,m

´2
+ λ.#M (Ij,k) ,

over the class of subsetsM (Ij,k) of {0, ..., 2τ−j − 1}.

3. (Extraction of the diagonal)

Build a diagonal matrix ∆ with entries,

˜
s
2

Iu,m = {
s2Iu,m
0

if m ∈M∗ (Iu)
if m /∈M∗ (Iu)

,

0 6 m 6 2ju − 1, 1 6 u 6 nP , getting an estimate of the covariance
matrix of X in the basis BP using local cosine coefficients defined by the
collectionM(BP) of vectors ϕIu,m, m ∈M∗ (Iu) , 1 6 u 6 nP , only.

4. (Estimation)

Rotate back in the canonical basis, getting the empirical best basis covari-
ance estimate

C = BP∆BP0.

Remarks:

• Let us give an insight into the reason why the tree pruning algorithm
used this way leads to a (rapid and easy) nearly optimal solution
to the best-basis selection problem for covariance estimation. Recall
that, ideally, we would like to find a basis BP in L that comes closest
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to diagonalize the covariance Γ in the least squares sense (see § 3.2.1
above), so as to produce an estimate, say PM(BP)(C), of Γ in this
basis by estimating a few significant diagonal coefficients only (cor-
responding to a setM(BP) = {ϕIu,m, m ∈M∗ (Iu) , 1 6 u 6 nP} of
local cosine vectors of BP) , with small mean squared error. There-
fore, the squared error of such an estimate may be decomposed the
following way°°BPΓB0P − PM(BP)(C)

°°2
HS

=
°°BPΓB0P − PM(BP)(Γ)

°°2
HS

+
°°PM(BP)(Γ)− PM(BP)(C)

°°2
HS
,

denoting by PM(BP)(Γ) the diagonal matrix obtained from the diag-
onal of BPΓB0P by keeping its diagonal coefficients var(

­
X,ϕIu,m

®
)

such that ϕIu,m ∈M(BP), and setting the others to zero. And, as
we have°°BPΓB0P − PM(BP)(Γ)

°°2
HS

= kΓk2HS − e(BP ,M (BP))

(by using the invariance of the Hilbert-Schmidt norm by ortho-basis
change), where

e(BP , M (BP)) =

nPX
u=1

e(Iu, M∗ (Iu)),

with e(Ij,k, M (Ij,k)) =
X

m∈M(Ij,k)

³
var(

D
X,ϕIj,k,m

E´2
,

an ideal strategy for constructing a covariance estimate with small
mean squared error consists thus in selecting a basis BP and a sub-
familyM(BP) that minimizes the quantity

−e(BP ,M (BP)) +E(
°°PM(BP)(Γ)− PM(BP)(C)

°°2
HS
),

in which the first term plays the role of the bias of the statistical
method chosen and the second term the role of the variance in the
language of statistical estimation theory. In Mallat & Samuelides
(2001) it is proved that the variance term may be sharply bounded
by #M(BP) (which somehow measures the complexity of the esti-
mator by the number of coefficients required to construct it) up to a
multiplicative constant λ. This allows to reduce the best-basis selec-
tion problem to the search for a basis BP and a subfamily M(BP)
that minimizes the theoretical cost

CT (BP ,M (BP)) = −e(BP ,M (BP)) + λ.#M (BP) .

Given its additivity property, in the case when this theoretical cost
could be calculated (that requires the knowledge of Γ) for any basis

12



BP , the CW algorithm based on the penalized entropy CT would
allow to solve this optimization problem and thus to find a quasi-
optimal basis for covariance estimation. But, as Γ is precisely the
object we try to estimate, the entropies e(BP ,M (BP)) are unknown
and the selection has to be based on their empirical counterparts
ê (BP ,M (BP)), so as to minimize the empirical cost C(BP ,M (BP)) =
−ê (BP ,M (BP))+λ.#M (BP) . In Mallat & Samuelides (2001), the
deviation between CT (BP ,M (BP)) and C(BP ,M (BP)) has been in-
vestigated, so as to show that implementation of the CW algorithm
based on the empirical cost C produces an estimate with a mean
squared error nearly as small as the error of an ideal estimate result-
ing from the minimization of the theoretical cost CT .

• We observe that the algorithm does not fully rely on the data alone.
The user has to choose the tuning parameter λ in the complexity
penalization term. Building on the computation of the mean squared
error, Mallat & Samuelides (2001) proposed a choice based on the top
eigenvalue Λ0 of the covariance matrix Γ.More precisely, they showed
that, by taking λ = c.Λ20 log(T )

2 with a constant c large enough, the
resulting covariance estimate has theoretical properties (regarding
to the mean squared error) that surpass other methods for locally
stationary processes.

• It is noteworthy that the assumptions (1) and (2) may be straight-
forwardly generalized so as to define bivariate (and even trivariate)
locally stationary sequences (X,Y ) = ((X0, Y0), ..., (XT−1, YT−1)),
and that the algorithm above may be adapted so as to analyze the
latter. As a matter of fact, the only difference consists in replacing
the entropy ê (Ij,k,M (Ij,k)) by its two-dimensional analogue

ê2 (Ij,k,M (Ij,k)) =
X

m∈M(Ij,k)

³
s(X)2Ij,k,m + s(Y )

2
Ij,k,m

´2
,

s(X)2Ij,k,m (respectively s(Y )2Ij,k,m) denoting the empirical estimate

of var(
D
X,ϕIj,k,m

E
) (resp., of var(

D
Y,ϕIj,k,m

E
)). Difficulties aris-

ing from the extension of this methodology to higher dimensions are
discussed in Section 5.

• Whereas the variations of a stationary time series may be analyzed in
the frequency domain via the periodogram, as we recalled in subsec-
tion 3.2.1, a very useful representation of the variations of a locally
stationary time series in the time-frequency plane may be provided
by a ”best basis” BP in the following way. Note first that, by as-
signing to each local cosine function ξIj,k,m, 0 6 j 6 τ , 0 6 k < 2j ,
0 6 m < 2τ−j, the rectangle Hj,k,m = Ij,k × Iτ−j,m in the time-
frequency plane I0,0 × I0,0, each basis BP may be described by a
specific tiling TP of the time-frequency plane (see Fig. 4). Then,
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given a ”best basis” BP , by assigning to each rectangle Hj,k,m in TP
the variance of

D
X, ξIj,k,m

E
, one gets a ”portrait” of the covariance,

in that it describes how much variance of the time-series is associated
to the frequency (m + 1/2)/2τ−j on a quasi-stationary interval Ij,k
in P.

Figure 4: Time-frequency tiling related to a local cosine packets basis. The
collection of all the Heisenberg tiles forms a partition of the time-frequency plane.

4 Applications - Empirical studies
We now turn to the application of the ”best basis” method for covariance estima-
tion to the statistical analysis of financial time series. Throughout this section,
various data sources are used and several questions arising in market risk man-
agement are considered. Value at risk (VaR) techniques for risk management
aim to quantify the amount of uncertainty about the return of a portfolio or a
single asset over a given period of time. In a gaussian framework, this uncer-
tainty is exhaustively described by the autocovariance structure. Thus, estimat-
ing accurately the autocovariance of financial returns is of great importance for
assessing market risk. In an evolutionary context, the matter is to find a proper
time window to compute meaningful statistics, reflecting the economic reality
at a given time. Roughly speaking, depending on the way statistical averages
are computed, one may either enhance specific relevant historical features in the
data, or else obscure them, and even make them disappear. As shown in the
following applications, the ability of the ”best-basis” estimation method to iden-
tify, empirically from the historical data, periods of approximate stationarity,
allows to exhibit patterns in the stock market volatility, that are attenuated or
rubbed out when applying other methods based on the stationarity assumption
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or placing more emphasis on more recent historical data in a rigid fashion (as
in the RiskMetricsTM approach or by using fixed-window-length segmentation).
As a matter of fact, by construction the latter cannot reflect nonlinearities such
as jumps in stock returns for instance. The algorithm for best-basis covariance
estimation (see 3.2.2) has been implemented by using routines ofWavelab .701,
a MatlabTM toolbox for wavelet and cosine packets analysis.

4.1 Covariance estimates

4.1.1 Statistical analysis of the DJIA index

We now present the results of the analysis of the DJIA index daily returns from
1971 to 2002 through the best-basis method for covariance estimation. In Figure
5, the tiling of the time-frequency space characterizing the empirical ”best basis”
selected via the algorithm detailed in 3.2.2 is represented, the variance of each
component of the time-series in this basis is indicated by a proportional level
of gray, and the variations over time of the (unconditional) volatility (i.e. the
diagonal of the covariance matrix) are plotted in Figure 6.

Figure 5: Results of the best-basis method for the estimation of the autocovari-
ance of the DJIA over the period 1971-2002 , λ = 3.5 · 10−8. (a): recursive
dyadic partition of the time interval obtained by the CW algorithm, (b) time-
frequency representation of the autocovariance

As a comparison, we plotted the results of the variance estimation by using
a moving average (see Taylor (1986)) with a fixed window length. Clearly, the
best-basis method for covariance estimation reveals much more contrast in the
volatility fluctuation and vouch for the global inhomogeneity of the variations of
the DJIA index on a large scale. However, as Figure 5 shows, most of the basis
functions of the ”best-basis” for the DJIA returns are supported on time inter-
vals of short length and the variation of the DJIA returns is mainly concentrated
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Figure 6: Estimate of the daily unconditional volatility of the DJIA index using
the best-basis method (solid line) and the moving average method with fixed
window length n = 250 trading days (dashed line).

at high frequency levels. This somehow accounts for the efficiency of the U.S.
stock market in these times when the return series behaves nearly as a random
walk: the return time-series decorrelates very rapidly and is thus unpredictable
on a short horizon over these periods of time. Besides, some peculiar periods
and the specific structure of the autocovariance of the DJIA return series over
these periods clearly come into sight by examining the estimation results. It
becomes visible that over some of these periods the basis functions describing
the variations of the DJIA returns are supported on much longer time intervals,
and that low frequency components significantly contribute to the covariance of
the time-series. Among such singular periods detected by the best-basis selec-
tion, one counts several approximatively stationary time-intervals of 128 trading
days, which exhibit a long persistence for the autocorrelation (see Fig. 7 for in-
stance): from May 1971 to November 1971, from August 1974 to December
1974, from October 1976 to April 1977, from September 1982 to May 1983 and
from July 1990 to January 1991. Political and economic considerations may
provide helpful interpretation for these results. For instance, the structure in
the DJIA returns between August 1974 and December 1974 may be linked of
course to the quadrupling of the oil price by OPEC in 1973 and to the increase of
debt that followed. During this period, a significant credit crisis in the U.S.has
also been recorded, as well as the bankrupt of the Franklin National Bank. For
the period running from September 1982 to May 1983, it may be noteworthy
that the inflation rate has considerably lowered and that in December 1982,
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the unemployment rate has reached its highest level since 1940. Besides, the
events of the Gulf War may partially explain the persistence of autocorrelation
observed between July 1990 and January 1991 and the substantial variance of
some low frequency components of the return series from November 1997 to
February 1998 possibly reflects the impact of the Asian crisis on the U.S. stock
market. Generally speaking, the covariance estimate rends fairly well the sudden
changes of regime in the DJIA volatility, when the market switches from a calm
regime to a volatile one. Beyond the krach in October 1987, the decomposition
of the covariance estimate in the time-frequency plane allows to discern clearly
the shock caused by the Russian financial crisis in August 1998 and the burst
of the speculative information and technology bubble in 2001 for instance.

Figure 7: Estimate of the autocorrelation of the DJIA return series on a quasi-
stationary interval of length n = 128 trading days.

4.1.2 Correlation between the DJIA index and the CAC 40

As we noticed in 3.2.2, the best-basis methodology may be extended to the
case of bivariate time series. The latter is here applied to the estimation of the
joint autocorrelation of the DJIA daily returns and the CAC 40 daily returns
over the period 1992 - 2001. Figure 8 shows the plot of the estimate based
on the best-basis selection of the time-varying correlation between these two
series. Although this estimate tells us that, on average, the CAC 40 and the
DJIA return series are strongly positively correlated, as a simple moving average
with fixed window length would do, it allows to exhibit changes in their joint
behaviour very localized in time, such as the one that occured in the second part
of the year 1995. According to the latter, these two return series were strongly
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negatively correlated at this time. This phenomenon may be partly explained
by the wave of social protest, which occured then in France.

Figure 8: Estimate of the daily correlation between the DJIA and the CAC40
using the best-basis method (blue solid line), λ = 10−7and the moving average
method with fixed window length n = 250 trading days (green dashed line).

4.1.3 Comparing developing and developed markets

The best-basis method for covariance estimation provides also empirical evi-
dence to support that the temporal behaviour of stock market returns usually
diverges more from efficiency in emerging markets than in developed markets.
To this concern, we plotted the time-frequency representation of the return series
of the IGPA index (Chile) for the period 1986 - 2002 (see Fig. 9) as estimated
by the best-basis methodology, in comparison with the covariance estimate of
the DJIA return series (refer to Fig. 5). As may be confirmed by application
to many other series to our own experience, quasi-stationary time intervals, on
which the return series exhibits a strong autocorrelation, are larger and much
more frequent in developing markets (that suggests more forecastability from
past observations for these time series, see also subsection 4.2). Beyond the dif-
ference related to the form of the time-frequency tiling representing the covari-
ance, these estimates indicate also that large and abrupt volatility movements
occur much more frequently for the IGPA return series (see also Fig. 10). Such
empirical findings may motivate a careful study of the difference between the
price-generating mechanisms and give rise to different economic modeling. This
is beyond the scope of this paper, but will be the focus of further investigation.
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Figure 9: Results of the best-basis method for the estimation of the autocovari-
ance of the IGPA index over the period 1986-2002, λ = 6 · 10−8. (a): recursive
dyadic partition of the time interval obtained by the CW algorithm, (b) time-
frequency representation of the autocovariance

Figure 10: Estimate of the daily unconditional volatility of the IGPA index using
the best-basis method
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4.2 Value at Risk

4.2.1 VaR estimates based on the local stationarity assumption

As recalled above, VaR techniques intend to quantify the risk for an asset (re-
spectively, a stock index, a portfolio), by measuring, in most cases, the level
of loss V aRt,h(α0) that the asset price It could loose over a given time hori-
zon h with a given degree of confidence 1 − α0 at time t conditionally on the
information available It :

P ((It+h − It)/It > V aRt,h(α0) | It) = 1− α0.

In practice, all amounts to compute a forecast distribution Lt,h conditioned
on updated segments of historical data, typically calculated through a plug-
in approach. As, operationally, risk is often assessed at a 1-day horizon, we
focus here on the case h = 1. Since, we restricted ourselves to Gaussian se-
quences in the specific definition of locally stationary processes we considered
here (see subsection 2.2), the problem reduces from a practical point of view to
the estimation of the mean and variance of the return Xt+1 = (It+1 − It)/It
conditioned on the history It of the return series X at time t. The method we
propose consists then in calculating estimates mt+1 and σ2t+1of the conditional
mean and variance on the basis of the historical data (Xt−2j+1, ..., Xt) of the
latest quasi-stationary interval of the return series (notice that the length 2j of
this interval varies with time t), adaptively selected according to the best-basis
methodology (see 3.2.2) from a forward rolling data history of dyadic length
Ht = (Xt−2τ+1, ..., Xt), and the Toeplitz covariance matrix estimate Ct of
Γt = (Γr,s)t−2j+16r,s6t = var(Xt−2τ+1, ..., Xt) thus obtained, as if the segment
(Xt−2τ+1, ..., Xt, Xt+1) were a realization of an exactly stationary sequence.
This yield the VaR estimate

ˆ

V aRt,1 = mt+1 + qα0σt+1,

where qα0 denotes the α0-quantile of the standard normal distribution.

Evaluation by backtesting Many other models have been suggested to fore-
cast the return distribution and so to compute VaR estimates (refer to Dempster
(2002) for an overview). One may compare the accuracy of different VaR sta-
tistical forecast systems by using the Proportion of Failure test (PF test) and
the Time Until First Failure test (TFF test) considered in Kupiec (1995), as
regulators do for the analysis of internal models. The PF test is based on the
probability under the binomial distribution of observing that the number of
times the observed value xt for the return is lower than the forecast V aRt,1 in
a sample of size T is equal to n,

B (n;α, T ) =

µ
T

n

¶
αn (1− α)T−n .
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Let H0 be the hypothesis stipulating that the unconditional coverage α of a
given VaR estimate equals the theoretical coverage level α0. This hypothesis
is tested by using the log-likelihood ratio statistic, asymptotically distributed
according to the chi-squared distribution with one degree of freedom under H0,

LRPF = 2 log(
ˆ
α
n

(1− ˆ
α)T−n)− 2 log(αn0 (1− α0)

T−n),

where
ˆ
α equals to n/T , denoting by n the number of times the observed value

for the return is lower than the forecasted Value at Risk V aRt,1 over the sample.
The TFF test is based on the duration before the first time the observed return
is lower than the forecast V aRt,1

t = inf {0 6 t < T/ Xt < V aRt,1} .

The null hypothesis H0 is tested by using the log-likelihood ratio statistic,
asymptotically distributed according to χ2(1) under H0,

LRTFF = −2 log(
ˆ
α(1− ˆ

α)t−1) + 2 log((1/t)(1− 1/t)t−1).

Despite their limitation regarding their power to distinguish among alternative
hypotheses (see Kupiec (1995)), we used here these two methods to compare
the results of the VaR estimate based on the locally stationary assumption
we proposed above with the performance of two classical approaches: the VaR
estimate based on the simple moving average (MA) and the VaR estimate based
on the Riskmetrics variance-covariance model (built by an exponential weighted
moving average (EMA) with a decay factor λ = 0.94, see Riskmetrics (1996)),
using for both a moving window with fixed length of 250 observation days. The
data used in this statistical analysis are daily returns (based on closing prices) for
1994-2002 of 11 market indexes, among which 5 are related to developed stock
markets and 6 to developing stock markets. The results of the PF and TFF tests
are displayed in Tables 1 and 2. For high confidence levels, the null hypothesis
H0 is rejected in almost all cases, when VaR is forecasted by using either the
moving average or the exponential weighted moving average. The VaR forecast
based on the best-basis method clearly performs better. It generally presents
higher P -values for both the PF test and the TFF test and leads to accept H0
more frequently. Moreover, its advantage over the MA and EMAmethods seems
more obvious when dealing with emerging markets, which are characterized by
frequent sudden changes of regime with large stock movements (see § 4.1.3)
and for which the covariance estimate resulting from the empirical best-basis
selection may provide a fairly better fit to the data by capturing these changes.
Besides, it is noteworthy that even if, for lower degrees of confidence, the best-
basis method does not always perform better than the MA and EMA methods
regarding to the PF and TFF tests anymore, it does not tend to overestimate
the risk (see Fig.11).
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Table 1
P-values of the proportion of failure test (PF) for each method.

PF test
Degree of
Confidence

(%)

Best-Basis
P-value
(%)

EMA
P-value
(%)

MA
P-value
(%)

France
2.5
1.0
0.5

3.64
23.06
64.22

3.64
0.10
0.00

3.64
0.16
0.00

Germany
2.5
1.0
0.5

83.84
36.21
21.62

17.39
4.31
0.03

3.64
0.04
0.79

Japan
2.5
1.0
0.5

84.05
1.00
66.39

0.51
0.04
0.79

55.09
2.23
0.00

U.K.
2.5
1.0
0.5

8.37
23.06
10.71

42.93
0.51
0.28

0.00
0.04
0.01

U.S
2.5
1.0
0.5

24.11
74.65
66.39

0.51
0.02
0.03

0.30
0.04
0.00

Argentina
2.5
1.0
0.5

24.11
53.77
39.79

0.01
0.00
0.00

0.05
0.00
0.00

Brazil
2.5
1.0
0.5

40.50
75.44
66.39

1.43
0.10
0.00

0.51
0.41
0.00

Chile
2.5
1.0
0.5

55.09
31.36
12.58

42.93
36.21
21.62

83.84
2.23
2.80

Hong-Kong
2.5
1.0
0.5

1.00
74.65
21.62

8.37
0.01
0.00

42.93
0.06
0.00

Mexico
2.5
1.0
0.5

24.11
13.90
39.79

12.22
0.51
0.079

83.84
13.90
10.71

Singapore
2.5
1.0
0.5

42.93
23.06
10.71

1.43
0.10
0.00

3.64
0.10
0.00
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Table 2
P-values of the time untill the first failure test (TFF) for each method.

TFF test
Degree of
Confidence

(%)

Best-Basis
P-value
(%)

EMA
P-value
(%)

MA
P-value
(%)

France
2.5
1.0
0.5

20.47
7.05
17.03

8.45
4.82
2.89

2.65
1.40
3.75

Germany
2.5
1.0
0.5

9.91
12.86
22.09

0.87
0.40
0.38

68.05
58.26
87.55

Japan
2.5
1.0
0.5

67.02
60.50
36.01

33.19
77.44
71.91

3.19
18.73
21.72

U.K.
2.5
1.0
0.5

53.87
50.35
87.14

12.84
8.42
5.17

27.54
25.26
31.52

U.S
2.5
1.0
0.5

17.31
4.28
52.98

13.95
12.97
7.62

19.84
11.16
7.62

Argentina
2.5
1.0
0.5

71.41
52.25
29.80

46.96
79.99
91.65

1.57
6.63
15.81

Brazil
2.5
1.0
0.5

62.80
36.22
96.94

46.82
22.42
1.44

7.64
1.28
2.88

Chile
2.5
1.0
0.5

34.50
12.00
98.55

50.44
42.13
28.97

0.31
2.19
8.58

Hong-Kong
2.5
1.0
0.5

16.37
62.98
74.82

0.93
0.63
4.84

18.66
26.36
8.22

Mexico
2.5
1.0
0.5

46.19
67.00
68.36

8.42
0.66
0.29

53.02
2.52
5.88

Singapore
2.5
1.0
0.5

46.53
93.74
62.98

38.11
42.86
22.64

55.33
67.63
83.84
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Figure 11: VaR forecast of the Argentina market index using the best-basis
method (cyan dotted line), the EMA method (red dash-dot line) and the MA
method (green dashed line).

5 Conclusion - Work for further research
Although in this paper we are far from having covered the whole range of ap-
plications of the best-basis method for covariance estimation to financial data
(refer for instance to Fouque, Papanicolaou & Sircar (2000) for the application of
a closely related algorithm to build option pricing tools) and having determined
the limitations of such an approach, we end up by pointing out some issues
and consider several questions open for further investigation. As emphasized in
3.2.2, the estimate resulting from the best-basis methodology, taking account of
the present degree of advancement of the latter, depends on a tuning parameter
λ, of which the value seems difficult to pick in practice. As a matter of fact,
knowing that an optimal choice consists in choosing it from the top eigenvalue
of the underlying covariance is useless from a practical point of view, since the
latter is unknown and cannot be estimated in the nonstationary framework we
consider. This suggests to study the properties of best-basis estimates thor-
oughly and to modify eventually the selection algorithm, so that a ”universal”
threshold may be found. Beyond this practical issue, the need for modeling re-
turn series by non Gaussian processes, justified by empirical evidence, so as to
deal precisely with a possible evolution of skewness and kurtosis, could lead to
introduce a tractable concept of locally stationary time series at orders higher

24



than two and determine efficient ”sparse” representations for their distributions
and inference procedures based on the latter. This defines a second ambitious di-
rection for further research. A third, and more ambitious problem would consist
in building convenient nonparametric statistical tools to deal with multivariate
financial time series of high dimension. This problem is of crucial importance
in Portfolio selection/optimization for instance, which relies on the statistical
estimation of the covariance matrix of the time-series of returns of D securities
from historical data, when based on the mean-variance approach introduced by
Markowitz (1952). Therefore, the asymptotic properties of the best local cosine
packets basis method described in this paper depend heavily on the dimension
D of the observations (one may refer to Donoho (2000) for a discussion of the
”curse of dimensionality” phenomenon), and considerably lower as D increases.
As a matter of fact, the uncertainty about the covariance matrix and its spectral
properties is dramatically large when its dimensions are not small compared to
the number of observations N on which statistical inference is based (and this is
the case in practice, since we have for instance D ≈ 400 securities and N ≈ 250
observation days for the covariance matrix publicly posted daily by RiskMet-
ricsTM ). This may lead to investigate which libraries contain bases of <D that
may describe properly (and ”sparsely”) the variations of such multivariate time
series on ”almost” stationary periods. If such libraries were known, as well as
an algorithm to select a proper basis through them, then one could try to elabo-
rate a kind of ”double best-bases” method for covariance estimation combining
both the selection of approximatively time-homogeneous periods for the time
series with the selection of bases representing efficiently the variations of the
time series on these periods of time.
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