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Abstract. The aim of this pedagogical paper is to show how some renowned inequalities
may be obtained via a simple argument : entropy projection from the path space onto
finite dimensional coordinates spaces. Some applications are given : ergodic behaviour,
perturbation.

1. Introduction and Framework

In recent years, the study of the ergodic behaviour of symmetric (and sometimes non sym-
metric) semi-groups deserved a formidable growing interest, in connection with the deeper
and deeper study of functional inequalities, like Poincaré, Log-Sobolev, Sobolev, Liggett or
Nash inequalities in various forms. The picture is now rather complete, though many prob-
lems are still unsolved. We refer to the survey reviews by Bakry ([3]), Ledoux ([14]), Gross
([11]) and Guionnet-Zegarlinski ([12]) or Royer ([20]) for the theory and its application to
spins systems.
The common feature of most of the papers on the topic is that they involve very clever
arguments in semi-group theory and functional analysis, while the underlying stochastic
process is absent. The question we shall ask is thus very natural: does a direct study of
the stochastic process furnish interesting (or new) indications ? Here we identify the process
with its law on the path space. Roughly speaking, semi-groups are mostly connected to time
marginal laws of the process, hence the full law contains more information. It is thus natural
to expect that the answer to our question is positive.
In this paper we shall focus on one possible use of the process, namely relative entropy on
the path space, and we shall only consider the diffusion case (i.e. continuous processes with a
“carré du champ”.) Extensions to jump processes are possible. Precisely, we shall interpret
the Dirichlet form associated to the semi-group as some relative entropy on the path space.
This interpretation immediately yields basic inequalities that are very close to the above
mentioned ones. In order to describe the contents of the paper we have first to describe the
framework.

Framework.

For a probability measure µ on some measurable space E, let us first consider a µ stationary
diffusion process (Px)x∈E and its associated semi-group (Pt)t≥0 with generator A. Here by a
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diffusion process we mean a strong Markov family of probability measures (Px)x∈E defined on
the space of continuous paths C0(R+, E) for some, say Polish, state space E, such that there
exists some algebra D of uniformly continuous and bounded functions (containing constant
functions) which is a core for the extended domain De(A) of the generator (see [6]).
One can then show that there exists a countable family (Cn) of local martingales and a
countable family (∇n) of operators s.t. for all f ∈ De(A)

(1.1) Mf
t = f(Xt)− f(X0)−

∫ t

0
Af(Xs) ds =

∑
n

∫ t

0
∇nf(Xs) dCn

s ,

in M2
loc(Pη) (local martingales) for all probability measure η on E.

One can thus define the “carré du champ” Γ by

Γ(f, g) =
∑

n

∇nf ∇ng
def= (∇f)2 ,

so that the martingale bracket is given by

< Mf >t =
∫ t

0
Γ(f, f)(Xs) ds .

In terms of Dirichlet forms, all this, in the symmetric case, is roughly equivalent to the fact
that the local pre-Dirichlet form

E(f, g) =
∫

Γ(f, g) dµ f, g ∈ D

is closable, and has a regular (or quasi-regular) closure (E , D(E)), to which the semi group
Pt is associated. Notice that with our definitions, for f ∈ D

(1.2) E(f, f) =
∫

Γ(f, f) dµ = −2
∫

f Af dµ = − d

dt
‖ Ptf ‖2

L2(µ) |t=0 .

It is then easy to check that

Γ(f, g) = A (fg)− f Ag − g Af ,

and, that for fi in D, the following composition formula holds

AΦ(f1, . . . , fn) =
n∑

i=1

∂Φ
∂xi

(f1, . . . , fn)Afi +
1
2

n∑
i , j=1

∂2Φ
∂xi ∂xj

(f1, . . . , fn) Γ(fi, fj) ,

for Φ smooth enough.

Now pick some f ∈ D s.t.
0 < inf

x∈E
f(x) ≤ sup

x∈E
f(x) < +∞

and normalize it in order to have ‖ f ‖ def= ‖ f ‖L2(µ)= 1. We denote by Nf def= M log f , which
satisfies

(1.3) < Nf >t =
∫ t

0

Γ(f, f)
f2

(Xs) ds .
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In many cases Γ(f, f) is bounded for f ∈ D, so that we may suppress the word “local” for the
martingale Nf . In full generality (1.3) is defined up to an explosion time T∞. Nevertheless,
if we define

(1.4)


Gf

t = exp (Nf
t − 1

2 < Nf >t) , t < T∞ ; 0 if t ≥ T∞

dQf

dPµ
|Ft = f2(X0)G

f
t ,

it can be shown that, either if Γ(f, f) is bounded, or if µ is symmetric and provided E(f, f) <
+∞, Qf is a probability measure (conservativeness). We shall study some properties of Qf ,
and because it is simpler, begin with the symmetric case.

Contents.

It is well known (see Remark 2.11 below) that any µ symmetric diffusion semi-group satisfies
a robust version of Poincaré inequality, namely

‖ g ‖2≤ t E(g, g)+ ‖ Ptg ‖2 .

In section 2 we show, by using the relationship between the entropy on the path space and
the Dirichlet form, that a similar statement holds for the Log-Sobolev inequality (Proposition
2.7). Stronger robust versions of Poincaré can then be deduced by linearization. These robust
inequalities immediately indicate why contractivity properties are naturally linked with the
usual Log-Sobolev or weak Poincaré inequalities. We also show that these inequalities are
linked to convexity properties of the semi-group as a function of the time.
In section 3 we discuss the entropy minimization problem and show how it is linked with the
superadditivity of Fisher’s information. This property is the basic tool used by E.Carlen (see
[4]) for proving Blachman-Stamm inequalities.
Section 4 is devoted to some calculations and results in the stationary (non reversible case).
Here again the convexity properties of the semi-group (that can be obtained thanks to the
spectral decomposition in the symmetric case) are obtained.
These properties are used in section 5 for studying ergodic properties. Almost all the results
of this section are well known, may be not all. In particular we discuss weak Poincaré
inequalities in the spirit of [19] and their links with Log-Sobolev inequality in the spirit of
[18]. Section 6 contains a small remark on the use of martingales in order to study the ergodic
behaviour.
The last two sections are devoted to perturbation theory. In section 7 we show that the
perturbation result of Aida and Shigekawa (see [2]) can be obtained via the ideas of section 2
and how their hypotheses are linked to the integrability of the natural Girsanov density. In
section 8 we study the transmission of a Log-Sobolev inequality to a perturbed semi-group
in the spirit of the work by Kavian, Kerkyacharian and Roynette on ultracontractivity (see
[13]). These two sections are a first application of the methodology of section 2. In order to
keep the paper into a reasonable size, we do not include explicit examples. This will be done
in another work. Very interesting results are already contained in [13].

Though it is one of the most interesting point we mainly will not discuss explicit expressions
for the constants. The proofs can be used to get such expressions, and at our level of
generality it does not seem really efficient to get such general expressions. Of course in many
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applications, exact bounds have to be obtained. We also did not try to optimize the results.
In many cases a more accurate study allows to improve them. As we said before we intend
this paper to be a pedagogical one, i.e. we have tried to understand how the process can
be used to see classical or less classical results. How to go further will be the aim of future
works.

Finally I would like to acknowledge F.Y. Wang who explained to me his joint paper with
M.Röckner during a fabulous stay in Wuhan. I also benefited of two very nice discussions
with M. Ledoux in Toulouse and P. Mathieu in Marseille. Last but not least, my friend C.
Léonard wasted some time to hear about these ideas. He is gratefully acknowledged.

2. Symmetric diffusion processes and relative entropy : first functional
inequalities.

We assume in this section that µ is symmetric for the process.
In this case, one easily checks that, provided f ∈ D(E) is bounded (not to introduce problems
with domains) ∫

(Ah+
Γ(h, f)
f2

) f2 dµ = 0 ,

for all h ∈ D, i.e. f2 µ is an invariant measure for the perturbed generator. One can then
show that,

(2.1) if µ is symmetric, Qf is Markov and f2µ reversible (hence stationary).

For all this we refer to [10] section 6.3 or [6] in the Feller case. Of course when Γ(f, f) is
bounded, these results are immediate consequences of Girsanov theory of drift transformation.
For (2.1) to hold, symmetry of µ is required.

The key observation is that the Dirichlet form is intimately connected with the relative
entropy H(Qf ,Pf2 µ). Indeed recall that

(2.2) Ht(Qf ,Pf2 µ) = sup
h∈Bb(C0([0,t],E))

(∫
h dQf − log

∫
eh dPf2 µ

)
,

so that as it is well known

Ht(Qf ,Pf2 µ) =
∫

log(Gf
t ) dQf ,

and using Girsanov theory

Ht(Qf ,Pf2 µ) =
1
2

EQf
[
∫ t

0

Γ(f, f)
f2

(Xs) ds] .

In particular we get thanks to stationarity

(2.3) Ht(Qf ,Pf2 µ) =
1
2
t E(f, f).
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Looking at (2.2) and (2.3), we see that we can play the game of choosing various h in order
to get a family of inequalities. In order to be able to calculate

∫
eh dPf2 µ in terms of the

semi group, it is natural to use functions h of the form

h(X) =
∑

j

log hj(Xtj ) ,

for some sequence 0 ≤ t1 ≤ · · · ≤ tk ≤ t. Here as in the previous section we assume that f
is nonnegative, bounded above and bounded from below by a positive constant. Using the
Markov property and stationarity again, this yields

(2.4)
∫

(
∑

j

log hj) f2 dµ ≤ 1
2
t E(f, f) + log

∫
f2 Pt1(h1Pt2−t1(h2Pt3−t2 . . . )) dµ .

For (2.4) to turn a functional inequality, we are led to choose hj = fαj which furnishes

(2.5)
1
2

(
∑

j

αj)
∫

f2 logf2 dµ ≤ 1
2
t E(f, f) + log

∫
f2Pt1(f

α1Pt2−t1(f
α2Pt3−t2 . . . )) dµ .

The simplest choice is to consider only two marginals, i.e. k = 2, t1 = 0, t2 = t. Actually,
for (2.5) to be useful, we can take three marginals, but this does not furnish better results.
We also choose α2 = 1 and α1 = α− 1. This yields

(2.6)
α

2

∫
f2 logf2 dµ ≤ 1

2
t E(f, f) + log

∫
f1+α Ptf dµ .

The first interesting situation is obtained for α between 0 and 1. Indeed, applying Hölder
inequality and the normalization of f we get∫

f2 logf2 dµ ≤ t

α
E(f, f) +

1− α

α
log

∫
(Ptf)

2
1−α dµ .

Now using standard cut-off, and the Markov property of the form, we have obtained
Proposition 2.7. If µ is a symmetric probability measure for the diffusion semi-group Pt,
then for all t, all α ∈]0, 1[ and all non negative f ∈ D(E),∫

f2 logf2 dµ ≤ t

α
E(f, f) +

1− α

α
‖ f ‖2 log

∫
(Ptf)

2
1−α dµ

‖ f ‖2
.

The case α = 1 can be obtained similarly, i.e.∫
f2 logf2 dµ ≤ t E(f, f) + 2 ‖ f ‖2 log ‖ Ptf ‖∞ .

Proposition 2.7 immediately shows why a Log-Sobolev inequality has something to do with
hypercontractivity. Indeed as an immediate consequence, we get the easy half of Gross
theorem
Corollary 2.8. If in addition Pt is continuous from L2 in Lp for some p > 2, with norm c,
then ∫

f2 log
f2

‖ f ‖2
dµ ≤ a E(f, f) + b ‖ f ‖2 ,

where c = exp
(
b (1

2 −
1
p)
)

and t
a = p−2

p . In particular b = 0 if c = 1 i.e. if the semi-group is
hypercontractive.
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It suffices to apply 2.7 to f+ and f−. Note that, unfortunately, the constants a and b are not
the best ones (see [8] Theorem 6.1.14). One could also try to optimize by making α depend
on t, as in the usual proof of Gross theorem.

As for Log-Sobolev inequalities, 2.7 will furnish some kind of Poincaré inequality. As usual
if g is a bounded function in D satisfying

∫
g dµ = 0, we will apply 2.7, or better (2.6), with

f = 1 + ε g and ε small enough. Thanks to stationarity, the leading term when ε goes to 0
is of order ε2, and it furnishes after some simple manipulations
Proposition 2.9. If µ is a symmetric probability measure for the diffusion semi-group Pt,
then for all t, all α ∈]0, 1[ and all g ∈ D(E) such that

∫
g dµ = 0,

‖ g ‖2≤ t

1 + 2α
E(g, g) +

1 + α

(1− α)(1 + 2α)
‖ Ptg ‖2 .

This inequality extends to α = 0 by continuity.
For all α, the following also holds

(α+ 1− α2

2
) ‖ g ‖2≤ t E(g, g) + (1 + α) ‖ Ptg ‖2 .

Notice that both inequalities agree for α = 0.

One can use 2.9 in the spirit of the general weak Poincaré inequalities in [19]. Indeed an
immediate consequence of 2.9 with α = 0 is the following
Corollary 2.10. If in addition

∫
(Ptg)2 dµ ≤ ξ(t)C(g) for some functional C defined on a

dense subset DC of L2(µ) and some continuous ξ going to 0 at +∞, then the following weak
Poincaré inequality holds for all r > 0,

‖ g ‖2≤ β(r) E(g, g) + r C(g) ,

for all g ∈ DC such that
∫
g dµ = 0, where β(r) = inf {t ≥ 0, such that ξ(t) ≤ r} .

Note that β is non increasing and goes to 0 when r goes to +∞. It is reasonable to assume
that C(λ g) = λ2C(g) for the inequalities to be homogeneous. 2.10 is similar to Theorem 2.3
in [19] with a completely different coefficient in front of E(g, g). Notice that some converse
of 2.10 is immediate as shown in [19] Theorem 2.1, provided C(Ptg) ≤ C(g). We shall come
back to this point in a future section, and also improve the result.

Remark 2.11. For α = 0, inequality 2.9 also is a simple consequence of the following two
basic facts, for g in D

(2.12) ‖ g ‖2 − ‖ Ptg ‖2=
∫ t

0
E(Psg, Psg) ds ,

and thanks to symmetry

d

dt
E(Ptg, Ptg) = −4

∫
(APt(g))2 dµ ,

so that t 7→ E(Ptg, Ptg) is non increasing (one can also use spectral decomposition to show
this last property). This result already appeared in the proof of Liggett’s Theorem 2.2 in
[15], which deals with a weak form of Poincaré inequality. The constants α in 2.9 will only
modify the constants in Liggett’s result.
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Here is another proof using martingales. Using Ito’s formula in both time directions, for
g ∈ D(E), one has the sometimes called Lyons-Zheng decomposition formula

2(g(Xt)− g(X0)) = Mg
t − (Mg

t ) ◦Rt ,

where Rt denotes the time reversal at time t. It follows that

EPµ [|g(Xt)− g(X0)|2] = 2
∫

g (g − Ptg) dµ ≤
t

2
E(g, g) .

The result follows (for t
2 ) just using the symmetry.

The previous (2.12) can be formulated in terms of convexity of t 7→‖ Ptg ‖2. As remarked in
[19] lemma 2.2,

t→ log ‖ Ptg ‖ is convex.

This is an immediate consequence of the spectral decomposition. It is interesting to see that
it also follows from the general inequalities we have obtained.
Indeed, go back to (2.6) and choose α = 0. One thus has (recall that ‖ f ‖= 1)

0 ≤ 1
2
t E(f, f) + log

∫
f Ptf dµ ,

and thanks to symmetry

(2.13) 0 ≤ t E(f, f) + log ‖ Ptf ‖2 .

But, (2.13) is an equality at time t = 0. Hence the time derivative of the right hand side is
non negative at time t = 0. Actually it is equal to 0, hence the second time derivative is non
negative, i.e. we get convexity at the origin.
Notice that this second derivative is given by

4
∫

(Af)2 dµ −
(
E(f, f)

)2

which is unchanged when adding constants. So the result, which was true for nonnegative
f , bounded away from 0, extends to all bounded f ∈ D(A). But replacing f by Psf , we get
the desired convexity result by using the semi group property and density. Of course, we get
convexity of t 7→‖ Ptg ‖γ for all nonnegative γ as a byproduct.
Remark 2.14. It is easy to see that (for a fixed t) the best possible α in 2.9 is

α = 1− ‖ Ptg ‖
‖ g ‖

,

so that we obtain
3 ‖ g ‖2 −4 ‖ Ptg ‖‖ g ‖ + ‖ Ptg ‖2≤ t E(g, g) .

Remark that
‖ g ‖2 − ‖ Ptg ‖2≤ 3 ‖ g ‖2 −4 ‖ Ptg ‖‖ g ‖ + ‖ Ptg ‖2 ,

so that, ∫ t

0
(E(Psg, Psg)− E(g, g)) ds ≤ 0 .
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Since the first derivative at time t = 0 is equal to 0, we get that the second derivative is less
or equal to 0, hence

d

dt
E(Ptg, Ptg) |t=0 ≤ 0 .

Since this inequality holds for all g, it holds for g replaced by Psg, and thus, applying the
semi group property, we recover the fact that t→ E(Ptg, Ptg) is non increasing.
One can also use the other inequality in Proposition 2.9. Again for a fixed t one can show
that the best possible α is

α = 1− ‖ Ptg ‖2

‖ g ‖2

which yields
3
2
‖ g ‖2 +

1
2
‖ Ptg ‖4

‖ g ‖2
− 2 ‖ Ptg ‖2≤ t E(g, g) .

Differentiating with respect to t, we thus get∫ t

0

(
(2− ‖ Psg ‖2

‖ g ‖2
)E(Psg, Psg) − E(g, g)

)
ds ≤ 0 .

Again, the second derivative at time t = 0 has to be less than 0. This yields for ‖ g ‖= 1,
d

dt
E(Ptg, Ptg)|t=0 + (E(g, g))2 ≤ 0 .

But this last quantity is equal to − d2

dt2
log ‖ Ptg ‖2 |t=0. So we again get the convexity result

for the log.

Remark 2.15. Some of these results extend to the case of an unbounded nonnegative sym-
metric measure µ. Indeed the properties of Qf do not require that f is bounded below, nor
strictly positive (see [10] Theorem 6.3.3). So we may choose

h1 =
(
(f ∨ 1

K
) ∧ L

)α−1
and h2 = f ∧M

and take limits successively in L, K and M (the first one requires bounded convergence
theorem in the right hand side, then use monotone convergence or inequalities). Thus all
results up to 2.8 are still true without any change. Of course since 1 is not integrable, we
cannot deduce the Poincaré like inequality, unless we have some additional properties.

3. Symmetric diffusion processes and relative entropy : others functional
inequalities.

We still assume that µ is symmetric, but non necessarily bounded. In the beginning of this
section, we furthermore assume that the family {Px} is Feller, more precisely that the semi
group maps continuous bounded functions into continuous bounded functions. The reason is
we want to use some large deviations results.
In the preceding section, we built Qf which is f2 µ symmetric (actually we only used station-
arity) and has finite relative entropy with respect to Pf2 µ. But Qf owes another interesting
property : among all f2 µ stationary Q, Qf is the one that minimizes Ht(Q,Pf2 µ). This can
be interpreted in terms of mass transportation : among all possible measures on the paths
space transporting f2 µ onto f2 µ at each time, the optimal one for relative entropy is Qf .
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Remark 3.1. We only used time marginal laws at time 0 and time t. So, one can formulate
the same problem of minimizing relative entropy for Q transporting f2 µ onto f2 µ at time t.
This problem appears in the literature as the problem of construction of Schrödinger bridges
(see e.g. [9] p.161-164 for the Brownian case, and [5] section 6). Of course Ht(Qf ,Pf2 µ) will
be greater than the minimal transportation cost for such a bridge.
The minimal transportation cost is known since Px is Feller. When µ is a probability measure,
it is given by

J(f) = sup
h∈B+

b (E)

∫
log (

h

Pth
) f2 dµ ,

where B+
b denotes the set of nonnegative bounded h so that 1/h is also bounded. Hence we

obtain

(3.2)
∫

log(h1 h2) f2 dµ ≤ t

2
E(f, f) +

∫
f2 log(h1 Pth2) dµ ,

for all positive and bounded h1 and h2.
If we take h1 = fα−1 and h2 = f , we get a better inequality than (2.6) (just use the
concavity of the logarithm in the last integral). However, we do not see how to really use
this improvement. Just notice that it yields another inequality

3
2
‖ g ‖2≤ t E(g, g) + 2

∫
(Ptg)2 dµ−

1
2

∫
(P2tg)2 dµ .

This minimality has a nice counterpart. Indeed, as shown in [6] Corollary 4.3, and using
stationarity

(3.3) Ht(Qf ,Pf2 µ) =

= sup
h∈Cb([0,t]×E))

(∫ ∫ t

0
h(s, x)ds f2 dµ −

∫
log EPx [exp

∫ t

0
h(s,Xs) ds] f2(x) dµ

)
.

As a first consequence, we see that we do not loose any information by taking h as we did in
(2.4). So, the inequalities we obtained in the previous section, though not optimal, are not
far to be. The second consequence is concerned with superadditivity of Fisher’s information.

Definition 3.4. For nonnegative ρ such that
∫
ρ dµ = 1, the Fisher’s information I(ρ) is

defined as

I(ρ) =
∫

Γ(ρ, ρ)
ρ

dµ = 4 E(
√
ρ,
√
ρ) ,

when this quantity is well defined and finite, +∞ otherwise.

Note that if f =
√
ρ, then I(ρ) = 8H1(Qf ,Pf2 µ), when the first quantity is finite. According

to (3.3), we thus get a variational formulation for Fisher’s information. Furthermore, as
shown in [6] Theorem 4.4, the finiteness of the supremum in (3.3) implies that I(ρ) is also
finite. So we get a complete characterization.

We shall now consider two processes {Pi
xi
}xi∈Ei as in the previous section, and the correspond-

ing Di, µi. The process X = (X1, X2) associated to P1
x1
⊗P2

x2
share the same properties. The
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corresponding algebra is D = span D1 ⊗ D2, so that it is easily seen that the corresponding
E is given by

E(f, f) =
∫

((∇1f)2 + (∇2f)2)(x1, x2)µ1(dx1)µ2(dx2) .

It is also easy to see that for f ∈ D(E),

∇1

∫
f(x1, x2)µ2(dx2) =

∫
∇1f(x1, x2)µ(dx2) µ1 a.s.

For a given density of probability ρ, we introduce the marginal densities ρi, and the condi-
tional densities ρ|i(xi, .) i.e.

ρ1(x1) =
∫
ρ(x1, x2)µ(dx2) , and ρ|1(x1, y) =

ρ(x1, y)
ρ1(x1)

.

Superadditivity of Fisher’s information is a statement like

I(ρ) ≥ I1(ρ1) + I2(ρ2)

where I, Ii are Fisher’s information respectively on E1 × E2 and each Ei. For the usual
gradient and Lebesgue measure,such a result was proved by Carlen ([4] Theorem 3). His
proof lies on the stronger result (see Theorem 2 in [4] in the case p = 2)

I1(ρ1) ≤
∫

I1(ρ|2(., x2)) ρ2(x2) dµ2

we have rewritten in an appropriate form. This result is stronger since the sum of the right
hand sides (for i = 1, 2) is equal to I(ρ).

The proof of superadditivity is an easy consequence of (3.3). Indeed, if f =
√
ρ, we may

define Qf on the product space (recall that we only need the finiteness of the Dirichlet form
for defining Qf ) , so that

1
8
I(ρ) = H1(Qf ,Pρ µ1⊗µ2) =

= sup
h∈Cb([0,1]×(E1×E2))

(∫ ∫ 1

0
h(s, x1, x2)ds ρ(x1, x2)µ1(dx1)µ2(dx2)−

−
∫
log EP1

x1
⊗P2

x2 [exp
∫ 1

0
h(s,X1

s , X
2
s ) ds] ρ(x1, x2)µ1(dx1)µ2(dx2)

)
.

Of course this supremum is greater than the one obtained on functions

h(s, x1, x2) = h1(s, x1) + h2(s, x2)

which is easily seen to be equal to I1(ρ1) + I2(ρ2), by using a similar argument. Note that
finiteness of Ii(ρi) is a byproduct of the proof. We have thus shown
Proposition 3.5. For Feller processes, if ρ is a density of probability on the product space
with marginal densities ρ1 and ρ2,

I(ρ) ≥ I1(ρ1) + I2(ρ2) .
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Furthermore, when equality holds, it is easy to see that
∇ρ
ρ

=
∇1ρ1

ρ1
⊕ ∇2ρ2

ρ2

ρµ a.s., where by convention a ratio is 0 whenever the denominator vanishes. It follows that

ρ = (ρ1 ⊗ ρ2) eh

where h is an invariant function, and finally ρ = ρ1 ⊗ ρ2 if the µi are ergodic.

If we add some conditions, we can get the stronger statement of [4].

Assume from now on that
∫
ρ logρ dµ < +∞. This is automatically satisfied if I(ρ) is finite

when a Log-Sobolev inequality holds (as for the euclidean case). It can also be assumed when
the µi are probability measures. Indeed in this case, we can first assume that ρ is bounded
below and above and then take limits.
Then for µ2 almost all x2

H(ρ|2(., x2)µ1, µ1) =
∫
ρ|2(x1, x2) logρ|2(x1, x2)µ1(dx1) < +∞ .

Denote by f2,1 the square root of this conditional density. Then we have the entropy decom-
position

(3.6)
t

8
I1(ρ|2(., x2)) = Ht(Qf2,1 ,P1

ρ|2(.,x2) µ1
) = Ht(Qf2,1 ,P1

µ1
)−H(ρ|2(., x2)µ1, µ1) .

We want to integrate both hand sides with respect to ρ2 dµ2. To this end we need the
integrability of the second term in the difference, thus we need∫

ρ2 logρ2 dµ2 < +∞ .

This is automatically satisfied when the µi are probability measures (just use convexity) or
when Ii(ρi) is finite and a Log-Sobolev inequality holds. In particular, it will hold when I(ρ)
is finite when the processes are Feller and satisfy a Log-Sobolev inequality.
Using convexity of relative entropy, we get
(3.7)

t

8

∫
I1(ρ|2(., x2)) ρ2(x2)µ2(dx2) ≥ Ht(Qf1 ,P1

µ1
)−

∫
H(ρ|2(., x2)µ1, µ1)ρ2(x2)µ2(dx2)

≥ t

8
I1(ρ1) +H(ρ1 µ1, µ1)−

∫
H(ρ|2(., x2)µ1, µ1)ρ2(x2)µ2(dx2) .

Dividing by t and making t tend to infinity, we get the desired result. Remark that we do
not need the Feller assumption since we did not use (3.3).
Furthermore, if equality holds, we must have

H(ρ1 µ1, µ1)−
∫

H(ρ|2(., x2)µ1, µ1)ρ2(x2)µ2(dx2) ,

and since relative entropy is strictly convex, this implies ρ|2(., x2) = ρ1 for ρ2 almost all x2,
i.e. ρ = ρ1 ⊗ ρ2. Let us summarize the results we have obtained
Theorem 3.8. Let µi be symmetric nonnegative measures for the processes {Pi

xi
}. If one of

the following conditions holds

(1) µi are probability measures,
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(2) the processes are Feller continuous,

then for all probability density ρ with marginal laws ρi it holds

I(ρ) ≥ I1(ρ1) + I2(ρ2)

where I denotes the Fisher’s information.
In addition in cases (1) and (2)+(the processes satisfy a Log-Sobolev inequality) the following
stronger inequality holds

I1(ρ1) ≤
∫

I1(ρ|2(., x2)) ρ2(x2) dµ2

where ρ|i(., xi) denotes the conditional density knowing xi.
Finally in all cases, equality holds if and only if ρ = ρ1 ⊗ ρ2.

Actually we proved a little bit more since Log-Sobolev is only required to ensure finiteness
of some entropy. In the euclidean space in particular (where Log-Sobolev actually holds),
one can use some approximations in order to get the result without using explicitly the Log-
Sobolev condition. Also note that if there exist a pair (ψ1, ψ2) of probability densities such
that (∇ilogψi)2 is ρµ integrable, we may replace µi by ψiµi (which are probability measures)
and ρ by (ψ1 ⊗ ψ2)−1ρ in order to use the previous result with probability measures.

In the euclidean case, these inequalities are connected with Blachman-Stam inequality (see
[4] Theorem 7) which furnishes another proof of Nelson’s hypercontractivity theorem (to be
useful one of course has to get a proof that does not use a priori Log-Sobolev). They also
have some interesting applications in kinetic theory, we shall not discuss here. Thanks to
Theorem 3.8, Theorem 7 in [4] immediately extends to more general Gaussian spaces.

4. The general stationary case.

We do no more assume that µ is symmetric. Of course the Dirichlet form only controls
the symmetric part of the process, so we cannot expect to get similar results in the general
stationary case. In some particular cases, one can rely the symmetric part to the whole
process. For instance if A is normal (i.e. commutes with its adjoint) one can use the previous
results for the symmetric process generated by A+A∗

2 and remark that

‖ Ptg ‖2=‖ P ∗t g ‖2=‖ (P t
2
P ∗t

2
)g ‖2

so that the results of the previous subsection starting from 2.9 are still true.

One can nevertheless ask about what happens if we play a similar game in the general
stationary case assuming that Γ(f, f) is bounded for f ∈ D. First we assume that µ is a
probability measure.

In this case (2.2) is still hold, so that we have an analogue of (2.4)

(4.1)
∫ ∑

j

log hj f
2
tj dµ ≤

≤ 1
2

EQf
[
∫ t

0

Γ(f, f)
f2

(Xs) ds] + log

∫
f2Pt1(h1Pt2−t1(h2Pt3−t2 . . . )) dµ ,
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where f2
s denotes the density of the Qf law of Xs with respect to µ.

This time, we take h1 = fα, h2 = fβ, t1 = 0 and t2 = t. Since Gf
t is invariant when scaling

f , we have, for all positive f ∈ D, all α and β

(4.2) α

∫
f2logf dµ+ β EPµ [f2(X0) log f(Xt)G

f
t ] + 2 ‖ f ‖2 log ‖ f ‖≤

≤ 1
2

EPµ [ f2(X0)G
f
t

∫ t

0

Γ(f, f)
f2

(Xs) ds]+ ‖ f ‖2 log

∫
f2+α(Ptf

β) dµ .

Now as before, take f = 1 + εg for some bounded g ∈ D such that
∫
g dµ = 0. We already

saw that the leading term is in ε2 in all terms except the second one in the left hand side,
which is new (the first term in the right hand side is clearly of order ε2).
In what follows we are using ' to denote the coefficient of the ε2 term, for each term in the
previous inequality.

(i) α
∫
f2logf dµ ' 3

2 α ‖ g ‖2 ,

(ii) 2 ‖ f ‖2 log ‖ f ‖'‖ g ‖2 ,

(iii) 1
2 EPµ [ f2(X0)G

f
t

∫ t
0

Γ(f,f)
f2 (Xs) ds] ' t

2 E(g, g) ,

(iv) ‖ f ‖2 log
∫
f2+α(Ptf

β) dµ ' (2+α)β
∫
gPtg dµ+ 1

2

(
(2+α)(1+α)+β(β−1)

)
‖ g ‖2,

and finally

EPµ [f2(X0) log f(Xt)G
f
t ] ≈ EPµ [(1 + 2ε g(X0))(1 + εMg

t ) (ε g(Xt)−
ε2

2
g2(Xt))] ,

' −1
2
‖ g ‖2 +2

∫
gPtg dµ+ EPµ [g(Xt)M

g
t ] .

The last term in the previous approximate equality can be calculated as follows (for g in the
domain of A):

EPµ [g(Xt)M
g
t ] = EPµ [g(Xt)

(
g(Xt)− g(X0)−

∫ t

0
Ag(Xs) ds

)
] ,

= ‖ g ‖2 −
∫
gPtg dµ−

∫ t

0

∫
Pt−sg Ag dµ ds ,

= ‖ g ‖2 −
∫
gPtg dµ+

∫ t

0

∫
g APt−sg dµ ds+

∫ t

0

∫
Γ(g, Pt−sg) dµ ds ,

=
∫ t

0

∫
Γ(g, Psg) dµ ds ,

where we have used stationarity, the definition of Γ and of the generator A.
Putting all this together, we finally obtain for g ∈ D with mean 0 :

1
2

(β2 + α2) ‖ g ‖2 +
t

2
E(g, g) + αβ

∫
gPtg dµ− β

∫ t

0

∫
Γ(g, Psg) dµ ds ≥ 0 ,
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or after a simple manipulation

(4.3)
(
β − 1

2
(β2 + α2)

)
‖ g ‖2≤ t

2
E(g, g) + β(α+ 1)

∫
gPtg dµ+ β

∫ t

0

∫
Ag Psg dµ ds .

One should try to get conditions for this inequality to become more exciting. In particular
when the last term is less than 0, or when one can use an integration by parts to control it.
We shall come back later to some examples.

The second fact we remarked in the symmetric case is that some convexity properties are
consequences of (2.6). Let us see what happens when we are using (4.2). For the computations
below to be justified, we need to assume that D is stable, i.e. that Af ∈ D if f ∈ D. This
hypothesis is not really surprising in the context of such inequalities (see [3]).
Let us look at (4.2) with α = −1 and β = 1, and for ‖ f ‖= 1 (f ∈ D).
At time t = 0 we have an equality. It is not hard to see that the first derivatives with respect
to t are equal at time t = 0. Hence the second derivatives are still satisfy an inequality, and
we have to compute them.
The second derivative of the left hand side (at t = 0) is given by∫ (

f2A
( 1
f
Af +

1
2

1
f2

Γ(f, f)
)

+ f Γ(f,
1
f
Af) +

1
2
f Γ(f,

1
f2

Γ(f, f))

)
dµ

while the one of the right hand side is given by∫ (
1
2
f2A

( 1
f2

Γ(f, f)
)

+
1
2
f Γ(f,

1
f2

Γ(f, f)) + f AAf

)
dµ −

(∫
fAf dµ

)2
.

Using the composition formula and the fact that ∇ is a derivation, we obtain after some
calculations

(4.4)
1
4

(
E(f, f)

)2
≤
∫

(Af)2 dµ .

But if A∗ has the same properties, we may replace A by A∗ and take the average of both
inequalities. Up to a factor 2, this average is the second derivative at time t = 0 of t 7→
log ‖ Ptf ‖2. As for the symmetric case, one can extend the result to all f ∈ D by adding
constants.
It remains to extend the result to all t, by using the semi group property, provided D is also
stable for the semi group. Actually we only need this stability for functions in D up to a
constant, i.e with 0 mean. Another possibility is to extend (4.4) to all f ∈ D(A) provided
one can approximate Af by Afn for some sequence fn ∈ D.
Finally using density we get,
Proposition 4.5. Let µ be a stationary probability measure for the diffusion semi group Pt.
Assume that D is a stable algebra for A (in particular Γ(f, f) is bounded for f ∈ D) and for
A∗. Assume in addition that either {f ∈ D ,

∫
f dµ = 0} is stable for the semi group, or D

is dense in D(A) equipped with the norm ‖ . ‖ + ‖ ∇. ‖ + ‖ A. ‖. Then

t 7→ log ‖ Ptf ‖

is convex for all f ∈ L2(µ).
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This result is quite stable by approximation of semi-groups. We shall see some examples
later.

Finally, one can also partly extend the results in the previous section. Here is the easiest
result in this direction.

Proposition 4.6. Assume that µi are stationary probability measures for the Feller processes
{Pi

xi
}. If ρ is a probability density, with marginal densities ρi, then

I(ρ) ≥ I1(ρ1) + I2(ρ2) .

If in addition E(h, h) = 0 implies that h is a constant, then equality holds if and only if
ρ = ρ1 ⊗ ρ2.

Proof. If ρ ∈ D is bounded away from 0, one can again use the results of [6] in order to prove
(recall that f =

√
ρ)

(4.7) EP1
µ1
⊗P2

µ2 [ f2(X0)G
f
t

∫ t

0

Γ(f, f)
f2

(Xs) ds] ≥

EP1
µ1 [ f2

1 (X1
0 )Gf1

t

∫ t

0

Γ(f1, f1)
f2
1

(X1
s ) ds] + EP2

µ2 [ f2
2 (X2

0 )Gf2
t

∫ t

0

Γ(f2, f2)
f2
2

(X2
s ) ds] .

The result follows by taking the first derivative at time t = 0. Next it extends to any ρ ∈ D(E)
bounded away from 0 by density, and finally to any ρ ∈ D(E) by considering ρK = (ρ∧K)∨ 1

K
and using monotone convergence.
Equality can be treated similarly. The only difference is that in the symmetric case, E(h, h) =
0 is equivalent to h invariant. �

We shall now study some consequences of the inequalities we proved (or recalled) in terms
of the ergodic behaviour of the process.

5. Ergodic behaviour of stationary diffusion processes.

The framework is the same as in section 1. As we saw, some interesting inequalities rely on
convexity properties. Let us introduce some notations.

Notation 5.1. We shall say that the Convexity Property (CP) holds for Pt, when t→‖ Ptg ‖2

is convex (if one prefers if t → E(Ptg, Ptg) is non increasing); that the Strong Convexity
Property (SCP) holds when t→ log ‖ Ptg ‖ is convex (if one prefers if t→ E(Ptg,Ptg)

‖Ptg‖2 is non
increasing). As we saw in the previous sections, both properties hold when µ is symmetric,
when A is normal or in some nice stationary cases. When no confusion is possible we just
say that CP holds, without mentioning Pt.

We also introduce usual definitions

Definition 5.2. We denote by I the σ-field generated by the invariant functions, i.e. the
f ∈ L2(µ) such that Ptf = f for all t. We shall say that µ is ergodic if I is reduced to the
constants.
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It immediately follows from (2.12) that

(5.3) If CP holds, f is invariant if and only if f ∈ D(E) and E(f, f) = 0 .

In general for any invariant function the Dirichlet form vanishes. Since P ∗t is also a contrac-
tion, it is easy to see that the invariant functions of Pt and P ∗t are the same, so that Pt and
E[./I] commute.
The renowned mean ergodic theorem tells that the Cesaro means of the Psf converge towards
E[f/I]. In the symmetric case, by using the spectral decomposition and Lebesgue theorem,
one easily sees that Ptf converges towards E[f/I] strongly in L2(µ). In the general stationary
case we have

Proposition 5.4. Assume that µ is stationary for the diffusion semi-group Pt. Then for all
f ∈ L2(µ), Ptf is L2(µ) weakly convergent to Eµ [f/I] when t goes to +∞.
If in addition CP holds for both Pt and P ∗t (in particular if µ is symmetric, or A is normal),
convergence holds in the strong sense.
In particular, if µ is ergodic, Ptf goes to

∫
f dµ.

Proof. Let g = f − Eµ [f/I]. Then
∫
g dµ = 0 and g is orthogonal to the set of invariant

functions. t 7→‖ Ptg ‖2 is non increasing and bounded, hence has a limit m when t goes
to +∞. It follows that from any subsequence of Ptg, one can extract a weakly convergent
subsequence Ptng. Let h be a weak cluster point. We are going to show that h is invariant.
Indeed since h is the weak limit of some sequence, it is the strong limit of a sequence hn of
convex combinations of the (Ptkg)k≥n, according to Mazur’s theorem. But, according to the
convexity of the Dirichlet form and (2.12), for all t,

‖ hn ‖2 − ‖ Pthn ‖2=
∫ t

0
E(Pshn, Pshn) ds ≤ sup

u≥tn

∫ u+t

u
E(Psg, Psg) ds ,

which goes to 0 when n goes to +∞. It follows thanks to the continuity of Pt and the strong
convergence of hn that for all t, ‖ h ‖2=‖ Pth ‖2, hence that h is invariant.
In addition,

‖ h ‖2= lim
n

∫
Ptng h dµ = lim

n

∫
g P ∗tnh dµ = 0

since h is P ∗t invariant and since g is orthogonal to invariant functions. It follows that Ptg
weakly converges to 0, when t goes to +∞. In particular

(5.5) for all s, lim
t→+∞

∫
Psg Ptg dµ = 0 .

Hence if µ is symmetric, m = 0. In the normal case, apply this result with the symmetric
PtP

∗
t .

If CP holds for both Pt and P ∗t we shall follow the same route this time with P ∗t Ptg. Indeed

‖ P ∗t Ptg ‖≤‖ Ptg ‖
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so that again, starting with any sequence tn we may find a sequence hn of convex combinations
of the (P ∗tk Ptkg)k≥n which is strongly convergent towards some h. But

‖ hn ‖2 − ‖ Pthn ‖2 =
∫ t

0
E(Pshn, Pshn) ds

≤ t E(hn, hn)
≤ t E(P ∗tn Ptng, P

∗
tn Ptng)

≤ t E(Ptng, Ptng) ,

where we have used successively (2.12), convexity of E , CP for Pt and for P ∗t . Taking the
limit in n we obtain as before first that h is invariant and next that

‖ h ‖2= lim
n

∫
P ∗tnPtng h dµ = lim

n

∫
Ptng Ptnh dµ = lim

n

∫
Ptng h dµ = 0 ,

i.e. any weak cluster point is 0. Hence, as in (5.5)

lim
t→+∞

∫
P ∗t Ptg g dµ = 0 .

But this limit is also equal to m. The proof is completed. �

Note that the usual ergodic theorem is a consequence of the first statement in proposition
5.4 according to the Banach-Saks theorem.

We shall now use the material of the previous section in order to better understand the
ergodic behaviour of Pt. The first step is the following elementary lemma which explains the
lack of uniformity.
Lemma 5.6. Assume that CP holds for the diffusion semi-group Pt. Then the following
statements are equivalent:

(1) µ is ergodic.
(2) For any sequence {gn} ∈ D(E) such that

∫
gn dµ = 0, ‖ gn ‖≤ 1 and E(gn, gn) → 0

as n goes to +∞, we have gn → 0 weakly in L2(µ).
We shall call this last property the “weak weak spectral gap property” (WWSGP).

(3) We may replace the weak convergence in (2) by the strong convergence of the Cesaro
means of the gn.

Proof. If (2) holds, then applying it with gn = g, we get ergodicity thanks to (5.3). Con-
versely, take gn as in WWSGP. Again, each subsequence contains some weakly convergent
subsequence and then some sequence of convex combinations hn which is strongly convergent
to some h. We have to prove that h = 0, or thanks to ergodicity, that h is invariant (since∫
h dµ = 0).

Using convexity, we see that hn satisfies all the hypotheses in WWSGP. According to 2.12
and CP,

‖ h ‖2= lim
n
‖ hn ‖2≤ lim

n

(
tE(hn, hn) +

∫
(Pthn)2 dµ

)
=
∫

(Pth)2 dµ ,

for all t. Hence h is invariant.
Finally (2) implies (3) thanks to the Banach-Saks theorem, and (3) implies (1) using the
same argument as for (2) implies (1). �
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If we replace L2 weak convergence by convergence in probability in WWSGP, we obtain
the “weak spectral gap property” (WSGP) introduced by Aida and Kusuoka. Of course
WSGP implies WWSGP (apply Vitali’s convergence theorem). If we replace weak by strong
convergence in L2 we get the usual spectral gap property (SGP) which is clearly equivalent
to Poincaré inequality.
In the symmetric case, WSGP and SGP are known to be connected with uniform ergodic
properties. Similar statements are true (and mainly known) when CP holds, namely

(5.7) If CP holds, the following three properties are equivalent
(i) SGP holds,
(ii) limt→+∞ sup‖f‖≤1 ‖ Ptf −

∫
f dµ ‖= 0,

(iii) there exists λ > 0 such that for all f ∈ L2(µ), ‖ Ptf −
∫
f dµ ‖≤ e−λ t ‖ f ‖;

(5.8) If CP holds, the following four properties are equivalent (see [19])
(i) WSGP holds,
(ii) limt→+∞ sup‖f‖≤1 ‖ P ∗t f −

∫
f dµ ‖L1(µ)= 0,

(iii) limt→+∞ sup‖f‖∞≤1 ‖ Ptf −
∫
f dµ ‖= 0,

(iv) the weak Poincaré inequality

for all r > 0, ‖ g ‖2≤ β(r) E(g, g) + r ‖ g ‖2
∞ ,

holds for all bounded g ∈ D(E) such that
∫
g dµ = 0.

Actually the equivalence between (i) and (iv) does not require CP and is shown in [19]
Proposition 1.2, as well as the direct (iv) implies (iii) (see [19] Theorem 2.1). We already saw
that the converse (iii) implies (iv) only requires CP (since Corollary 2.10 only uses α = 0).
Also see [19] theorem 2.5.

Remark 5.9. In (5.8) (iii), if we denote by

ξ(t) = sup
‖f‖∞≤1

‖ Ptf −
∫
f dµ ‖2 ,

it is shown in [19] that, provided SCP holds, one may choose

β(r) = 2r inf
s>0

1
s
ξ−1(s exp(1− s

r
))

in (iv), which is sharper than the 2ξ−1(r) furnished by Corollary 2.10 (the factor 2 comes
from the fact that ‖ f ‖∞≤ 1 implies ‖ f −

∫
f dµ ‖∞≤ 2). In particular the bound of [19],

contrary to the one of 2.15, allows to show that if ξ(t) = e−dt for some nonnegative d, then
the ordinary Poincaré inequality (or SGP) holds.
Conversely if (5.8) (iv) holds for some non increasing β,

ξ(t) ≤ 2 inf {r > 0 , −β(r) log(r) ≤ 2t} .

Remark 5.10. As mentioned in [19], and already used in [15], the weak Poincaré inequality
(5.8) (iv) is equivalent for β(r) = c r1−p to some Nash inequality

‖ g ‖2≤ c (E(g, g))
1
p (‖ g ‖∞)

1
q

for all g such that
∫
g dµ = 0 and 1

p + 1
q = 1. Some generalization of these inequalities

(called generalized Poincaré inequality) has been extensively studied by Mathieu (we adopt
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his terminology) (see e.g [17] or [16]) who was also the first to prove the equivalence between
(i) and (ii) in (5.8). Note that a generalized Poincaré inequality is stronger than WSGP.

Remark 5.11. Also notice that if we replace ‖ . ‖∞ by ‖ . ‖Lp(µ) for some p ≥ 2, we still
have (iii) implies (iv) in (5.8) thanks to Corollary 2.10. Actually, as we already said, there is
an equivalence between both (thanks to [19] Theorem 2.1).
But the weak Poincaré inequality with the Lp norm implies the same one with the L∞ norm,
hence WSGP. It is then easy to see that the first half of the proof of Proposition 1.2 in [19]
(i.e. WSGP implies weak Poincaré for the L∞ norm), immediately extends to the Lp norm,
provided p > 2 (just use Hölder inequality). Hence, WSGP is actually equivalent to the
weak Poincaré inequality with any Lp norm. In other words, as for the relationship between
Log-Sobolev and hypercontractivity, the uniformly ergodic behaviour of Pt (i.e. (5.8) (iii))
holds for all p > 2 as soon as it holds for one such p (but with different speeds β).

Remark 5.12. It is well known that a (tight) Log-Sobolev inequality (i.e. with b = 0 in 2.14)
is equivalent to hypercontractivity, and implies both a Poincaré inequality and the L2 → Lp

continuity of Pu for all p > 2 and u large enough. Thanks to inequality 6.1.26 in [8], it is well
known that the converse (with one p) also holds. It turns out that we may replace Poincaré
(or SGP) by weak Poincaré (or WSGP) in this converse statement. The result below was
first shown by Mathieu in the symmetric case ([18] with a slightly different version of WSGP
denoted by P, see below; also see Proposition 7 in [17]) with a different proof.
Proposition 5.13. Assume that CP and WSGP hold, and that for some u > 0 and p > 2, Pu

is L2 → Lp continuous. Then SGP holds, and accordingly the semi-group is hypercontractive.

Proof. Let g such that
∫
g dµ = 0. Recall that for all s > 0,

‖ g ‖2 − ‖ Psg ‖2≤ s E(g, g) .

According to the previous remark, WSGP implies uniform ergodicity for p, i.e.

‖ Psg ‖2≤ ξ(s− u) ‖ Pug ‖2
p≤ ξ(s− u) c2 ‖ g ‖2

for s > u and c equal to the L2 → Lp norm of Pu. Since ξ goes to 0 at ∞, we immediately
get the usual Poincaré inequality for s large enough. �

Also note that we may replace ‖ g ‖ by ‖ g ‖∞ in the statement of WSGP (this is condition
P in [18]) or WWSGP. It is immediate for WWSGP (truncating a function will make decay
the Dirichlet form). It is a consequence of the proof of Proposition 1.2 in [19] for WSGP
(with the notation therein, what is used is that

∫
fndµ = 0, ‖ fn ‖2

∞≤ 1
r and E(fn, fn) → 0

implies fn goes to 0 in probability).

Remark 5.14. As for the usual Poincaré inequality, it is not hard to see that, if µ1 and µ2

both satisfy WSGP then so does µ1⊗µ2. However the corresponding β in the weak Poincaré
inequality is not easy to describe.

Remark 5.15. We can also discuss non uniform results. Indeed if CP holds and
∫
g dµ = 0,

(5.16) 1 ≤ s
E(Ptg, Ptg)
‖ Ptg ‖2

+
‖ Pt+sg ‖2

‖ Ptg ‖2
≤ s

E(Ptg, Ptg)
‖ Ptg ‖2

+ 1 ,
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for all s and t. So either
lim inf
t→+∞

E(Ptg, Ptg)
‖ Ptg ‖2

≥ λ∗ > 0

in which case
‖ Ptg ‖≤ e−λ t ‖ g ‖

for any λ < λ∗ and t large enough, or the lim inf is equal to 0.
If the lim inf is a limit, for instance if SCP holds, and if this limit is equal to 0, then one get

for all s, lim
t→+∞

‖ Pt+sg ‖2

‖ Ptg ‖2
= 1 .

In other words when SCP holds, either the decay is exponential or it is algebraic (for example
one cannot have some decay like e−

√
t). Examples of algebraic decay are given in [7] for the

critical Ornstein-Uhlenbeck process in infinite dimension (see [7] Theorems 1.9).

6. Ergodic behaviour through Martingales.

Since we have definitely forgotten the underlying process in the previous section, let us
see what can be said using the ideas of section 2. Here we assume that µ is a symmetric
probability measure for the semi-group. This section only contains remarks.

Let g ∈ D(E) be bounded. One can define

Mg
. =

∫ .

0
∇g(Xs).dCs

(see (1.1)) the associated martingale as the L2 limit of the corresponding Mgn
. for a sequence

gn ∈ D that converges to g for the Dirichlet norm. So we may define

Zg
t = exp{Mg

t − < Mg >t} .
Remember that we know that

t → e2g(X0) Zg
t

is a Pµ martingale thanks to [10] section 6.3 or [6] (remember that g is bounded), so that,
since g is bounded, Zg

. is a Pµ martingale.

If we denote by f2 = exp 2g, remember that

(6.1) Ht(Qf ,Pf2 µ) = EQf
[logZg

t ] =
t

2

∫
Γ(g, g) e2g dµ ≤ t

2
e2 ‖g‖∞ E(g, g) .

But relative entropy is non increasing under measurable transforms, hence thanks to sym-
metry

(6.2) H(e2gµ, Pt(e2g)µ) = H(Qf ◦ (Xt)−1,Pf2 µ ◦ (Xt)−1) ≤ Ht(Qf ,Pf2 µ) .

Finally applying Pinsker’s inequality (‖ ν − µ ‖TV≤
√

2H(ν, µ) ), we get

(6.3)
∫

|Pt(e2g)− e2g| dµ ≤
√
t e‖g‖∞

√
E(g, g) .

In particular, if we introduce as before

ξ(t) = sup
‖f‖∞≤1

‖ Ptf −
∫
f dµ ‖2 ,
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and using Cauchy-Schwarz inequality we get

(6.4)
∫

|e2g −
∫
e2gdµ| dµ ≤

√
t e‖g‖∞

√
E(g, g) + e2 ‖g‖∞

√
ξ(t) .

Of course what we achieved to do is just another derivation of an inequality similar to
proposition 2.9, without using the preliminary log-Sobolev type inequality (2.6). These
inequalities immediately show why the uniform ergodic behaviour (i.e. ξ(t) → 0 when t
goes to ∞ ) implies WSGP. Notice that for an uniformly bounded sequence gn, convergence
in probability and in L2 are equivalent. Also notice that one can recover lemma 5.6 by
directly using (6.3) and convexity arguments.

7. Perturbation theory.

Since our approach in section 2 lies on some perturbation, it is natural to expect that it is
well suited for perturbation theory. Let us explain what we mean. In all what follows µ is
supposed to be symmetric for the semi-group.

In the framework of section 1, we shall say that µ satisfies a Log-Sobolev inequality LSI if
for some universal constants a and b and all f ∈ D(E),∫

f2 log
( f2

‖ f ‖2
L2(µ)

)
dµ ≤ a

∫
Γ(f, f) dµ + b ‖ f ‖2

L2(µ) .

When b = 0 we will say that the inequality is tight (TLSI).

What we want to study is the following problem: let µ and ν = e2Fµ, be two probability
measures (the second one is the perturbation). What should be said on ν when µ for instance
satisfies a Log-Sobolev inequality ? It is well known (see e.g. [20] proposition 3.1.18) that if
F is bounded, and µ satisfies∫

f2 log
( f2

‖ f ‖2
L2(µ)

)
dµ ≤ c

∫
Γ(f, f) dµ ,

then ν satisfies ∫
f2 log

( f2

‖ f ‖2
L2(ν)

)
dν ≤ c eOsc(F )

∫
Γ(f, f) dν ,

where Osc(F ) = sup(F )− inf(F ). This is due to Holley and Stroock.

If we remove the boundedness assumption on F , the situation becomes much more tricky.
Such a study was first done by Aida and Shigekawa ([2]) (we will not study here the rela-
tionship with exponential integrability or concentration of measure phenomenon). We will
try to understand the set of hypotheses made in [2], by using the approach of section 2.

As in the previous section we consider some F ∈ D(E), such that ν = e2Fµ is a probability
measure. We can thus build the probability measure QeF

that solves the martingale problem
associated with

(
AF = A + Γ(F, .),D

)
, and is reversible, provided we solve some problems

related to domains. These problems are carefully studied in [2] (lemma 2.3, proposition 3.2,
assumption (A.6) and so on) in the framework of Dirichlet forms.
Let us first look at what is needed for the construction.
Lemma 7.1. Assume that
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(1) for all f ∈ D, EF (f, f) =
∫

Γ(f, f) e2F dµ < +∞ ,
(2) for all f ∈ D, Af ∈ L1(ν) ,
(3)

∫
Γ(F, F ) e2F dµ < +∞ .

Then QeF
is a reversible probability measure and solves the martingale problem associated

with (AF ,D).
Furthermore, when (1) and (3) are fulfilled, the pre-Dirichlet form (EF ,D) is closable.

Proof. Hypotheses (1), (2) and (3) ensure that AF f is well defined and belongs to L1(ν).
Using the composition formula for eFn where Fn is a sequence of functions in D that goes to
F for the Dirichlet norm (associated with E ) it is easy to see that

∫
AF f dν = 0 for f ∈ D.

Hence we can perform the construction of QeF
as explained in section 2. This prove the first

part.

Now consider FK = F ∧ K. F is bounded from above, eF is thus bounded, hence (2) is
automatically satisfied for FK . In addition∫

Γ(f, f) e2FK dµ ≤
∫

Γ(f, f) e2F dµ < +∞ .

Hence any sequence fn ∈ D which is a Cauchy sequence for EF , is still a Cauchy sequence
for EFK

. If in addition fn goes to 0 in L2(ν), it also goes to 0 in L2(νK). Denote by B the
L2 limit of ∇ fn. This limit does not depend on K.
Now remember the Lyons-Zheng decomposition

2(fn(Xt)− fn(X0)) =
∫ t

0
∇fn(Xs).dCK

s − (
∫ t

0
∇fn(Xs).dCK

s ) ◦Rt

that holds for all t, QeFK almost surely (the meaning of the basic martingales CK is clear).

Taking limits in n we get that QeFK almost surely∫ t

0
B(Xs).dCK

s − (
∫ t

0
B(Xs).dCK

s ) ◦Rt = 0 .

Note that the first term is a true martingale (not only local). It follows, using the reversibility
of QeFK , that for all g ∈ D,∫

g(Xt)
(∫ t

0
B(Xs).dCK

s

)
dQeFK = 0 .

Using Ito’s formula, dividing by t and letting t go to 0, we thus obtain∫
∇g .B dνK = 0 .

This shows that B is orthogonal to all the “gradients”. But by construction B belongs to the
L2 closure of the “gradients”, hence B = 0 νK almost surely, then ν almost surely thanks
to the bounded convergence theorem. �

In many interesting cases Γ(f, f) is bounded for f ∈ D, so that (1) is automatically satisfied.
We shall come back later to (1) in the general case.
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Let us come back to the initial problem of perturbation. Not to introduce difficulties, we
shall here first assume that F is bounded from above and then try to remove this assumption.
Of course the estimates we want to obtain do not involve the L∞ norm of F+.

If F is bounded from above we may apply lemma 7.1, since (1),(2) and (3) are satisfied.
Now for any f ∈ D we can play the same game as in section 2, i.e. build a perturbed
probability measure Uf as

dUf

dQeF |Ft = f2(X0) (GF )f
t ,

where (GF ) is similar to G (see (1.4)) replacing the Pµ local martingale Mf , by its QeF

analogue (MF )f obtained by replacing A by AF .
We thus obtain the analogue of (2.4) (restricting ourselves to two times t1 = 0, t2 = t)

(7.2)
∫

(
∑

j=1,2

log hj) f2 e2Fdµ ≤ 1
2
t EF (f, f) + log EQeF

[f2(X0)h1(X0)h2(Xt)] .

But ZF
. = GeF

. being a Pµ martingale, it easily follows that for µ almost all x ∈ E, the
Px supermartingale ZF

. is a martingale. Since E is Polish, we then obtain that a ν regular
desintegration (QeF

x )x of QeF
, is given by

dQeF

x

dPx
|Ft = ZF

t .

Hence (7.1) can be rewritten
(7.3)∫

(
∑

j=1,2

log hj) f2 e2Fdµ ≤ 1
2
t EF (f, f) + log

∫
f2(x)h1(x) EPx [h2(Xt)ZF

t ] e2F (x)µ(dx).

What has to be done in (7.3) is to come back to the semigroup Pt. One immediately see
that it will require some integrability conditions for ZF

t . The easiest way to proceed is to use
Hölder’s inequality, thus we have to get conditions for ZF

t to belong to Lp spaces.
To our knowledge such conditions are not well known, except when the bracket

∫ t
0 Γ(F, F )(Xs) ds

is bounded. This is of course a too strong assumption. But here one can use the particular
form of ZF

t .
Indeed

(ZF
t )p = ZpF

t exp
(p (p− 1)

2

∫ t

0
Γ(F, F )(Xs) ds

)
,

hence using successively the convexity of the exponential map, the stationarity of QepF
and

Hölder’s inequality one has

(7.4) EPµ [e2pF (X0) (ZF
t )p ] = EQepF

[exp
(p (p− 1)

2

∫ t

0
Γ(F, F )(Xs) ds

)
]
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≤ EQepF [1
t

(∫ t

0
exp

(p (p− 1)t
2

Γ(F, F )(Xs)
)
ds
)]

≤
∫

exp
(p (p− 1)t

2
Γ(F, F )

)
e2pF dµ

≤
(∫

e2rpF dµ
) 1

r
(∫

exp
(qp (p− 1)t

2
Γ(F, F )

)
dµ
) 1

q

where (q, r) is a pair of conjugate numbers. Of course in order (7.4) to be tractable, one sees
that what has to be assumed is

(7.5.1) eF belongs to L∞−(µ) =
⋂

p>1 Lp(µ) ,
(7.5.2) eΓ(F,F ) belongs to L∞−(µ).

Of course (7.5 .1) seems to be meaningless here, since F is bounded from above. But as we
said, we are trying to get estimates that does not depend on L∞ bounds.
It turns out that these assumptions are exactly the ones in [2]. As a matter of fact these
authors and Masuda ([1] Theorem 3.1) have shown that provided µ satisfies a Log-Sobolev
inequality, (7.5.2) implies (7.5.1).

Assuming (7.5), we may use (7.4) to get some estimates from (7.3). Indeed, we may apply
Hölder’s inequality for µ almost all x, so that if u is the conjugate of p,

(7.6)
∫

(
∑

j=1,2

loghj) f2 e2Fdµ ≤ 1
2
t EF (f, f)+

+ log

∫
f2(x)h1(x) (Pt(hu

2))
1
u

(
EPx [e2pF (X0)(ZF

t )p]
) 1

p
µ(dx).

The second term in the right hand of (7.6) is bounded by

1
u
log
(∫

f2uhu
1Pt(hu

2) dµ
)

+
1
p
log
(
EPµ [e2pF (X0) (ZF

t )p ]
)
,

and finally

(7.7)
∫

(
∑

j=1,2

log hj) f2 e2Fdµ ≤ 1
2
t EF (f, f) +

1
u
log
(∫

f2uhu
1Pt(hu

2) dµ
)
+

+
1
rp
log
(∫

e2rpF dµ
)

+
1
pq
log
(∫

exp
(qp (p− 1)t

2
Γ(F, F )

)
dµ
)
.

We have written all the details in order to show that one can if necessary compute all the
constants in what follows, where all constants depending only on the Lm bounds in (7.5) will
be denoted by C(F ).
We choose h2 = fα2 , with uα2 = 1 − ε, and h1 = fα1 . Denoting by γ = (2 + α1)u we will
choose u > 1 and −α2 < α1 < 0 in such a way that γ < 2 (this is always possible if ε is
small enough, for example if u = 1 + ε, α1 = − α2

2 it is enough that ε < 1
5 ). It thus holds

α1 + α2

2

∫
f2 log f2 dν ≤ t

2
EF (f, f) +

1
u
log
(∫

fγ Pt(f1−ε) dµ
)

+ C(t, F ) .
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But we have to face a final problem. Indeed remember that the ad-hoc normalization here is∫
f2 dν = 1 .

Hence in order to control the logarithm in the right hand side we have to introduce e− γ F

i.e. denoting by θ the conjugate of 2
γ ,∫

fγ Pt(f) dµ ≤
(∫

e− γ θ F
(
Pt(f1−ε)

)θ
dµ
) 1

θ
,

hence what we need is that e−F belongs to L∞−(µ) too. But actually, Theorem 3.1 in [1]
shows that provided µ satisfies a Log-Sobolev inequality, (7.5.2) implies that e|F | belongs to
L∞−(µ).
Hence, using one more time Hölder’s inequality, we get an inequality like

(7.8)
α1 + α2

2

∫
f2 log f2 dν ≤ t

2
EF (f, f) + c log

(∫
(Pt(f1−ε))a dµ

)
+ C(t, F ) ,

for some universal constants c, α1 + α2 > 0, and a > 2. The only dependence in F is
contained in the constant C(t, F ).

It remains to remove the boundedness assumption on F . If f ∈ D, (7.8) immediately extends
to the unbounded case, provided F satisfies (7.5). Indeed just use the cut-off FK and limits
in K. But we do not know whether (1) in lemma 7.1 i.e. EF (f, f) < +∞ is satisfied for
f ∈ D or not (if not the inequality is true but not interesting). Actually if (7.5) holds, the
above result can be shown as in lemma 2.4 in [2] (the hypothesis Γ(F, F ) bounded therein
can be improved just using (7.5) and Hölder in their proof, as the authors are saying in the
proof of lemma 3.1).
We have thus recovered Lemma 3.1 in [2] i.e.

Proposition 7.9. If µ satisfies a Log-Sobolev inequality and F ∈ D(E) is such that eΓ(F,F )

belongs to L∞−(µ), then ν = e2F µ satisfies a Log-Sobolev inequality.

Proof. Use the L2(µ) → La(µ) continuity of Pt for t large enough, and as before the compar-
ison between the L2(µ) norm of f1−ε and the L2(ν) norm of f . �

Remark. As we said from the beginning, our aim was to understand the meaning of the
assumptions made in [2]. The previous scheme of proof is nor simpler, nor worse than the one
used by these authors. A comparison of the constants here and there is tedious. Actually we
only used (repeatedly) Hölder’s inequality and one time convexity of the exponential map,
instead of Young’s inequality. The interest of the previous derivation is just to show that
these hypotheses have a nice interpretation in terms of the Girsanov density. But at the
same time we used rough arguments to get some control on this density.
Also remark that the cut-off of F introduced bounded measures (not probability measures),
but this fact is irrelevant just dividing by the total mass.

The second question addressed in [2] is the spectral gap property. The authors are showing
that when (7.5.2) is fulfilled, if µ satisfies a tight Log-Sobolev inequality (or equivalently if
Pt is hypercontractive) then so does ν. In particular ν will then satisfy SGP (recall section
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5). This part of their work is surprisingly difficult, and we shall try to simplify it, thanks to
the results in section 5. First we state the result

Proposition 7.10. If µ satisfies a tight Log-Sobolev inequality and F ∈ D(E) is such that
eΓ(F,F ) belongs to L∞−(µ), then ν = e2F µ satisfies a tight Log-Sobolev inequality.

Proof. We already know that ν satisfies a Log-Sobolev inequality. Furthermore,

E(eF , eF ) < +∞

thanks to (7.5.2). We can thus build a ν symmetric semi-group PF
t with generator AF

thanks to lemma 7.1. According to Proposition 5.13, it is enough to show that this semi-
group satisfies WSGP.
We already remarked it is enough to prove a weaker version i.e.

For any sequence {gn} ∈ D(EF ) such that
∫
gn dν = 0, ‖ gn ‖∞≤ 1 and EF (gn, gn) →

0 as n goes to +∞, we have gn → 0 in ν probability.

Step 1. F is bounded from above.
Assume first that F is bounded from above, i.e. e2F is bounded. For any nonnegative k,
introduce a non decreasing smooth ϕk (defined on R) such that

ϕk(x) = 0 , if x < −k − 1 , ϕk(x) = 1 , if x > −k , |ϕ′k(x)| ≤ 2 for all x .

Then for any f ∈ D , ϕk(F )f ∈ D(E) and

Γ(ϕk(F )f, ϕk(F )f) =
(
ϕk(F )

)2Γ(f, f) + 2 f ϕ′k(F )Γ(f, F ) + (ϕ′k(F ))2 f2 Γ(F, F ) .

Accordingly we get

E(ϕk(F )f, ϕk(F )f) ≤ e2k+2 EF (f, f)(7.11)

+4 ‖ f ‖∞ ek+1
(
EF (f, f)

) 1
2
(
E(F, F )

) 1
2

+4 ‖ f ‖2
∞

(∫
1I−k−1<F<−k Γ(F, F ) dµ

)
.

(7.11) extends to any bounded f ∈ D(EF ), in particular to the sequence gn.
Now let pick a nonnegative ε. It holds

(7.12) ν(|gn| > ε) ≤ ν(|gn ϕk(F )| > ε) + ν(F < −k) .

In order to control the first term in the sum, we will use (7.11) and the spectral gap property
for E . But we have to be careful with the means. Denote by m(k, n) =

∫
gn ϕk(F ) dµ .

Then, since e2F is bounded (say by K), one has

‖ (gn ϕk(F )−m(k, n)) ‖2
L2(ν)≤ K ‖ (gn ϕk(F )−m(k, n)) ‖2

L2(µ)≤ K C E(ϕk(F )gn, ϕk(F )gn) ,

where C is the spectral gap constant for E . Now we see what it remains to do.
Let δ be a nonnegative number, smaller than ε. First we choose k such that ν(F < −k) < δ

10

(it is possible since ν(F < −k) < e−2k ) and

4
(∫

1I−k−1<F<−k Γ(F, F ) dµ
)
<

δ2

200KC
,



INEQUALITIES ... 27

(it is possible since we know that Γ(F, F ) is in all Lp(µ)). Then, k being fixed, we choose n
large enough for

e2k+2 EF (gn, gn) + 4 ek+1
(
EF (gn, gn)

) 1
2
(
E(F, F )

) 1
2 <

δ2

200KC
.

It thus holds

‖ (gn ϕk(F )−m(k, n)) ‖L2(ν)≤
δ

10
.

But it thus follows that

− δ

10
≤
∫

(gn ϕk(F )−m(k, n)) dν ≤ δ

10
.

In addition

|
∫

gn ϕk(F ) dν| < δ

10

since ν(F < −k) < δ
10 , gn is bounded by 1 and

∫
gn dν = 0 . It follows that

|m(k, n)| ≤ δ

5
.

We get finally

ν(|gn ϕk(F )| > ε) ≤ ν(|gn ϕk(F )−m(k, n)| > ε− δ

5
) ≤ 25δ2

1600 ε2
,

thanks to Tchebytcheff inequality, since δ < ε . Together with (7.12) and our choice of k, we
thus have proved that gn goes to 0 in ν probability.

Step 2. General case.
If F is no more bounded from above, consider as before FK = F ∧K. According to Step 1,
WSGP holds for EFK

. But EF (g, g) ≥ EFK
(g, g) for all g ∈ D(EF ). Hence for the sequence gn

we have
ν(|gn| > ε) ≤ νK(|gn| > ε) + ν(F > K)

and
|νK(gn)| ≤ ν(F > K) .

We can thus proceed as we did at the end of the first step, choosing K and then n large
enough in order to get the result. �

Looking at the previous proof we see that we never used the LSI property for EF . Actually
we have shown the following result
Proposition 7.13. Let F ∈ D(E) such that ν = e2Fµ is a probability measure. Assume that
conditions (1) and (3) of lemma 7.1 are fulfilled. Assume in addition that Γ(F, F ) belongs to
Lp(µ) for some p > 1. Then if µ satisfies SGP, ν satisfies WSGP.

This statement seems to be new. However a very similar one, concerned with the transmission
of WSGP, is contained in [19] (Theorem 6.1). Actually this result also gives precise estimates
on the constants (while we do not), but does not seem to recover 7.13.
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8. More on perturbation theory.

The hypotheses made in the previous section in order to obtain a general perturbation theory
are certainly too restrictive. In particular in many interesting cases eΓ(F,F ) will not be
µ integrable. However, looking at what we have done, one sees that this assumption is
necessary in order to get some Lp control on the Girsanov density (see (7.4)), that can only
be obtained with ν as initial law. So one can expect that direct controls (for any initial law,
in particular δx) should be useful. This idea already appeared in [13] that mainly deals with
ultracontractivity (but not only) for finite dimensional diffusion processes. We shall here
show that, provided F is a little bit more regular, one can improve the results in section 7.

Let F ∈ D(A) be such that ν = e−2Fµ is a probability measure (or is bounded). We have
changed the sign in accordance with the usual notation. We assume that the hypotheses (1),
(2) and (3) in Lemma 7.1 are fulfilled (for −F ). We can thus follow the same route as we
did in the previous section. The Girsanov martingale ZF

t is then

ZF
t = exp {−

∫ t

0
∇F (Xs).dCs −

1
2

∫ t

0
Γ(F, F )(Xs) ds}(8.1)

= exp {F (X0)− F (Xt) +
∫ t

0

(
AF (Xs)−

1
2

Γ(F, F )(Xs)
)
ds} .

We know that (thanks to our assumptions) ZF
. (given by the first expression) is a Px martin-

gale for ν, hence µ almost all x. To get the second form it is enough to apply Ito’s formula.
If PF

t denotes the associated (ν symmetric) semi-group, it holds ν a.s.

(8.2) (PF
t h)(x) = eF (x) EPx

[
h(Xt) e−F (Xt)Mt

]
,

with

Mt = exp
(∫ t

0

(
AF (Xs)−

1
2

Γ(F, F )(Xs)
)
ds
)
.

In Lemme 2.1 of [13], the authors give a fairly general condition for the perturbed heat
semi group on Rn to be ultracontractive. Their proof is based on an ingenious use of the
Markov property which immediately extends to the present general framework. We will here
be concerned with LSI (or TLSI).
Not to introduce intricacies, we shall here assume that µ is a probability measure. Hence
eF ∈ L2(ν), and a necessary condition for ν to satisfy LSI is thus

(8.3) PF
t (eF ) = eF EPx [Mt] ∈ Lp(ν)

for all (some) p > 2 and t large enough. This condition is not always tractable so that we
introduce the stronger

(8.4)
∫

epF EPx [Mp
t ] dν = i(p, t)

and will sometimes assume that i(p, t) < +∞ for some pair (p, t) such that p > 2 and t > 0.
There is a big difference between both assumptions because the second one is loosing the
martingale property. This will be clear when we shall try to get conditions for (8.3) or (8.4)
to hold.
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The main additional assumption made by the authors is then

(8.5) Mt is bounded by an universal constant C(t) .

Let us follow the proof of Lemme 2.1 in [13].
Using the Markov property and Hölder’s inequality we can write for q > 2, s > q and r the
conjugate of s ,∫

(PF
2t(|f |))q dν ≤

∫
e(q−2)F (C(t))q

(
EPx [Mt (Pt(|f | e−F ))(Xt)]

)q
dµ

≤
∫

e(q−2)F (C(t))q
(
EPx [M r

t ]
) q

r
(
EPx [(Pt(|f | e−F ))s(Xt)]

) q
s
dµ

≤ (C(t))q
(∫

Pt

(
(Pt(|f | e−F ))s

)
dµ
) q

s
(∫

e
s(q−2)

s−q
F EPx [M

sq
s−q

t ] dµ
) s−q

s
.

It immediately follows
Proposition 8.6. Assume that conditions (1),(2) and (3) in Lemma 7.1 are fulfilled for
some probability measure µ and some −F ∈ D(A). Assume in addition that e−F is bounded,
(8.5) is in force and i(p, t) < +∞ in (8.4) (for some p > 2 and all t > 0 large enough).
Then if µ satisfies LSI, so does ν = e−2Fµ.
If µ satisfies TLSI and Γ(F, F ) ∈ Lp′(µ) for some p′ > 1, then ν satisfies TLSI.

Proof. Since µ satisfies LSI, Pt is hypercontractive, thanks to Gross theorem, hence(∫
Pt

(
(Pt(|f | e−F ))s

)
dµ
) q

s ≤‖ f ‖
q
s

L2(ν)
,

(use first the contraction property on Ls(µ)). The other terms are bounded (we have to use
the boundedness of e−F for the third one). The first part thus follows from Proposition 2.7.
The final part of the proposition comes from Proposition 7.13 and Proposition 5.13. �

Remark 8.7. Actually for the first part of the proposition we do not need that µ is a
probability measure. The second part (concerned with TLSI) however is not really tractable
without this assumption.
The main problem with (8.4) is that it is much more difficult to check than (8.3). It is thus
interesting to see what happens if we only assume (8.3). It is immediately seen that all the
problems are coming from Hölder, so that in order to improve proposition 8.6 we have to
assume a stronger assumption for Pt namely ultracontractivity. Just looking at the previous
proof we see that the following holds
Proposition 8.8. Assume that conditions (1),(2) and (3) in Lemma 7.1 are fulfilled for some
nonnegative measure µ and some −F ∈ D(A). Assume in addition that e−F is bounded, (8.5)
is in force and (8.3) holds (for some p > 2 and all t > 0 large enough).
Then if Pt is ultracontractive (for some t), ν = e−2Fµ satisfies LSI. One can also here give
a bound, namely

‖ PF
2t ‖L2→Lq≤ C(t)K(t) ‖ eF EPx [Mt] ‖Lq(ν) ,

where K(t) is the constant of ultracontractivity.
If in addition Γ(F, F ) ∈ Lp′(µ) for some p′ > 1 and µ is a probability measure, then ν satisfies
TLSI.
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Examples of L∞ bounds (instead of Lp) in (8.3) are given in [13], as well as some sufficient
convexity assumptions on F in order (8.5) to hold. Before to look at such examples, let us
see what happens when one uses the ideas of section 2, instead of the Markov property.

Let us recall (2.4) in the appropriate form (recall that
∫
f2 dν = 1 and f is nonnegative),

(8.9)
∫

(
∑

j

log hj) f2dν ≤ 1
2
t EF (f, f) + log

∫
f2(x)h1(x) eF (x)M(t, x)ν(dx) .

where
M(t, x) = EPx [Πj≥2 hj(Xtj ) e

−F (Xt)Mt] .

Choose first j = 1, 2 and t2 = t . Then, denoting by q the conjugate of p, it holds∫
f2(x)h1(x) e−F (x)M(t, x)µ(dx) ≤

∫
f2h1 e

−F
(
Pt(h

q
2 e

−qF )
) 1

q

(
EPx [Mp

t ]
) 1

p
dµ ,(8.10)

≤
∫

f2h1

(
Pt(h

q
2 e

−qF )
) 1

q

(
epF EPx [Mp

t ]
) 1

p
dν ,

≤
(
i(p, t)

) 1
p

(∫
f2qhq

1

(
Pt(h

q
2 e

−qF )
)
dν
) 1

q
.

It is thus natural to choose
h2 = f

1
q , h1 = fα−1

for some α < 1, such that q(1 + α) < 2. Using one more time Hölder, we obtain

(8.11)∫
f2(x)h1(x) e−F (x)M(t, x)µ(dx) ≤

(
i(p, t)

) 1
p

(∫ (
Pt(f e−qF )

) 2
2−q(1+α) dν

) 2−q(1+α)
2q

.

If we assume in addition (as before) that F ≥ − log(K) (i.e. e−F ≤ K). We thus obtained

(8.12)
β

2

∫
f2logf2 dν ≤ 1

2
t EF (f, f) +

2− q(1 + α)
2q

log
(∫ (

Pt(f e−F )
) 2

2−q(1+α) dµ
)

+
1
p
log(i(p, t)) + c(q, α,K) ,

with β = 1
q + (α− 1). For (8.12) to be useful, we have to choose α > 0 such that

q(1 + α) < 2 and
1
q

+ (α− 1) > 0 ,

hence
1− 1

q
< α <

2
q
− 1

that imposes q < 3
2 and thus p > 3.

We thus have obtained a different version of Proposition 8.6
Proposition 8.13. The statements of Proposition 8.6 remain true without assuming (8.5),
provided i(p, t) < +∞ in (8.4) for some p > 3 and all t > 0 large enough.
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Of course as we did from the beginning we did not try to obtain sharp estimates, so that the
value 3 for p is a little bit artificial. The key point in proposition 8.13 is that the boundedness
assumption (8.5) is no more assumed. Also notice that we assumed that i(p, t) < +∞ for
all large enough t, in order to use the hypercontractivity property for Pt. Of course if this
property holds for all t and all Lp norm (in particular if Pt is ultracontractive for all t > 0)
it is enough to check (8.4) for one t. But again (8.4) is much stronger than (8.3). We shall
try to better explore (8.9).

For convenience we write

G(t, x) = PF
t (eF )(x) = eF (x) EPx [Mt] ,

and will assume that e−F is bounded by K. If we choose

h1 = f−α e−β F , h2 = f δ ,

(8.9) becomes

(δ − α)
∫

f2 log fdν ≤ 1
2
t EF (f, f) + β

∫
F f2 dν +(8.14)

+ log

∫
f2−α(x) e(1−β)F (x) EPx [f δ(Xt) e−F (Xt)Mt]ν(dx) .

But using the martingale property of t→ e−F (Xt)Mt , the Markov property and the bound
for e−F , one obtains for all nonnegative u, and all conjugate pair (p, q)

EPx [f δ(Xt) e−F (Xt)Mt] ≤ K EPx [f δ(Xt) e−F (Xt)MtG(u,Xt)](8.15)

≤ K e−F (x) EPF
x [f δ(Xt)G(u,Xt)]

≤ K e−F (x)
(
EPF

x [f q δ(Xt) e−qθ F (Xt)]
) 1

q
(
EPF

x [epθ F (Xt)Gp(u,Xt)]
) 1

p
,

so that ∫
f2−α(x) e(1−β)F (x) EPx [f δ(Xt) e−F (Xt)Mt]ν(dx) ≤

≤ K
( ∫

f (2−α)q e−qβF EPF
x [f q δ(Xt) e−qθF (Xt)] ν(dx)

) 1
q
( ∫

EPF
x [epθF (Xt)Gp(u,Xt)] ν(dx)

) 1
p

≤ K
( ∫

f (2−α)q e−(qβ+1)F EPx [f q δ(Xt) e−(qθ+1)F (Xt)Mt]µ(dx)
) 1

q
( ∫

epθF Gp(u, x) ν(dx)
) 1

p
.

In the last inequality we have used the fact that ν is PF
t stationary. Now we see that it is

natural to impose (8.5) and (8.3). This time we will be accurate with the constants.
First, provided p θ < 2 (i.e epθF has some ν moment) we have

(8.16)
∫
epθF Gp(u, x) ν(dx) ≤

(∫
G

p( 2
2−pθ

)(u, x) ν(dx)
) 2−pθ

2
.

Here we are using the fact that µ is a probability measure.

Next if we choose qδ = qθ + 1 < 2 and (2− α)q = qβ + 1 < 2 , we have

(8.17)
∫
f (2−α)q e−(qβ+1)F EPx [f q δ(Xt) e−(qθ+1)F (Xt)Mt]µ(dx) ≤
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≤ C(t)
∫

(fe−F )(2−α)q Pt

(
(fe−F )qδ

)
dµ

≤ C(t)
(∫ (

Pt

(
(fe−F )qδ

)) 2
2−(2−α)q

dµ
) 2−(2−α)q

2
,

where C(t) is defined by (8.5).

(8.16) and (8.17) are showing that the third term in the sum in (8.14) will be controlled
thanks to (8.3) and to the hypercontractivity of Pt.
But it remains to control the second term. To this end just use Young’s inequality

fF ≤ f log(f)− f + eF .

It yields

(8.18)
∫

f2 F dν ≤
∫

f2 log(f) dν − 1 +
∫

f eF dν ≤
∫

f2 log(f) dν ,

thanks to Cauchy-Schwarz (here again we are using the fact that µ is a probability measure).

Now plug (8.16) , (8.17) and (8.18) into (8.14). We get

(δ − α− β)
∫

f2 log fdν ≤ 1
2
t EF (f, f) + logK +

1
q
log(C(t))(8.19)

+
2− pθ

2p
log
(∫

G
p( 2

2−pθ
)(u, x) ν(dx)

)
+

2− (2− α)q
2q

log
(∫ (

Pt

(
(fe−F )qδ

)) 2
2−(2−α)q

dµ
)
.

We shall now see that we can find constants such that (8.19) is interesting. Recall that we
have to choose positive α, β, δ and θ such that

p θ < 2 ,
qδ = qθ + 1 < 2 ,
(2− α)q = qβ + 1 < 2 ,
δ − α− β > 0 ,

where (p, q) is a pair of conjugate real numbers.
Since α + β = 2 − 1

q it follows 2
q > δ > 2 − 1

q , hence q < 3
2 , i.e. p > 3 as before. We will

choose

q =
3

2(1 + ε)
hence p =

3
1− 2ε

, and δ =
4
3

(1− ε) .

We then have

α+ β =
4
3
− 2ε , θ =

2
3

(1− 3ε) ,

so that qδ = 2 1−ε
1+ε < 2 , p θ = 2 1−3ε

1−2ε < 2 and δ − α − β = 2
3 ε. Hence we may choose any

β < 2(1+ε)
3 and ε < 1

3 .
Even if the calculations are tedious let us see what is happening with (8.19).
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First (fe−F )qδ ∈ L
1+ε
1−ε (µ) and its norm in this space is equal to 1 (again we use that µ is a

probability measure). So we get

(8.20)
ε

3

∫
f2 log(f2) dν ≤ 1

2
t EF (f, f) + logK +

2(1 + ε)
3

log(C(t))+

+
ε

3
log
(∫

G
3
ε (u, x) ν(dx)

)
+

2(1 + ε)
3

log
(
‖ Pt ‖

L
1+ε
1−ε →L

2(1+ε)
ε

)
.

We thus have proved
Theorem 8.21. Assume that conditions (1),(2) and (3) in Lemma 7.1 are fulfilled for some
probability measure µ and some −F ∈ D(A). Assume in addition that e−F is bounded, (8.5)
is in force and (8.3) holds for some p > 9 and some t > 0.
Then if µ satisfies LSI, then so does ν = e−2Fµ.
If in addition µ satisfies TLSI and Γ(F, F ) ∈ Lp′(µ) for some p′ > 1 , then ν satisfies TLSI.
Conversely if ν satisfies LSI, (8.3) holds for all p and t large enough.

Remarks. In Proposition 3.7 of [13], the authors give some conditions for immediate
hypercontractivity. The proof of proposition 8.6 is closed to their proof. However, (8.5) is
crucial there, so that proposition 8.13 and its proof seems to be an improvement. Theorem
8.21 is however the good extension (for hypercontractivity) of the results in [13].

If µ is not bounded (say the Lebesgue measure), one can of course modify F (say replace F
by F + cx2) and check that the modified F is such that Γ(F, F ) belongs to some Lp for the
modified measure (say some gaussian measure). In particular on Rd equipped with Lebesgue
measure, as soon as |∇F | is controlled by some polynomial, LSI and TLSI will be equivalent
for e−2Fµ. The situation for F = |x|α is for instance completely known : for α ≥ 2 , TLSI
holds; for 0 < α < 2 LSI does not hold but for 1 ≤ α SGP holds (see [19] example 1.4.c). One
can see (left to the reader) that the first part of Theorem 8.21 can be extended to a general
nonnegative measure µ , provided e−F belongs to some Ls(µ) for some s > 0 (possibly less
than 1) small enough. The constants have to be modified by introducing the related norm.
We mentioned during the proof each time we have used the boundedness assumption for µ.

As we said in the introduction, we will not study here explicit examples. The reader will
find in sections 3 and 4 of [13] very beautiful ideas for checking that (8.3) (in the stronger
bounded form) is satisfied. Examples will be developed elsewhere.
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Séminaire de Probas XXX. Lect. Notes Math., 1626:283–311, 1996.

[7] J. D. Deuschel. Algebraic L2 decay of attractive processes. Ann. Prob., 22:264–283, 1994.
[8] J. D. Deuschel and D. W. Stroock. Large deviations. Academic Press, 1989.
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