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Abstract

Using probabilistic tools, this work states a pointwise convergence of function solu-
tions of the 2-dimensional Boltzmann equation to the function solution of the Landau
equation for Maxwellian molecules following the asymptotic of the grazing collisions.
To this aim, we use the results of Fournier, [7], on the Malliavin calculus for the Boltz-
mann equation. Then, using the particle system introduced by Guérin and Méléard,
[13], some simulations of the solution of the Landau equation will be given. This result
is original and can not be obtained for the moment by analytical methods.
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1 Introduction.

The Boltzmann equation describes the behaviour of particles in a rarefied gas. It is a
nonlinear differential equation which gives the density f of particles having the same ve-
locity at the same moment and the same position. We consider in this work the spatially
homogenous case, which means that the density does not depend on the position of par-
ticles. In 1936, Landau, [16], derived from the Boltzmann equation a new equation called
the Fokker-Planck-Landau equation, usually considered as an approximation of the homo-
geneous Boltzmann equation in the limit of grazing collisions. These equations take the

of

- = 1.1

L= QU ) (1.1
where @) is a quadratic operator depending on the nature of the collisions. In this paper, we
consider the case of a Maxwell gas in dimension 2. Then, the Boltzmann equation writes

of
= Qu(.1) (BE)
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with a collision operator (p given by
QN = [ [ ) - 601008 6) doav,
v €ER2 JO=—7

where v,v, are the pre-collisional velocities and v’,v. the post-collisional velocities and
where the cross-section 8 is an even positive function from [, 7]\{0} to R such that
f:r 628(0)do < <.

The relation between the post-collisional velocities and the pre-collisional velocities in di-
mension 2 is the following

vV =v+A@)(v—v) ; v =v— A()(v — vy)

with
1 B o
1(6) ( cosf —1 sin @ ) _

sin @ cosf —1

We are interested in cases for which the molecules in the gas interact according to an inverse

power law in d% with s > 2, where d is the distance between particles. Consequently, the

function S has a singularity in 0 of the form 3(0) o 00_2—%, with C a positive constant.
—

We assume that
Assumption (A): g is an even positive function on [—m, 7]\{0} of the form g = £y + 1
such that

1) B is an even and positive function on [—, 7],

. ko
2) there exist kg > 0, 6y € (0,7) and r € (1,3) such that 5y () = Wﬂ[fé’oﬂo] ).

The second equation we consider is the Landau equation:

of

o = Quf.)) (LE)
with the collision operator 7, defined by
EERCN of of
Q=3 3 g { [ v o= st 5w - ezl o

with @ = (a;5),; j<o @& nonnegative symmetric matrix of the form in the Maxwell case
a(z) = Alz*1(z) (1.2)

where II (z) is the orthogonal projection on (z)* and A is a positive constant precised below.

Many authors have been interested in proving rigorously the convergence of Boltzmann
to Landau, in different cases of scattering cross-section and initial data. Firstly Arsen’ev
and Buryak, [1], proved the convergence of solutions of the Boltzmann equation towards
solutions of the Landau equation under very restrictive assumptions. Desvillettes [5] gave
a mathematical framework for more physical situations, but excluding the case of Coulomb
potential which has been studied by Degond and Lucquin, [4]. Degond and Lucquin stated
an asymptotic development of the Boltzmann kernel when the collisions become grazing.



Then, Goudon, [9], and Villani, [20], proved in two independent works the existence of a
solution of the Landau equation for soft potentials using the asymptotic of grazing collisions,
with a bounded entropy and energy function as initial data. More recently, Guérin and
Méléard, [13], proved the convergence of solutions of the Boltzmann equation to a solution
of the Landau equation for 'moderately soft’ potentials with a probabilistic representation
when the initial data is a probability measure with a finite fourth-order moment. All those
works prove an L'-weak convergence of the solutions.

The aim of this work is to prove a pointwise convergence of function-solutions of the Boltz-
mann equation to a function-solution of the Landau equation on R? for a Maxwell gas, which
is unknown by analytical methods. Fournier [7], and Guérin, [12], proved from probability
measure solutions the existence of weak function solutions of the Boltzmann equation and
of the Landau equation when the initial data is not a Dirac measure. To this aim, they
used an efficient probabilistic tool: the Malliavin calculus for processes with jumps in [7]
and the Malliavin calculus for white noises in [12]. From the result of Guérin and Méléard
in [13] on the convergence of the probability measure solutions following the asymptotic of
grazing collisions, it seems to be natural to study the convergence of function solutions.
In the asymptotics of grazing collisions, we only consider collisions with an infinitesimal an-
gle of deviation. To this aim, we renormalize the cross-section 8 of the Boltzmann equation
to concentrate on such collisions. We use the approximation introduced by Desvillettes, [5]:
for any € > 0, let 8¢ be the function defined on [—em,en] \{0} by

50 - %5 (2) (13)

We notice that the mass of the function 8¢ concentrates on the values of # near 0 when ¢
tends to 0, i.e. when the collisions become grazing, in the following sense:

for any 6y > 0, 5° (6) = 0 uniformly on 6 > 6y (1.4)
e—
em 0 2
and sin (—) B°(0)do — A (1.5)
—err 2 e—0

where A = 2 Jy 0°B(6)d6 > 0 is the constant appearing in the expression (1.2) of the matrix
a. This asymptotic (1.3) is a particular case of the one introduced by Villani in [20], and
used by Guérin and Méléard, [13]. We prove in this paper the following theorem:

Theorem 1.1 Let 3 be an even function on [—m,n|\{0} satisfying Assumption (A). As-
sume that the initial data Py is a probability measure with finite moments of all orders and
Py is not a Dirac mass.

We define 55(0) = €738 (0/¢) and we denote by f¢ the function-solution of the Boltzmann
equation (BE) associated with the cross-section 3¢ (obtained by Fournier in [7]). The
function f¢ is of class C* on R? ([7] Theorem 3.2).

Then the sequence (f€)eso s pointwise convergent on R? as e tends to 0 and the limiting
function f is the function-solution of the Landau equation. Moreover, f is of class C*° and
there is pointwise convergence of the derivatives.

This theorem states a strong convergence of solutions of the Boltzmann equation to the
solution of Landau equation for a Maxwell gas when the collisions become grazing. Goudon,
[9], and Villani, [20], proved a L'-weak convergence, but in the more general case of soft
potentials and in dimension 3. It seems that their methods can not give a stronger result.



Theorem 1.1 gives a new proof of the existence of regular function-solution for the Landau
equation via a probabilistic approach.

We have to restrict our study to the dimension 2 because of the nonregularity of the
Boltzmann coefficients in R? (see [8] Lemma 2.6). The functions f¢ are given by the inverse
of the Fourier transform of the probability measure solutions. Consequently, since the
Boltzmann measure-solutions converge, it suffices to prove that their Fourier transforms
are uniformly bounded by integrable functions on R?, when the collisions become grazing
to obtain the convergence of the function-solutions. The proof is based upon a carefully
study of the results of Fournier in [7].

In the last part of this paper, we use the Monte-Carlo algorithm following the asymptotic
of grazing collisions developed by Guérin and Méléard, in [13]. We firstly simulate the
convergence of solutions of the Boltzmann equation to the solution of the Landau equation
for a degenerate initial data, and then we observe the behaviour in time of the solution of
the Landau equation and of its entropy.

Notations

- Dr will denote the Skorohod space ([0, T'), R?) of cadlag functions from [0, 7] into R?.
- C%(R?) is the space of real bounded functions of class C? with bounded derivatives.

- M3 (R) is the set of matrices of order 2 x 2. The matrix A* is the adjoint of the matrix
A and the matrix I denotes the identity matrix in My (R).

- The bracket (.,.) denotes the scalar product in R?.

2 Some Definitions

Let 8 be defined by Assumption (A) and 5° be defined by (1.3). We define the Boltzmann
equation (BE?) associated with the cross-section [°:

of _ e
E_QBE(faf) (BE)

with
Qu(f, f)(t,v) = / / T (0 — £t )t v.)BF (8) dbdo.
v« E€ER2 JO=—7

The collision operators of the Boltzmann and the Landau equations preserve momentum
and kinetic energy. Equations of the form (1.1) have to be understood in a weak sense, i.e.
f is a solution of the equation if for test functions ¢,

D pw)f(t,0)dv = / $(0)QU, f)(t, v)dv
R2

dt R2
As detailed for example in [7], a standard integration by parts and a compensation due to
the bad integrability behaviour of 8¢ yield to the definition of a function-solution of the
Boltzmann equation:

Definition 2.1 Let e > 0 be fized. A function-solution of (BE*®) is a function f¢ satisfying
for any ¢ € CZ(R?) the equation

ST et 0)g(o)dv = / K2, (0,02) [(t,0)dv f* (1, v.)do. (2.1)

dt Jpe R2 xR2



where K"ﬁE is defined by
Kj (v,0.) = —0Ve(v). (v —v.) (2.2)
[ (04 A 0 -v)) = 9(0) ~ A(0) (0 -0 Vo (0) )5 ()0

with b° = § [*7 (1 — cos 6)5°(0)d6

Using the conservation of the mass in (2.1), we introduce a definition of probability measure
solutions of (BE*®):

Definition 2.2 Let € > 0 be fizred. Let Py be a probability measure with a finite 2-order
moment. A measure family (Pf),~, is a measure-solution of (BE®) if it satisfies for any

¢ € C2 (R?)

t
(o) PE(dv) = /R H) Po(dv) + /0 /R K 0,0 P (@) P (do) s (23)

R2

In the same way, we give the following definition of a function-solution for the Landau
equation:

Definition 2.3 A function f is a function-solution of (LE) if f satisfies for each ¢ €
Cy(R?)
d
dt

where L? is the Landau kernel defined on R? x R? by :

[ e = [ 18(0,0) f0)dof (t0,) o (2.4)

R2xR2

2

(v,v0) = Z ) aij (v —vy) + Z 0;p(v) b (v — vy)

t,j=1 i=1
with b; Z Ojaij (2) = —Az;.

We also state a definition of measure-solutions of (LE) as in Definition 2.2.

Remark 2.4 We notice that the Boltzmann kernel Kga is pointwise convergent on R? x R?
to the Landau kernel L? when € tends to 0 for any ¢ € CZ (R?) (See for example [9] or
[20]).

3 The convergence of the function-solutions

We give in this section the main idea of the proof of Theorem 1.1.

In all the following, P, is assumed to be a probability measure with a finite two-order
moment and / a positive even function on [—m, 7]\{0} satisfying Assumption (A).

In the probabilistic study of the Boltzmann equation, we consider in fact (2.3) as the
evolution equation of the flow of a jump process. The distribution of this process will be
solution of the following nonlinear martingale problem:



Definition 3.5 Let € > 0 be fixzed. We say that a probability measure P¢ on Dr solves the
nonlinear martingale problem (M P®) starting at Py if for X the canonical process under
P¢, the law of Xg is Py and for any ¢ € Cg (Rz),

t
600) = 9(X0) = [ [ KE (Xuyv) P o) ds (35
0 JR
is @ square-integrable martingale, where P¢ is the marginal of P at time s.

Remark 3.6 Taking expectation in (3.5), we notice that if P® is a solution of (M P*),then
(Pf) >0 18 a measure-solution of (BE®).

Fournier proved in [7] the existence of a solution P of (M P¢) for any ¢ > 0. By another way,
Guérin and Méléard in [13] stated the tightness of the sequence (P¢),, when the collisions
become grazing (¢ — 0) in the more general case of soft potentials and in dimension 3
(using the same arguments, the convergence theorem is still true in dimension 2). In the
particular case of Maxwellian molecules, there is convergence of the sequence (P°),., to
the measure-solution of the Landau equation (LE) thanks to the uniqueness of this solution
(see [12] Corollary 7). We will use those results under the following form:

Theorem 3.7 Let 3° = ¢ 33(0/e). For any € > 0, there erists a solution P¢ of the
martingale problem (M P?). Moreover, the sequence (Pf).~¢ converges as € goes to 0 to a
distribution P; which is the measure-solution of the Landau equation.

Let us notice that to obtain a function-solution from a measure-solution (Pf);>o, it suffices
to prove that V¢ > 0 Pf admits a density f°(¢,.) with respect to the Lebesgue measure on
R?. Then the function f¢ satisfies the condition of Definition 2.1. Fournier [7] stated the
following theorem using the Malliavin calculus for processes with jumps:

Theorem 3.8 Let e € (0,1) be fized. Assume that Py is not a Dirac measure.

1) The Boltzmann equation (BE®) admits a function-solution f¢ with initial data Py.

2) If Py belongs to LP for any p > 1, then for any t > 0, for any couple a = (a1, ap) € N2,
there exists a constant Cf , such that the following inequality holds for all ¢ € C* (RZ) with
compact support

/ Dotp (v) PF (dv)
RQ

< Calloll (3.6)

where 0, denotes the partial derivative aaaa1+a2 . Consequently, the function-solution f¢

1g,0%2z,

is infinitely differentiable on R? and is given by:

(o) = [ Bf(w) < d
R2

where Pf is the Fourier transform of Pf.

We want to state the convergence of the function-solutions f¢ of the Boltzmann equation
(BE?) when the grazing collisions prevail.
Thanks to the convergence of measure-solutions (P );>o of the Boltzmann equation to the

measure-solution (P;);>o of the Landau equation (see Theorem 3.7), the sequence (Pt5> .
Z £>

is pointwise convergent on R? to the Fourier transform B of P,, for any ¢t > 0.



Thanks to Theorem 3.8, if we prove that the constants Cj, are uniformly bounded in
by a constant C, for any o € N?, using the Lebesgue theorem, we easily deduce that the
function-solutions f¢ (t,v) (and its derivatives) of the Boltzmann equation converge as €
goes to 0 to the function-solution f(t,v) fR2 Pt e!<v>dz (respectively, its derivatives)
of the Landau equation for any v € ]R2 and ¢t > 0. Then, the theorem will be proved.

4 The proof of Theorem 1.1

We assume from now without restriction that € € (0,1/2].

To state that the constants Cf , appearing in (3.6) are uniformly bounded in €, we have to
study the proof of Theorem 3.8. Fournier, [7], proved the existence of function-solutions
by the mean of a nonlinear stochastic differential equation giving a pathwise version of the
probabilistic interpretation.

4.1 The Pathwise approach

Let € > 0 be fixed, Py be a probability measure with a finite 2-order moment and 3 satisfy
Assumption (A).

Let us consider two probability spaces to highlight the nonlinearity of the equation : the first
one is the abstract space (2, F,{F;}iecp0,r, P) and the second one is ([0, 1], B([0,1]), da).
The processes on ([0, 1], B([0, 1]),da) will be called a-processes, the expectation under do
will be denoted by E, and the laws by L.

On (2, F, P) we consider a Poisson measure N°¢ (df, da, dt) on [—7, 7] x [0, 1] x [0, 7] with in-
tensity measure v¢ (df, do, dt) = B° () dfdadt and with compensated measure N¢ (d6, do, dt).

Theorem 4.1 (see [7] Theorem 2.8) Let Vi be a random variable with distribution P.
There ezxists a couple of processes (VE,W¢) on Q x [0,1] satisfying the nonlinear stochastic
differential equation (SDEF):

Ve = V0+///_m )(VE. — We_(a))N* (ds, de, ) —bf// (VE — WE_(a)) dods

with L (V*) =
Moreover E[ sup |Vt | | = E,[ sup |W{|%] < co. There is uniqueness in law of P2,
0<t<T 0<t<T

Corollary 4.2 Thanks to It6’s formula, the measure P is also a solution of the martingale
problem (M P*). Consequently, (Pf),s, is a measure-solution of the Boltzmann equation
for Mazwellian molecules. B

Moreover we easily prove (see [13] Section 3.3):

Lemma 4.3 Assume that Vj is a random vector in R? belonging to LP for any p > 1. Then
for any T > 0, p > 1, there exists a constant K, independent of € such that

E[ sup |VF|P] = Eol sup W] < K, (4.1)
0<t<T 0<t<T

Using the Malliavin calculus for a stochastic differential equation driven by a Poisson pro-
cess, Fournier, [7], proved that each time-marginal Pf satisfies (3.6) for any ¢ > 0 and the
coeflicients C§ , depend on the Malliavin’s derivatives of V*. Consequently, to control C§
we have to estimate the Malliavin’s derivatives.



4.2 Some recalls on the Malliavin calculus

The Malliavin calculus in the case of a stochastic differential equation driven by a Poisson
process, also called the stochastic calculus of variations, has been adapted to the case of the
Boltzmann equation by Graham and Méléard, [10], and Fournier, [7], from the arguments
of Bichteler, Gravereaux and Jacod in [2] and [3].

Let us consider a fixed time interval [0,7], T > 0. Let £ € (0, 3] be fixed.

Let us explain the main idea of this framework. We build a perturbation replacing 6 with
6+ < X,v® > in order to obtain a new family of random measures N5 (for A € A, A being
a neighborhood of 0 in R? and v* a well-chosen predictable function from Q x [0, 7] x
[—ebo,e00] x [0,1] to R2). Then, we build a family of probability measures P{ = G5 r-P°
on Q such that £ ((Vo,N5)|P5) = L((Vo,N?)|P?). By this way, we obtain a perturbed

process V§ satisfying £ (V;t|P§) = £ (VE|P?), and thus E [(p (Vit) g,t] = By (V§)],
for any Borel bounded function ¢ on R?. Differentiating this equality at A = 0, using an
L?-differentiate of Vx5 and Gf\,t’ we finally obtain an equality of the form

E ¢ (Vi).DV{] = —Elp (Vi) DGi)

which is the first step to satisfy the condition (3.6) of Theorem 3.8.

Consequently, the constant Cf , appearing in (3.6) depends on the moments of the deriva-
tives of V¥, of det™'(DV}f) and of the derivatives of DG%. Under some assumptions on
the initial data Py, Fournier, 7], obtained estimates of those moments. Consequently, we
still have to state that those moments are uniformly bounded in € to prove Theorem 1.1.
The derivatives of V¢ and DG% depend strongly on the random function v® introduced in
the perturbation. The function v® used by Fournier in [7] does not allow to obtain uni-
form bounds of the moments in ¢ € (0,1/2] (see Remark 4.5). So, we consider another
perturbation which we describe now.

4.3 The perturbation and the Malliavin derivatives

Let 6° be a nonnegative even function on [—¢c6y,c6y] defined by

€ _ 1—r |p|r+1 _ﬂ
5 (0) =ce' " |0 (1 590> (4.2)

with ¢ a constant independent of € such that ¢ < [06 (00 +r+2+ 1"2’"*1)] ~'. We notice
that
& (0) +[(6°) (0)] < 1.

Let ¢° be a R?-valued predictable function such that for any w,t,,e, the map 8 —
9 (w,1,0,a) is of class C' with [|g°|| o + [lg°[l,, < 1 where g is the derivative of g*
with respect to 6.

We then define the random function v* on Q x [0, 7] x [—&fy, €6p] x [0,1] by

v* (w,t,0,0) = ¢° (w,1,0, ) 6° () (4.3)

We denote v the derivative of v* with respect to 6.
Let A C B(0,1) be a neighborhood of 0 in R?. For A € A, we consider the following
perturbation

YoM w,t,0,a) =0+ (A v° (w,t,0,a)).



We notice that the map 6 — 7** (w, t, 0, ) is an increasing bijection from [—&f, efy] into
itself (for any £ < 3 and |0] < e, |[v*' (§)| < 1 thanks to the choice of c).

Recalling that 8 = B + By, we suppose that the Poisson measure N split into Ny + Ny,
where Ny and N; are independent Poisson measures on [0, 7] %[0, 1] x [—7, 7] with intensities
v(dO, da, ds) = Bo(0)dOdads and v1(d, da, ds) = £1(0)d0dads respectively. We denote by
Ny and N the associated compensated measures.

For A € A, we define Ng’)‘ = 75* (N§) the image measure of N§ by the map y5*: if
A C[0,T] x [0,1] x [—€by,eb] is a Borel set,

T 1 30
Ng’)‘ (w,A) = / / / I (3,7’5”\ (w,s,0,a) ,a) N§ (w,db,da, ds) .
0 0 —&lo

We consider the shift S¢* defined by
Voo S (w) = Vo (), Ni 0 5 (w) = Ng* (), and Nf o §°* (w) = Nf (w).

Proposition 4.4 Let G** be the Doléans-Dade martingale:
t 1 elo _
Gt =1 +/ / / G (YE’A (5,0, ) — 1) N¢ (df, dov, ds)
0 JO —&lo

where Y is the following predictable real valued function on Q x [0,T] x [—eBy, 6] x [0, 1]

5 (¥ (w,t,0,0))
B () '

YoM (w,s,0,a) = (1 + </\, v (w,t,0, a)>)

Then Gi’)‘ is positive for any t € [0,T].
Proof. Let us notice that

‘YE’)‘ (5,0, ) — 1‘ <M\ (0)

with d® (0) = 6°(6) + |6 (0)] + 7‘2’"_1%'@. According to Appendix Lemma 6.2, d® €

ﬂ LP (5 (9) df) with moments uniformly bounded in e. Consequently, G** is well defined

andlf
MA = 1+/// Y“sea)—1) € (df, da, ds)
—ET

then (see Jacod, Shiryaev, [15] p. 59),
Gt = MU T (1AM ) e AN
s<t

Moreover, since ¢ < 1/2, for |0| < €6,

1
Yo (s,0,a) — 1‘ < df(9) < 5096 [0 +7+2 472" 1]
< 1/2

thanks to the choice of ¢ (see (4.2)). Thus, the jumps of M** are greater than —1/2 which
implies that Gf”\ is positive. m



Let P be the probability measure defined by P** = G%)‘.PE. Using the Girsanov the-

orem for random measures, we notice that P** o (SE”\)*1 = P¢ (for more details see [7]
Proposition 3.7). We consider now the perturbed process Ve = V¢ o §5*. Following
Fournier, [7] Section 3, and Appendix Lemma 6.2, we notice that V** and G** belong to
LP for any p > 1 with bounded moments in €, and they are differentiable at A = 0. We give
the expressions of their derivatives:

- the derivative of G°* at A\ = 0 is the following random vector in R?

t 1 £0g € ~
DGE = / / / (UE' (5,0,a) — TM) NE (8, dav, ds)
0 0 —ebo 9

- the derivative of V¢ is a 2 x 2 matrix which satisfies the equation
be t t pl pem B
pvi = - / DVEds + / / / A(6)DVE. N*(db, da, ds) (4.4)
0 0 JO J—em

t 1 €fo
v [ ] O - W (@) (5,6,0))" N 6, s ds)
0 JO —&bo
which can be also written
DV§ = M;.H: (4.5)

where M* is the following invertible Doléans-Dade martingale

3 1 t 1 Em B
mM—1-2 / Mcds + / / / A(0) M5 N* (d6, dav, ds) (4.6)
2 Jo 0o Jo Joen

and
t 1 )
Hi = /0 /O /_ o (M) M (I+ A0) P A" (0) (VE — WE (@) (v (s,0,@))* N§ (de,d:;z)s)

We want to state that the moments of the derivatives of V¢, of det™!(DV}) and of the
derivatives of DGj are uniformly bounded in €. We will just give here a detailed proof of
the term det~!(DV}?). We easily obtain the bounds for the two other terms studying the
construction of DG§ and of DV}®, using the definition (4.3) of v® and the bounds given in
Appendix Lemma, 6.2.

Remark 4.5 The derivatives of Vi° and of DG depend strongly on v®. The choice of v°
is important. The moments of DG§ are uniformly bounded in €, if there exists a positive
constant K, independent of € such that

ebo £ el 68(9) 2 &
[ (ror+io1+ ) mow <&,

The moments of DV)® are uniformly bounded in €, if there exists a positive constant Ko
independent of € such that

)
| #@som < K,

Nevertheless, the integral fosao 0¢(0)B5(60)d0 must not tend to 0 as € goes to 0. If not, the
variable DV converges to 0 in L? as ¢ tends to 0 (see Ezpression (4.4) of DVE) , and we
have no hope to obtain uniform bounds for the term det ' (DVY).

10



In the sequel, we will consider more precisely the perturbation v* defined by
v* (t,0,a) =g (Vi- — Wi (a), M,,0) 6" (6)
with for any z € R?, y € Ms (R)
90,90 = @O (T+40)7") 67 ¢0,0)
((z,y,0) = h(A"(O)z)k(I+A0)k(y)

where ¢ is defined by (4.2) and the functions h and k satisfy the following assumptions:
~1
- h is the function from R? to (0, 1] defined by h(z) = (1 + \ac|2> ,

- k is a function from My (R) to [0,1] such that k£ (y) = 0 if and only if dety = 0 and

such that the map
—1\* .
(y 1) k(y) if dety #0
v { 0 if dety =0 (48)

is of class Cp° from My (R) to itself.
Consequently, the process H¢ introduced in (4.5) writes

= [ [ ey s —ws @ os) ]
xC (VE — WE (o), ME_,0) &° (6) NE (dO, dev, ds)

with for any = € R?,
D(2.0)= (I +A0)" (4 0)2) (4 0)2) (T +40)")".

4.4 Study of det ' (DVY)

Since the derivative of V° can be written as DV = M;.H; for any ¢t > 0, we study
independently the term M; and the term Hj.

Theorem 4.6 Assume (A) and Py € Np<ool?. For every t > 0, (det M§)™" admits mo-
ments of all orders uniformly in €.

Proof. By [7] Theorem 3.20, M is invertible and its inverse (M;)~! satisfies the equation

(M)t = I- E Mf Lds —/ / (ME)™H (I + A(0))" A (0) N* (b, dav, ds)
+ / / (Mj,)’lA(e) (I+ A(0))"1A(6) 5° () dOdads (4.9)
0 JO —Em
with 0
(I+A(9)) A(G) COZI;I-I-l ( ! _01 )
and

AO) (I +A0) A(0) = 52 ( —sing 1_cosa>

cos@+1\ cos@—1 —sinf

11



Since [ 64 () df < oo, the sequence (b°),., is bounded.
We notice that,

T/ |sinf] \* . B 2/” |sined| \?
/_m (cosH—I—l p(6)db = _x \cosegd +1 p(0)do
|sin 6|
cosef+1

For any € € (0, 1], the function § — B () is continuous on [—m, 7] \ {0} and for €

small enough, C|Osslzgi|1 < &6.

ing| \? .
Consequently, the sequence (f (Cfsejll) B¢ () d9> ce(01/2 is bounded for any p > 2.

Using the same arguments, we notice that the integrals

T (sin26 + |sinf (1 — cos0)|\* . o [T (sin’ef + |sined (1 — cosed)|\”
/_M( cosf+1 ) B (0)do =e /_ﬁ( cosef + 1 ) A (6)db

are uniformly bounded in ¢, € € (0, %], for any p > 1.
Then, using usual estimates, Gronwall’s Lemma in (4.9), we easily deduce that for any
p > 1, there exists a constant K, (independent of ¢) such that Ve € (0, %],

E[(MF) "] < Kp.
Thus, (det M)~ is uniformly bounded in ¢ in L? for any ¢ > 0. m

Theorem 4.7 Assume that (A) is satisfied and Vj € I’;le. For every t > 0, (det Hf)™!
p>

admits moments of all orders uniformly in c.

Lemma 4.8 The map (,t,Y) — L((VF,Y)) is weakly continuous on [0, 1] x [0,T] x

{Y e R : Y| =1} where P} = L (V) is the measure-solution of the Landau equation at
time t.

Proof. Let (ep,tn, Yn) be a sequence such that (e, tp, Yn) = (e,t,Y) in [0, 3] x [0, 7] x
n—oo

{vy eR?:|Y|=1}.

Let 9 € C (R) and we define ¢y on R? of class CZ by v — 9y (v) = ¢ ({v,Y)). We

consider the sequence

dn = E [y (VF) — vy, (Vi)].

We want to state that d, — 0 as n goes to +o0.
Let (Z', Z?) be the canonical process on Dy x Dp. Let us define P = £ (V").

If £ > 0: Since the family of time marginal (Pt’sn”)n>0 of the probability measure P*” is a
solution of (2.3), we notice that : -

t
di = Bly (%) ~ by, (W) + | Bpeap- [K37 (2}, 22)] ds

tn
+/ (EPE®P€ [K;spsy (ZslaZsQ)] — Epengpen [K;gf (ZSI’ZE)]) ds
0

Since v is globally Lipschitz, obviously A, tends to 0 as n goes to +oc.

12



We rewrite the term C), under the form:
tn
Cn = /0 (Brears [KpY (23,22)| = Breagpe K320 (21,22)] ) ds
tn
_ / (Bpeope KX (21,2)] = Epengpen KX (71,22)]) ds
0
" vy —v
-|—/ EP5n®P5n |:K/35Y Yn (Z;,Zg)] ds +/
0 0
We easily prove the convergence of the law P» ® P» to P ® P® when n goes to +00.

For any ¢ € C2 (R), € > 0 fixed, the function (v,v.) —> Kg’s (v,v4) is continuous and a
simple computation shows that for any v, v* € R?

tn

Epengpen [K}f!ﬁm (2, Z?)] ds

‘K(gft (’U,’U*)

<C|¢"|| (/ 025 (6) d9> o = vul? + (6] ]| '] o v — vs] (4.10)

Using the bounds (4.1) of the moment of V*, we deduce that B, and C,, converge to 0 as

n goes to +00. So d,, — 0 when n tends to +o0.

Thus the function (¢,t,Y) — £ ((V,Y)) is weakly continuous on (0, 3]x[0, T]|x{Y € R? : |Y| = 1}.
Ife =0: As (Pti”)n>0 and (PY) +>o are measure-solutions of the Boltzmann equation and

of the Landau equation respectively, we rewrite d,:

t

d = Bly (%)~ 0+ | Frogps [17 (2, 27)] s

+ /Otn (Browpo L% (2),22)| = Bpeeoren |[Kii (23, 22)] ) ds
= A, +B,+C,

As in the previous case, we divide the term CJ, into three parts

tn
C;L = A (EP0®P0 |:L¢Y (Z;,Z?)] — Epsn®Pgn [Kggzn (Zsl’ZSQ)]> ds

tn

= | Epogpo [LV (21, 22) - K2, (21, 72)] ds +
0

tn

Epsn®psn [K/;{}g;_wm (ZSI,Z?)] ds

0

tn
4 [ (Brosro [Kf2 (21 20)] - Breaoes [K32 (21,22)]) s
0
We notice that for any ¢ € CZ (R), v,v, € R?

L7 (0,0.) < O ([|¢"]| o [0 = 0l + [[ ¢ g I0 = v4])

Using the same arguments as above, the convergence of the Boltzmann kernel to the Landau
kernel and the convergence of measure-solutions of the Boltzmann equation to the mea-
sure solution of the Landau equation, we obtain the convergence of d, to 0 as n — 4oc.
Consequently, £ ((Vi", Yy)) = L (V2 Y)).
n—oo
Finally, the map (e,t,Y) — £ ((V£,Y)) is weakly continuous on [0, 3]x[0, T]x{Y € R? : |Y| = 1}.
]
We now state a technical lemma of nondegeneration of the law of V*:

13



Lemma 4.9 Assume that (A) is satisfied, Vo € Npcoo L’ and E[Vy] = 0. Let ty > 0 be
fized. There exists n > 0, ¢ > 0 and &€ > 0 (depending on ty) such that for any e € [0, %],
for any t € [to,T] and for any X, Y € R? with |Y| =1,

P((VF = XY >0 |V <€) > q
where L(V) is the solution of the Landau equation at time t.

Proof. Fournier ([7] Lemma 3.22) proved this Lemma for any fixed € > 0. So we study
step by step his proof to state that 1, ¢ and ¢ do not depend of ¢.

Let us notice that it is enough to show that there exists n > 0, ¢ > 0 such that for any
t € [to, T, for any € > 0 and for any X,Y € R? with Y| =1,

P(VF-XY) >n) >2q

Indeed, since sup,sq E [SUPogth \%5 |2] < K, using Bienayme-Tchebichev’s inequality,

there exists & > 0 such that P <|Vf\2 < f) > 1 — ¢ and £ does not depend of ¢.

Stepl: Let t > typ, € > 0 and |Y| = 1 be fixed. The distribution of V* admits a density
with respect to the Lebesgue measure, hence the distribution of (V,£,Y) has a density on
R. Using the conservation of the momentum, we notice that £ ((V£,Y)) = E ((Vo,Y)) = 0.
Consequently, there exists 1 (t,,Y) > 0 and ¢ (t,£,Y) > 0 such that

P ((V;,Y) > /(e 1, Y)) > 2q(e,4,Y) and P ((Vf,Y) < - n(e,t,Y)) > 2q(e,4,Y)

Step2: Using Lemma 4.8 and Portemanteau’s Theorem, for any ¢ € [ty, T'], for any ¢ € [0, %]
and Y € R? with |Y| = 1, there is a neighborhood V (g,¢,Y) of (e,t,Y) such that for any

PV Y) > Vn(e:t,Y)) > 2 (e.1,Y)

We consider a finite covering UY, V (g;, t;, V) of the compact set [0, 5] x[to, T]x{Y € R? : [Y| = 1}.
If we define n = inf;<n 7 (€;,,Y;) and ¢ = infi< v q (&;,1;,Y;), we notice that

P{VE,Y) >v/n) >2q
for any (,t,Y) € [0, 3] x [to, T] x {Y e R2 : |[Y| = 1}.
In the same way, P ((VF,Y) < —/n) > 2q for any t € [to,T] and Y € R? with [Y| = 1.
Step3: Let X € R?, t € [to,T], € > 0 and |Y| =1 be fixed. If (X,Y) <0,
P((Vf = X,Y)? > n) > P((VZ,Y) > /i) > 2
and if (X,Y) > 0,
P(<Vtg _X3Y>2 > 77) Z P(<Vt57Y> < _\/ﬁ) > 2q

The lemma, is proved. =

Proof. (Theorem 4.7)
We fix ¢y > 0, and we prove the theorem for every ¢ > ¢y which suffices.

14



We choose k such that k (y) = 1 as soon as |[det y| > do with dy = inf 5/<4, [det (I + A (0))| >
0.
First of all, we prove that (det (F*HF)) ' belongs to LP uniformly in ¢ for any p > 1 where
F¢ is the random variable defined by

9\ —1

op) }

e __ 1 €2 € e y-1)"
Fe= sup { (1 + (v +£)) x (k ) |[(mz) ™)
the operator norm of ((Mj,)_l)* and ¢ defined by Lemma 4.9.

1\ * 2
((mz)™)
To this aim, using Lemma 6.1, we estimate the quantity for p > 2

with

op

E = E [/ |X|P exp (—X* F*H: X) dX]
XeR?
o
= / pPE [exp (—p*F¢ x Y*H;Y)]| dYdp
p=0J|Y|=1
Thanks to Lemma 4.9, we can state (see the proof of [7] Theorem 3.24) that for p > 0,
t>tpand Y € R? with |Y] =1,

£6
B [exp (=pF* x Y*H{Y)] < exp (—q (t—t) [ (1-0) 55 6) de)
0

with 7 independent of ¢ issue from Lemma 4.9. Thus, there exists a constant K > 0
(independent of ¢) such that for any p > 1,¢ >ty and e > 0

E < K/ooppexp (—q (t —to) /600 (1 - e*PZHJE(G)) 85 (0) d(?) dp
0 0

Moreover, using Appendix Lemma 6.3, we can write

K Ve 9 +00 _ 4 gretl
E<— / P exp (_Klp ) dp + / p” exp (_K25 r+lp T+1> dp
Vi | Jo Ve

where K1 = qC (t — t9), K2 = qC2 (t — tp) are positive constants independent of £ (with
C; and Cs constants defined in Lemma 6.3), and k* = 2(T+2)00_(T+1)E_2/c.

In the following computations, we observe that the choice of the random function v*, and
consequently of ¢¢, is really important. It is the main technical difficulty of the proof of
Theorem 1.1.

Let us study the first term.

We notice that k° —0> 400, thus we can write for € small enough
E—r

Vi Vi
/ pPexp (—K1p°)dp < 1 +/ p ' exp (—K1p%) dp
0 1

IN

1+ [ pPexp(—Kip)dp
1

A
Q
=
S|
=
+
=
™
SN—r
bS]
]
"
il
|
=
o
\(D

with Cg, p a positive constant independent of €. Consequently, this integral is uniformly
bounded in ¢, ¢ € (0, 3].
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Let us now study the second term

+oo 4 2T

PP exp (—ng*rﬂp T:L}) dp.

Ve
4
We notice that Koe I — +00 and k* — 400 when ¢ tends to 0. Let us recall that
4 r—1
r € (1,3), then for any g > 1, for any € > 0, p?exp (—ng_meTTl) — 0 as p goes to
+o00. Consequently, there exists g > 0 such that for any € < g¢, for any p > Vk¢,

4 r—1
PP exp (—Kzs’mfm) <p?

and
+oo __4 gr-1 too 9
PP exp (—K28 T+ p m) dp < / p “dp
Vi

(k5)71/2

Ve

IN

which implies that
+o0

Ve
We then deduce that for any p > 1 there exists K, independent of € such that

PP exp (—K2€7$p2%) dp — 0.

e—0

E [/ | X|P exp (—X*FCH:X) dX] <K,
XeR?

-1
We conclude that for any ¢ > to, (det FEHF) ™" = ((FE)2 det Hf) belongs to LP uniformly
in ¢ for any p > 1.
Moreover, it is possible to choose k such that F* < F} x F5 with

1) * 2\~
(7))
op

The random variable F} has moments of all orders independent of ¢ thanks to (4.1). From
the definition (4.6) of M*, we easily prove that the moment of supycfo 1 |Mf| are uniformly

bounded in €. So we obtain that F5 has the same property thanks to Theorem 4.6 and the
following estimate (see the proof of [7] Theorem 3.24) ,

1
F{ = sup (1 + —|VEP + é) and F5 = sup (k (M?)
o1\ 4 4 [0.7]

€ 18 e\—1 2
F§ < sup (1+|Ms| ) X sup‘(Ms) ‘ .
0.7] 0,7]

Thus, for any p > 2, there exists C, > 0 such that for any ¢ € (0, 5],

E[ldet Hf| ") = B [|F*” x |det (F*H;)| "]
1 1
< B[IF”|" B |laet (F2H;) 7]
< Cp < oo.

The theorem 4.7 is proved. m

Consequently, according to Theorem 4.7 and Theorem 4.6, for any p > 1 there exists a
constant C), such that for any ¢ > 0

E[|det(DV)| P] < Cp.

Then, Theorem 1.1 on the convergence of the function-solutions is proved.
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5 Some numerical results

Guérin and Méléard, [13] Section 4, built a Monte-Carlo algorithm of simulation by a
conservative particle method following the asymptotic of grazing collisions. In this section,
we will use this algorithm to simulate the convergence of the function-solutions of the
Boltzmann equation to the function-solution of the Landau equation.
Let us consider an initial measure

Py = % (-1 +1,-1)

and we consider the following approximation 3¢ of the grazing collisions

1
€ —
p (0) 27ed Sin(255)2H55|§|S7T'

Let € > 0 be fixed. We define (Vg’ln, e VE’"") the n-particles system in (]RQ)R introduced
by Guérin and Méléard, [13], which is a (R?)"-valued pure-jump Markov process with
generator defined for ¢ € C,((R?)") by

: Z /07r %(45 (0" + ;. A(0) (vi — vj) + ;. A(0)(vj — vi)) — ¢(Un))ﬁ€(9)d9'

n—1 4
1<i,j<n

Here v" = (vi,...,v,) denotes the generic point of (R?)" and e; : h € R? — e;.h =
(0,...,0,h,0,...,0) € (R?)" with h at the i-th place.

In [13] Theorem 4.1, it is proved that the empirical measure p° = 2 3% | §ye.in on P (Dp)
associated with the system converges to the measure-solution P of the Landau equation
when 7 tends to +oo and e tends to 0. Then, for any ¢ € C, (Dr),

1 - £,9M
2t (V) e JRICHC 5.1)

Since the algorithm conserves the momentum and kinetic energy, we firstly simulate the
convergence of the fourth-order moments of Boltzmann equations to the one of the Lan-
dau equation. We consider n = 50000 particles and each result is the average over 100
experiences.

fourth—order moment

1/epsilon

Figure 1. Evolution in 1/¢ of the fourth-order moment of the Boltzmann equation.
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The choice of € = 0.1 seems to be reasonable to describe the Landau behaviour.
Thus, we fix now ¢ = 0.1 and we observe the behaviour in time of the solution of the

Landau equation.
Let us explain how we simulate the function-solution from the particle system.
Let ¢t > 0 be fixed. Thanks to the convergence of the empirical measure p®, the function

9ph, ON R? defined by

n

Z ]Iz1<V,f’1m <z1+h1 ']I£E2<Vf,’2m <za+h2
i=1

1
7= (21,22) = G, (1) =

1
// P, (dv) as n — 400 and € — 0 for
(z1,21+h1]x(z2,22+h2]

converges to Fj, p, (x) =

’ hiho
any step hi, hy > 0. Moreover, the function F},, 5, (x) is pointwise convergent to the density
f (t,z) of the probability measure P; on R? when hy,hy — 0. Thus, the function gZ’th is

an estimator of the function-solution f of the Landau equation.

For the simulations, we consider 500000 particles and we choose the step h; = hy = 0.1.
Let us observe the evolution in time of the function-solution of the Landau equation:

t=0.001 t=0.01
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Figure 2. Evolution in time of the solution of the Landau equation.
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We observe the convergence of the function-solution to the following Maxwellian function
when the time goes to infinity

which is the equilibrium of the Landau equation (see [19]).

Let us now observe the behaviour of the entropy. The entropy of the solution f of the
Landau equation is defined by

H(t)= [ Ft)log(f (L)

Using the estimator g,i’ﬁm of f, we simulate the entropy and we observe the decay in time
of H:

-0.1

-0.5 7

-0.9 7

-217]

-25 7

-29 T T T T T T T T T T T T T T T T T T
Figure 3. Evolution in time of the entropy.

6 Appendix
We first mention a useful lemma proved in [2], page 92.

Lemma 6.1 For any p > 1, there exists a constant C, such that for any 2 X 2 symmetric
positive matriz A,

(det A)? < C, |X |2 e X" AX X,
XeR2

Let us now give some estimates on the function ¢° introduced in (4.3) and defined on
[—€bo, €bo] by

§¢€ (0) _ celfr |9|r+1 (1 . ﬂ)

690

with ¢ < [96 (7"2T_1 +r+2+ 90)]_1.
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Lemma 6.2 Assume that ¢ € (0, %]
-6 € gle (B5 (0) db) with moments uniformly bounded in .
p>

- Let d° (0) = & () + [(5°) ()] + 7«27"—1‘5751’). Then d* € 0 LP (65 (0) d6) with moments
pz

uniformly bounded in €.

Proof. Let us recall that 3§ (§) = e 28, (6/¢) = koe" > |6] " Ijgj<cq,- Thanks to the choice
of the constant ¢, the function §° is bounded by 1. Then, it is enough to estimate its first

moment:
30
ckoe 2 / 0do
0

Ck()eg
- 2

IA

)
/0 5 (6) 55 (6) do

Then the first point of the Lemma is proved.
We notice that the function d¢ is also bounded by 1. So we just have to study the integral

fogeo (d° (8))% 55 () d. The function d° is the sum of three terms. We already know that
0560 (8¢ ())? Bt (6) df is uniformly bounded in e. We estimate now the two other terms:

- Study of the second term:

@) () = <UDy (1 . i) — S g i € [0,e600].

gr—1 €0y €0
Thus
€bo 9 £6o 0 2
5 (0)) BE(0)do < kocte (D) r+1)4+—) 67do
0
0 0 690
< 2k0029T+1r2+47T+4_
- 0 r+3

- Study of the third term:

NCORTE

IN

€bo
Phoe~ D) / 0" do
0
00 kg
r+1 °
The lemma, is proved. =

Lemma 6.3 Letr € (1,3) and x > 0. Let k* = 2T+29(;(r+1)6_2/c.
a) For any x > k® there exists a constant C1 > 0 independent of ¢ such that

r—1

0 . 4
/ (1 _ e—m& (9)) /88 (9) do > Clg_ T+l pr+l
0

b) For any x < k® there exists a constant Ca > 0 independent of € such that

) ,
/ (1 _eal (9)) 5 (6) d8 > Oy
0
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Proof. Since 3§ () = koe" > |0]™" I jgj<cq,, We write

€fo o
I(e,z) = /0 (1 — e*ws(a)) B; (6) do = k0€r3/0 (1 — e*zJE(a)) 0 "do
<0

> kog'r—3/ 2 (1 _6—155(9)> 07 "do
0

with 6% () = $e'~707+1. We notice that k* = 1/6° ().
We use in the proof the following inequality:

ifxe[o,l],l—e—wzg.

a) The function 6° is increasing and its inverse function is

N —1 92er—1 1/(r+1)
((55) (y) = ( y) for y > 0.

Cc

- N1
Ifzx > 1/65(%), we notice that (65) (z71) < %, thus
(5) " (=) -
I(e,z) > koe™™ / (1= e ®) o=rap.
0

. . N1
As ¢° is an increasing function, z6° (#) < 1 for any 0 € [O, (55) (x_l)]. Thus, we

conclude

Ko rsy / e )58 (0)0~"de
0

I(ez) 2 5
(5) (=)
> @e—%/ 0do
4 0
Eoc (2)31 -
> — (= g rHlprHL,
- 8 c

b) If z < 1/5°(¥L), then we have clearly 26° (6) < 1 and

<fg

I(e,z) > %6’_335/ * 5 (0)07"de
0
g
> o2y / " 0do
4 0
koch?3
> .
= 32 "
[ |
Acknowledgments

I thank Sylvie Méléard for many helpful discussions during the preparation of this work.

21



References

[1]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

Arsenev, A.A.; Buryak, O.E. (1991), On the connection between a solution of the
Boltzmann equation and a solution of the Landau-Fokker- Planck equation, Math. USSR
Sbornik 69: 465-478.

K. Bichteler, J.B. Gravelreaux, J. Jacod (1987), Malliavin calculus for processes with
jumps, Theory and Application of stochastic Processes, Gordon and Breach, New York.

K. Bichteler, J. Jacod (1983), Cacul de Malliavin pour les diffusions avec sauts, exis-
tence d’une densité pour le cas unidimensionel, Séminaire de probabilités X VII, Lecture
Notes in Math. Springer Berlin 986: 132-157.

P. Degon, B. Lucquin-Desreux (1992), The Fokker-Planck asymptotics of the Boltz-
mann collision operator in the Coulomb case, Math. Mod. Meth. in App. Sc. 2: 167-182.

L. Desvillettes (1992), On asymptotics of the Boltzmann equation when the collisions
become grazing, Transp. Theory in Stat. Phys. 21: 259-276.

L. Desvillettes, C. Graham, S. Méléard (1999), Probabilistic interpretation and nu-
merical approximation of a Kac equation without cutoff, Stoch. Proc. and Appl. 84:
115-135.

N. Fournier (2000), Ezistence and regularity study for two-dimensional Kac equation
without cutoff by a probabilistic approach, Ann. App. Proba. 10: 434-462.

N. Fournier, S. Méléard (2002), A stochastic particle numerical method for 3D Boltz-
mann equations without cutoff, Mathematics of Computation 70: 583-604.

T. Goudon (1997), Sur l’équation de Boltzmann homogéne et sa relation avec l’équation
de Landau-Fokker-Planck: influence des collisions rasantes, C. R. Acad. Sci. Paris 324:
265-270.

C. Graham, S. Méléard (1999), Ezistence and regularity of a solution of a Kac equation
without cutoff using the stochastic calculus of variations, Comm. Math. Phys. 205:
551-569.

H. Guérin (2001), Solving Landau equation for some soft potentials through a proba-
bilistic approach, to appear in Ann. App. Prob.

H. Guérin (2002), Ezistence and regularity of a weak function-solution for some Landau
equations with a stochastic approach, to appear in Stoch. Proc. Appl.

H. Guérin, S. Méléard (2001), Convergence from Boltzmann to Landau processes with
soft potential and particle approzimation, prépublication de I'univ. Paris-10 01/20.

J. Horowitz, R.L. Karandikar (1990), Martingale problem associated with the Boltz-
mann equation, Seminar on Stochastic Processes, 1989 (E. Cinlar, K.L. Chung, R.K.
Getoor, eds.), Birkhduser, Boston.

J. Jacod, A. N. Shiryaev (1987), Limit theorems for stochastic processes, Springer.

E.M. Lifchitz, L.P. Pitaevskii (1981), Physical kinetics - Course in theorical physics,
Pergamon Oxford 10.

22



[17] D. Nualart (1995), The Malliavin calculus and related topics, Springer-Verlag.

[18] H. Tanaka (1978), Probabilistic treatment of the Boltzmann equation of Mazwellian
molecules, Z. Wahrsch. Verw. Geb. 46: 67-105.

[19] C. Villani (1998), On the spatially homogeneous Landau equation for Mazwellian
molecules, Math. Meth. Mod. Appl. Sci., 8: 957-983.

[20] C. Villani (1998), On a new class of weak solutions to the spatially homogeneous Boltz-
mann and Landau equations, Arch. Rat. Mech. Anal. 143: 273-307.

23



