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Abstract

We study the problem of nonparametric estimation of the stationary
and transition densities of a regular Markov chain based on noisy observa-
tions when the density of the noise’s terms k(x) has a Fourier transform
with decay of order |w|−α as w → ∞. Adopting the formalism of the
wavelet-vaguelette decomposition (WVD), we propose estimation proce-
dures based on thresholding of the WVD coefficients which are shown to
be nearly optimal over a wide range of Besov classes for the variety of
global Lp

0
error measures, 1 6 p0 <∞.

1 Introduction.
Assume that a Markov chain X = (Xn)n∈ℵ with transition probability Π, and
stationary probability µ, is observed through a process Y = (Yn)n∈ℵ with dis-
tributions:

L ((Y1, Y2, ..., Yn) | X1, ...,Xn) =
nO
i=1

L(Yi | Xi)

=
nO
i=1

T (Xi, .) ,

where T is a transition kernel from the state space of the chain X to the space
in which the process Y is valued. The process ((Xn, Yn))n∈ℵ is still a Markov
chain, but note that, in general, (Yn)n∈ℵ is not. In the case when only Y1, ..., Yn
are observed, one traditionally says that the observations are partial or incom-
plete. The observable process Y = (Yn)n∈ℵ is called hidden Markov chain
(when X = (Xn)n∈ℵ may be called the regime).
The problem of estimating Π or µ based only on Y1, ..., Yn is important (ex-
amples of partial observations are common in image analysis, study of DNA
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sequences) and presents obvious difficulties (in particular with respect to identi-
fiability problems). Neithertheless, in the parametric framework, several meth-
ods of statistical inference for Hidden Markov Models have been developped.
Following the work of Baum & Petrie (1966) and Petrie (1969), most of them
rely on the ideas of estimation by maximum-likelihood; theoretical results on
the consistency of the maximum-likelihood estimator have been proved for gen-
eral models (refer to Leroux (1992), Bickel & Ritov (1996), Bakry, Milhaud &
Vandekerkhove (1997)), and recently practical procedures of estimation consist-
ing in the search of minima for the contrast via recursive estimation have been
proposed (see Khasminskii & Zeitouni (1996), Golubev & Khasminskii (1998)),
many of them are based on stochastic algorithmic implementations (see for ex-
ample Holst & Lindgren (1991) or Ryden (1997) for the use of the stochastic
gradient algorithm, Vanderkerkhoeve (1996) for the use of simulated annealing,
Chauveau & Vandekerkhove (1999) for the use of the Hastings-Metropolis algo-
rithm).
In different settings like regression, spectral or probability density estimation,
growing complexity of models used in physics, biology or speech processing justi-
fies a nonparametric approach of the problem of estimation. For Hidden Markov
Models, the latter may be formalized from the viewpoint of functional analysis
and connected with the so-called inverse problems theory.

1.1 Nonparametric estimation in the case of partial
observations: a linear inverse problem.

Suppose X and Y valued in subsets of < and Π(x, dy) = π(x, y)dy, µ(dx) =
f(x)dx, as well as T (x, dy) = t(x, y)dy. To simplify, consider first the case of
the estimation of the stationary density f. The matter is to recover f from
observations Y1, ..., Yn with common density:

fT (y) =

Z
f(x)t(x, y)dx.

The latter is the image of f by a linear transformation KT . It seems impossible
to solve this problem in full generality. When K−1T exists, as a bounded linear
operator, it is natural to attempt to estimate f by using an estimator of the
form:

ˆ

f = K−1T
ˆ

fT ,

where
ˆ

fT is an estimator of fT ; but unfortunately, in the cases which are of real
interest, scientifically speaking, KT is not invertible: the corresponding inverse
problems are usually called ”ill-posed”, or more rarely ”improperly-posed”.
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1.2 Diagonalization. Singular value decomposition
methods.

Assuming further, for example, that the kernel t(x, y) belongs to L2
¡
<2
¢
, the

operator KT is then a classical Hilbert-Schmidt operator of the Hilbert space
L2 (<) , whose inner product and norm are denoted respectively h., .i and k.k2 .
According to very classical results in spectral analysis,KT is a compact operator,
as well as its adjoint K∗T : it is still a Hilbert-Schmidt operator, whose kernel is
simply the image of the kernel of KT by the transformation (x, y) 7−→ (y, x).
K∗TKT is a compact autoadjoint operator, so there exists an orthonormal basis
of L2, (en)n∈ℵ, which diagonalizes the latter. Denote by λ2n the eigenvalue
corresponding to the eigenfunction en. If none of them is equal to zero, from
this diagonalization, we derive the reproducing formula:

f =
X
n

λ−1n hKT f, hni en, (1)

where hn = kKT enk−12 .KT en is the renormalized image of the eigenfunction en.
Then, one may fell an impulse to implement an estimation procedure based on
the reproducing formula (1), that is to say to estimate hKT f, hni by an empirical
coefficient

ˆ
αn for all n in some finite subset SN in order to form an estimator:

ˆ

fN =
X
n∈SN

λ−1n
ˆ
αnen,

that provides a recovery whose quality can be measured by the L2-norm for
example.
The limitation of the singular value decomposition approach (SVD in ab-

breviated form) is obvious, it consists in the fact that there is no reason for a
finite sum of weighted basis functions en , which derive from the operator KT ,
to represent efficiently objects with inhomogeneous spatial variability, and in
particular the function f whose smoothness properties do not depend on KT a
priori: this is precisely the advantage of the particular case of wavelet bases (a
single orthonormal wavelet basis may serve as an unconditional basis for a wide
class of Besov spaces, refer to Meyer (1990)).

1.3 The wavelet-vaguelette decomposition: an efficient
method for dealing with a class of special inverse
problems.

The idea to consider a decomposition of the operator in a wavelet basis instead
of an eigenfunction basis had just been introduced in Donoho (1995), where the
author developped a general formalism, the wavelet-vaguelette decomposition
(we will write WVD), which apply to a class of specific operators and provides
an efficient solution for the corresponding inverse problems. Before we show in
detail how to adapt it to solve the problem of minimax estimation for a specific
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class of hidden / noisy Markov models (see Section 2), let us describe shortly
this method and the class of linear inverse problems to which it applies.
Let d ∈ {1, 2} andK be a bounded linear operator on L2

¡
<d
¢
and

¡
ψγ
¢
j∈Z, γ∈Γ(d)j

an orthonormal wavelet basis of L2(<d) (see Daubechies (1990)). In the case
when each wavelet ψγ belongs to the range R (K∗) of the adjoint of K, K∗,
for each function g in the domain of K, D (K) , we can derive the following
reproducing formula from its wavelet expansion:

g =
X

j, γ∈Γ(d)j


g,ψγ

®
ψγ

=
X

j, γ∈Γ(d)j


Kg, ξγ

®
ψγ ,

where ξγ ∈ D (K∗) is such that K∗ξγ = ψγ . Further, the theory calls for the
assumption that it is possible to identify constants λj , depending on the level
index j but not on the spatial index, such that the renormalized functions

uγ = λj .ξγ , γ ∈ Γ
(d)
j

make a set of functions with norms bounded above and below, and having the
property that there exists a constant C such that for all sequence of coefficients
(αγ) : °°°°°°°

X
j, γ∈Γ(d)j

αγuγ

°°°°°°°
2

6 C

 X
j, γ∈Γ(d)j

α2γ


1/2

. (2)

The latter assumption is always satisfied by some special systems, the
”vaguelettes” (refer to Theorem 2 p 270 in Meyer Vol. II (1990)), so called
because of the qualitative features they have in common with wavelets (local-
ization, cancellation, smoothness), here is their definition.

Definition 1 Continuous functions on <d (ujk)(j,k)∈Z×Zd are called vaguelettes
if there exist α > β > 0 and a constant C such that

|ujk(x)| 6 C2dj/2
¡
1 +

¯̄
2jx− k

¯̄¢−d−α
,Z

ujk(x)dx = 0,

|ujk(x)− ujk(x0)| 6 C2(d/2+β)j |x− x0|β .

The property (2) is crucial for the theory as we shall see.
Hence, the theory applies if K∗ is mapping vaguelettes into wavelets, and

it is the case for some specific operators having in common the property of ho-
mogeneity with respect to dilatation (refer to the examples treated in Donoho
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(1995), among which: Radon transform, fractional integration, special convolu-
tion operators), that is to say such that KDa is equal to aαdDaK either exactly
or approximately for some exponent α ≥ 0, and all a in <, Da denoting the op-
erator defined by Daf(x) = f(ax), and for which the constants λj have norms
decreasing geometrically in the resolution index: λj = 2−jαd. In this particular
case, if one introduces a scaling function φ associated to the wavelet mother ψ,
from the coefficients in the wavelet expansion of φλ with λ ∈ Λ(d)j1 , namely

φλ =
X
j6j1

X
γ∈Γ(d)j

pλ, γψγ ,

one may define

∆λ =
X
j6j1

X
γ∈Γ(d)j

2jαdpλ, γuγ ,

which satisfies to the relation

K∗∆λ = φλ.

As a matter of fact, from (2) and the condition kφλk2 = 1, we deduce that:°°°°°°°
X
j6j1

X
γ∈Γ(d)j

2jαdpλ, γuγ

°°°°°°°
2

6 C2j1α

X
j6j1

X
γ∈Γ(d)j

p2λ, γ


1/2

= C2j1αd.

Hence, one may write an inhomogeneous reproducing formula:

g =
X

λ∈Λ(d)j1

hKg,∆λiφλ +
X
j≥j1

X
γ∈Γ(d)j

λ−1j hKg, uγiψγ . (3)

From representation (3) of the object g to recover, known to lie in a Besov class
for example, it is possible to implement a procedure based on the computa-
tion of the corresponding empirical coefficients from the indirect data, which,
combined with a suitable nonlinear shrinkage of these coefficients, provides an
estimator with a minimax optimality. Results in that direction have been proved
in Donoho (1995) in a framework assuming that data containing measurements
of the function Kg contaminated with Gaussian noise are observed:

d(t) = Kg(t) + z(t), t ∈ T .

Here, although our framework is different, since the data consist in realizations
of a process (Yn) with marginal distributionKg, we shall show that, in some spe-
cific cases, nonlinear shrinkage of wavelet-vaguelette decomposition coefficients
leads to a minimax optimal procedure too.
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1.4 Contents.

The outline of the paper is as follows. In section 2 the WVD is applied to
nonparametric estimation of the stationary and transition densities, f(x) and
π(x, y) respectively, of a Markov chain based on noisy observations: a precise de-
scription of the statistical model we consider is given in 2.1, subsection 2.2 shows
how the WVD formalism applies to the problem of nonparametric estimation
for this specific model, in 2.3 we set out our proposals for adaptive estimation of
f(x) and π(x, y) in this framework, and subsection 2.4 states the main results
on the minimax optimality (or nearly optimality) of these procedures. Technical
proofs are given in section 3.

2 Application of WVD to nonparametric
estimation for Markov Chains on the basis
of noisy observations.

We now turn to application of the wavelet-vaguelette decomposition to the prob-
lem of minimax nonparametric estimation of the stationary and transition densi-
ties, f(x) and π(x, y), on compact sets (on the unit interval [0, 1] and on the unit
square [0, 1]2 to simplify notation) for the specific Hidden/Noisy Markov model
described below. The quality of the estimators we propose will be measured by
the Lp

0
-integrated risk.

2.1 Statistical model.

Assumptions. We consider a real valued Markov chain (Xn)n∈ℵ, Feller, ape-
riodic, recurrent positive and stationary with unknown transition probability
Π(x, dy) = π(x, y)dy and stationarity probability µ(dx) = f(x)dx (recall that
f(y) =

R
µ(dx)π(x, y), a. s.). In addition, we consider assumptions involving

criteria of speed of return times to ”small sets”, whose definition we recall below.

Definition 2 For a Markov chain valued in a state space (E, E) countably gen-
erated with transition probability Π, a set S ∈ E is said to be small if there exist
an integer m > 0, a probability measure ν supported by S, and δ > 0 such that

∀x ∈ E,∀A ∈ E, Πm(x,A) ≥ δ1S(x)ν(A),

denoting by Πm the m-th iterate of Π. When this holds, one says that the chain
satisfies the minorization conditionM(m,S, δ, ν).

Recall that accessible small sets do exist for irreducible chains (see Jain &
Jamison (1967)) and that, under the assumption of positive recurrence, we have
for every small set S such that µ(S) > 0

sup
x∈S

Ex(τS) <∞,
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Ex denoting the expectation conditionally to X0 = x and
τS = inf {n ≥ 1, Xn ∈ S} the return time to S, and there exist some measur-
able test function V : (E, E) → [0, ∞], µ-integrable, uniformly bounded on S
(continuous when the chain is Feller), and some constant 0 < b < 1 such that
the following drift condition towards S, denoted by D(S, V, b), is satisfied

∀x ∈ E, ΠV (x) 6 V (x)− 1 + b1S(x),

with ΠV (x) =
R
y∈E Π(x, dy)V (y). Strenghtening this property of finiteness of

return times to small sets, we introduce the following notions.

Definition 3 For a Ψ-irreducible Markov Chain (Xn)n∈ℵ, a measurable set A is
said geometrically regular if there exists rB > 1 such that supx∈AEx(r

τB
B ) <∞)

for every measurable set B such that Ψ(B) > 0.

Remark 4 Recall that a small set S such that Ψ(S) > 0 is geometrically regular
if and only if there exists r > 1 such that supx∈S Ex(r

τS ) < ∞; if there exists
such a set for a positive recurrent chain with invariant probability µ, then every
other small set weighted by µ is geometrically regular, and the support of µ can
be covered by a countable collection of geometrically regular sets; in such a case,
one says that the chain is geometrically regular, one can refer to Chapter 5 in
Nummelin (1984) and Chapter 15 in Meyn & Tweedie (1996) for further detail.

The model. Here we focus on the hidden Markov chain (Yn)n∈ℵ which is a
perturbation of (Xn)n∈ℵ by a specific additive white noise (εn)n∈ℵ :

Yn = Xn + εn,

(εn) is assumed to be a sequence of i.i.d. random variables with known density
k(x), εn and Xn are supposed independent. Moreover, the density k is supposed
bounded and obeys the conditions of high-frequency regularity:

ˆ

k(w) ∼ |w|−α , as |w|→∞, (4)

inf |w|6 |Ω|

¯̄̄̄
ˆ

k(w)

¯̄̄̄
¯̄̄̄
ˆ

k(Ω)

¯̄̄̄ → 1, as |Ω|→∞, (5)

where
ˆ

k denotes the Fourier transform of k, with the normalization:
ˆ

k(w) =R
e−ixwk(x)dx. The common density of the observations Y1, ..., Yn is the image

of f(x) by the convolution operator K(1) with kernel k1 = k:

K(1)f = k ∗ f.

Similarly, the common density of the bivariate r. v. (Yi, Yi+1) is the image of
F (x, y) = f(x)π(x, y) by the convolution operator K(2) with kernel k2 = k ⊗ k.
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Properties. The fact that Z = ((Xn, Yn))n∈ℵ is a bivariate Markov chain is
noteworthy:

P (Xn+1 ∈ A, Yn+1 ∈ B | Xn = x) =
Z
(z,y)∈A×B

Π(x, dz)k(y − z)dzdy, (6)

for all measurable sets A, B, and for all x in the state space of the regime X.
From expression (6) of the transition kernel above, one can check straightfor-
wardly that Z inherits stochastic stability properties from X : it is Feller, ape-
riodic, recurrent positive with stationary probability
µK(dxdy) = f(x)k(y−x)dxdy; further, observe that S×< is a small set for the
bivariate chain Z, as soon as S is a small set for the chain X, hence if X is geo-
metrically regular, so is Z. This latter observation is crucial, these assumptions
considering criteria of speed of return times to small sets allow to make use of
moment inequalities and large deviations bounds, valid for additive functionals
of regular Markov chains (see Clémençon (2001)), so that risk bounds for our
estimators may be calculated.

Smoothness constraints. Let d ∈ {1, 2}, we will use expansion of the ob-
ject g to estimate on [0, 1]d in an orthonormal wavelet basis on [0, 1]d (re-
fer to Cohen, Daubechies & Vial (1993)) of class Cr+1, r + 1 ≥ 2J − 1, to
cover up possible boundary effects. In order not to overcharge notation, we
make no notational distinction between edge and interior wavelets (respec-
tively, between edge and interior scaling functions), and indiscriminately de-

note ψγ , γ ∈ Γ
(d)
j =

n
(j, k,m) , k ∈

©
0, ..., 2j−1

ªd
, m ∈ {1, ..., 2d− 1}

o
, and

φλ, λ ∈ Λ
(d)
j =

n
(j, k) , k ∈

©
0, ..., 2j − 1

ªdo
the wavelet and scaling functions

at level j ≥ J. Suppose r + 1 > σ, the object g to estimate on [0, 1]d is known

to belong to the ball of center 0 and radius R of the Besov space Bσpq

³
[0, 1]

d
´
,

that is to say to the set of functions defined on [0, 1]d obeying

kgk(d)σpq =

 X
λ∈Λ(d)J

|αλ|p


1/p

+

X
j≥J

2j(σ+d/2−d/p)q

 X
γ∈Γ(d)j

¯̄
βγ
¯̄p

1/p

1/q

6 R,

where, denoting by h., .i the usual inner product on L2
³
[0, 1]d

´
, αλ = hg,φλi ,

βγ =

f,ψγ

®
. In what follows, we denote by F (d)σpq(R) the set of such functions,

by Pσpq(R) the set of positive recurrent transition densities π(x, y) whose sta-
tionary density f(x) restricted to [0, 1] belongs to F (1)σpq(R) and such that the
bivariate density f(x)π (x, y) restricted to [0, 1]2 belongs to F(2)σpq(R), by k.kp0
the usual Lp

0
-norm on [0, 1]d, and the notation 2j(n) ' g(n) means that the

sequence of integers j(n) is chosen to satisfy 2j(n) 6 g(n) < 2j(n)+1.
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2.2 The WVD of the convolution operator K(d).

Consider an orthonormal basis of wavelets of compact support on [0, 1]d,
¡
ψγ
¢
,

deriving from ”edge” and ”interior” wavelet mothers (ψm)16m62d−1 of class
Cr+1 with r+1 ≥ α, and let φ denotes the corresponding ”edge” and ”interior”
scaling functions (of class Cr+1 too).
Then, the following equalities define functions in L1

¡
<d
¢
∩ L2

¡
<d
¢
:

ξγ(x) =
1

(2π)d

Z
eix.w

ˆ

ψγ(w)
ˆ

kd(−w)
dw, for j ≥ J , γ ∈ Γ(d)j ,

as a matter of fact, they can be rewritten as follows:

ξγ(x) =
1

(2π)d

Z
eix.w

ˆ

ψγ(w) |w|
αd 1

|w|αd
ˆ

kd(w)

dw.

These functions are such that:

K(d)∗ξγ =
`
kd ∗ ξγ = ψγ ,

where K(d)∗ denotes the adjoint of K(d), the convolution operator with kernel
`
kd(x) = kd(−x). Note that, at each level of resolution j, the ξ(j, k, m) ’s corre-
sponding to interior (respectively, edge) wavelets are deduced from each other
by translation. Moreover, from Plancherel ’s formula we have in the case d = 1

°°°ξ(j, k, 1)°°°
2
=

2jα

(2π)1/2


Z
<

¯̄̄̄
ˆ

ψ (w)

¯̄̄̄2 |w|2α

|2jw|2α
¯̄̄̄
ˆ

k (−2jw)
¯̄̄̄2 dw


1/2

,

and in the case d = 2

°°°ξ(j, k, m)°°°
2
=
22jα

2π

Z
<2

¯̄̄̄
ˆ

ψm(w, t)

¯̄̄̄2 |wt|2α dwdt

|22jwt|2α
¯̄̄̄
ˆ

k(−2jw)
ˆ

k(−2jt)
¯̄̄̄

1/2

,

with ψm defined by ψ(j,k,m)(x, y) = 2
2jψm(2

jx, 2jy).
Consequently, by virtue of (4) and (5)°°°ξ(j,k,m)°°°

2
∼ 2jαd, as j →∞.

Hence the norms
°°°ξ(j, k, m)°°°

2
scale geometrically for j →∞

(but not for j → −∞:
°°°ξ(j, k, m)°°°

2
→ 1/

¯̄̄̄
ˆ

k(0)

¯̄̄̄
= 1). This leads us to set

λ
(d)
j = 2−jαd for j ≥ 0,

λ
(d)
j = 1 for j 6 0,
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and for j ≥ J , γ ∈ Γ(d)j ,

uγ = λ
(d)
j .ξγ .

The set of functions (uγ) is a system of vaguelettes, it simply arises from a
classical result concerning Fourier multipliers in standard Fourier analysis (see
lemma 4 in Donoho (1995)):

Lemma 5 Suppose that ψ : <d → < is compactly supported, is orthogonal to
polynomials of degree inferior or equal to D, and has r continuous derivatives.

Let
ˆ

Ω(w) be homogeneous of degree 0, and |α| + D + 1 < min(r,D). Define
u : <d → < by

u(x) =
1

(2π)d

Z
<d
eix.w

ˆ

ψ(w)
ˆ

Ω(w) |w|α dw.

Then there exists a constant C such that:

|u(x)| 6 C (1 + |x|)−(1+d) , x ∈ <d,Z
u(x)dx = 0,

|u(x)− u(x0)| 6 C |x− x0| , (x, y) ∈ <d ×<d.

Keeping the notations introduced in 1.3, here and throughout we continue
to denote by ∆λ the functions such that:

K(d)∗∆λ = φλ.

Example 6 Consider the case of exponential noise: k(x) = 1{x≥0}e−x. As k is
of class C1 on <∗+ and <∗−, has a jump of amplitude 1 in 0, and k0 is integrable,
we deduce that

ˆ

k(w) ∼ 1

w
, as |w|→∞.

Hence, here the exponent is α = 1. Moreover, by simply integrating by parts,
one obtains the identity: µ

I − d

dx

¶
K∗ = I,

which leads to take:

γjk(x) = 2
j/2ψ

¡
2jx− k

¢
− 23j/2ψ0

¡
2jx− k

¢
,

and

ujk(x) = 2
−j/2ψ

¡
2jx− k

¢
− 2j/2ψ

0 ¡
2jx− k

¢
, for j ≥ 0.
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Similarly

θjk(x) = 2
j/2φ

¡
2jx− k

¢
− 23j/2φ0

¡
2jx− k

¢
.

As another example, one can consider the case for which k(x) = 1
2e
−|x|. It is

immediate to check that it corresponds to the case α = 2, and that the following
identity holds: µ

I − d2

dx2

¶
K∗ = I.

Hence in this particular case the system of vaguelettes would be constructed from:

γjk(x) = 2
j/2ψ

¡
2jx− k

¢
− 25j/2ψ00

¡
2jx− k

¢
.

Remark 7 Analogy with SVD. As emphasized in Donoho (1995), the WVD,
in some sense similar to the SVD, offers an ”almost diagonal” representation
of the operator K(d). As a matter of fact, set vγ = (λ

(d)
j )−1.K(d)ψγ for γ ∈

Γ
(d)
j , by lemma 5 again, (vγ) is a system of vaguelettes too. Hence, to within
scalar multipliers, K(d) is mapping wavelets into vaguelettes, when K(d)∗ is
turning vaguelettes into wavelets and so, wavelets are ”almost eigenfunctions”
of K(d)∗K(d). As the exact eigenfunctions (globalized complex exponentials) have
not the localization properties of wavelets, the WVD renounces exact diagona-
lization of K(d)∗K(d), on which the SVD is based (refer to 1.2), in order to get
much better representation of the object to estimate.

2.3 Two algorithms for adaptive estimation of stationary
and transition densities based on noisy observations.

The main purpose of this paper is to develop two practical algorithms, both
based on thresholding of WVD coefficients (for computational aspects of the
wavelet transforms, refer to Chapter 12 in Härdle, Kerkyacharian, Picard &
Tsybakov (1998) and Vidakovic (1999)), for adaptive estimation of the station-
ary density f(x) on [0, 1] and the transition density π(x, y) on [0, 1]2 on the
basis of observations Y1, ..., Yn drawn from the hidden/noisy Markov model we
described in 2.1.

2.3.1 Our proposal for adaptive estimation of the stationary density.

We propose a three steps method for estimation of f(x) based on n data
Y1, ..., Yn, which requires no iteration. We suppose we are given an orthonormal
wavelet basis on [0, 1]. Given this tool, we construct the estimate as follows.

Algorithm 8 [1] From the indirect data Y1, ..., Yn, calculate the empirical vague-
lette coefficients of the density K(1)f(x) for a specific range of indices by the
method of moments, yielding estimates:
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ˆ
αλ = n−1

Pn
i=1∆λ(Yi),

ˆ

βγ = n−1
Pn
i=1 ξγ(Yi), j

(1)
1 6 j 6 j

(1)
0 , λ ∈ Λ(1)

j
(1)
1

,

γ ∈ Γ(1)j .
[2] Apply the hard-threshold nonlinearity δh(w, t) = w1{|w|>t} to the coeffi-

cients
ˆ

βγ , γ ∈ Γ
(1)
j , previously calculated with threshold t

(1)
j = K(1)

p
j22jα/n,

getting new coefficients
˜

βγ.

[3] Setting all wavelet-vaguelette coefficients equal to 0 for j > j(1)0 , perform
the reconstruction by inverting the wavelet-vaguelette transform. This yields an

estimate
ˆ

f(x), x ∈ [0, 1] .

2.3.2 Our proposal for adaptive estimation of the transition density.

We propose a seven step method for estimation of π(x, y) based on n data
Y1, ..., Yn, with no iteration required. We suppose we are given an orthonormal
wavelet basis on [0, 1] and a 2-dimensional orthonormal wavelet basis on [0, 1]2

(constructed from the latter by the method of tensorial product so as to preserve
the multiresolution analysis structure).

Algorithm 9 [1] , [2] , [3] Execute the three steps of Algorithm 8.
[4] From the indirect data (Yi, Yi+1), i = 1, ..., n− 1, calculate the empirical

2-d vaguelette coefficients for some specific class of levels of resolution:
ˆ
αλ = n−1

Pn−1
i=1 ∆λ(Yi, Yi+1),

ˆ

βγ = n−1
Pn−1
i=1 ξγ(Yi, Yi+1), j

(2)
1 6 j 6 j

(2)
0 ,

λ ∈ Λ(2)
j
(2)
1

, γ ∈ Γ(2)j .

[5] Apply hard thresholding with threshold t(2)j = K(2)
p
j24jα/n to the coef-

ficients
ˆ

βγ , γ ∈ Γ
(2)
j , to get the resulting coefficients

˜

βγ.

[6] From the coefficients
ˆ
αλ, λ ∈ Λ(2)

j
(2)
1

˜

βγ , γ ∈ Γ
(2)
j , j

(2)
1 6 j 6 j

(2)
0 , only,

invert the inhomogeneous wavelet-vaguelette transform, producing an estimate
ˆ

F (x, y), (x, y) ∈ [0, 1]2 .

[7] Divide
ˆ

F (x, y) by
ˆ

f(x) when non equal to zero, getting the estimate

ˆ
π(x, y) =

ˆ

F (x, y)/
ˆ

f(x),

and set
ˆ
π(x, y) = 0 when

ˆ

f(x) = 0.

2.3.3 Insights.

Attention of the reader, who wish to get an insight into the ground for efficiency
of the algorithms above without going into technical details of minimax rates of
convergence, must be turned to the fact it is based on two kinds of arguments.
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As pointed out in 1.2, approximation-theoretic arguments justify the use
of wavelet bases in nonparametric estimation. Following the line of argument
of Computational Harmonic Analysis (CHA), the main advantage that can be
found to use wavelet expansions in statistical applications rests in the fact that
a single orthonormal wavelet basis provides an unconditional basis for a large
scale of Besov spaces (functions belonging to these classes are characterized by
the amplitude of their wavelet coefficients only) and for this reason allows to
represent these Besov classes in an ”optimal” fashion: following the formalism
introduced by Donoho (1993,1996), an ”optimal basis” for a given function class
F is any basis in which the coefficients of the functions lying in F , rearranged
in decreasing order of their magnitude, have fastest decay. By considering the
sparsity of representation of Besov classes provided by wavelet bases, one may
gain insights of the reasons why an inference method based on the estimation
of a few big enough wavelet coefficients (in our case, wavelet-vaguelette coeffi-
cients) yields an estimation procedure with drastically reduced bias over these
functional classes, when suitably tuned.
If the bias errors of the procedures above may be reduced thanks to the use

of wavelets, the stochastic errors, due to randomness of the observations, are
smallest for chains that come back infinitely often and fast enough to specific
subsets, namely ”small sets” (see Definition 2). Besides, it seems heuristically
evident that the estimation of the conditional density π(x, .) is possible only if
the chain visits ”frequently enough” the neighbourhoods of x. Hence, if one
consents to view the stationary probability µ as an occupation measure (let S
be any small set and A be any measurable set, recall that µ (A) is proportional
to the mean of amount of time spent in A between two consecutive visits to
S), one intuitively understands why Algorithm 9 successfully achieves its goal
in the case when the stationary density f is bounded away from zero on [0, 1]

(notice that, in this case, the denominator of the estimator
ˆ
π(x, y) is strictly

positive with overwhelming probability).
Finally, it is fitting to notice that implementation of both algorithms does

not rely on the data alone, and requires the specification of parameters j(d)1 ,
j
(d)
0 controlling the expansiveness of the empirical wavelet transforms, as well
as the constants K(d) in the thresholds. Basing on explicit computation of the
rates of convergence for Lp

0
-integrated risks of the corresponding estimators,

we shall propose to select these parameters according to the maximal degree of
smoothness r the object(s) to estimate a priori may have (see subsection 2.4).

2.4 Optimality of the proposals.
Asymptotics of minimax risks.

Now we show that the nonlinear shrinkage of the empirical wavelet-vaguelette
coefficients on which Algorithms 8 and 9 are based can be tuned to be asymptot-
ically minimax or nearly minimax over a wide range of Besov type smoothness
constraints for the variety of global Lp

0
error measures, 1 6 p0 <∞.

13



2.4.1 Lower bounds results.

Here we state (without proof) a lower bounds result for the model described in
2.1 for comparison purposes. For notational convenience, we set

σd = σ − d(1/p+ 1/p0), ε(d)α = σp− d (p0 − p) (α+ 1/2) ,

ν(d)α = min

µ
σ

d+ 2 (σ + dα)
,

σd
d+ 2 (σ + dα− d/p)

¶
.

Notice that

ν(d)α =
σ

d+ 2 (σ + dα)
1n

ε
(d)
α ≥0

o + σd
d+ 2 (σ + dα− d/p)1

n
ε
(d)
α <0

o .
Theorem 10 Let 1 6 p, q 6∞, σ > 1/p, p0 ≥ 1. Set

R(1)
n (σ, p, q, R) = inf

ˆ
fn

sup
f∈F(1)

σpq(R)

Ã
Ef

°°°°ˆfn − f°°°°p
0

p0

!1/p0
,

R(2)
n (σ, p, q, R) = inf

ˆ
πn

sup
π∈Pσpq(R)

µ
Eπ

°°°ˆπn − π
°°°p0
p0

¶1/p0

(the infimum being taken over all estimators based on observations Y1, ..., Yn).
Then, for d ∈ {1, 2} there exists some constant C such that

R(d)
n (σ, p, q, R) ≥ C

µ
1n

ε
(d)
α >0

o + 1n
ε
(d)
α 60

o logν(d)α n

¶
n−ν

(d)
α .

Remark 11 Observe that the lower bounds explicitely depend on the parameter
α, more precisely they are nondecreasing functions of α. This crucial fact has
already been discussed in Fan (1991), which paper aimed to show why the rate
in deconvolution problems should depend on the tail of the Fourier transform of
the error distribution k(x), or in other terms on smoothness properties of k(x)
(which phenomenon we can sum up this way: the smoother the error distribution
is, the harder the deconvolution is).

Remark 12 As in many other statistical problems, the lower bounds reveal
”elbows” in the rates of convergence: note that, from an observation of length
n, the rate n−

σ
d+2(σ+dα) applies only for σ large enough, whereas the rate is

n−
σd

d+2(σ+dα−d/p) in the low regularity cases (note also the log factor). As will be
shown in 2.4.2, for geometrically regular chains, this lower bound is sharp (up
to possible logarithmic factors, see Theorems 13 and 15).

Similarly to the proof given in Clémençon (2000b) in the case of estimation
from direct data, these lower bounds for optimal rates of estimation over F (1)σpq

(respectively, Pσpq) among all estimators based on the indirect observations
Y1, ..., Yn can be established by using the method of rectangular subproblems.
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Two cases have to be considered depending on whether ε(d)α is greater than zero
or not: in both cases, an appropriate orthogonal hypercube may be obtained by
considering perturbations of the density 1[0,1]d , where the perturbations are the

vaguelettes υγ =
³
λ
(d)
j

´−1
.K(d)ψγ . A possible proof based on this technique is

developped at lenght in Clémençon (2000a).

2.4.2 Upper bounds results.

We attempt to recover the stationary density f(x) on [0, 1] and the transition
density π(x, y) on [0, 1]2 as accurately as possible from indirect observations
Y1, ..., Yn, by constructing estimators viaWVD shrinkage, it simply amounts to
estimate a suitable selection of WVD coefficients, and apply a nonlinear hard
thresholding, depending on the level of resolution of the coefficients calculated
and in addition on α, the parameter of smoothness of the error distribution
k(x). We claim below that, for an appropriate tuning, this allows to obtain
estimators with worst case risks comparable to the rates in Theorem 10 (within
to possible log factors), as soon as the regime (Xn) is assumed geometrically
regular and the stationary density f(x) uniformly bounded away from zero on
[0, 1] in the case of estimation of π(x, y).

Form of the estimators. For d = 1, 2, we suppose we are given an (in-
homogeneous) orthonormal wavelet basis on [0, 1]d of class Cr+1deriving from
(φλ)λ∈Λ(d)j1

and
¡
ψγ
¢
j≥j1, γ∈Γ(d)j

. The densities f(x) and F (x, y) = f(x)π(x, y)

have formal expansions on [0, 1] and on [0, 1]2 respectively

f(x) =
X

λ∈Λ(1)j1

αλφλ(x) +
X
j≥j1

X
γ∈Γ(1)j

βγψγ(x),

F (x, y) =
X

λ∈Λ(2)j1

αλφλ(x, y) +
X
j≥j1

X
γ∈Γ(2)j

βγψγ(x, y).

The threshold wavelet-vaguelette estimators are constructed by replacing a suit-
able selection of unknown coefficients αλ, βγ in the expansions above by the
empirical estimates

ˆ
αλ = n−1

nX
i=1

∆λ(Yi),
ˆ

βγ = n
−1

nX
i=1

ξγ(Yi) for λ ∈ Λ
(1)
j1
, γ ∈ Γ(1)j ,

ˆ
αλ = n−1

n−1X
i=1

∆λ(Yi, Yi+1),
ˆ

βγ = n
−1

n−1X
i=1

ξγ (Yi, Yi+1) for λ ∈ Λ
(2)
j1
, γ ∈ Γ(2)j .

According theWVD shrinkage technique, we apply a nonlinear, level-dependent
thresholding to the empirical wavelet-vaguelette coefficients

˜

βγ =
ˆ

βγ1½¯̄̄̄ ˆ
βγ

¯̄̄̄
>K(d)T(d)(j)

¾ for γ ∈ Γ(d)j ,
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and perform selective reconstructions using big enough wavelet-vaguelette coef-
ficients only, in a specific range of indices j(d)1 (n) 6 j 6 j(d)0 (n)

ˆ

f
n, j

(1)
1 , j

(1)
0
(x) =

X
λ∈Λ(1)j1

ˆ
αλφλ(x) +

j
(1)
0X

j=j
(1)
1

X
γ∈Γ(1)j

˜

βγψγ(x), (7)

ˆ
F
n, j

(2)
1 , j

(2)
0
(x, y) =

X
λ∈Λ(2)j1

ˆ
αλφλ(x, y) +

j
(2)
0X

j=j
(2)
1

X
γ∈Γ(2)j

˜

βγψγ(x, y). (8)

The transition density estimator is obtained by forming the quotient of the
estimates (7) and (8), truncated so that the estimator keeps good integrability
properties

ˆ
πn(x, y) =

ˆ
F
n, j

(2)
1 , j

(2)
0
(x, y)

ˆ

f
n, j

(1)
1 , j

(1)
0
(x)

1½ ˆ
f
n, j

(1)
1 , j

(1)
0

(x)≥χ/2
¾ . (9)

Now we fix r ∈ ℵ and define the class of Besov parameters for d = 1, 2 :

Cd = {(σ, p, q) ; s < σ − d/p, σ 6 r, 1 6 p, q 6∞} .

Quasi-optimality of Algorithm 8. The following result combined with The-
orem 10 shows that for an appropriate tuning of parameters j1, j0 and K, the
rate of estimator (7) is optimal within possible logarithmic factors simultane-
ously for the range of Lp

0
-losses and over each Besov ball F (1)σpq(R) for any

parameters (σ, p, q) in C1.

Theorem 13 Assume that X = (Xn)n∈ℵ is a stationary, Feller, aperiodic and
positive recurrent Markov Chain with stationary probability µ(dx) = f(x)dx with
f belonging to some class F (1)σpq(R) where (σ, p, q) ∈ C1. Assume further that
X is geometrically regular. If parameters j11(n) and j

1
0(n) are picked such that

2j
(1)
1 (n) ' n

1
1+2(r+α) , 2j

(1)
0 (n) ' (n/ logn)

1
1+s+2α ,

and if the threshold is chosen such that

T1 (j) =
p
j22jα,

then, for all p0 ≥ 1 and (σ, p, q) ∈ C1, there exist constants C and K(1)0 (speci-
fied after below) such that for K(1) ≥ K(1)0Ã

Ef

°°°°ˆfn − f°°°°p
0

p0

!1/p0
6 C (logn)δ1

µ
logn

n

¶ν(1)α

,

with δ1 = max (1/2− p/qp0, 0) .1{2σp=p0−p}.

16



Remark 14 As the computation in section 3 indicates, in the case when the
regime X satisfies conditionsM(m, S, δ, ν) and D(S, V, b) (see subsection 2.1)
for explicitely known parameters, the threshold constant K(1)0 may be practically
picked as follows. Set

M1 = (2− δ +
2

δ
)(sup
x∈S

V (x)− 1) + bm(1 + 1
δ
) +

Z
V (x)ν(dx),

M2 =
2− δ

1− b ,

and let C1 be some constant such that

M1 +M2( sup
x∈[0,1]

V (x) +

Z
x∈<

V (x)µ(dx)) 6 C1,

then one may choose K(1)0 = C
(1)
0 rp0 with a constant C(1)0 chosen so large that

(C
(1)
0 )2 > 18c

(1)
∞ (8 kkkL∞(<) δ

−1µ(S)−1c
(1)
1 C1 + 2C

(1)
0 /9) log 2 (see lemma 20 in

section 3 for the definition of constants c(1)1 and c(1)∞ ).

Quasi-optimality of Algorithm 9. When the parameters which controll
the expansiveness of the empirical wavelet-vaguelette transforms j(d)1 , j

(d)
0 and

Td (j) are picked as in Theorem 14 below in order to minimize simultaneously
bias and variance components of the risk, estimator (8) has a near minimax
optimality (compare to rates in Theorem 10) simultaneously for the variety of
global Lp

0
-error measures and over all classes Pσpq(R) with (σ, p, q) ∈ C2.

Theorem 15 Suppose that X = (Xn)n∈ℵ is a stationary, Feller, aperiodic and
positive recurrent Markov chain with transition probability Π(x, dy) = π(x, y)dy
and stationary probability µ(dx) = f(x)dx. Suppose in addition that X is
geometrically regular and that there exists some constant χ > 0 such that
f(x) ≥ χ for all x ∈ [0, 1] . Provided that π belongs to some class Pσpq(R)
where (σ, p, q) ∈ C2, if p0 ≥ 1 and jd1(n), jd0 (n) and Td(j) are picked so that

2j
(d)
1 (n) ' n

1
2(1+r+2α) , 2j

(d)
0 (n) ' (n/ logn)

1
d(1+s+2α)

Td (j) =
q
j22jαd/n,

then, for all (σ, p, q) ∈ C2, there exist constants C and K(d)0 such that for all
K(d) ≥ K(d)0 µ

E
°°°ˆπn − π

°°°p0
p0

¶ 1
p0

6 C (logn)δ2
µ
logn

n

¶ν(2)α

,

with δ2 = max (1/2− p/qp0, 0) .1{σp=p0−p}
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Remark 16 Keeping the notation introduced in remark 14, we point out that
a possible choice for the threshold constants is K(d)0 = C

(d)
0 rp0, the constants

C
(d)
0 being chosen so large that (C(d)0 )2 > 18c

(d)
∞ (8 kkkdL∞(<) δ

−1µ(S)−1c
(d)
∞ C1 +

2C
(d)
0 /9) log 2 (c(d)1 and c(d)∞ being constants specified in lemma 20).

Although the estimators specified in theorems 13 and 15 are adaptive with
respect to parameters σ, p and q, their constructions require nevertheless that
p0, r, s, R be explicitely known.

3 Sketch of Proofs of Theorems 13 and 15.

Now we show how upper bounds results stated in 2.3 derive from the properties
of wavelet shrinkage with regard to approximation over Besov spaces and the
assumption of geometric regularity for the underlying chain X = (Xn)n∈ℵ. As
we shall see, this latter assumption allows to bound stochastic terms (inherent to
the randomness of the observations Y1, ..., Yn) in the calculation of risk bounds so
that a tuning of the procedures proposed, corresponding to an optimal balancing
of bias and variance components of the risk, may be found, leading to nearly
minimax methods of estimation.
We begin by stating an approximation theoretical result showing how non-

linear shrinkage of the WVD coefficients can reduce the bias of the estimators
(7) and (9).

Adaptive nonlinear approximation by wavelet shrinkage. Let d ∈ {1, 2},
suppose that g belongs to some Besov ball F (d)σpq(R) with (σ, p, q) ∈ Cd. With
the object to approximate g on [0, 1]d with a least Lp

0
-integrated error, using a

given number of non zero coefficients only, Donoho et al. (1996) considered a
selective reconstruction of the wavelet expansion

g =
X

λ∈Λ(d)j1

αλφλ +
X
j≥j1

X
γ∈Γ(d)j

βγψγ ,

by keeping wavelet coefficients at levels j1 6 j 6 j0 such that
¯̄
βγ
¯̄
≥ K(d).Td (j),

γ ∈ Γ(d)j only:

WS (g) =
X

λ∈Λ(d)j1

αλφλ +

j0X
j=j1

X
γ∈Γ(d)j

βγ1{|βγ|≥K(d).Td(j)}ψγ . (10)

The following result straightforwardly follows from the precise study of the

Besov modulus corresponding to the error (measured by the Lp
0
³
[0, 1]

d
´
-norm)

of approximation of g byWS (g) in Donoho, Johnstone, Kerkyacharian & Picard
(1996a) (see section 12.4 evaluation of the modulus of continuity, we will use the
shortening ”DJKP” in what follows).
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Lemma 17 If the parameters of expansiveness of the development (10) are
picked such that

Td (j) =
q
j22jdα/n,

2j1(n) ' n
1

d+2(αd+r) , 2j0(n) ' (n/ logn)
1

d(1+2α) ,

then, there exists some constant C depending only on R, σ, p and q such that

kWS (g)− gkp0 6 C
µ
logn

n

¶ν(d)α

(logn)δd .

Moreover, if N (n) denotes the number of non zero coefficients in (10), we have

N (n) =°
µ
n (logn)

p0−p
p 1{σdp≥p0−p}

¶ 1−2ν(d)α
d(1+2α)

.

Remark 18 As lemma (19) above shows, if logarithmic factors are left out of
account, N ' n(1−2νdα)/(d+2αd) coefficients are enough to give an approximation
of g with an error of order n−ν

d
α by means of the wavelet shrinkage method,

whereas a linear type method of approximation requires a number of coefficients
of order ndν

d
α/σd to achieve a comparable rate when p0 ≥ p (refer to the discus-

sion in DJKP (1996c))

Moments and probability bounds. Now we establish Rosenthal type mo-
ments inequalities, classically put forward in risk computations, and large de-
viations inequalities, these latter allowing here to estimate the gain in terms
of Lp

0
-error that shrinkage of the empirical wavelet-vaguelette coefficients may

provide (compare to inequality (14) in DJKP (1996b)).

Lemma 19 (Moments bounds) Let d ∈ {1, 2} . Suppose that X = (Xn)n∈ℵ is
geometrically regular, |f | 6 R then, for any m ≥ 1, there exists some constant
C such that, for all j ≥ J such that 2jd 6 n,X

λ∈Λ(d)j

¯̄̄
ˆ
αλ − αλ

¯̄̄m
6 C2jd(1+αm)n−m/2, (11)

X
γ∈Γ(d)j

¯̄̄̄
ˆ

βγ − βγ

¯̄̄̄m
6 C2jd(1+αm)n−m/2. (12)

Proof. First, let us turn our attention to specific properties shared by the
collections of functions involved, following straightforwardly from their defini-
tions (see subsection 2.2).
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Lemma 20 Let (θjk) denote either the set of functions (∆λ)λ∈Λ(d)j , j≥J or¡
ξγ
¢
γ∈Γ(d)j , j≥J . There exist constants c

(d)
∞ and c(d)1 such that, for j ≥ J

kθjkk∞ 6 c(d)∞ 2
jd(α+1/2)), (13)

kθjkk1 6 c
(d)
1 2jd(α−1/2)), (14)

and we have the following localization property (see Lemma 5)

|θjk(x)| 6 C2jd(α+1/2)
¡
1 +

¯̄
2jx− k

¯̄¢−2
(15)

We prove inequality (11) in the case d = 1, (12) follows from analogous argu-
ments. In order to simplify the proof, even if it entails to replace the chain by a
split chain obtained through the Nummelin splitting technique from the param-
eters of some conditionM(m, S, δ, ν) (see Definition 2) fulfilled by the chain,
we assume the existence of an accessible atom A ⊂ < for the Markov chain
X = (Xn)n∈ℵ (i.e. a measurable set of the state space such that µ (A) > 0 and
∀ (x, x0) ∈ A2, Π (x, dy) = Π(x0, dy), see Nummelin (1984)).
Let PA (respectively Pµ, resp. Px) denote the probability measure condition-
ally to X0 ∈ A (resp. such that X0 ∼ µ, resp. conditionally to X0 = x) and
EA (resp. Eµ, resp. Ex) the PA-expectation (resp. the Pµ-expectation, resp.
the Px-expectation). As we assumed that the chain X = (Xn)n∈ℵ is geomet-
rically regular and the compact interval [0, 1] is included in the support of µ,
we have in particular EA (τmA ) < ∞, or equivalently Eµ(τm−1A ) < ∞ (since
Pµ(τA = k) = µ(A)PA(τA ≥ k), see renewal theory equality in 10.17 in Meyn &
Tweedie (1996)), and supx∈[0,1]Ex(τ

m
A ) < ∞ (see remark 4 in subsection 2.1).

In 2.1 we previously observed that Z = ((Xn, Yn))n∈ℵ is a Markov chain, that
inherits the stochastic regularity properties from X, in particular it follows from
equality (6) that Z is geometrically regular and A×< is an accessible atom for
the latter.
Assume m ≥ 2 from now on. As k∆jkk∞ 6 c

(1)
∞ 2j(α+1/2), the application of

Proposition 8 in Clémençon (2001) to the functional ∆jk(Yn) of the geometri-
cally regular chain Z yields:

E

µ¯̄̄
ˆ
αjk − αjk

¯̄̄m¶
6 C1 (m) v

m
Z (∆jk)n

−m
2

+C2(m,n,∆jk)(c
(1)
∞ 2

j(α+ 1
2 ))m−2n1−m. (16)

We set
−
∆jk = ∆jk−µK (∆jk). It is simpler to consider the case of a chain that

possesses an atom, because in such a case the terms v2Z and C2 involved in the
upper bound (16) may be expressed in terms of hitting time to the atom A, as
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follows

C2(m,n,∆jk) = cmn
−1{Eµ

Ã
1{τA6n}τ

m−1
A

τAX
i=1

−
∆
2

jk(Yi)

!

+
X

16i6k6n
EA

Ã
1{τA>k}k

−2−∆
2

jk (Yi)

!

+
nX
i=1

nm−1Eµ

Ã
1{τA>n}

−
∆
2

jk(Yi)

!
}, (17)

besides, θ be any bounded and measurable function defined on <, we recall
the following expression of the limiting variance in the CLT for the functional
(θ(Yn))n∈ℵ:

v2Z (θ) = 2

Z
θ∗(x, y)

−
θ(y)µK(dx, dy)−

Z µ
−
θ(y)

¶2
(k ∗ f)(y)dy, (18)

where

−
θ = θ −

Z
θ(y)(k ∗ f)(y)dy = θ −Eµ (θ (Y1)) ,

θ∗(x, y) = E

Ã
σAX
i=0

−
θ(Yi) | X0 = x, Y0 = y

!
, (19)

with σA = inf {n ≥ 0, Xn ∈ A} (see paragraph 17.4.3 p 436 in Meyn & Tweedie
(1996)).
First we prove that, for some constant C(1),

v2Z (∆jk) 6 C(1)2j2α. (20)

From (19), we deduce that for all x in [0, 1] , y in <¯̄
∆∗jk(x, y)

¯̄
6 2 k∆jkk∞ sup

x∈[0,1]
Ex (τA) = O

³
2j(α+1/2)

´
(21)

Then, it follows from (18) that

v2Z (∆jk) 6 2
Z
f(x)k(y − x)

¡
∆∗jk(x, y) (∆jk(y)− µK (∆jk))

¢
dxdy.

We decompose the integral above as followsZ
f(x)k(y − x)∆∗jk(x, y)∆jk(y)dxdy − µ

¡
φjk
¢ Z

f(x)k(y − x)∆∗jk(x, y)dxdy.
(22)

Provided that k is bounded on <, bound (21) combined with (14) implies that
the first term in (22) is bounded by 2c(1)1 c

(1)
∞ supx∈[0,1]Ex (τA) kkkL∞(<) 2j2α.
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Moreover, as µ
¡
φjk
¢
6 kfk∞ kφkL1(<) 2−j/2, using (21) again, we deduce that

the second term is o(2jα). Hence, (20) is proved with, for 2j large enough,

C(1) = 8c
(1)
1 c

(1)
∞ kkkL∞(<) sup

x∈[0,1]
Ex (τA) . (23)

Now we consider the term C2. Let C denote a constant that will not neces-
sarily be the same at each appearance. Observe that it follows from localization
property (15) in lemma 20, that

sup
x

2j−1X
k=0

(∆jk(x))
2 6 C2j(2α+1).

We deduce the bound

τAX
i=1

2j−1X
k=0

(∆jk(Yi)− µK(∆jk))2 6 C2j(2α+1)τA a.s.

Using this inequality in each of the three expectations in (17) and finiteness of
EA (τ

m
A ) and Eµ

¡
τm−1A

¢
, we obtain that

2j−1X
k=0

C2(2, n,A,∆jk) = O
³
2j(2α+1)

´
.

Hence, as 2j 6 n, we have

2j−1X
k=0

¯̄̄
ˆ
αjk − αjk

¯̄̄m
6 C

Ã
1 +

µ
2j

n

¶(m/2−1)!
2j(αm+1)n−m/2

6 C2j(αm+1)n−m/2.

The case m 6 2 can be deduced by convexity, inequality (11) is so proved in the
case d = 1, the case d = 2 follows from a similar reasoning.

Lemma 21 (Large-deviations bounds) Let d ∈ {1, 2} . Suppose that (Xn)n∈ℵ
is geometrically regular. Assume in addition that 2j1(d) 6 2j 6 2j0(d), where
2j

(d)
1 and 2j

(d)
0 are picked as in Theorem 15. Then, letting K(d) = C0(d)×κ with κ

an arbitrary constant (C0(d) being specified after below), the following inequality

holds for all κ ≥ 1, γ ∈ Γ(d)j

Pµ

µ¯̄̄̄
ˆ

βγ − βγ

¯̄̄̄
≥ K(d)

q
j22jαd/n

¶
6 2−κj . (24)

Proof. As in the proof of lemma 19 and with the same notations, by means
of the Nummelin splitting technique again, we can assume the existence of an
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atom A such that µ (A) > 0 and EA
¡
eLτA

¢
< ∞ for some L > 0 with no loss

of generality. The application of Theorem 17 in the case d = 1 (respectively,
Theorem 19 in the case d = 2) in Clémençon (2001) to the functional ξγ (Yi)
(resp., the functional ξγ(Yi−1, Yi)) provides an estimate for the probability of
the large-deviations event

Aγ =

½¯̄̄̄
ˆ

βγ − βγ

¯̄̄̄
≥ K(d)

q
j22jαd/n

¾
, γ ∈ Γ(d)j ,

namely there exists a constant C such that for arbitrary y, γ ∈ Γ(d)j :

Pµ (Aγ) 6 C{n(e−Ly + e−LK
(d)
q

j22jαd

n n/kξγk∞) +

exp(
−(K(d))2j22jαd

18(µ(A)−1v2Z
¡
ξγ
¢
+ 2

9

°°ξγ°°∞K(d)ypj22jαd/n))}. (25)
Now, v2Z

¡
ξγ
¢
6 C(d)2

2jαd (with C(d) = 8c
(d)
1 c

(d)
∞ kkkdL∞(<) supx∈[0,1]Ex (τA) ,

see (20) in the proof of lemma 19) and
°°ξγ°°∞ 6 c

(d)
∞ 2j(αd+d/2) (see (13) in

lemma 20). Hence, provided that 2j 6 2j
(d)
0 ' (n/ logn)

1
d(1+s+2α) , by pick-

ing y = yn ' C logn with a constant C properly chosen, we obtain that
yn
p
j2jd/n → 0 as n → ∞. Now, let K(d) = C0(d) × κ with C0(d) chosen so

large that C02(d) > 18(µ(A)
−1C(d)+2C

0
(d)c

(d)
∞ /9) log 2. Then, by choosing C large

enough, (24) straightforwardly follows from (25) .

When the Markov chain X satisfies conditionsM(m, S, δ, ν) and D(S, V, b),
an explicit bound proved in Fort & Moulines (2000) shows that the constants
K(d) may be practically picked according to the parameters of conditions M
and D so that (24) holds. As a matter of fact, we firstly notice that Z = (X, Y )
satisfies then conditionsM =M(m, S×<, δ, ν⊗K(1)) and D(S×<, W, b) with
ν ⊗K(1)(dz, dy) = ν(dz)k(y− z)dy and W (z, y) = V (z). Let AM (respectively
µM) be the atom (resp. the stationary law) of the split chain Z

M of the chain Z
constructed from the parameters of conditionM via the Nummelin technique.
We have µM(AM) = δµ(S) and, denoting by τAM the return time to AM of
the split chain and by Ex (.) the mean on the split space given that the original
chain X starts in x, in the notation of remark 14 it straightforwardly follows
from Proposition 13 in Fort & Moulines (2000) that

Ex (τAM) 6M1 +M2(V (x) +

Z
z∈<

V (z)µ(dz)). (26)

Putting together (23) and (26) , we finally obtain the bounds

v2ZM(ξγ) 6 8c
(d)
1 c(d)∞ kkkdL∞(<) (M1 +M2( sup

x∈[0,1]
V (x) +

Z
V (z)µ(dz)))22jαd,
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which, combined with the argument above, establish the claims in remarks 14
and 16.

Once moments and probability inequalities for the empirical coefficients are
proved, it suffices to follow line-by-line the computations developped at lenght
in DJKP (1996a) (see paragraph 5.1.2). Omitting the subscripts j(d)1 , j

(d)
0 , this

yields:

E

Ã°°°°ˆfn − f°°°°p
0

p0

!1/p0
6 C

(logn)δ1+ν
(1)
α

nν
(1)
α

, (27)

E

Ã°°°° ˆFn − F°°°°p0
p0

!1/p0
6 C

(logn)δ2+ν
(2)
α

nν
(2)
α

. (28)

Then, by decomposing the difference
ˆ
πn(x, y)− π(x, y) as follows:

ˆ
Fn(x, y)− F (x, y) + π(x, y)(f(x)−

ˆ

fn(x))
ˆ

fn(x)

1½ ˆ
fn(x)≥

χ
2

¾ − π(x, y)1½ ˆ
fn(x)<

χ
2

¾ ,

we obtain that

E
°°°ˆπn − π

°°°p0
p0

6
µ
2

χ

¶p0
4p

0−1{E
°°°° ˆFn − F°°°°p0

p0
+ kπkp

0

∞E

°°°°ˆfn − f°°°°p
0

p0
}

+ kπkp
0

∞

Z 1

0

P

µ
ˆ

fn(x) < χ/2

¶
dx. (29)

Easy calculations allow to bound the term inherent to truncation. As we can
write

ˆ

fn =
ˆ

fn − f + f,

we have for all x ∈ [0, 1] ,

P

µ
ˆ

fn(x) < χ/2

¶
6 P

µ¯̄̄̄
ˆ

fn(x)− f(x)
¯̄̄̄
≥ χ/2

¶
6

µ
2

χ

¶p0
E

Ã¯̄̄̄
ˆ

fn(x)− f(x)
¯̄̄̄p0!

,

by using Chebyshev’s inequality. We deduce thatZ 1

0

P

µ
ˆ

fn(x) < χ/2

¶
dx 6

µ
2

χ

¶p0
E

Ã°°°°ˆfn − f°°°°p
0

p0

!
. (30)
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Let us observe finally that kπk∞ 6 χ−1 kFk∞ and that Bσpq

³
[0, 1]2

´
is con-

tinuously embedded in the space of continuous functions on [0, 1]2 as soon as
σ > 2/p, in view of bounds (27) and (28), inequalities (29) and (30) entail:

E

µ°°°ˆπn − π
°°°p0
p0

¶1/p0
6 C (logn)

ν(2)α +δ2

nν
(2)
α

,

for some constant C.
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