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Abstract. The aim of this paper is to obtain non asymptotic bounds (mainly lower bounds)
for the Probability of rare events in the Sanov theorem. These bounds are used to study
the asymptotics in conditional limit theorems (Gibbs conditioning principle).

1. Introduction

Let X1, X2, ... be i.i.d. random variables taking their values in some metrizable space (E, d).
Set Mn = 1

n

∑n
i=1 Xi the empirical mean (assuming here that E is a vector space) and

Ln = 1
n

∑n
i=1 δXi the empirical measure. In recent years new efforts have been made in

order to understand the asymptotic behaviour of laws conditioned by some rare event.

The celebrated Gibbs conditioning principle is the corresponding meta principle for the em-
pirical measure, namely

lim
n→+∞

P⊗n((X1, ..., Xk) ∈ B /Ln ∈ A) = (ν0)⊗k(B) ,

where ν0 minimizes the relative entropy H(ν0|µ) among the elements in A. When A is thin
(i.e. P⊗n(Ln ∈ A) = 0), such a statement is meaningless, so one can either try to look at
regular desintegration (the so called “thin shell” case) or look at some enlargement of A. The
first idea is also meaningless in general (see however O.Johnson ([17]) that extends previous
work by Diaconis and Freedman). Therefore we shall focus on the second one.
An enlargement Aε is then a non thin set containing A, and the previous statement becomes
a double limit one i.e.

lim
ε→ 0

lim
n→+∞

.

Precise hypotheses are known for this meta principle (“thick shell” case) to become a rigorous
result, and refinements (namely one can choose some increasing k(n)) are known (see e.g. [11]
and the references therein). One possible way to prove this result is to identify relative entropy
with the rate function in the Large Deviation Principle for empirical measures (Sanov’s
theorem).

In this paper we will introduce an intermediate “approximate thin shell” case, i.e. we will
look at the case when the enlargement size depends on n, i.e. εn → 0.
When A is some closed hyperplane (i.e. defined thanks to one linear constraint), such a
program can be carried out by directly using well known results (see [12] Theorem 3.7.4,
Exercise 3.7.10 and Corollary 7.3.34).
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As soon as one considers conditioning, it clearly appears that it is important to get exact
bounds for the probabilities of rare events. Furthermore, if one wants to improve Gibbs
conditioning principle by considering only one limit (i.e. ε = εn), these bounds have to be as
precise as possible. Our aim in this paper is to obtain such exact bounds (here by exact we
mean non asymptotic ones) and to explore their use for conditioning results.

Exact upper bounds are known for general compact convex sets and in some related situations
(see [12] Exercises 4.5.5 or 6.2.19 and [21]). We shall recall these results. In order to get
exact lower bounds we will simply use this upper bound for the tilted probability and plug
it into the classical proof of Sanov’s theorem.
This method certainly does not furnish sharp estimates and will certainly appear as a stupid
one in the classical cases. For the empirical mean, exact lower bounds are already known in
some cases. Einmahl and Kuelbs (see [14] and [19]) obtained precise estimates (see (1.10) or
(1.11) in [14], and Remark 1 p.1264 in [19]). But the constants appearing in their result are
difficult to describe. The same holds with the full asymptotic expansion obtained by Iltis
([16]). Our rough method if it furnishes weaker asymptotic results, is more tractable for the
control of the constants. In addition the geometric arguments used for the empirical mean
are difficult to extend to the empirical measure (however look at [10] where such an extension
is partly done), while the rough approach furnishes at least some result.
The second reason for trying to get as explicit bounds as possible is that we want to study
super thin sets (i.e. sets on which the rate function is infinite). Such a situation appears in
statistical mechanics for infinite systems, where the relative entropy has to be replaced by
the specific entropy and the large deviations speed is no more n. It also appears in others
problems like calibration of diffusion processes. These parts of our program however will not
be discussed here.
What we tried to do in this paper is to push forward as far as possible the rough technology
for elementary examples, and to compare it with more refined and clever arguments.

Before to describe the contents of the paper let us mention another conditional limit theorem,
namely Nummelin’s theorem. Roughly speaking, Nummelin’s conditional weak law of large
numbers is a statement like

lim
n→+∞

P⊗n(d(Mn, a) < ε/Mn ∈ D) = 1 ,

where D is some rare set (i.e. does not contain the mean m of the X ′
is) and a is some point

in the closure of D that minimizes the rate function of the Large Deviations Principle. For
convex open sets D of a Banach space E, a precise definition of a (the dominating point)
has been introduced and studied by P.Ney, U.Einmahl and J.Kuelbs, and the previous meta
principle (as well as some refinements) is proved (see e.g. [20] and the references therein).
In some important cases both Nummelin’s law and the Gibbs conditioning principle are
intimately connected. We shall also discuss these points.

The paper is organized as follows.

Section 2 deals with Gibbs conditioning principle for compact state spaces, in the “approx-
imate thin shell” case. Our presentation is based on the classical example of an A defined
through a finite number of linear constraints (for which controls via Sanov upper bound
are clearly almost the worst ones) , in order to make the comparison easier with section 4.
However a general statement is given in Theorem 2.24.
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Convergence rate is precisely stated thanks to a non asymptotic Sanov lower bound. In
section 3 we see how to extend these results when E = Rd. In both sections we did not try
to get the most general framework. Let us say that the exact Sanov lower bound obtained
in [10] (that holds for n large enough) looks better than the one we are obtaining, but we do
not know how to get precise controls for this bound for all n.
In section 4 we improve these results in the case when A is described through a finite number
of linear constraints. Indeed in this case one can use concentration inequalities and (or) the
arguments in the final section of [20]. They allow to skip the annoying covering number in
the lower estimate, and this time provides a real improvement.
Examples of infinitely many constraints are studied in sections 5 and 6 when E is the space of
continuous functions. The conditioning set A is defined by fixing some (or all) time marginal
laws of the corresponding process. Such a problem is motivated by a statistical approach of
Schrödinger bridges or Nelson processes. A short account of this physical interpretation is
done at the end of the section. The reduction to the compact case involves some approxima-
tion results, while the explicit bound requires some calculations on metric entropy that are
familiar to specialists in the theory of empirical processes.
Let us emphasize that in these last cases both the C.L.T. approach or the concentration
results seem to be useless. This is essentially due to the fact that the conditioning set
is defined through an infinite number of linear constraints. On one hand as we already
said this turns the geometric description of dominating point delicate. On the other hand
concentration results for infinite families are known but involve the calculation of the mean
of some supremum that is not immediate. Actually some estimates are known (for instance
for Donsker classes, see [13]) but also involve estimates for covering (or bracketing) numbers.
A short discussion is done in section 7.

Though it is our main motivation, the case of “super thin” sets (i.e. sets for which relative
entropy is infinite), in connection with statistical mechanics, or with calibration problems
will be discussed elsewhere. We just discuss a purely academic example of such super thin
set in connection with the usual Brownian bridge in the final section 9.

Let us just add one thing. One can of course ask the following question: does the Gibbs
conditioning (in the approximate thin shell case) hold for any nested (convex) closed sets ?
(This is of course true if one can prove some uniform version of the thin sell case.)
We did not find any counter example to this statement. Actually the limitations in our
results are mainly (not only) due to the fact that we have to check that P⊗n(Ln ∈ Aεn) > 0 .
If true the statement above will make our results useless except for one point: we can get
some estimates for the rate of convergence in the Gibbs principle.

Let us recall the basic upper bound we shall use repeatedly.

Lemma 1.1. Let X be a Hausdorff topological vector space with topological dual space X ∗.
µn is a sequence of M1(X ) the set of Probability measures on X , with logarithmic moment
generating function denoted by Λn (i.e. for λ ∈ X ∗ ,

Λn(λ) = log
∫
X
e<λ,x> µn(dx) ) .
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Λ∗n denotes the Fenchel-Legendre transform of the renormalized Λn, i.e.

Λ∗n(x) = sup
λ∈X ∗

{< λ, x > − 1
n

Λn(nλ)} .

Then for any convex compact subset K of X and any n the following upper bound holds

µn(K) ≤ exp
(
− n inf

x∈K
Λ∗n(x)

)
.

The proof lies on some version of Sion’s min-max theorem. That is why compactness is
required (see [12] Exercise 4.5.5).

Acknowledgements. We want to warmly acknowledge Christian Léonard for so many ani-
mated conversations on Large Deviations Problems, and for indicating to us various references
on the topic.

2. Gibbs conditioning principle : the compact case.

In this section (E, d) will be a Polish space, and in order to simplify some arguments below,
we shall assume in addition that it is a compact space. M1(E) (resp. M(E)) will denote the
set of Probability measures (resp. bounded signed measures) on E equipped with its Borel
σ-field. M1(E) is equipped with its weak topology and its natural Borel σ-field.
If X1, X2, ... is a sequence of i.i.d. E valued random variables, we denote their empirical
measure by Ln = 1

n

∑n
i=1 δXi . If α ∈M1(E) is the common law of the Xi’s, Qα

n will denote
the law of Ln (i.e. Qα

n ∈M1(M1(E)) ).
For α ∈ M1(E) we denote by Eα

n (f) =
∫
f(γ)Qα

n(dγ) the expectation of any nonnegative
measurable f defined on M1(E) , and by

Λα(ϕ) = log
( ∫

E
exp(ϕ(x))α(dx) ,

the logarithmic moment generating function defined for ϕ ∈ C(E) the set of continuous
functions.

Our aim is to study the asymptotic behaviour of the conditional law

(2.1) αn
A,k(B) = P⊗n

α

(
(X1, ..., Xk) ∈ B /Ln ∈ An

)
for some An going to some thin set A when n goes to ∞. In this section A will be a general
convex set and we shall make the estimates as precise as possible for further extension. For
the sake of simplicity again, k is fixed (i.e. does not depend on n). In order to understand
the statement of our first Theorem we need more definitions.

The first tool we need is relative entropy. Recall that for α and γ in M1(E), the relative
entropy H(α|γ) is defined by the two equivalent formulas

(2.2.1) H(α|γ) =
∫

log
(

dα
dγ

)
dα , if this quantity is well defined and finite, +∞ otherwise,

(2.2.2) H(α|γ) = sup {< α,ϕ > −Λγ(ϕ) , ϕ ∈ Cb(E)} .
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If B is a measurable set of M1(E) we will write

(2.3) H(B|γ) = inf {H(α|γ) , α ∈ B} .

Lemma 1.1 can be used here with X = M(E) . Since E is assumed to be compact, so does
M1(E) and we thus have the following upper bound
Lemma 2.4. For any convex closed K ⊆M1(E) ,

Qα
n(K) ≤ exp(−nH(K|α)) .

To draw the convexity assumption we have to introduce some distance on M1(E). We will
choose the Fortet-Mourier distance (while [21] and [12] Exercise 6.2.19 are using respectively
the Prohorov and the Lévy distances). Recall that the Fortet-Mourier distance β is defined
as

(2.5) β(α, γ) = sup {| < α− γ, g > | , g ∈ Lip(E) , ‖ g ‖Lip≤ 1} ,
where Lip is the set of Lipschitz functions on E equipped with its usual norm. Recall that
relative entropy and distance are related by the well known Pinsker inequality

(2.6) β(α, γ) ≤‖ α− γ ‖TV ≤
√

2H(α|γ) .

(M1(E), β) is then a compact metric space (whose topology is the weak topology), and all
metric notions below (like balls) are understood to take place with this metric. In particular,
closed balls are convex and compact. We may thus introduce the ξ metric entropy of any
set. We shall use the following notation

(2.7.1) m(A, ξ, d) will denote the ξ covering number of a subset A of E, (m(ξ) = m(E, ξ, d))
, i.e. the minimal number of open balls with radius ξ needed to cover A ,

(2.7.2) m(B, ξ, β) will denote the ξ covering number of a subset B of M1(E),

mξ = m(M1(E), ξ, β) .

One can thus easily obtain a general upper bound
Lemma 2.8. Exact Sanov Upper Bound.
For any measurable B ⊆M1(E) ,

Qα
n(B) ≤ mξ exp(−nH(Bξ|α))

where Bξ denotes the closed ξ blowup of B.

We will now state and prove some result on an exact lower bound.
Proposition 2.9. Exact Sanov Lower Bound.
Let µ ∈M1(E) . Then for all open subset G of M1(E) , and all ν ∈ G such that H(ν|µ) < +∞
and dν

dµ = f > 0 the following properties hold with h = log(f) :

1. Qµ
n(G) = exp (−nH(ν|µ))Eν

n[1IG exp(−n < .− ν, h >)] ,
2. if f is continuous, then for all ε > 0 one can find η > 0 such that for all η > ξ > 0

Qµ
n(G) ≥ exp

(
− n (H(ν|µ) + ε)

) (
1−mξ exp

(
− nH(Bc(ν, η − ξ)|ν)

))
,

3. if h is Lipschitz, for all η < β(ν,Ac) and all ξ < η ,

Qµ
n(G) ≥ exp

(
− n (H(ν|µ) + η ‖ h ‖Lip)

) (
1−mξ exp

(
− nH(Bc(ν, η − ξ)|ν)

))
.
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Proof. Denote by Lx
n = 1

n

∑n
i=1 δxi . Then

Qµ
n(G) =

∫
1IG(Lx

n)µ(dx1)...µ(dxn)

=
∫

1IG(Lx
n)

1
f(x1)

...
1

f(xn)
ν(dx1)...ν(dxn)

=
∫

1IG(Lx
n) exp(−n < Lx

n, h >)ν(dx1)...ν(dxn)

= exp(−nH(ν|µ))
∫

1IG(Lx
n) exp(−n < Lx

n − ν, h >)ν(dx1)...ν(dxn)

= exp(−nH(ν|µ))Eν
n[1IG exp(−n < .− ν, h >)]

and 1. is proved.
If f is continuous and positive, it is bounded from below (since E is compact). Hence h is
continuous and bounded. Thus the mapping :

M1(E) → R : γ 7→< γ, h >

is continuous and for all ε > 0, one can find η > 0 such that

β(α, ν) < η ⇒ α ∈ G and | < α− ν, h > | < ε .

Applying 1. we get

Qµ
n(G) = exp(−nH(ν|µ))

∫
1IG(Lx

n) exp(−n < Lx
n − ν, h >)ν(dx1)...ν(dxn)

≥ exp(−nH(ν|µ))
∫

1IB(ν,η)(L
x
n) exp(−n < Lx

n − ν, h >)ν(dx1)...ν(dxn)

≥ exp
(
− n (H(ν|µ) + ε)

)
Qν

n(B(ν, η))

≥ exp
(
− n (H(ν|µ) + ε)

)
(1−Qν

n(Bc(ν, η))) .

The upper bound in Lemma 2.8 furnishes for all ξ > 0

Qν
n(Bc(ν, η)) ≤ mξ exp(−nH((Bc(ν, η))ξ|ν)) ,

and for ξ < η, (Bc(ν, η))ξ = Bc(ν, η − ξ). 2. is thus proved.

If η < β(ν,Gc), then B(ν, η) ⊂ G. Furthermore | < γ − ν, h > | ≤ β(ν, γ) ‖ h ‖Lip so that we
obtain 3. as above. �

Of course Ḡ is compact, hence if G is convex, ν 7→ H(ν|µ) achieves its minimum on Ḡ at
some νG. One can then approximate the corresponding density fG by some f satisfying the
hypotheses in Proposition 2.9. Controls on ε in 2.9.2 are possible in terms of the relative en-
tropy H(Ḡ|µ) = H(νG|µ). More delicate are controls of the Lipschitz norm in full generality.
Instead of going further in this direction, we shall apply the previous results to the Gibbs
conditioning principle (2.1).

We shall start with particular A’s. These A’s (energy levels of regular potentials) are of
course one class of examples, and what follows can be done with much more general thin
sets A (see Theorem 2.24) . Furthermore for this particular class, we shall see in section
4 than the results below can be greatly improved. However the method below (and some
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intermediate results) is used in sections 5 and 6 in cases where the ideas of section 4 seem to
be useless.

Let us consider a finite number of Lipschitz functions U1, ..., Uj and define

(2.10) A = {α ∈M1(E) , < α,Ui >= ai for all i = 1, ..., j} .
Without loss of generality, just modifying the Ui’s we may and will assume that any Ui is
non negative and that ai = 1 for all i = 1, ..., j. We shall assume that

(2.11) there exists ν ∈ A such that H(ν|µ) < +∞ and ν ∼ µ .

It is then well known that there exists an unique ν0 ∈ A that minimizes relative entropy with
respect to µ, and that ν0 has the following form

(2.12)
dν0

dµ
= f0 = exp

(
−

j∑
i=1

ciUi − Λµ(−
j∑

i=1

ciUi)
)
,

for some ci, i = 1, ..., j.
When j = 1 a sufficient condition for (2.11) to hold is (see e.g. [12] Lemma 7.3.6)

(2.13) µ(U > 1) > 0 and µ(U < 1) > 0 .

One can formulate similar conditions when j > 1, but in general (2.11) is naturally satisfied.
Consider now the enlarged

(2.14) Aε = {α ∈M1(E) , | < α,Ui > −1| ≤ ε for all i = 1, ..., j} .
If (2.11) holds, then H(Aε|µ) < +∞ and since Aε is closed (hence compact) the minimum is
achieved at some νε. The same argument as before tells that

(2.15)
dνε

dµ
= fε = exp

(
−

j∑
i=1

ci εUi − Λµ(−
j∑

i=1

ci εUi)
)
.

We shall simply write (recall (2.1))

(2.16) µn
ε,k = µn

Aε,k .

The first result of this section is the following Theorem
Theorem 2.17. Assume that (2.11) holds, and that the (Ui − 1)’s are linearly independent
in L1(µ). Define C(A) = mini=1,...,j

1
‖Ui−1‖Lip

. Then for all k,

H(µn
εn,k|ν⊗k

0 ) → 0

when n goes to ∞, provided εn goes to 0 and satisfies

mC(A)εn
2

e−
n
8

(C(A))2 ε2
n → 0 .

This result is an improvement of the classical Gibbs conditioning principle since we replace
the double limit (first in n, then in ε see e.g. [12] Corollary 7.3.5) by a single one. Also
notice that we have convergence in entropy which is stronger than weak convergence. Such a
convergence (again with a fixed ε) lies on arguments due to I.Csiszar ([9] and [8]) recalled and
used in [12] section 7.3.3. (adapted from [11]) in order to study the refined Gibbs conditioning
principle (i.e. with k = k(n)). Contrary to what one can think, Theorem 2.17 is not a kind
of “dual” version of the refined principle. We shall come back to this point later.
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Of course the condition on εn in Theorem 2.17 looks difficult to check. Therefore, before
to proceed with the proof of the Theorem we will state two lemmas that help to better
understand this condition. The first one is concerned with covering number on the space
of Probability measures and is adapted from [21]. The second one gives a more explicit
description of εn for polynomial controls of the covering number on E (other description are
of course possible for others controls)

Lemma 2.18. For all ξ > 0,

mξ ≤ (
16e
ξ

)m( ξ
4
) .

Lemma 2.19. If m(ξ) ≤ c ξ−d then εn in Theorem 2.17 has to be such that

n εd+2
n

| log(εn)|
→ +∞ .

In particular one may choose εn = n−a with a < 1
d+2 .

Let us proceed with the proof of the Theorem.

Proof. of Theorem 2.17
Since ν0 ∈ A it is immediate that B(ν0, C(A)ε) ⊂ Aε. Hence if

C = C(A) ‖ log(f0) ‖Lip

(recall (2.12)), Proposition 2.9.3 (applied to the interior of Aε) yields for all 0 < ξ < C(A)ε

Qµ
n(Aε) ≥ exp

(
− n (H(ν0|µ) + Cε)

) (
1−mξ exp

(
− nH(Bc(ν0, C(A)ε− ξ)|ν0)

))
.

According to Pinsker’s inequality

H(Bc(ν0, C(A)ε− ξ)|ν0) ≥
1
2
(C(A)ε− ξ)2 .

Hence if we choose ξ = C(A)ε
2 we obtain

(2.20) Qµ
n(Aε) exp

(
n (H(ν0|µ)

)
≥ exp

(
− nCε

) (
1−mC(A)ε

2

exp
(
− n

8
(C(A))2 ε2

))
.

The condition on εn in the statement of the Theorem is thus nothing else but a sufficient
condition ensuring that the constant in (2.20) is well behaved. In particular for n large
enough the lower bound in (2.20) is strictly positive. We may now apply Theorem 7.3.21 in
[12] to the set Aεn . It yields

H(µn
εn,k|ν⊗k

εn
) ≤ −1

[n
k ]

log
(
Qµ

n(Aεn) exp(nH(Aεn |µ))
)

(2.21)

≤ −k
n

log
(
Qµ

n(Aεn) exp(nH(A0|µ))
)

+ k
(
H(A0|µ)−H(Aεn |µ)

)
≤ kCεn −

k

n
log(1− exp(hn)) + k

(
H(A0|µ)−H(Aεn |µ)

)
,

where hn = −n
8 (C(A))2 ε2n + log(mC(A)εn

2

).
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But the sequence H(Aεn |µ) = H(νεn |µ) is non decreasing dominated by H(A|µ) = H(ν0|µ),
hence convergent. Recall Csiszar’s inequality (see e.g. [12] Lemma 7.3.27)

(2.22) H(νεp |µ) ≥ H(νεp |νεn) +H(νεn |µ) ,

that holds for all p ≥ n thanks to the minimality of relative entropy. Applying once again
Pinsker’s inequality, (2.22) shows that νεn is a Cauchy sequence for the Fortet-Mourier dis-
tance hence is convergent to some α. It is immediate that α ∈ A and

H(ν0|µ) ≥ lim
n
H(νεn |µ) ≥ H(α|µ) ≥ H(ν0|µ)

inequalities being respectively consequences of monotonicity, lower semi continuity and min-
imality. Hence α = ν0. We thus have shown that H(Aεn |µ) → H(A0|µ) and νεn weakly
converges to ν0. Actually, replacing p by 0 in (2.22) we get the stronger

H(ν0|νεn) → 0 .

Plugging these results into (2.21), we get

H(µn
εn,k|ν⊗k

εn
) → 0 ,

and thanks to Pinsker and the triangle inequalities

β(µn
εn,k|ν⊗k

0 ) → 0 .

In order to get the convergence in relative entropy, recall the classical entropy decomposition

H(µn
εn,k|ν⊗k

εn
) = H(µn

εn,k|ν⊗k
0 ) + k

∫
log(

dν0

dνεn

)dµn
εn,1

= H(µn
εn,k|ν⊗k

0 ) + kH(ν0|νεn) + k

∫
log(

dν0

dνεn

)
(
dµn

εn,1 − dν0

)
.

According to what precedes, we only need to prove that the integral term goes to 0. But
since

β(µn
εn,1|ν0) → 0 ,

it is enough to get an uniform bound (in n) for the Lipschitz norm of log( dν0
dνεn

) , i.e. (recall
(2.12) and (2.15)) of the ci εn ’s.
In order to prove the latter we proceed by contradiction. First

log(
dν0

dνεn

) =
j∑

i=1

θi
n Ui + dn ,

and

H(ν0|νεn) =
j∑

i=1

θi
n + dn .

Hence limn→+∞ (
∑j

i=1 θ
i
n +dn) = 0 and any subsequence of νεn contains a subsequence such

that
j∑

i=1

θi
n Ui + dn → 0 , ν0 a.s.

It follows that
∑j

i=1 θ
i
n (Ui − 1) → 0 ν0 a.s. and if the θi

n’s are not bounded, dividing by
the leading term, we will be able to build some linear combination of the (Ui − 1)’s that
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vanishes ν0 a.s. Since ν0 and µ are equivalent, this will contradict the assumption of linear
independence. �

Remark 2.23. The above proof shows that we can choose k = k(n) provided in addition

k(n) εn → 0 and k(n)
(
H(A0|µ)−H(Aεn |µ)

)
→ 0 .

In this case we get weak convergence. Recall that

H(ν⊗k(n)
0 |ν⊗k(n)

εn
) = k(n)H(ν0|νεn) ,

and that we have shown during the proof that

H(ν0|νεn) ≤ H(A0|µ)−H(Aεn |µ) .

Convergence in entropy is more delicate. But if we restrict the enlargement to one side ( for
example ai ≤< α,Ui >≤ ai + εn) in such a way that ν0 = νεn (as in the case studied in [12]
Corollary 7.3.34) the situation is much simplified.
Actually the method of proof is very close to the arguments in [11] in particular Proposition
2.8 and formula (2.10) therein. The main (and may be only) difference is that we get a
(bad but) exact lower bound that allows to make ε varying with n. See section 4 for some
improvements.
Also remark that (2.20) is still true if we replace Aε by any bigger subset. In particular, for
a fixed ε, and any sequence εn as in Theorem 2.17, this yields

H(µn
ε,k|ν⊗k

ε ) ≤ kCεn −
k

n
log(1− exp(hn)) + k

(
H(A0|µ)−H(Aε|µ)

)
.

Taking first the lim sup in n, then the limit in ε (using the same arguments as the ones follow-
ing (2.21)) we thus recover the classical double limit formulation of the Gibbs conditioning
principle.

It is also possible to deal with general A considering a closed εn blowup of A. The proof of
Theorem 2.17 immediately extends to the following
Theorem 2.24. Let A be a closed convex set such that there exists ν ∈ A such that H(ν|µ) <
+∞. For εn > 0 let Aεn be the closed εn blowup of A. Assume in addition that the entropy
minimizer ν0 ∈ A has a Lipschitz positive density. Then the statement of Theorem 2.17 is
still true with C(A) = 1.

In particular, provided (2.11) holds and C(A) is well defined, one expects to extend The-
orem 2.17 to an infinite enumerable number of Ui’s. This will require however additional
technicalities that will be explained later.

Remark 2.25. In [10], A.Dembo and J.Kuelbs are studying the (refined) Gibbs conditioning
principle in a more general framework (with Banach valued Ui’s) for a non compact E. The
proof of their Theorem 1 lies on an asymptotic Sanov lower bound replacing (2.20) i.e. (see
Proposition 3 in [10])

Qµ
n(Aε) exp

(
n (H(ν0|µ)

)
≥ exp

(
− C1(ε)n

1
2
)

that holds under appropriate conditions, for n large enough. This asymptotic bound is of
course much better than (2.20). However, when ε varies with n, we are not expert enough in
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C.L.T. theory to get an explicit form (or an explicit control) for C1. But as for the empirical
mean, a careful study of this constant will certainly yield better results than ours.
Also notice that the final section in [20] contains some results on Gibbs conditioning in some
different approximate thin shell case, for some very particular functions (U(x) = x). These
results are obtained by combining the ones for Nummelin’s law and the ones in [10]. We shall
see in section 4 that they can be used in our framework.

Now we turn to the proofs of the Lemmas. Lemma (2.19) is almost immediate and left to
the reader.

Proof. of Lemma 2.18
Let ξ > 0 and p = m(E, ξ, d).
B1, B2, ..., Bp, are p balls with radius ξ covering E.
For i = 1...p denote by A1 = B1 and define by induction

Ai = Bi − (A1 ∪ ... ∪Ai−1) .

We may assume that the Ai’s are non empty.
Pick some xi in each Ai, denote by δi = δxi . For all n define

Yn = {α ∈M1(E) : α = a1δ1 + ...+ apδp, ai ∈ {0,
1
n
,
2
n
, ..., 1}} .

It is easily seen that Card(Yn) = Cp−1
n+p−1. Since n! > e(n−1

e )n−1, it yields for p ≥ 2 and
n ≥ p:

Cp−1
n+p−1 =

(n+ p− 1)...(n+ 1)
(p− 1)!

≤ (n+ p− 1)p−1

(p− 1)!

<
(n+ p− 1)p−1

e(p−1
e )p−1

= ep−2(
n

p
+
p− 1
p

)p−1(
p

p− 1
)p−1

< ep−2(2
n

p
)p−1(2)p−1 ≤ (

4en
p

)p ,

that is still true for p = 2. Hence

Card(Yn) ≤ (
4en
p

)p .

For γ ∈M1(E) and all i = 1...p− 1, there exists an unique ai ∈ {0, 1
n ,

2
n , ..., 1} such that

ai ≤ γ(Ai) ≤ ai +
1
n
.

Define

ap = 1− (a1 + ...+ ap−1) and α = a1δ1 + ...+ apδp .

Let g be a Lipschitz function with Lipschitz norm less than 1. It holds

|
∫
g(x)γ(dx)−

∫
g(x)α(dx)| =
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= |
p−1∑
i=1

∫
Ai

g(x)γ(dx)−
∫

Ai

g(x)α(dx) +
∫

Ap

g(x)γ(dx)−
∫

Ap

g(x)α(dx)|

= |
p−1∑
i=1

∫
Ai

(g(x)− g(xi))γ(dx) + g(xi)(γ(Ai)− ai) +

+
∫

Ap

(g(x)− g(xp))γ(dx) + g(xp)(γ(Ap)− ap)|

≤
p−1∑
i=1

∫
Ai

|g(x)− g(xi)|γ(dx) +
p−1∑
i=1

|g(xi)|(γ(Ai)− ai) +

+
∫

Ap

|g(x)− g(xp)|γ(dx) + |g(xp)||γ(Ap)− ap|

≤ 2ξ
p∑

i=1

γ(Ai) +
p−1∑
i=1

(γ(Ai)− ai) + |γ(Ap)− ap|

= 2ξ + 2
p−1∑
i=1

(γ(Ai)− ai)

≤ 2ξ + 2
p− 1
n

Choose n = [pξ ], it comes

β(γ, α) ≤ 4ξ ,

and for ξ ≤ 1

Card(Yn) ≤ (
4e
ξ

)p .

We thus obtained

mξ ≤ (
16e
ξ

)m(E,ξ/4,d) .

�

Remark 2.26. The above proof indicates why we have chosen Fortet-Mourier distance β,
instead of the Total Variation distance. Indeed the latter does not furnish tractable estimate
of mξ in terms of m(ξ). Nevertheless, all the results up to (and including) Theorem 2.17
remain true with the total variation distance, for which we can even assume that the Ui’s are
only continuous.
Of course in some particular cases one can describe explicitly some sequence of Lipschitz
functions that converges towards any continuous function, and so get precise estimates. This
will be discussed in the next section, in a non compact framework. One can also use 2.9.2,
but here again the decay of εn is not explicit.
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3. Gibbs conditioning principle : the non compact Rd case.

The notations of section 2 are in force, except that we do no more assume that E is compact
and thus replace the set Lip of Lipschitz functions by BLip the set of bounded Lipschitz
functions equipped with its usual norm.
It is certainly out of reach to get similar results as in the compact case. Indeed, quantitative
relationship between covering number of compact sets K and growth of µ(K) will clearly play
some important role. Therefore we shall here restrict ourselves to E = Rd (other examples
like path spaces will be discussed elsewhere), and will use two different methods. One is one
point compactification, the other one (that can be extended to non locally compact spaces)
uses the previously mentioned quantitative relationship.

3.1. One point compactification. Let Sd be the unit sphere in Rd+1. N will denote the
north pole and ψ the stereographic projection of Sd−{N} onto Rd. Lip(Sd) is in one to one
correspondence with LLip(Rd) the set of (bounded) Lipschitz functions that have a “ nice
limit at infinity”. A measure α on Rd is lifted onto α̌ by

α̌(B) = α(ψ(B))

such that α̌({N}) = 0, and conversely. If we denote by β̌ the Fortet-Mourier distance on
M1(Sd) it is easily seen that

β̌(α̌, γ̌) = β(α, γ)

for any pair of Probability measures on Rd.
Consequently if the Ui’s belong to LLip one can directly apply Theorem 2.17 (note that

m(Sd, ξ) ≤ c ξ−d ) .

More interesting is the case when the Ui’s only belong to BLip (for instance trigonometric
functions). Indeed we have to consider the lifted

Ǎεn = {α̌ , α ∈ Aεn}

which has empty interior. So we first have to enlarge Ǎεn by considering its closed C(A)εn
blowup in (M1(Sd), β̌). If we denote by MN

1 (Sd) the set of Probability measures that do not
charge N , one sees that

ǍC(A)εn
εn

∩MN
1 (Sd) ⊆ Ǎ2 εn .

Hence, up to a factor 2 we can proceed as in the proof of Theorem 2.17, provided the Sanov
exact lower bound is still true. But since µ and ν0 do not charge N , the proof of Proposition
2.9 is still working, so that (2.20) remains true (just change Aε into Ǎ2 ε ).
The rest of the proof is unchanged (with the modification above). So

Theorem 3.1. If E = Rd and the Ui’s are in BLip, the statement of Theorem 2.17 is still
available (with m(ξ) replaced by c ξ−d and the bound of Lemma 2.18 for mξ).
The same holds with the statement of Theorem 2.24.

Even more interesting is the case when the Ui’s are only continuous (but still bounded). We
then have the following
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Theorem 3.2. If A is given by

A = {α ∈M1(E) , < α,Ui >= ai for all i = 1, ..., j}
with uniformly continuous and bounded Ui’s. Assume that there exists ν ∈ A such that
H(ν|µ) < +∞ and ν ∼ µ. Define mod(x) as the maximum of the moduli of continuity of the
Ui’s, and for ε > 0 define

Aε = {α ∈M1(E) , | < α,Ui − ai > | ≤ ε for all i = 1, ..., j} .
Let

µn
Aεn ,k(B) = µ⊗n

(
(X1, ..., Xk) ∈ B /Ln ∈ Aεn

)
.

Then
β(µn

Aεn ,k, ν
⊗ k
0 ) → 0

where ν0 is the Gibbs measure defined in (2.12), provided

εn � max
(
mod(n−b) , n−(a−b)

)
for some 0 < b < a <

1
d+ 2

.

A similar statement holds for Theorem 2.24 when the log-density of the minimizer is only
assumed to be bounded and uniformly continuous.

Proof. That ν0 given by (2.12) minimizes relative entropy is known. Define Uη
i as the con-

volution product Ui ∗ Jη where Jη is the gaussian kernel with covariance matrix η2 Id. Then

sup
x∈Rd

|Uη
i (x)− Ui(x)| ≤ mod(η) and ‖ Uη

i ‖BLip≤ Kη−1 ,

where K only depends on the sup norm of the Ui’s. Define Aε,η as Aε just replacing Ui by
Uη

i . Then
ν0 ∈ Amod(η),η and Aε−mod(η),η ⊆ Aε

provided ε > mod(η). Define fη
0 as in (2.12) replacing Ui by Uη

i , and νη
0 = fη

0 µ. Then we
may find constants C0 and C ′0 ≥ 1 depending on f0 such that

sup
x∈Rd

|fη
0 (x)− f0(x)| ≤ C0mod(η) and νη

0 ∈ AC′
0 mod(η),η .

Hence
B(νη

0 , α) ⊂ Aε−mod(η),η ⊆ Aε ,

provided ε > (1 + C ′0)mod(η) +Kαη−1 .
We thus can get the analogue of (2.21), by introducing the closed α blowup of Ǎε−mod(η),η in
the set of measures on Sd. We have

Ǎα
ε−mod(η),η ⊆ Ǎε−mod(η)−Kαη−1,η ,

and may choose ε as above.
We thus obtain that for some C ′′0 depending on f0, νn, denoting the minimizer of relative
entropy on Aεn

(3.3) H(µn
Aεn ,k|ν⊗k

n ) ≤ C ′′0αnη
−1
n − k

n
log

(
1− mαn

2
exp(−n

8
α2

n)
)
+

+k
(
H(νηn

0 |µ)−H(ν0|µ)
)

+ k
(
H(ν0|µ)−H(νn|µ)

)
.
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The rest of the proof is similar to what has been done before (note that fηn
0 goes to f0 in

sup norm) . Conditions on εn follow from what is said above and Lemma 2.19. �

3.2. A direct study. Since one point compactification has no chance to extend to non
locally compact spaces, we shall now try to provide another viewpoint, by using a quantitative
description of the approximation by compact sets. We still assume that E = Rd mainly to
get a good description of covering number in terms of volumes, i.e.

(3.4) m(B(0, R), ξ) ≤ C(d)
(R
ξ

)d
.

For any probability measure ν on Rd we then introduce

νR =
1IB(0,R) ν

ν(B(0, R))
.

It is immediate that

(3.5) β(νR, ν) ≤ ν(|x| > R) +
1

ν(B(0, R)
− 1 ≤ ν(|x| > R)

(
1 +

1
ν(|x| ≤ R)

)
.

Hence if the Ui’s are in Blip, A = A0 , ν0 and f0 being defined as before,

B(νR
0 , ε

R) ⊂ Aε

for

εR = C(A)ε−
(
‖ f0 ‖∞ µ(|x| > R)

(
1 +

1
min f0 µ(|x| ≤ R)

))
.

So we can apply Sanov exact lower bound with νR, considering the induced topology on
M1(B(0, 2R)) (which is a measurable (actually a closed) subset of M1(Rd)). Indeed

Qµ
n(G) =

∫
1IG(Lx

n)µ(dx1)...µ(dxn)

≥
∫

1IG(Lx
n) Πn

i=11I|xi|≤R µ(dx1)...µ(dxn)

≥ (ν0(B(0, R)))n

∫
1IG(Lx

n) exp(−n < Lx
n, h0 >)νR

0 (dx1)...νR
0 (dxn)

≥ exp
(
− nH(νR

0 |µR) + n log(ν0(B(0, R)))
)∫

1IG(Lx
n) exp(−n < Lx

n − νR
0 , h0 >)νR

0 (dx1)...νR
0 (dxn)

i.e.

Qµ
n(Aε) exp

(
n (H(νR

0 |µ)
)
≥ exp

(
− nCεR + n log(ν0(B(0, R)))

) (
1−Q

νR
0

n (Bc
R(νR

0 , η))
)
,

where the ball BR is relative to this topology. It yields

Qµ
n(Aε) exp

(
n (H(νR

0 |µ)
)
≥ exp

(
−nCεR +n log(ν0(B(0, R)))

) (
1−m εR

2

exp
(
− n

8
(εR)2

))
,

with

mξ ≤
(16e
ξ

)C′(d)
(

R
ξ

)d

.
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Hence if we choose εn going to 0 and Rn going to +∞ in such a way that

(3.6) εn � µ(|x| > Rn) and nε2n �
(Rn

εn

)d
log(

1
εn

) ,

we will again obtain that
β(µn

Aεn ,k, ν
⊗ k
0 ) → 0

provided |H(νRn
0 |µ) − H(ν0|µ)| → 0 which is easily seen thanks to Lebesgue bounded con-

vergence theorem. (Actually it is enough to show that |H(νRn
0 |µ)−H(νn|µ)| → 0 , and this

result follows by directly using (2.22)).
Condition (3.6) can be made explicit if µ admits some moments. In particular

(3.7) if Eµ(|x|p) < +∞ , one can choose εn ∼ n−a with 0 < a <
1

d(1 + 1
p) + 2

,

thanks to Markov inequality, and if for some λ > 0

(3.8) Eµ(eλ|x|) < +∞ , one can choose εn ∼ n−a with 0 < a <
1

d+ 2
.

Remark 3.9. The behaviour of εn is not as good as what is obtained via one point com-
pactification, but the method here extend to more general state spaces.

4. Improved lower bounds, applications.

What we shall do in this section is see how the estimates in the previous two sections can
be improved in various directions. However these improvements are only possible for some
particular choices of A i.e. the ones given by a finite number of linear constraints as in
(2.10). As we said in the Introduction, what follows is more or less part of the folklore in
Large Deviations theory.
The framework is even more general. E is any Polish space, A is defined as in (2.10) but we
only assume that the Ui’s have all their exponential moments that is

(4.1)
∫

et Ui dµ < +∞ for all t ∈ R .

This assumption is enough for applying all the results (2.12)-(2.15) as soon as (2.11) is
satisfied (the situation when only some exponential moments are finite is more delicate, see
[12] Lemma 7.3.6 , [22] and the discussion in subsection 4.2).

Now recall (2.21)

H(µn
εn,k|ν⊗k

εn
) ≤ −1

[n
k ]

log
(
Qµ

n(Aεn) exp(nH(Aεn |µ))
)

(4.2)

≤ −k
n

log
(
Qµ

n(Aεn) exp(nH(A0|µ))
)

+ k
(
H(A0|µ)−H(Aεn |µ)

)
.

Actually we called upon the results in section 7.3.3 of [12] to use (2.21). These results lie on
some assumption (A-5) ([12] p.335) which is not satisfied here. But this assumption is only
used in order to check that µn

εn,1 belongs to Aεn (see the proof of Theorem 7.3.21 p.337 in
[12]) which is immediate here due to exchangeability (see (7.3.1) p.323 in [12]). Hence (4.2)
holds.
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We may write

(4.3) Qµ
n(Aεn) = exp(−nH(ν0|µ))

∫
1IAεn

(Lx
n) exp(−n < Lx

n − ν0, h0 >)ν0(dx1)...ν0(dxn) ,

where h0 = log
(

dν0
dµ

)
. Define for l = 1, ..., j

Y l
i = Ul(Xi)− < ν0, Ul >= Ul(Xi)− al .

Then Eν0(Y l
i ) = 0 and

(4.4)
∫

1IAεn
(Lx

n) exp(−n < Lx
n − ν0, h0 >)ν0(dx1)...ν0(dxn) ≥

≥ e− c(ν0) n εn Pν0

(
|

n∑
i=1

Y l
i | ≤ n εn , l = 1, ..., j

)
,

where c(ν0) only depends on the coefficients cl in (2.12) (actually one can choose c(ν0) =
j maxl=1,...,j |cl|).

4.1. Improved lower bounds via concentration inequalities. In view of (4.4) one can
of course call upon Bernstein’s inequality ( see [13] 2.2.11 p.103). Remark that f0 belongs
to all the Lp(µ) since the Ui’s have all their exponential moments (apply Hölder’s inequality
repeatedly). Hence the variables Y l

i have all their exponential ν0 moments, once again thanks
to Hölder. So we may use Bernstein’s inequality in order to get

(4.5) Qµ
n(Aεn) ≥ exp(−nH(ν0|µ)) e− c(ν0) n εn

(
1 − 2j exp(−C(ν0)nε2)

)
,

where C(ν0) depends one more time on the cl’s for l = 1, ..., j.

One can then proceed as in the proof of Theorem 2.17. Let us state the result

Theorem 4.6. Let Ul (l = 1, ..., j) satisfying (4.1). If (2.11) holds and 1 � εn � n−
1
2 ,

β(µn
εn,k(n), ν

⊗k(n)
0 ) → 0 ,

provided

k(n) εn → 0 and k(n)
(
H(A0|µ)−H(Aεn |µ)

)
→ 0 .

When k(n) = k is fixed the above convergence holds in the stronger relative entropy sense.

If convergence in Fortet-Mourier distance immediately follows from the proof of Theorem
2.17, convergence in entropy requires one word of explanation. Looking at the end of the
proof of 2.17, one sees that one can push the argument further and show that the θi

n and
dn are going to 0. Hence for a fixed k convergence in entropy follows from the entropy
decomposition we used in the proof of 2.17.

This result is of course much better than all the results we have proved in the previous two
sections. As it was expected at least for a fixed k, some good size of enlargement is (a little

bit greater than)
√

1
n . But we saw in various places that the particular form of A is crucial.
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4.2. The Hyperplane case. In this subsection we assume that j = 1, i.e. A is an hyper-
plane < α,U >= 1, and we assume that U is nonnegative. To save place we shall use in
this subsection (and only here) the notations of [12] section 7.3. In particular −U is allowed
to only have some (not all) exponential moments up to some β∞ ≥ −∞. We also assume
that the hypotheses of Lemma 7.3.6 in [12] are in force. Then there exists an unique Gibbs
measure in Aε for ε small enough. One can then use the same arguments as in subsection
4.1. However these arguments may be improved by using Berry-Eessen bound.
Indeed, according to (4.4) it is enough to get an estimate for

Pν0

(
0 ≤ 1√

n
(

n∑
i=1

Yi) ≤
√
n εn

)
,

for centered real valued i.i.d random variables Yi having all their moments. According to
the Berry-Eessen bound (we do not need any expansion contrary to the much more delicate
statement in Theorem 3.7.4 in [12]), provided the above quantity is much greater than n−

1
2

when the Yi’s are standard normal variables, the same holds for any random variables Yi.
Hence what is required is εn � n− 1. We thus have

Theorem 4.7. The statement of Theorem 4.6 is still true for j = 1 and εn � n−1.

4.3. Connection with Nummelin’s conditional law of large numbers. Let us formu-
late the problem in a may be more illuminating way (if one wants to connect Gibbs and
Nummelin principles). What we are looking at is

(Pµ)⊗n
(
(X1, ..., Xk(n)) ∈ . / |

n∑
i=1

Y l
i | ≤ n εn , l = 1, ..., j

)
.

Hence the conditioning set can be viewed as a ball for a j dimensional empirical mean. Thus
one can mimic the arguments used by J.Kuelbs and A.Meda in the proof of their Theorem 7
([20]) (that deals with the particular case U(x) = x in a much more general framework) to
relate the correct rate εn with the rate for Nummelin’s theorem.

Let us briefly describe the argument.
Let a be the µ mean of Y1, ..., Yj . D will be a half space in Rj delimited by the tangent
hyperplane at the origin (which is the ν0 mean of Y1, ..., Yj) to the level surface of the Cramer
transform of the µ law of Y1, ..., Yj . Of course D is the half space that does not contain a. In
most cases 0 will be a dominating point of D. Nummelin’s weak law of large numbers shows
that for correct rates

P⊗n(
n∑

i=1

Y l
i ∈ B(0, εn) /

n∑
i=1

Y l
i ∈ D)

goes to 1. Hence we may replace the conditioning set Aεn by D, and thus apply the usual
Gibbs conditioning with the no more thin D.

In particular for j ≥ 2 one find the same �
√

1
n , and for j = 1 the rate is improved in

εn � n−1. In addition a more precise description of k(n) is given (see the discussion in
section 8 of [20]). The only advantage of what we did in the previous subsection is that one
get some control for β(µn

εn,k(n), ν
⊗k(n)
0 ).
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It is thus natural to ask whether we did not loose time in obtaining the (worse) results in
the previous sections. If A is given by an infinite number of linear constraints, both the
concentration method and the use of Nummelin’s law are useless. For the first one it is
easily seen just looking at the proof of Theorem 4.6 (however see section 7 for a more precise
discussion). For the second one, even if one considers an enumerable collection of linear
constraints, the natural space for the Yl’s is R⊗N and not a Banach space. Examples of
such problems are discussed in the next two sections. A short discussion of an intermediate
problem (taking an increasing number of constraints) will be done in section 7.

5. Gibbs conditioning principle : Schrödinger bridges.

Let D be either Rd or a d dimensional connected and compact smooth Riemanian manifold
(for instance Sd) equipped with its natural measure dv (we shall call it improperly its Lebesgue
measure). We also assume that the ξ covering number of D is less than C(D) ξ−d in the
compact case. In this section E = C([0, 1], D) with generic element x = (x(t))t∈[0,1], and
we shall discuss Gibbs conditioning in a physically meaningful framework. That is we shall
provide a statistical interpretation of Schrödinger bridges.

W will denote the law of a nice D valued diffusion process, and for simplicity we shall proceed
with the Brownian measure (associated to the Laplace Beltrami operator) on E with initial
law µ0. Hence, under W the Xi’s are supposed to be i.i.d. standard Brownian motions on D.
The notation in the previous sections are still in force, except that µ = W and the probability
measures on E will be generically denoted by V instead of ν. We are interested in subsets
A ∈M1(E) of the following form

(5.1) A = {V ∈M1(E) , < V, Fi >= ai for all i ∈ I} ,
where I is a finite or infinite set of indices, and the Fi’s have the following form

(5.2) Fi(x) = fi(x(ti)) for some ti ∈ [0, 1] and some fi ∈ BLip(Rd) .

We shall also assume that

(5.3) sup
i∈I

‖ fi ‖BLip≤ K .

Since A is closed and convex, the natural assumption is as before

(5.4) there exists some V ∈ A such that H(V|W) < +∞ .

Let us briefly discuss this existence problem.
When I is finite, the problem reduces to a finite dimensional one as studied in the previous
section. One first solves the existence problem in DI with µ the appropriate measure, and
then build V as the Brownian bridge with appropriate marginal laws.

The next interesting case is the one where I is infinite, but for all i ∈ I , ti = 0 or ti = 1 while
the fi’s are a determining class of bounded Lipschitz functions (for each ti). In other words,
one tries to build V with given marginal laws νt at time t = 0 and t = 1 with finite relative
entropy with respect to the Brownian measure. This problem is known as the construction
of Schrödinger bridges. It is solved by first building the joint law at times 0 and 1, next
by considering the Brownian bridge associated to this joint law. We refer to [15] p.161-164
for the description of the construction and to [3] for sufficient conditions for the existence of
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the joint law (as well as its product structure). These processes are related to the so called
euclidean version of Stochastic Mechanics. Some references will be given below.

The enlargement Aε is then given as before when I is finite or by

(5.5) Aε = {V ∈M1(E) , β(νt, ν
0
t ) ≤ ε for t ∈ T} ,

where T is {0, 1}, ν0
t denoting the flow of marginal laws induced by A.

A slightly different version of this study was done by Aebi and Nagasawa (see the related
chapter in [1]) in order to prove some version of the (classical) Gibbs conditioning principle
for Schrödinger bridges. Let us recall their result.

Choose some partition of Rd into 2J measurable sets BJ
j in such a way that the partition at

level J + 1 is a refinement of the one at level J . Now define the 2−J blow up of A as

AJ = {V , |V(x(t)) ∈ BJ
j )− νt(BJ

j )| ≤ 2−J for all t ∈ T and all j} .

Then the following holds
Theorem 5.6. The conditional law

Wn
J,k = W⊗n((X1, ..., Xk) ∈ ./Ln ∈ AJ)

satisfies
lim
J

lim
n
Wn

J,k = V⊗k
0 ,

where V0 is the entropy minimizer in A.

Of course if we replace (1IBJ
j
)j by some smooth partition of unity (fj) the same result holds.

Hence one can also ask whether one can refine this statement in our approximate thin case
by taking Jn going to infinity with n.

The main advantage of the present framework (with bridges) is that it reduces to a finite
dimensional situation (on D2). To understand this and get the results we have in mind we
need first recall some results on the construction we briefly discussed at the beginning of the
section.

Denote by

(5.7) µ0,1 = the W joint law of (x(0), x(1)) = p1(u, v)µ0(du) dv ,

where p1(., .) is the Brownian kernel at time 1 (i.e. p1(., .) is either a gaussian random
variable in case D = Rd or a smooth bounded positive function in case D is compact). If ν
is a probability measure on D2 we denote by

(5.8) V(ν) =
∫
Wu,v ν(du, dv) ,

where Wu,v denotes the law of the Brownian bridge from u to v. The key point is the
immediate

(5.9) H(V(ν)|W) = H(ν|µ0,1) .

In particular if A = A0 is as in (5.5), the entropy minimizer V0 in A is given by V(ν0) for ν0

minimizing H(ν|µ0,1) among all ν ∈M1(D2) with marginal laws (ν0, ν1).
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In addition one knows that provided (5.4) holds,

(5.10)
dV0

dW
=

dν0

dµ0,1
(x(0), x(1)) = f(x(0)) g(x(1)) ,

for some measurable nonnegative f and g that satisfy the pair of equations

dν0
0

dµ0
(u) = f(u)

∫
p1(u, v) g(v) dv ,(5.11)

dν0
1

dv
(v) = g(v)

∫
p1(u, v) f(u) dµ0(u) .

This representation is shown in [15] when µ0 is equivalent to Lebesgue measure, and extended
in a more general situation including the one we are interested in in [3] section 6.
In the sequel we denote by Wn

ε,k the analogue of µn
ε,k (i.e. the conditional law) for Aε given

by (5.5), and by Vε the minimizer of relative entropy on Aε .
Note that a similar decomposition holds for Vε for suitable fε and gε. Also note that the first
inequality in (2.21) is still hold i.e.

(5.12) H(Wn
εn,k|V⊗k

εn
) ≤ −1

[n
k ]

log
(
QWn (Aεn) exp(nH(Aεn |W))

)
.

According to (5.9) the calculation in the right hand side of (5.12) reduces to finite dimen-
sional estimates in D2. Hence the following theorem is a direct application of section 2 and
subsection 3.2

Theorem 5.13. Assume that (5.4) holds. Assume in addition that f and g in (5.10) belong
to BLip. Then if εn goes to 0 when n goes to infinity and satisfies

εn � µ0,1(|x| > Rn) and nε2n �
(Rn

εn

)2d
log(

1
εn

) ,

one has
β(Wn

k,εn
,V⊗k

0 ) → 0 .

Of course if D is compact one can choose Rn = R for a large enough R (|x| will then denote
the distance between x and an arbitrary point x0 in D).

A similar statement holds in Theorem 5.6 for 2−Jn = εn.

One should improve the Theorem just assuming that f and g are bounded and continuous
as in Theorem 3.2. But the main problem is still to prove such a regularity. The following is
one step in this direction.

Corollary 5.14. Assume that D is compact, µ0 = ν0
0 and dν0

1
dv is Lipschitz and everywhere

positive (hence bounded from below by some positive constant). Then (5.4) is satisfied and
the conclusion in Theorem 5.13 holds with εn > n−a for some a < 1

2d+2 .

Indeed in this case ∇ log(p1) is bounded. It implies that, provided dν0
1

dv is Lipschitz and
everywhere positive, one can find some versions of f and g that are Lipschitz too (just apply
Lebesgue differentiation theorem under the integral sign in (5.10) and recall µ0 = ν0

0). That
(5.4) is satisfied follows from [3] Proposition 6.3 and our hypotheses on the marginal laws.



22 P. CATTIAUX AND N. GOZLAN

A similar statement in the Rd case is much more delicate since differentiation under the
integral sign is not easy to justify in general. Note that we should try to approximate f
and g by Lipschitz function fn and gn at least in L1(µ0,1). The main problem is that the
approximation rate ηn not only depends on f and g but will introduce an additional problem.
Indeed, one has to choose εn � ηn for the approximate law to be in the interior of Aεn but
at the same time we must have

εn ‖ fngn ‖BLip→ 0 ,

in order to get some convergence (recall that the Sanov exact lower bound involves the BLip
norm). This competition does not seem to be tractable.

However if we assume that the initial law is a Dirac mass, we may choose f as a constant
and the regularity of g only depends on dν0

1
dv . Hence we get

Corollary 5.15. Let D = Rd and µ0 = ν0
0 = δx0. Denote by N (x0) the gaussian law with

mean x0 and variance 1. Then if log( dν0
1

dN (x0)) is in BLip, the conclusion of Corollary 5.14 is
still hold. If it is only uniformly continuous and bounded, then a similar statement holds but
for εn as in Theorem 3.2.

6. Gibbs conditioning principle : Nelson processes.

We shall continue to use the framework in the previous section but this time we will choose
T = [0, 1] and for each t ∈ T a determining class of BLip. That is one is led to build V with
given marginal laws νt at each time t. That this problem is connected with the existence
of Nelson’s diffusion processes (see [23] and [2]) was first remarked by H.Föllmer (see [15]
p.165-167). This point of view was further developed by C.Léonard and the first named
author (see [4], [5] and [6] for the existence problem). We shall recall the results in these
papers when necessary.

The enlargement of A will be given either by Aε as in (5.5) or defining AJ as an approximation
using bridges. More precisely considering TJ the set of dyadic numbers of level J in [0, 1],
we define

(6.1) AJ = {V ∈M1(E) , β(νt, ν
0
t ) ≤ 2−ln for t ∈ TJ} .

A similar statement as Theorem 5.6 can be shown exactly as in [1]. If one wants to study
the approximate thin case we certainly will need some regularity properties for densities. In
this case we have the following

Theorem 6.2. Assume that (5.4) holds and that dV0
dW ∈ BLip(E), where V0 is the entropy

minimizer on A. Then

1. if D is compact, εn goes to 0 when n goes to infinity and satisfies for some 0 <
a < 2d ,

εn � (log(n))−
1

2d−a

one has
β(Wn

k,εn
,V⊗k

0 ) → 0 ,

2. the same holds if D = Rd provided µ0(|x| > R) ≤ C R−p for some positive p,
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3. if D is compact, Jn and ln are going to +∞ when n goes to infinity and satisfy

log2(n
1
2d ) � ln Jn

one has
β(Wn

k,Jn
,V⊗k

0 ) → 0 ,

4. if D = Rd , µ0(|x| > R) ≤ C R−p for some positive p , Jn and ln are going to +∞
when n goes to infinity and satisfy

1
2d(1 + 2

p)
log2(n) � ln Jn

one has
β(Wn

k,Jn
,V⊗k

0 ) → 0 .

Proof. We start with (6.2.3) and (6.2.4). What we need is an estimate for

QWn (AJn) exp(nH(A0|W)) .

One can proceed as for the proof of Theorem 5.13 just replacing µ0,1 by µTJ
. So what we

need is

2−ln � µTJn
(|x(TJn)| > Rn) and n 2−2ln � ln

(
Rn 2ln

)d(2Jn+1)
.

In the compact case one can choose Rn = R large enough. When D = Rd one has

µTJn
(|x(TJn)| > Rn) ≤ µ0(|x(0)| > Rn

2
) +W( sup

0≤t≤1
|x(t)− x(0)| > Rn

2
)

≤ µ0(|x(0)| > Rn

2
) + e−c(d)R2

n .

Hence we may choose Rn = 2
2
p

ln and we get the result.

When dealing with Aεn one really has to face the infinite dimension problem. The new
point is thus to choose some appropriate compact subset in infinite dimension. This is done
by using well known paths properties, namely the law of the Brownian motion is almost
supported by some big ball of some regular functions space. We will choose the space of
Hölder functions of order α (usually denoted by Lip(α)) for some α < 1

2 for two main
reasons. First it is certainly more familiar to the prospective reader than more sophisticated
spaces, and second the arguments immediately extend to general smooth diffusion processes
thanks to Kolmogorov continuity criterion. Slight improvements are possible if we consider
instead of Hölder some Besov spaces and we shall shortly explain this below. But extension
to more general diffusion processes is not immediate since the corresponding results do not
exist (up to our knowledge) in the literature. Of course one can strongly suspect that these
arguments are true. In both cases the calculation of the covering number is known. Actually
this improvement does not really yield better results except for the computation of constants.

For α < 1
2 introduce

(6.3) K(R,α,M) = {x , |x(0)| ≤ R and Πα(x) ≤M} ,
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where

Πα(x) = sup
0≤a<b≤1

d(x(a), x(b))
|a− b|α

.

It is well known that

(6.4) W(Kc(R,α,M)) ≤ µ0(|x| > R) + C(p, α)M−p ,

for all 1 ≤ p < +∞ for some constant C(p, α) (of course in the compact case the first term
in (6.4) vanishes for R large enough) . Furthermore K(R,α,M) is a compact subset of E
whose covering number m(K(R,α,M), ξ) satisfies

(6.5) m(K(R,α,M), ξ) ≤ c(α, d)
(2R
ξ

)d
exp

(
k(α, d)

(M
ξ

) d
α

)
.

To get (6.5) one uses covering by balls of radius ξ
2 for both the initial condition and the paths

increments, for which the metric entropy is known (see e.g. [13] Theorem 2.7.1).

At least in the usual Brownian case (in Rd) one can replace the balls in Lip(α) by the balls

in the Besov space B
1
2
p,∞ (see e.g. [7]). This yields an improvement of (6.5) allowing to take

α = 1
2 according to a well known result of Birman and Solomyak (see e.g. [18] for a nice

modern proof).

Hence we can follow what is done in subsection 3.2 replacing the balls therein by the
K(R,α,Mn) when D is compact, provided

εn �M−p
n .

Recall that according to Lemma 2.18 and (6.5)

mξ ≤
(16e
ξ

)m( ξ
4
)
,

and
m(

ξ

4
) ≤ c(α, d)

(2R
ξ

)d
exp

(
k(α, d)

(Mn

ξ

) d
α

)
.

So we get the result by choosing p and α in an appropriate way.
When D = Rd, the condition on µ0 allows to choose Rn as a negative power of εn, so that
the previous proof is still available. �

The condition dV0
dW ∈ BLip(E) in the previous Theorem looks a very strong one. Indeed in

general one only knows that this density is given by some Girsanov density (written below
in the Rd case, for the more general manifold value case see [6])

(6.6)
dV0

dW
=
dν0

0

dµ0
G ,

with

G = exp
( ∫ 1

0
B(t, x(t)).dx(t) −

∫ 1

0
|B(t, x(t))|2dt

)
andG is not even continuous. The second problem is that (6.6) is not correct in full generality.
Indeed one has to replace the final time 1 in the definition of G by the stopping time

(6.7) τ = inf {t ≥ 0 ,
∫ t

0
|B(s, x(s))|2ds = +∞} ,
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which is not necessarily equal to 1 W a.s., but is equal to 1 V0 a.s. (see [4]).

However it is shown in [4] or [6] that, thanks to the minimality property of V0 one can find
some sequence ϕj of smooth functions such that

(6.8)
∫ 1

0

∫
D
|B(s, x)−∇xϕj(s, x)|2 ν0

s (dx) ds → 0 .

Here ∇ is the gradient operator associated with the riemanian metric. We thus get some
approximation of G by the corresponding Gj which can be rewritten after integration by
parts

(6.9) Gj = exp
(
ϕj(1, x(1))− ϕj(0, x(0))−

∫ 1

0

(
(
∂

∂s
+

1
2

∆)ϕj +
1
2
|∇xϕj |2

)
(s, x(s)) ds

)
,

which belongs to BLip. Unfortunately in general one has to face the same competition
problem we discussed at the end of the previous section. Nevertheless if we start from
the beginning with a smooth gradient diffusion process, the hypotheses in Theorem 6.2 are
fulfilled and we get

Theorem 6.10. If (νt)t∈[0,1] is the flow of time marginal laws of the 1
2 ∆ + ∇ϕ diffusion

process, for some smooth ϕ, then the conclusion of Theorem 6.2 holds.

In particular if
ν0

t = ψ2(x) dx

for all t, the previous property holds with

B = ∇ log(ψ)

which is not smooth in general. But for (5.4) to hold a necessary condition is that ψ ∈ H1(dx)
the usual Sobolev space. Hence if D is compact the smoothness assumption above is not too
strong in the stationary case. Furthermore one can approximate ψ in H1 by

(ψ ∨ 1
L
∧ L) ∗ ηj

for some mollifier ηj that furnishes an explicit control for ∆ log(ψ). It can be shown that
the corresponding V(L, j) satisfies

H(V0|V(j, L)) → 0

with a rate corresponding to the above rate of approximation. Hence we are in a situation
that is very close to the one of Theorem 3.2, and a similar proof yields the analogous of
Theorem 6.2.1 but for a non explicit εn (actually an explicit one that is not easy to describe).

We shall conclude this section by an analogous discussion but for AJ . Assume that D is
compact, ‖ dν0

t
dv ‖Lip≤ L for all t ∈ [0, 1] , 1

L ≤
dµ0

dv ≤ L and 1
L ≤

dν0
t

dv for some positive L and
all t ∈ [0, 1] . Assume finally that (5.4) holds. Our assumptions allow to build for each J the
minimal Bridge V(J) with time marginal laws ν0

t for all t ∈ TJ as in Corollary 5.14. One can
then evaluate

QWn (AJn) exp(nH(VJn |W)) ,
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by using the exact Sanov lower bound. The only things we have to do are thus first choose
ln in such a way that

2−ln ‖ dV(Jn)
dW

‖Lip→ 0 ,

and then to check that
H(VJn |V0) → 0 .

The second point is shown by using Csiszar’s argument. But again a precise description of
the Lip norm is not easy.

7. Is it possible to improve the results in section 5 and section 6 ?

We claimed in various places that we cannot use concentration inequalities for an infinite
number of constraints. Let us see why.
Let (fj)j∈N be an infinite collection of functions. We may for instance choose an enumerable
collection of determining bounded Lipschitz functions such that ‖ fj ‖BLip= 1 for all j in the
case of Schrödinger bridges. Concentration inequalities for

Z = sup
j
|

n∑
i=1

fj(Xi)|

are known. They are mainly due to Talagrand (see [24]) and have been intensively studied
since that time by many authors.
Such a concentration inequality holds for

P(Z ≥ E(Z) + x) .

In particular a good knowledge of E(Z) is necessary for its use in our problem. A lot of
works have been devoted to the problem of getting bounds for this mean in the theory of
empirical processes (we refer to [13] and the references therein). It turns out that, in general,
bounds involve intricate calculation of bracketing number (instead of covering number). So
this concentration inequality does not seem to be useful for us.

Nevertheless one can ask whether the observation of a time marginal law is practically mean-
ingful. It is not. Such an observation is performed through the observation of a large but
finite linear moment constraints. What is possible to do in this framework is to let this
number j(n) increase with n. One may thus apply the method in subsection 4.2. Due to
our assumption on the fj ’s the random variables fj(X)− < fj , ν0 > are equibounded. Hence
Bernstein’s inequality furnishes an uniform bound for each of them and what we have to
choose is

log(j(n)) � n ε2n .

Doing so the rate for εn in this new framework should be � n−
1
2 in the situation of

Schrödinger bridges as in section 4. Unfortunately we have to face another problem, namely
the control of e−c(ν0)nεn in (4.4). Indeed nothing ensures that c(ν0) < +∞. This is due to
the fact that the log-density h0 is no more a simple linear combination of the fj ’s. If we use
an approximation (for example replace ν0 by some νεk

for k > n) what has to be done is to
obtain some explicit control on the coefficients ckj defining the corresponding Gibbs measure.
Uniform controls are unexpected and the problem becomes a very difficult one.
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8. Additional examples and Remarks.

As we already said in various places, the strategy we used was partly developed in previous
works dealing with Gibbs conditioning. For instance in the framework of Corollary 7.3.34 in
[12], the minimizer ν0 of relative entropy on the thin set A is still minimizing relative entropy
on a non thin enlargement of A, so that one gets some conditional limit theorem for this
enlargement. On one hand such a result should bee seen as a more interesting result since it
requires less a priori information. On the other hand, our framework is physically relevant
since it allows to approximate the desired energy level. In particular without any extra work
(just use the estimates in section 4), one easily sees that

β(µn
εn,k(n), ν

⊗k(n)
0 ) → 0

in Corollary 7.3.34 of [12], if we replace A by

Aεn = {ν , 1− εn ≤< U, ν >≤ 1}

in the statement of the Corollary, provided εn � k(n)−1 and εn � n−1.

The rate we have obtained for εn is clearly not optimal. The examples below will illustrate
what can happen.

Example 1. In some cases weak convergence will hold for any εn. It is the case when one
can prove the result for conditional densities in Rd (thin shell case).
For example the conditional law of X1 knowing that the empirical mean is a > 0 goes to
the exponential (or gaussian) law with mean a, when (Xn)n∈N is a sample of the exponential
(or gaussian) law with mean 1 (or 0). This limit is the relative entropy minimizer under the
considered constraint.
As soon as the joint law of (X1,

∑n
i=1 U(Xi)) has a density, it is natural to conjecture

that this is the general situation, i.e. that a conditional convergence holds for the regular
desintegration knowing 1

n

∑n
i=1 U(Xi) = 1.

Example 2. What should happen is that for too small εn the conditioning is meaningless.
This will hold for example when U(X) is lattice. Here is a trivial example (written in a
particular form for later use).
Let E = [0, 1], µ be the uniform measure on E, U = a 1Ix≤ 1

2
for some nonnegative a, and

define A = {ν ∈ M1(E) , < U, ν >= 1}. Then < U, µ >= a
2 is smaller than 1 if and only if

a < 2, and in this case µ /∈ A. Define Aε = {ν ∈ M1(E) , | < U, ν > −1| < ε}. Remark that
| < U,Ln > −1| < ε if and only if the number N(n) of the Xi’s belonging to [0, 1

2 ] satisfies
N(n)

n ∈]1−ε
a , 1+ε

a [ (that is we are dealing with Binomial laws).

For 1 < a < 2 there exists an unique Gibbs measure in A, which is then the entropy minimizer.
Its density is given by

(8.1) fa(x) =
2
a

1I[0, 1
2
](x) + 2(1− 1

a
) 1I[ 1

2
,1](x) .

A similar discussion can be made in the case a = 1. But this time the minimal ν0 is the
uniform law on [0, 1

2 ] and is no more a Gibbs measure. This is not in contradiction with what
we said in section 2 since there is no ν in A which is equivalent to µ.
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Let us choose
εn = (

a

2n
) ε .

Then

(8.2) Ln ∈ Aεn = {|N(n)− n

a
| < ε

2
} .

If we choose a as an irrational number, for ε = 1 there exists one and only one integer number
N(n) satisfying (8.2). An easy binomial calculation shows that the conditioned law of X1

goes to the Gibbs measure described above. But if ε < 1 it is easily seen that Ln ∈ Aεn may
be empty. Nevertheless for any subsequence such that it is not empty the conditioned law
still goes to the Gibbs measure.

So we may think that as soon as Ln ∈ Aεn is non (a.s.) empty (as least for some subsequence)
the conditioned law goes to the minimizing ν0. We are unable to give a proof or find a counter
example.

9. A statistical description of the Brownian bridge.

We started the paper by what could be viewed as an exercise on Nummelin’s theorem. We
shall close it with another exercise. Our aim is to provide an elementary example where the
previous ideas yield some result in a “super thin shell case”, that is by considering some
conditioning set A for which H(A|µ) = +∞ . The framework will be as simple as possible.

Hence we consider E = C([0, 1],R) equipped with the standard Wiener measure W. In
particular W(x(0) = 0) = 1 . We shall consider the following

(9.1) A = {V ∈M1(E) , V(x(0) = x(1) = 0) = 1} .
A can be viewed as a limit case for the Schrödinger bridges we discussed in section 4, but of
course H(A|W) = +∞ .
A natural enlargement of A is given by

Aε = {V ∈M1(E) , V(x(0) = 0 , |x(1)| ≤ ε) = 1} .

For such an enlargement however the problem is trivial. Indeed if Ln ∈ Aε , all particles
Xi(1) belong to [−ε, ε], and using independence we immediately see that the conditional limit
is the usual Brownian bridge W0,0 (for any sequence εn).

More interesting is the case when

(9.2) Aε = {V ∈M1(E) , V(x(0) = 0) = 1 , β(V ◦ x(1)−1, δ0) ≤ ε} .

That is one can test the final law through an infinite number of linear filters as in section 5.
But as we saw, we need to have a good knowledge of the minimizing law at time 1 , νε, in
particular we have to control H(νε|N (0, 1)) and the BLip norm of its log-density if this one
is in BLip or a neighboring element in Aε.
Our first remark is the following: introduce

f(x) = |x| ∧ 1

and the set

(9.3) Dε = {V ∈M1(E) , V(x(0) = 0) = 1 , < V, f(x(1)) >≤ ε} .
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Then it is easily seen that

(9.4) Dε ⊂ A2ε ⊂ D4ε .

Accordingly one can expect that the asymptotic behaviour conditioning by Aεn or by Dεn is
the same. We do not know whether this is true or not. Nevertheless we will replace one by
the other (which is much more simple), and will prove
Theorem 9.5. Let

Wn
εn,k = W⊗n

(
(X1, ..., Xk) ∈ . / Ln ∈ Dεn

)
.

Then
β(Wn

εn,k,W⊗k
0,0 ) → 0

when n goes to +∞ provided
εn � n− 1 .

Proof. As in section 5 we know that the minimizing Vεn in Dεn is the Brownian bridge with
initial law δ0 and final law

νεn(dx) = aεn e
−cεnf(x) µ(dx)

where µ is the standard normal law. Furthermore (recall (2.21))

(9.6) H(Wn
εn,k|V⊗k

εn
) ≤ −1

[n
k ]

log
(
QWn (Dεn) exp(nH(Dεn |µ))

)
.

One can then rewrite for ηn < εn

(9.7) QWn (Dεn) exp(nH(Dεn |µ)) =

=
∫

1IDεn
(Lx(1)

n ) exp
(
n cεn (< Lx(1)

n , f > −εn)
)
ν⊗n

εn
(dx(1))

≥ exp(−n cεn ηn) P⊗n
νεn

(
− ηn ≤

1
n

n∑
i=1

(f(Xi(1))− εn) ≤ 0
)
.

Now according to the Berry-Eessen bound as in subsection 4.2 we get

H(Wn
εn,k|V⊗k

εn
) → 0 ,

provided
ηn � n− 1 and cεn ηn → 0 .

In addition, since β(νεn , δ0) → 0, a simple time reversal argument shows that

β(Vεn ,W0,0) → 0 ,

hence using the fact that (BLip)⊗k is a determining class for the convergence in law, the
same holds for the k tensor product.

In order to finish the proof we thus just have to estimate cεn , that of course goes to +∞.
Just using Laplace method for both integrals

2 aεn

∫ +∞

0
e− cεnx e−

x2

2 dx =
√

2π ,

and

2 aεn

∫ +∞

0
(|x| ∧ 1) e− cεnx e−

x2

2 dx =
√

2π εn ,
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we get successively

aεn ∼
√
π

2
cεn and cεn ∼ ε−1

n .

Hence it is enough to choose εn � ηn , and the proof is completed. �

The previous proof works for more general (academic) examples. But the main examples we
have in mind are more intricate.
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gaussiens. Studia Math., 107:171–204, 1993.

[8] I. Csiszar. I-divergence geometry of probability distributions and minimization problems. Ann. Prob.,
3:146–158, 1975.

[9] I. Csiszar. Sanov property, generalized I-projection and a conditional limit theorem. Ann. Prob., 12:768–
793, 1984.

[10] A. Dembo and J. Kuelbs. Refined Gibbs conditioning principle for certain infinite dimensional statistics.
Studia Sci. Math. Hung., 34:107–126, 1998.

[11] A. Dembo and O. Zeitouni. Refinements of the Gibbs conditioning principle. Probab. Theory Relat. Fields,
104:1–14, 1996.

[12] A. Dembo and O. Zeitouni. Large deviations techniques and applications. Second edition. Springer Verlag,
1998.

[13] A. Van der Vaart and J. Wellner. Weak convergence and empirical processes. Springer Series in Statistics.
Springer, 1995.

[14] U. Einmahl and J. Kuelbs. Dominating points and large deviations for random vectors. Probab. Theory
Relat. Fields, 105:529–544, 1996.
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