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MODALX, UFR SEGMI, Université Paris 10, 92001 Nanterre Cedex, France,
and CAMS, EHESS, 54 bd Raspail, 75270 Paris Cedex 06, France

Abstract. In this paper we consider systems of coupled Schrödinger equations which
appear in nonlinear optics. The problem has been considered mostly in the one-
dimensional case. Here we make a rigorous study of the existence of least energy
nonstandard standing waves (solitons) in higher dimensions. We give conditions on
the parameters of the system under which it possesses a nonstandard least energy
solution, and conditions under which the associated energy functional cannot be
minimized on the natural set where the solutions lie.

1 Introduction

The concept of incoherent solitons in nonlinear optics has attracted consid-
erable attention in the last ten years, both from experimental and theoretical
point of view. The two experimental studies [16] and [17] demonstrated the
existence of solitons made from both spatially and temporally incoherent
light. These papers were followed by a large amount of theoretical work on
incoherent solitons. We shall quote here [11], [10], [1], [2], where a compre-
hensive list of references on this subject can be found.

It is shown for instance in the recent works [5], [2] (see also the references
there) that, for photorefractive Kerr media, a good approximation describ-
ing the propagation of self-trapped mutually incoherent wave packets is the
following system of coupled Schrödinger equations

2ikj
∂ψj

m

∂t
+ ∆xψ

j
m + αk2

j I(x, t)ψj
m = 0, (1)

where

I(x, t) =

Nf∑
j=1

Nj∑
m=1

λj
m|ψj

m(x, t)|2.

Here ψj
m (the (m, j)-component of the beam) is a complex function defined on

Rn×R+, n ≤ 3, ∆ is the Laplace operator, Nf is the number of frequencies,
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Nj is the number of waves at a particular frequency ωj, kj is a constant
multiple of the frequency ωj, and λj

m are the so-called time averaged mode-
occupancy coefficients (we refer to [2] for more precisions on the meaning of
the constants in this equation). We note that for this problem all coefficients
in (1) are positive.

We will search for soliton (stationary wave) solutions of (1) in the form

ψj
m(t, x) = eiκj

mtuj
m(x), (2)

where uj
m : Rn → R is the spatial profile of the m-th wave at frequency ωj,

and κj
m is the propagation speed of this wave. Substituting (2) into (1) and

renaming indices and constants leads us to the following real elliptic system
for the vector function u = (u1, . . . , ud) : Rd → Rn

−∆ui + λiui =

(
d∑

j=1

µij|uj|2
)

ui, i = 1, . . . , d. (3)

In this paper we consider the case when u can be scaled, i.e. ui can be
replaced by siui, si > 0, in such a way that s2

jµij = s2
i µji, for all i 6= j.

Note this is always possible for systems of two equations (d = 2). So we
can suppose µij = µji, and (3) is the Euler-Lagrange system for the energy
functional

E(u) =
1

2

∫

Rn

d∑
i=1

{ |∇ui(x)|2 + λi|ui(x)|2} dx− 1

4

∫

Rn

d∑
i,j=1

µiju
2
i (x)u2

j(x) dx.

This functional is well defined if ui are in the Sobolev space H1(Rn), in virtue
of the embeddings H1(Rn) ↪→ L4(Rn), valid for n ≤ 3.

We will always consider solitons with finite energy. We will be in par-
ticular interested in existence of least energy solutions of (3). The following
essential remark has to be done immediately : for the solution to be of the
type we are interested in, at least two of its components ui have to be dif-
ferent from the standard zero wave. So it makes sense to consider solutions
with minimal energy on the set of solutions u = (ui)i of (3), such that ui 6≡ 0
for at least two different indices i.

To explain in one phrase the essence of the results we obtain, we will show
that, somewhat surprisingly, there always exist ranges of positive parameters
in (3), for which this system has a least energy solution, and ranges of posi-
tive parameters for which the functional cannot be minimized on the natural
set where the eventual solutions lie. We will see that E, which looks quite
”scalar” with respect to the vector u, actually differs in its behaviour from
its scalar counterpart, when nonstandard solutions are searched for.
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In all the papers that we quoted above the authors considered the one-
dimensional case, i.e. N = 1. The motivation for our work comes from a
recent paper by Lin and Wei [14], which seems to be the first attempt to make
a rigorous study of the higher dimensional case. Studying that paper, we
could not understand an important point in the proofs (namely, the infimum
in Lemma 3 on page 636 and the infimum c′ on page 642 in [14] seem to be
infinite, due to the invariance of the sets where they are taken with respect
to the transformation u → tu, t ≥ 1). Our first goal was to overcome this
problem, but later we discovered that some statements in [14] should also be
modified, and that problem (3) has richer structure than expected.

In order to simplify the presentation, from now on we shall work with the
system of two equations





∆u1 − u1 + µ1u
3
1 + βu1u

2
2 = 0

u1, u2 ∈ H1(Rn)
∆u2 − λu2 + µ2u

3
2 + βu2

1u2 = 0
(4)

(we have adjusted the notations to those of [14]), here λ, µ1, µ2 > 0. We
stress however that all our results extend straightforwardly to systems with
an arbitrary number of equations. Note that the constant 1 in the u1 term
does not introduce a restriction, since this can always be obtained by using
renumbering of u1, u2 and a scaling of x. This also permits us to suppose
λ ≥ 1, without restricting the generality.

A solution u = (u1, u2) of (4) which has a zero component (u1 ≡ 0 or
u2 ≡ 0) will be called a standard solution. The solution (0, 0) will be referred
to as the trivial solution. We shall search for nonstandard solutions of (4),
or, equivalently, for nonstandard critical points of the functional

E(u) =
1

2

∫

Rn

(|∇u1|2 + u2
1 + |∇u2|2 + λu2

2

)− 1

4

∫

Rn

µ1u
4
1 + 2βu2

1u
2
2 + µ2u

4
2

on the energy space H := H1(Rn)×H1(Rn). We denote with Hr the set of
couples in H who are radially symmetric with respect to a fixed point in Rn.

As in [14] we consider the set

N =
{
u ∈ H, u1 6≡ 0, u2 6≡ 0,

∫
Rn (|∇u1|2 + u2

1) =
∫
Rn µ1u

4
1 + βu2

1u
2
2,

∫
Rn (|∇u2|2 + λu2

2) =
∫
Rn βu2

1u
2
2 + µ2u

4
2

}
.

Note that any nonstandard solution of (4) has to belong to N (multiply the
equations in (4) by u1, u2, and integrate over Rn). We set

A = inf
u∈N

E(u), Ar = inf
u∈N∩Hr

E(u). (5)

The following proposition shows the role of A and Ar.
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Proposition 1.1 If A (or Ar) is attained by a couple u ∈ N then this couple
is a solution of (4), provided β2 < µ1µ2.

We now state our main results. We show that there exist (explicitly given)
intervals I1, I2, I3 ⊂ R such that I1 contains zero, I3 is a neighbourhood of
infinity, I2 is between I1 and I3, and A is attained for β ∈ I1 ∪ I3, while it is
not attained for β ∈ I2.

Let w1(x) = w1(|x|) be the unique positive solution of the scalar equation

−∆w + w = w3 in Rn. (6)

The function w1 is well studied (see the next section) and will play an im-
portant role in our analysis.

Our first result concerns the case λ = 1. Going back to (1)-(3), we see that
this is the case when the propagation speeds are adjusted to the frequencies.

Theorem 1 Suppose λ = 1 in system (4).

(i) If 0 ≤ β < min{µ1, µ2} then A = Ar is attained by the couple

(
√

kw1,
√

lw1), where

{
µ1k + βl = 1
βk + µ2l = 1.

(7)

(ii) If min{µ1, µ2} ≤ β ≤ max{µ1, µ2} and µ1 6= µ2 then system (4) does
not have a nonstandard solution with nonnegative components.

(iii) If min{µ1, µ2} ≤ β <
√

µ1µ2 then A and Ar are not attained.

(iv) If β > max{µ1, µ2} then A = Ar is attained by the same couple as in
(i), which is of course a solution of (4).

Remark 1. It was stated in [14] that A is attained if 0 < β <
√

µ1µ2,
independently of λ.
Remark 2. The couple considered in (i) and (iv) is obviously a solution of
(4) with λ = 1, whenever the solution of the linear system in (7) is such that
k > 0, l > 0. The result here states that this couple is actually a least energy
solution – this was an open problem, see for example [15], Remark 1.4. We
conjecture that under the hypotheses of (i) or (iv) the couple (

√
kw1,

√
lw1)

is the unique positive solution to (4). Note that when λ = µ1 = µ2 = β = 1
system (4) has an infinity of positive solutions (cosθ w1, sinθ w2), θ ∈ (0, π/2).
Remark 3. Note that the minimality statements in Theorem 1 concern all
possible solutions, not just the radial ones.
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Remark 4. If β ≥ 0 then any nonstandard nonnegative solution of (4) is
strictly positive and radial, by the strong maximum principle and the results
in [3], see Section 3.5. On the other hand, if A is attained by a couple
(u1, u2) ∈ H then it is attained by (|u1|, |u2|) ∈ H, so whenever minimizers
for A exist and are solutions of (4) with β ≥ 0 we have A = Ar.
Remark 5. In the literature on variational problems it is common to speak
of ground states as the minimizers of the functional on some set, where all
possible solutions have to lie. Also, ground states are often required to be
positive. If we comply with this terminology, Theorem 1 (ii)-(iii) give ranges
of nonexistence of a nonstandard ground state. However, we do not know
if in this case there exists a (changing sign) solution which minimizes the
energy on the set of solutions of (4).

The next theorem deals with the general case λ ≥ 1.

Theorem 2 Suppose λ ≥ 1 in (4) and set ν1 = µ1λ
1−n

4 , ν2 = µ2λ
n
4
−1.

(i) Let ν0 be the smaller root of the equation

λ−n/4x2 − (ν1 + ν2)x + ν1ν2 = 0.

If −√µ1µ2 < β < ν0 then Ar is attained by a solution of (4).

(ii) If µ2 ≤ β ≤ µ1 and µ2 < µ1 then system (4) does not have a nonstan-
dard solution with nonnegative components.

(iii) If µ2 ≤ β <
√

µ1µ2 then A and Ar are not attained.

(iv) If β > λ
n
4 max{ν1, ν2} then A = Ar is attained by a solution of (4).

Remark 6. The conditions in (i) and (iv) in Theorem 2 reduce to those from
Theorem 1, when λ = 1. The ranges in Theorem 2 (i) and (iv) are not the
best we can get, we have given them in this form to avoid introducing heavy
notations at this stage. We will see in the course of the proof how (i) and (iv)
can be improved (with the help of the function h(λ), defined in Section 3),
we refer to Section 3.3, Proposition 3.4 and Section 3.4, Proposition 3.7 for
precise statements. When λ 6= 1 it is open, and quite interesting, to find out
what the optimal ranges for existence are. Note also that we do not know if
A is attained in the range in Theorem 2 (i).
Remark 7. The statement (i) above includes cases when β < 0. In many
applications this is known as ”repulsive interaction”.
Remark 8. It will be shown that in cases (iv) we obtain a minimizer even
with respect to the standard solutions.

The next section contains further comments on this problem, and some
preliminary results. The proofs of the results can be found in Section 3.
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2 Preliminaries and Further Comments

In this section we comment our problem more extensively, and recall some
known results in the theory of elliptic equations and systems.

Existence and properties of standard solutions of (4) are very well studied.
Let us recall some facts. For each u ∈ H1(Rn) we denote

‖u‖2
λ :=

∫

Rn

|∇u|2 + λu2.

Proposition 2.1 Consider the minimization problems

Sλ,µ = inf
u∈H1(Rn)\{0}

‖u‖2
λ(∫

Rn µu4
)1/2

, Tλ,µ = inf
u∈M0

1

2
‖u‖2

λ −
1

4

∫

Rn

µu4,

where M0 =
{
u ∈ H1(Rn), u 6≡ 0 : ‖u‖2

λ =
∫
Rn µu4

}
. Then the function

wλ,µ(x) = µ−
1
2

√
λw1(

√
λx)

is a minimizer for Tλ,µ and the unique positive solution of the equation

−∆w + λw = µw3 in Rn.

In addition, we have

Tλ,µ =
1

4
S2

λ,µ, Sλ,µ = µ−
1
2 λ1−n

4 S1,1.

This proposition is easily proved by scaling and by using known results
for (6) (see for example [19], we will give a brief proof in Section 3.4). By
[8] any positive solution of (6) is radially symmetric and strictly decreasing
in the radial variable. The uniqueness of radial solutions of (6) goes back to
Coffman [6], see also Kwong [12].

By Proposition 2.1 system (4) has exactly two nonnegative standard so-
lutions : (u1, 0) and (0, u2), where

u1(x) = w1,µ1(x), u2(x) = wλ,µ2(x). (8)

Further, it is known that (6) has an infinity of radial and nonradial solutions,
which give an infinity of standard solutions of (4).

We go back to the case of a system. Let us immediately note that the
functional E has a sort of ”scalar” geometry on H, in the following sense :
it can be written as

E(u1, u2) =
1

2
‖u‖2

H −
1

4

∫

Rn

(Mu2, u2),
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where u := (u1, u2), u2 := (u2
1, u

2
2), ‖u‖2

H := ‖u1‖2
1 + ‖u2‖2

λ is a norm on H,

(Mu2, u2) = µ1u
2
1 + 2βu1u2 + µ2u

2
2, and M =

(
µ1 β
β µ2

)
is such that

c0(u
4
1 + u4

2) ≤ (Mu2, u2) ≤ C0(u
4
1 + u4

2),

for some positive constants c0, C0, as long as −√µ1µ2 < β.
This basically means that all Critical Point Theory (see for example [18],

[19]) for scalar functionals can be applied to E(u1, u2). For instance, E
satisfies the hypotheses of the Symmetric Mountain Pass lemma [18] (or
the Fountain Theorem, [19]), which immediately yields the existence of an
infinity of solutions of (4), such that (u1, u2) 6= (0, 0). However, a priori
nothing prevents these from being standard.

So, in general, it is unavoidable to distinguish between restricting the
solutions (u1, u2) to being different from the couple (0, 0) or to being such
that u1 6≡ 0, u2 6≡ 0. If only the former is done, we will need extra information
in order to conclude that we have a nonstandard solution.

Borrowing from the scalar theory, one may envision several ways to prove
existence of nonstandard solutions of (4). First, one may try to directly
search for critical points of E on H, through use of the Mountain Pass lemma,
for example. The drawback of this otherwise very powerful method is that
it does not always give enough information on the solutions, nor on their
energy level.

Second, one may try to use Constrained Minimization, for example, min-
imize

∫
Rn (|∇u1|2 + u2

1 + |∇u2|2 + λu2
2) on the set

{
u ∈ H, u1 6≡ 0, u2 6≡ 0,

∫

Rn

µ1u
4
1 + βu2

1u
2
2 = 1,

∫

Rn

µ2u
4
2 + βu2

1u
2
2 = 1

}
.

However, one easily sees that, contrary to the scalar case, this approach fails,
since even if a minimizer exists, it gives rise to two (as opposed to one)
Lagrange multipliers, which cannot be scaled out of the system.

The third approach consists in determining, with the help of the equations
we aim to solve, some subset of the energy space where all eventual solutions
should belong, and then minimize the functional on this subset (note that
E is easily seen not to be bounded below on the whole H). The so-called
Nehari manifold is defined by

N0 :=

{
u ∈ H, (u1, u2) 6≡ (0, 0) : ‖u‖2

H =

∫

Rn

(Mu2, u2)

}
.

This set has the same properties as the set M0 in Proposition 2.1, in par-
ticular, N0 is homeomorphic to the unit sphere in H. So, proving that the
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minimization problem
A0 := inf

u∈N0

E(u1, u2) (9)

has a solution (which is a solution of (4)) is analogous to doing the same for
Tλ,µ in Proposition 2.1, see Section 3.4.

However, except in particular cases (these will be the cases from state-
ments (iv) in our theorems), the minimizer for A0 can be standard, that is,
N0 is too large, and minimization on it does not give anything interesting.
This is where appears the idea to minimize on N - note that this set no
longer has the properties that a Nehari manifold has in the scalar case.

Finally, we make several remarks with respect to the general theory of
elliptic systems, developed in recent years (see for example the survey paper
[7], and the references there). System (4) is of the so-called gradient type,
that is, it can be written in the vector form

−∆u = ∇f(u),

here f(u) = 1
4
(µ1u

4
1 + 2βu2

1u
2
2 + µ2u

4
2 − 2u2

1 − 2λu2
2). It is generally thought

that gradient systems are not much different from scalar equations. We see
here that we have an important example for which it would be wrong to
think in this way, if we are interested in finding nonstandard solutions. The
reason for this is the fact that system (4) is not fully coupled. A general
notion of full coupling for nonlinear systems was given and analyzed in [4] ;
for a system −∆u = ∇f(u) full coupling would be implied for example by
fu1(0, s) > 0, fu2(s, 0) > 0 for s > 0. It is the semi-coupled nature of system
(4) which causes the phenomena described in Theorems 1 and 2 - if the
system were fully coupled (for instance, if there were a term u1u2 in f(u)),
then it would have nonstandard positive ground states for any positive values
of its parameters.

3 Proofs of Theorems 1 and 2

The first point in the proofs is to use the functions wλ,µ from Proposition
2.1 in order to obtain an upper bound for A. Then we are going to use this
bound in order to study the behaviour of the minimizing sequences for A
and Ar.

The proofs of Theorems 1 and 2 will be carried out jointly, to some extent.

3.1 An upper bound on A

Set wλ(x) = wλ,1(x) =
√

λw1(
√

λx), respectively Tλ = Tλ,1, Sλ = Sλ,1 (see
Proposition 2.1 for the notations). We introduce the function h : R+ → R+,
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defined by

h(λ) :=

∫
Rn w2

1(x)w2
λ(x) dx∫

Rn w4
1(x) dx

.

Note that h depends only on λ and n. The following proposition gives
some bounds on h.

Proposition 3.1 For any λ ≥ 1 we have

h(λ) ≤ λ1−n
4 (10)

and
λ1−n

2 ≤ h(λ) ≤ σλ1−n
2 , (11)

where σ = σ(n) is the universal constant

σ =
w2

1(0)
∫
Rn w2

1(x) dx∫
Rn w4

1(x) dx
.

Proof. We know that w1 is radial and strictly decreasing in |x|. This implies
that for λ ≥ 1, x ∈ Rn,

w1(x) ≥ w1(
√

λx).

Using this, the change of variables x →
√

λx and the Hölder inequality we
obtain

∫

Rn

w2
1(x)w2

λ(x) dx ≥ λ1−n
2

∫

Rn

w4
1(
√

λx)d(
√

λx) = λ1−n
2

∫

Rn

w4
1(x) dx,

and

∫

Rn

w2
1(x)w2

λ(x) dx ≤ λ

(∫

Rn

w4
1(x) dx

) 1
2
(∫

Rn

w4
1(
√

λx) dx

) 1
2

= λ1−n
4

∫

Rn

w4
1(x) dx.

Finally, by the change of variables x → x/
√

λ we have

h(λ) = λ1−n
2

∫
Rn w2

1(x/
√

λ)w2
1(x) dx∫

Rn w4
1(x) dx

=: λ1−n
2 h1(λ).

By the monotonicity properties of w1 the function h1(λ) is increasing, and,
by Lebesgue monotone convergence, h1(λ) → σ as λ →∞. 2
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Next, consider the following linear system in k, l ∈ R :





µ1k + βh(λ)l = 1

βh(λ)k + µ2λ
2−n

2 l = λ2−n
2 .

(12)

Note that k and l are determined solely by the parameters in system (4).
The use of system (12) is seen from the following simple lemma.

Lemma 3.1 Suppose the parameters λ, µ1, µ2, β in (4) are such that the lin-
ear system (12) has a solution k > 0, l > 0. Then the couple (

√
kw1,

√
lwλ)

belongs to N .

Proof. Recall (Proposition 2.1) that

‖wλ‖2
λ =

∫

Rn

w4
λ = 4Tλ = S2

λ = λ2−n
2 S2

1 , (13)

for all λ ≥ 1. Hence (12) and the definition of h(λ) imply





(∫
Rn µ1w

4
1

)
k2 +

(∫
Rn βw2

1w
2
λ

)
kl = kS2

1 = k‖w1‖2
1

(∫
Rn βw2

1w
2
λ

)
kl +

(∫
Rn µ2w

4
λ

)
l2 = lS2

λ = l‖wλ‖2
λ,

and the lemma follows. 2

By using this lemma we will obtain an upper bound for the infima we are
working with. Recall A0 is defined in (9), A and Ar are defined in (5).

We have the following estimate on A.

Proposition 3.2 Suppose the parameters λ, µ1, µ2, β in system (4) are such
that the linear system (12) has a solution k > 0, l > 0. Then

0 < A0 ≤ A ≤ Ar ≤ 1

4

(
k + λ2−n

2 l
)
S2

1 .

Proof. We only have to prove the first and the last inequality in Proposi-
tion 3.2. We use the fact that

E(u) =
1

4

(‖u1‖2
1 + ‖u2‖2

λ

)
=

1

4

∫

Rn

(Mu2, u2), for all u ∈ N0 ⊃ N . (14)

Then (13) and Lemma 3.1 imply

Ar ≤ E(
√

kw1,
√

lwλ) =
1

4

(
k + λ2−n

2 l
)
S2

1 .
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Note that for each u ∈ N0, by Hölder and Sobolev inequalities,

‖u1‖2
1 + ‖u2‖2

λ =

∫

Rn

(Mu2, u2) ≤ C0(‖u1‖4
L4 + ‖u2‖4

L4) ≤ C1(‖u1‖4
1 + ‖u2‖4

λ)

so E is bounded uniformly away from zero on N0, and A0 > 0. 2

Here, and in the sequel, c0, C0, C1 denote positive constants which depend
only on the parameters in system (4) and on the dimension n.

Finally, let us list for further reference the conditions under which the
solutions of (12) are positive : k > 0 and l > 0 if either

Dλ > 0 and βh(λ) < min{µ2, µ1λ
2−n

2 } = λ1−n
4 min{ν1, ν2}, (15)

or
βh(λ) > max{µ2, µ1λ

2−n
2 } = λ1−n

4 max{ν1, ν2}, (16)

where we have set

ν1 = λ1−n
4 µ1, ν2 = λ

n
4
−1µ2, Dλ = µ1µ2λ

2−n
2 − β2h2(λ).

In view of the bounds on h we proved in Proposition 3.1, we see that the
conditions (15) and (16) are implied by either −√µ1µ2 < β < min{ν1, ν2} or
β > λ

n
4 max{ν1, ν2}.

3.2 Behaviour of the minimizing sequences for A.
Proof of Theorem 1 (i) and (iv)

The main goal of this section is to find conditions under which each mini-
mizing sequence for A is such that the L4-norms of both components of the
members of the sequence are bounded uniformly away from zero. Careful
study of the bounds on the minimizing sequences that we obtain will permit
us to prove Theorem 1, parts (i) and (iv).

For each λ ≥ 1, set
g(λ) = λn/4−1h(λ) (17)

(g(λ) ≤ 1 by Proposition 3.1). We have the following result.

Proposition 3.3 Let {um} ⊂ N be a sequence such that E(um) → A as
m → ∞. Then there exists a constant c0 > 0 such that ‖um,1‖L4(Rn) ≥ c0

and ‖um,2‖L4(Rn) ≥ c0 for all m, provided

−∞ < β < ν0, (18)

where ν0 is the smaller root of the equation

g(λ)(2− g(λ))x2 − (ν1 + ν2)x + ν1ν2 = 0.
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Remark 1. We will show that the hypothesis on β in Theorem 2 (i) can be
replaced by β ∈ (−√µ1µ2, ν0). It is easy to see that the upper bound in the
statement of Theorem 2 (i) implies β < ν0. Indeed,

1 ≥ g(λ)(2− g(λ)) ≥ λ−
n
4 ,

since we have, by Proposition 3.1,

2h(λ)λ1−n
4 − h2(λ) ≥ λ1−n

4 h(λ) ≥ λ2− 3n
4 . (19)

Note that in order to show (19) one uses two inverse inequalities from Propo-
sition 3.1, so β < ν0 is a considerably better upper bound than the one in
Theorem 2 (i).

Remark 2. An elementary computation shows that for all λ ≥ 1

ν0 ∈
(

ν1ν2

ν1 + ν2

, min{ν1, ν2}
]

.

Proof of Proposition 3.3. Let {um} ⊂ N be a minimizing sequence for A,
that is, um ∈ N , and, by (14),

E(um) =
1

4

(‖um,1‖2
1 + ‖um,2‖2

λ

)
=

1

4

∫

Rn

(Mu2
m, u2

m) −→ A,

as m → ∞. It follows that {um} is bounded in H. We recall that um,i 6≡ 0
for each m, i.

Set

ym,1 =

(∫

Rn

u4
m,1

)1/2

, ym,2 =

(∫

Rn

u4
m,2

)1/2

.

By the Sobolev and Holder inequalities, it follows from the definition of Sλ,
Proposition 2.1 and um ∈ N that

S1ym,1 ≤ ‖um,1‖2
1 =

∫

Rn

µ1u
4
m,1 + βu2

m,1u
2
m,2 ≤ (µ1y

2
m,1 + β+ym,1ym,2) (20)

λ1−n
4 S1ym,2 ≤ ‖um,2‖2

λ =

∫

Rn

βu2
m,1u

2
m,2 + µ2u

4
m,2 ≤ (µ2y

2
m,2 + β+ym,1ym,2),

(21)
where β+ = max{β, 0}. Proposition 3.3 immediately follows for β ≤ 0.

So, from now on we shall suppose β > 0. Adding up (20) and (21) results
in

S1(ym,1 + λ1−n
4 ym,2) ≤

∫

Rn

(Mu2
m, u2

m) = 4A + o(1), (22)
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where o(1) → 0 as m →∞.

Set zm,i =
1

S1

ym,i. Thanks to Proposition 3.2 from (20)–(22) we obtain

the following inequalities (k and l denote the positive solutions of (12))




zm,1 + λ1−n
4 zm,2 ≤ k + λ2−n

2 l + o(1)

µ1zm,1 + βzm,2 ≥ 1

βzm,1 + µ2zm,2 ≥ λ1−n
4 .

(23)

We would like to infer from (23) that the two sequences {zm,1}, {zm,2}
stay uniformly away from zero. For this it is enough to show that the lines

l1 = {z = (z1, z2) ∈ R2 : z1 + λ1−n
4 z2 = k + λ2−n

2 l},
l2 = {z ∈ R2 : µ1z1 + βz2 = 1}, l3 = {z ∈ R2 : βz1 + µ2z2 = λ1−n

4 },
meet, and their crossing points have strictly positive coordinates (these lines
are determined by the parameters in system (4)). Indeed, for large m the
point (zm,1, zm,2) is arbitrarily close to the triangle (or segment, or point)
between these crossing points. Since

β < ν0 ≤ min{ν1, ν2} ≤ ν1ν2 = µ1µ2, (24)

we see that we have to verify the following inequalities

βλ1−n
4 < µ2, β < µ1λ

1−n
4 , (25)

µ1(k + λ2−n
2 l) > 1, (26)

µ2(k + λ2−n
2 l) > λ2−n

2 , (27)

β(k + λ2−n
2 l) < λ1−n

4 . (28)

Inequalities (25) can be recast as β < min{ν1, ν2}, which is true by (24).
Since

k + λ1−n
4 l =

λ2−n
2

(
µ2 + µ1λ

2−n
2 − 2βh(λ)

)

µ1µ2λ
2−n

2 − β2h2(λ)
,

and the denominator of this fraction is positive (by (24) and Proposition 3.1),
elementary computations show that (26) is equivalent to

(µ1λ
2−n

2 − βh(λ))2 > 0,

while (27) is equivalent to (µ2 − βh(λ))2 > 0, so (26) and (27) hold, thanks
to (25) and Proposition 3.1.

13



Finally, by developing (28) we see that it is equivalent to
[
2h(λ)λ1−n

4 − h2(λ)

λ2−n
2

]
β2 − (ν1 + ν2)β + ν1ν2 > 0, (29)

which is implied by (18). This finishes the proof of Proposition 3.3. 2

Next, we are going to show how inequalities (23) lead to the statement
of Theorem 1 (i) and (iv).
Proof of Theorem 1 (i) and (iv). Set tm,1 = zm,1 − k, tm,2 = zm,2 − l. By
using system (12) with λ = 1 we have from inequalities (23), which are valid
for β > 0, 




tm,1 + tm,2 ≤ o(1)
µ1tm,1 + βtm,2 ≥ 0
βtm,1 + µ2tm,2 ≥ 0.

(30)

Now, whenever

β < min{µ1, µ2} or β > max{µ1, µ2},
the three half-spaces {t : t1+t2 ≤ 0}, {t : µ1t1+βt2 ≥ 0}, {t : βt1+µ2t2 ≥ 0}
meet at most in a triangle in the (t1, t2)-plane, and this triangle shrinks to
t1 = t2 = 0 at the limit m → ∞, so we have zm,1 → k, zm,2 → l as m → ∞.
Then, by passing to the limit in (22) with λ = 1, and by using A ≤ 1

4
(k+ l)S2

1

(Proposition 3.2), we obtain

A =
1

4
(k + l)S2

1 = E(
√

kw1,
√

lw1).

Parts (i) and (iv) of Theorem 1 are proved. 2

3.3 Proof of Proposition 1.1 and Theorem 2 (i)

Proof of Proposition 1.1. Our goal is to show that any minimizer of E
restricted to N is such that dE(u) = E ′(u) = 0. We write N = N1 ∩ N2,
where Ni is the set of nonstandard u ∈ H such that Gi(u) = 0, with

G1(u) =

∫

Rn

(|∇u1|2 + u2
1

)−
∫

Rn

µ1u
4
1 + βu2

1u
2
2,

G2(u) =

∫

Rn

(|∇u2|2 + λu2
2

)−
∫

Rn

βu2
1u

2
2 + µ2u

4
2.

We have, for each ψ = (ψ1, ψ2) ∈ H (setting λ1 = 1, λ2 = λ),

<E ′(u), ψ>=
2∑

i=1

∫ (∇ui∇ψi + λiuiψi − µiu
3
i ψi − βuiu

2
jψi

)
, j 6= i,
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<G′
i(u),

ψ

2
>=

∫ (∇ui∇ψi + λiuiψi − 2µiu
3
i ψi − βuiuj(uiψj + ujψi)

)
, j 6= i.

By computing <G′
i(u), u> for u ∈ Ni we see that G′

i(u) 6= 0 for i = 1, 2 and
u ∈ N (since ui 6≡ 0 on Ni). Hence, supposing that u = (u1, u2) ∈ N is a
minimizer for E restricted to N , standard minimization theory implies the
existence of two Lagrange multipliers L1, L2 ∈ R such that

E ′(u) + L1G
′
1(u) + L2G

′
2(u) = 0.

Setting G1(u) = 0 in the expression <E ′(u)+L1G
′
1(u)+L2G

′
2(u), (u1, 0)>= 0

we are led to

L1

∫

Rn

µ1u
4
1 + L2

∫

Rn

βu2
1u

2
2 = 0. (31)

Similarly, setting G2(u) = 0 in <E ′(u)+L1G
′
1(u)+L2G

′
2(u), (0, u2)>= 0 we

obtain

L1

∫

Rn

βu2
1u

2
2 + L2

∫

Rn

µ2u
4
2 = 0. (32)

The system (31)-(32) has the unique solution L1 = L2 = 0, by the Hölder
inequality and the hypothesis of Proposition 1.1. 2

Proof of Theorem 2 (i). Suppose we have a minimizing sequence of radial
couples {um} ⊂ N for Ar. Then, by standard functional analysis and the
compact embedding H1

r (Rn) ↪→ L4(Rn) the sequences {um,i} converge (up
to a subsequence) weakly in H1(Rn) and strongly in L4(Rn) to a function
ui ∈ H1(Rn). We have, by (14) and standard results on weak convergence,

‖u1‖2
1 + ‖u2‖2

λ ≤ lim inf
(‖um,1‖2

1 + ‖um,2‖2
λ

)
= 4Ar. (33)

In the previous subsection we proved that the L4-norms of both {um,1}, {um,2}
are bounded away from zero, so the strong limit u = (u1, u2) is nonstandard.

In addition, we have
∫

Rn

(Mu2, u2) = lim
m→∞

∫

Rn

(Mu2
m, u2

m) = 4 lim
m→∞

E(um) = 4Ar. (34)

Remark. It is the last equality which forces us to work only with Ar, that
is, to suppose that the minimizing sequence is composed of radial functions,
even when β > 0. If one starts with a minimizing sequence for A and then
replaces it by the sequence of the symmetric rearrangements, one is lead to∫
Rn(Mu2, u2) ≥ 4A, while below we shall need the inverse inequality.

Next, let s1, s2 be the solutions of the linear system




(∫
Rn µ1u

4
1

)
s1 +

(∫
Rn βu2

1u
2
2

)
s2 = ‖u1‖2

1

(∫
Rn βu2

1u
2
2

)
s1 +

(∫
Rn µ2u

4
2

)
s2 = ‖u2‖2

λ.

(35)
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This system has a unique solution, by the hypotheses on β and the Hölder
inequality.

If s1 = s2 = 1 we are done, since then u ∈ N and by (33) and (34) u is a
minimizer, so Proposition 1.1 finishes the proof of Theorem 2 (i).

Lemma 3.2 Under the hypotheses of Proposition 3.3 the solution of system
(35) satisfies s1 > 0, s2 > 0.

Before proving Lemma 3.2, let us show how Theorem 2 (i) follows from
it. Recall the range given in Theorem 2 (i) is included in (18).

Suppose (s1, s2) 6= (1, 1) and set

B =




∫
Rn µ1u

4
1

∫
Rn βu2

1u
2
2

∫
Rn βu2

1u
2
2

∫
Rn µ2u

4
2


 .

Since G1(um) = G2(um) = 0, um ⇀ u in H and um → u in L4 × L4 we have

‖u1‖2
1 ≤ lim inf

m→∞
‖um,1‖2

1 = lim inf
m→∞

∫

Rn

µ1u
4
m,1 + βu2

m,1u
2
m,2

=

∫

Rn

µ1u
4
1 + βu2

1u
2
m,2,

and, similarly,

‖u2‖2
λ ≤

∫

Rn

βu2
1u

2
2 + µ2u

4
2. (36)

Hence

B

(
s1

s2

)
=

( ‖u1‖2
1

‖u2‖2
λ

)
� B

(
1
1

)
.

Set v1 =
√

s1u1, v2 =
√

s2u2. Then by the definition of s1, s2 the couple
(v1, v2) is on N but by (14) and (34)

E(v1, v2) =
1

4
<B

(
s1

s2

)
,

(
s1

s2

)
> �

1

4
<B

(
1
1

)
,

(
s1

s2

)
>

= <

(
1
1

)
, B

(
s1

s2

)
> � <B

(
1
1

)
,

(
1
1

)
>= 4Ar,

which is a contradiction with the minimality of Ar. Hence s1 = s2 = 1, so
Theorem 2 (i) is proved. 2
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Remark. Note that we could not use the fact that E(u) = 1
4
(‖u1‖2

1 + ‖u2‖2
λ)

on N to get a contradiction, since we cannot2 infer from (35) that

s1‖u1‖2
1 + s2‖u2‖2

λ < ‖u1‖2
1 + ‖u2‖2

λ.

This is very much in contrast with the situation which one has when minimiz-
ing a scalar functional (see the proof of Proposition 3.5 in the next section).

Proof of Lemma 3.2. The lemma is obvious if β ≤ 0. So we can suppose
β > 0. For example, let us prove that s1 > 0. We need to show that

‖u1‖2
1

∫

Rn

µ2u
4
2 > ‖u2‖2

λ

∫

Rn

βu2
1u

2
2.

By Sobolev and Hölder inequalities this is implied by

µ2‖u1‖2
1

(∫

Rn

u4
2

)1/2

> β‖u2‖2
λ

(∫

Rn

u4
1

)1/2

⇐= µ2

(∫

Rn

u4
2

)1/2

>
β

S1

‖u2‖2
λ.

By using (36) we see that the last inequality is implied by

µ2

(∫

Rn

u4
2

)1/2

>
β

S1

(∫

Rn

βu2
1u

2
2 +

∫

Rn

µ2u
4
2

)

⇐= 1 >
β

S1

(
β

µ2

(∫

Rn

u4
1

)1/2

+

(∫

Rn

u4
2

)1/2
)

Since u is the limit of a minimizing sequence for A, we can use what we
proved in the previous section (inequalities (23)-(28)). With the notations
used in (23)-(28), the last inequality above can be recast as

lim
m→∞

β

(
β

µ2

zm,1 + zm,2

)
< 1. (37)

By using consecutively the first inequality in (25) and the first inequality in
(23), we see that (37) is implied by (28), which we have already shown to
hold under the hypothesis of Proposition 3.3.

2Indeed, there exist linear systems ai1x1 +ai2x2 = bi, i = 1, 2, with positive coefficients
and positive solutions, such that ai1 + ai2 > bi, i = 1, 2, but b1x1 + b2x2 > b1 + b2 – for
example 8x1 + 4x2 = 11, 2x1 + 2x2 = 3.
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To show that s2 > 0 the argument is analogous, by using Sλ = λ1−n/4S1

and the second inequality in (25). 2

Theorem 2 (i) is proved.

Finally, going through the proof of Theorem 2 (i) we see that we only
needed the hypotheses of Proposition 3.3 and Proposition 1.1 (see also the
remark following Proposition 3.3), so we can state the following result.

Proposition 3.4 The value Ar is attained by a nonstandard solution of (4),
provided

−√µ1µ2 < β < ν0,

where ν0 is the smaller root of the equation (see (17))

g(λ)(2− g(λ))x2 − (ν1 + ν2)x + ν1ν2 = 0.

3.4 Proof of Theorem 2 (iv) and extensions

The idea of the proof of statements (iv) in Theorems 1 and 2 is rather simple :
should it turn out that

A0 < min{E(u1, 0), E(0, u2)} (38)

(u1, u2 are defined in (8), A0 is defined in (9)), then the minimizer for A0

cannot be standard and is a least energy solution (of course in this case
A0 = A). Recall that (u1, 0), (0, u2) have least energy among the standard
nontrivial solutions.

We have the following (basically known) fact.

Proposition 3.5 The minimal value A0 > 0 is attained by a nontrivial (pos-
sibly standard) radial solution of (4), provided β > 0.

The fact that A0 is attained by a solution of (4) can be proven for example
through the same argument as in Chapter 4 of [19], where the scalar case
is considered. We will give here, for the reader’s convenience and to per-
mit comparison with the proofs in the previous sections, a direct argument
leading to Proposition 3.5.

Before proceeding, we recall some facts about spherical rearrangement
(Schwartz symmetrization), see for example [13].

Proposition 3.6 Suppose v1, v2 ∈ H1(Rn) and let v∗1, v
∗
2 be the radial func-

tions obtained by Schwarz symmetrization from v1, v2. Then for any p ∈ [2, 6]
if N = 3, p ≥ 2 if N ≤ 2,

‖v∗i ‖H1 ≤ ‖vi‖H1 , ‖v∗i ‖Lp = ‖vi‖Lp ,

∫

Rn

(v∗1)
2(v∗2)

2 ≥
∫

Rn

v2
1v

2
2.
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Proof of Proposition 3.5. Take a minimizing sequence {um} ⊂ N0 for A0.
Then {‖um‖2

H} tends to 4A0 (by (14)) so {um} is bounded in H. By Propo-
sition 3.6 the sequence of rearrangements u∗m = (u∗m,1, u

∗
m,2) is bounded in H,

and hence converges weakly in H and strongly in L4 × L4 to a couple u∗.
Hence, by um ∈ N0 and Proposition 3.6,

‖u∗‖2
H ≤ lim inf

m→∞
‖u∗m‖2

H ≤ lim inf
m→∞

‖um‖2
H = lim inf

m→∞

∫
(Mu2

m, u2
m)

≤ lim
m→∞

∫
(M(u∗m)2, (u∗m)2) =

∫
(M(u∗)2, (u∗)2),

E(u∗) ≤ lim inf
m→∞

E(u∗m) ≤ lim inf
m→∞

E(um) = A0.

By the Sobolev inequality, Proposition 3.6 and um ∈ N0 we have

‖u∗m,1‖2

L4 + ‖u∗m,2‖2

L4 ≤ C0‖u∗m‖2
H ≤ C0

∫

Rn

M((u∗m)2, (u∗m)2) ≤ C1‖u∗m‖4
L4×L4 ,

so u∗ 6= (0, 0). If ‖u∗‖2
H =

∫
Rn(M(u∗)2, (u∗)2), A0 is attained by u∗. If not,

that is ‖u∗‖2
H <

∫
Rn(M(u∗)2, (u∗)2), take s ∈ (0, 1) such that v = su∗ ∈ N0.

Then by (14) and Proposition 3.6

E(v) =
1

4
‖v‖2

H <
1

4
‖u∗‖2

H ≤ 1

4
lim inf
m→∞

‖u∗m‖2
H ≤ 1

4
lim inf
m→∞

‖um‖2
H = A0,

a contradiction.
Hence u∗ is a minimizer and there exists a Lagrange multiplier L ∈ R such

that dE(u)
∣∣
u=u∗ + Ld

(‖u‖2
H −

∫
Rn(Mu2, u2)

)∣∣
u=u∗ = 0. Evaluating this dif-

ferential against u∗ gives L‖u∗‖2
H = 0, i.e. L = 0. 2

Next, set

J(u) = J(u1, u2) =
1

4

(‖u1‖2
1 + ‖u2‖2

λ

)2

∫
Rn(Mu2, u2)

.

Lemma 3.3 Suppose β > 0. We have

A0 = inf
u∈H\{(0,0)}

J(u) = inf
u∈Hr\{(0,0)}

J(u). (39)

Proof. It is easy to see, by the Sobolev inequality and Proposition 3.6, that
the two infima in (39) are positive and equal. Let B0 be their value. If u∗ is
a minimizer for A0 then J(u∗) = A0 by u∗ ∈ N0, hence B0 ≤ A0. If B0 < A0

take v 6= (0, 0) such that J(v) < A0. Let s > 0 be such that sv ∈ N0. Then

1

4
s2‖v‖2

H = E(sv) ≥ A0 > J(v)
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implies ‖v‖2
H < s2

∫
Rn(Mv2, v2), a contradiction with sv ∈ N0. 2

Further, define the function

f(k1, k2) := J(
√

k1w1,
√

k2wλ) =
1

4

(k1S
2
1 + k2λ

2−n/2S2
1)

2

S2
1(µ1k2

1 + 2βh(λ)k1k2 + µ2λ2−n/2k2
2)

,

on the set K = {(k1, k2) : k1 ≥ 0, k2 ≥ 0, (k1, k2) 6= (0, 0)} (recall the
definition of h(λ) and (13)). Since

f(k1, 0) =
1

4µ1

S2
1 = E(u1, 0), f(0, k2) =

1

4µ2

λ2−n
2 S2

1 = E(0, u2),

we see that for (38) to hold it is sufficient that f does not attain its minimum
over K on the lines k1 = 0 or k2 = 0.

The function f is a fraction of two quadratic forms in (k1, k2), and ele-
mentary analysis shows that the quantity

(ak1 + bk2)
2

ck2
1 + 2γk1k2 + dk2

2

(a, b, c, d, γ > 0)

does not attain its minimum in K on the axes if and only if

aγ − bc > 0, ad− bγ < 0, (40)

and then the minimum is attained for k1 = bγ − ad, k2 = aγ − bc.
Applying this to f(k1, k2) we see that (40) becomes

βh(λ)− µ1λ
2−n

2 > 0, µ2λ
2−n

2 − βh(λ)λ2−n
2 < 0,

or, equivalently,

βg(λ) = β
h(λ)

λ1−n
4

> max{ν1, ν2}. (41)

Inequality (41) is implied by the hypothesis of Theorem 2 (iv) (by Proposi-
tion 3.1), so Theorem 2 (iv) is proved. 2

Remark. Note that, in the case λ = 1, the fact that the couple (
√

kw1,
√

lw1)
(defined in Theorem 1) is a minimizer for A was already proved in Sec-
tion 3.2. Since (38) (which follows from (41)) implies that A0 = A for
β > max{µ1, µ2}, λ = 1, the couple (

√
kw1,

√
lw1) is a minimizer for A0 as

well.

It is possible to give other conditions under which (38) holds. For in-
stance, we can compute

min
(k1,k2)∈K

J(
√

k1w1,
√

k2w1) and min
(k1,k2)∈K

J(
√

k1wλ,
√

k2wλ).
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We have, by (13),

J(
√

k1w1,
√

k2w1) =
1

4

(
k1S

2
1 + k2(S

2
1 + (λ− 1)

∫
Rn w2

1)
)2

S2
1(µ1k2

1 + 2βk1k2 + µ2k2
2)

.

We introduce the following universal constant

σ0 =
‖w1‖2

L2(Rn)

‖w1‖4
L4(Rn)

=
1

S2
1

∫

Rn

w2
1.

Since ‖w1‖2
H1 =

∫
Rn w4

1 we have σ0 ∈ (0, 1). Then

J(
√

k1w1,
√

k2w1) =
S2

1

4

[k1 + k2(1 + σ0(λ− 1))]2

µ1k2
1 + 2βk1k2 + µ2k2

2

, (42)

from which it follows that sufficient conditions for (38) are




β > max{µ1bλ, µ2b
−1
λ }, with bλ := 1 + σ0(λ− 1) ∈ [1, λ),

λ−2+n/2 [2βbλ − (µ1b
2
λ + µ2)]

2 µ2

µ1(βbλ − µ2)2 + 2β(βbλ − µ2)(β − µ1bλ) + µ2(β − µ1bλ)2
< 1.

(43)

We have obtained (43) by using (40) applied to J(
√

k1w1,
√

k2w1), and by
comparing the minimal value given by (40) with E(0, u2). Note that in the
fraction in (43) we are dividing a polynomial of degree 2 in β by a polynomial
of degree 3 in β.

In order to get simpler to state sufficient conditions for (38) , one could
minimize the fraction in (42), with σ0 replaced by 1 (since σ0 < 1). Then
one obtains the following conditions for the corresponding minimum to be
attained away from the axes and to be smaller than min{E(u1, 0), E(0, u2)} :
setting ξ1 = µ1λ, ξ2 = µ2/λ, γ1 = β − ξ1, γ2 = β − ξ2,





γ1 > 0, γ2 > 0, and

(γ1 + γ2)
2 max{ξ1, λ

n/2ξ2}
ξ1γ2

2 + 2βγ1γ2 + ξ2γ2
1

< 1.

(44)

For instance, when ξ1 = ξ2 = ξ this condition reads β > (2λ
n
2 − 1)ξ.

Similarly, carrying out the above argument for

J(
√

k1wλ,
√

k2wλ) =
1

4

(
k1(S

2
λ − (λ− 1)

∫
Rn w2

λ) + k2S
2
λ

)2

S2
λ(µ1k2

1 + 2βk1k2 + µ2k2
2)

=
S2

λ

4

(k1(1− (1− 1/λ)σ0) + k2)
2

(µ1k2
1 + 2βk1k2 + µ2k2

2)
.
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(we have again used (13), together with ‖wλ‖2
L2(Rn)‖wλ‖−4

L4(Rn) = σ0/λ), we
are led to the following sufficient conditions for (38) :





β > max{µ1c
−1
λ , µ2cλ}, with cλ := 1− σ0(1− 1/λ) ∈ (1/λ, 1],

λ2−n/2 [2βcλ − (µ1 + µ2c
2
λ)]

2 µ1

µ1(β − µ2cλ)2 + 2β(β − µ2cλ)(βcλ − µ1) + µ2(βcλ − µ1)2
< 1.

(45)

Likewise, minimizing the fraction obtained by replacing cλ by 1 in the ex-
pression of J(

√
k1wλ,

√
k2wλ) and comparing to min{E(u1, 0), E(0, u2)} gives

the following sufficient condition : setting δ1 = β − µ1, δ2 = β − µ2,



δ1 > 0, δ2 > 0, and

(δ1 + δ2)
2 max{λ2−n/2µ1, µ2}

µ1δ2
2 + 2βδ1δ2 + µ2δ2

1

< 1.

(46)

In particular, if µ1 = µ2 = µ, this condition reduces to β > (2λ1−n
2 − 1)µ.

To summarize, we state the following proposition.

Proposition 3.7 The infimum A0 is attained by a nonstandard radial solu-
tion of system (4) provided one of the conditions (41), (43), (44), (45), (46)
holds (then of course A0 = A = Ar).

3.5 Proofs of statements (ii) and (iii) in Theorems 1
and 2

Suppose we have a nonstandard solution u = (u1, u2) of system (4), such that
u1 ≥ 0, u2 ≥ 0 in Rn. Note that each of the functions ui satisfies a linear
equation

−∆ui + ci(x)ui = 0

in Rn, where c1(x) = 1−µ1u
2
1(x)−βu2

2(x), c2(x) = λ−βu2
1(x)−µ2u

2
2(x). So

by the Strong Maximum Principle (see for example [9]) each of the functions
u1, u2 is strictly positive in Rn. By the results in [3] u1 and u2 are radial with
respect to some point in Rn. Note that solutions of (4) which are in H1(Rn)
are also in C2(Rn) and tend to zero as x →∞ – this can be proved with the
help of a classical ”bootstrap” argument.

Next, we multiply the first equation in (4) by u2, the second equation by
u1, and integrate the resulting equations over Rn. This yields

∫

Rn

(∇u1.∇u2 + u1u2) =
∫
Rn u1u2(µ1u

2
1 + βu2

2)∫

Rn

(∇u1.∇u2 + λu1u2) =
∫
Rn u1u2(βu2

1 + µ2u
2
2),
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from which it follows that
∫

Rn

u1u2

[
(λ− 1) + (µ1 − β)u2

1 + (β − µ2)u
2
2

]
= 0.

This equality is in a contradiction with the positivity of u1 and u2, as long
as the three constants (λ− 1), (µ1−β), (β−µ2) are of the same sign or zero,
and one of them is not zero. These are statements (ii) in Theorems 1 and 2.

By Proposition 1.1 if a minimizer for A (or Ar) exists and β2 < µ1µ2 then
there is a positive solution of system (4) (see also Remark 4 after Theorem 1).
So the existence of a minimizer for A (or Ar) gives a contradiction whenever
the hypotheses of (ii) are satisfied, and we obtain statements (iii). 2
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