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(1,2) (nathalie.cheze@u-paris10.fr)

Jean-Michel Poggi
(2,3) (jean-michel.poggi@math.u-psud.fr)

Bruno Portier
(2,3) (bruno.portier@math.u-psud.fr)
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1. Introduction

Let us consider nonlinear additive regression models of the form

Zn =
d∑
i=1

f i(Xi
n) + µ + εn (1.1)

where Z is a real-valued dependent variable, X1, . . . , Xd are the ex-
planatory variables, µ is a constant and ε is an unobservable noise.

Such nonlinear additive regression models have received considerable
attention and have been widely used following the work of (Breiman
and Friedman, 1985; Buja et al., 1989; Hastie and Tibshirani, 1990).
Such models are particularly attractive. On one hand, with respect
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to the classical linear model Zn =
∑d
i=1 θ

iXi
n + µ + εn, consider-

able additional flexibility is given by the allowed nonlinear effect of
each explanatory variable without losing ease of interpretation. On
the other hand, with respect to the fully nonparametric model Zn =
Ψ(X1

n, . . . , X
d
n) + εn, the separable model (1.1) is more explicit and

can be estimated without suffering from the so-called curse of dimen-
sionality (Stone, 1985; Stone, 1986) which is the main drawback of the
unstructured nonparametric regression model.

Of course in model (1.1), functions f i are identifiable only up to
an additive constant. Therefore to estimate each of them, the usual
identifiability constraints E[f i(Xi)] = 0 for i = 1, . . . , d, are assumed.
The constant µ is consistently estimated by the mean of the (Zn) with
the parametric convergence rate. So, without loss of generality, µ is set
equal to zero in the sequel of the paper.

An iterative estimation procedure known as the back-fitting algo-
rithm is widely used for estimating functions f i and is implemented
in various scientific softwares (see for example Venables and Ripley,
1994). (Hastie and Tibshirani, 1990) have illustrated the efficiency of
this procedure for many practical examples. The convergence results
of this kind of estimators are difficult to obtain, see (Buja et al.,
1989; Härdle and Hall, 1993; Opsomer and Ruppert, 1997) and more
recently, (Mammen et al., 1999) for a decisive contribution.

An alternative way to back-fitting, based on marginal integration,
has been independently introduced by (Auestad and Tjøstheim, 1994;
Newey, 1994; Linton and Nielsen, 1995). An optimization interpretation
connecting the two kinds of estimation methods is given in (Nielsen and
Linton, 1998). By comparing the two estimation methods, focusing
on finite sample properties, (Sperlich et al., 1999) found many simi-
larities between associated methodologies and statistical performance,
highlighting the value of the integration method in various situations,
especially when the estimation of functions f i is mainly concerned
instead of the full dimensional regression function (see also Fan et al.,
1998, p. 945).

In this paper we focus on the marginal integration method which is
based on the following simple remark. Let us set

m(x) = E

[
Z/(X1, . . . , Xd) = x

]
(1.2)

where x = (x1, . . . , xd).
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Since for a nonlinear additive model, m(x) =
∑d
i=1 f

i(xi), then we have

f i(xi) = E

[
m
(
X1, . . . , Xi−1, xi , X i+1, . . . , Xd

)]
(1.3)

=
∫
R
d−1

m(x) pi(xi) dxi (1.4)

where xi is the vector (x1, . . . , xi−1, xi+1, . . . , xd) and pi denotes the
probability density function of the vector Xi.
Moreover, if we consider a weight function w satisfying E

[
w(Xi)

]
= 1,

it is also possible to obtain f i(xi), but up to an additive constant
independent of xi. Indeed, we have

E

[
w(Xi)m

(
X1, . . . , Xi−1, xi , X i+1, . . . , Xd

)]
= f i(xi) + Cw (1.5)

In addition, if in integral (1.4) we replace pi by any given probability
density function q on Rd−1, then we derive a similar result:∫

m(x) q(xi) dxi = f i(xi) + Cq (1.6)

In the existing literature, two ways are taken to estimate f i(xi): to use a
strong law of large numbers to estimate the expectation in (1.3) or (1.5),
or to directly estimate the integral in (1.4) or (1.6) by replacing the
unknown functions by their corresponding nonparametric estimators.

Let us present previous work in more details organizing the discus-
sion around three different approaches, all involving marginal integra-
tion. Let us also specify that, except when explicitely mentioned, the re-
sults have been established when (X1

n, . . . , X
d
n)n≥1 are i.i.d. and essen-

tially concern pointwise central limit theorem with the one-dimensional
nonparametric convergence rate.

Starting from (1.6), (Linton and Nielsen, 1995) introduce the esti-
mator

∫
m̂n(x) q(xi) dxi where m̂n is a kernel based estimator of m.

For the case d = 2, they prove a pointwise central limit theorem. More
recently, (Camlong, 1999; Camlong-Viot et al., 2000) establish asymp-
totic properties under mixing conditions: results of uniform almost sure
convergence and asymptotic normality are obtained, assuming that the
probability density function of (X1, . . . , Xd) is known.

To estimate f i(xi) from (1.3), (Linton and Härdle, 1996) consider the
estimator (1/n)

∑n
j=1 m̂n(X1

j , . . . , X
i−1
j , xi , X i+1

j , . . . , Xd
j ) and prove

a pointwise central limit theorem. (Linton, 1997) proposes and studies
an efficient estimator starting from the previous one.

Starting from (1.5), (Fan et al., 1998) establish the asymptotic nor-
mality and a multivariate central limit theorem for weighted estimators
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of the form (1/n)
∑n
j=1w(Xi

j) m̂n(X1
j , . . . , X

i−1
j , xi , X i+1

j , . . . , Xd
j ).

These results have been extended to nonlinear ARX models by (Masry
and Tjøstheim, 1997) using kernel based methods and by (Cai and
Masry, 1997) using local polynomials.

Another idea, used in this paper, is to start from (1.4) and define
what we call the global estimator of f i, replacing m and pi by their
corresponding kernel-based estimators.
The scope of this paper is to define and study partial and recombined
estimators deduced from the global one.
Indeed, by integrating m̂(x) over a domain D of Rd−1, instead of Rd−1,
we can define what we call a partial estimator of f i. In addition, by
partitioning Rd−1, we can build a family of partial estimators of f i.

From a non asymptotic perspective, what is the value of such an ap-
proach ? Two aspects are interesting. Firstly, the analysis of the model
additivity can be based on partial estimators used as data analysis
tools: the partial estimators examination can allow to diagnose and
localize the lack of additivity of the model. Secondly, the recomposition
of partial estimators using weights (for example, depending on xi and
the joint density of the explanatory variables) reflecting more closely
the quality of the estimation of the regression function m, leads to
define what we call in this paper recombined estimators. This strategy
can improve the performance for small to moderate sample sizes, which
is useful since the curse of dimensionality is not completely eliminated
using integration method as mentioned by (Nielsen and Linton, 1998).

The first part of the paper (Sections 2 and 3) introduces the partial
and recombined estimators with motivation, illustration by simulations
and case study dealing with ozone concentration in Paris area, focus-
ing on practical issues for analysis and prediction of time series using
nonlinear additive models.

The second part of the paper (Sections 4 and 5) deal with the-
oretical results from an asymptotic perspective. We provide almost
sure convergence results for the estimators previously introduced. A
multivariate central limit theorem is established for partial estimators
and an asymptotic test for partial additivity is derived. Proofs of the
main results are postponed to appendices.
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2. Partial and recombined estimators

2.1. Model and simulation framework

2.1.1. Notations
Let us consider the following additive model

Zn =
d∑
i=1

f i(Xi
n) + εn , n ∈ N (2.1)

where each function f i : R → R satisfies the identifiability hypothesis
E

[
f i(Xi)

]
= 0. The sequence of random vectors (X1

n, · · · , Xd
n)n≥1 is

strictly stationary and (εn)n≥1 is an unobservable noise.
Since each function f i plays the same role, without loss of generality,
we can rewrite model (2.1) under the form

Zn = f(Xn) + g(Yn) + εn (2.2)

where f is one of the f i and g the sum of the others, (Xn) one of the
(Xi

n) and (Yn) the vector of the others. Of course, functions f : R →
R and g : Rd−1 → R also satisfy the identifiability hypotheses, i.e.
E [f(X)] = 0 and E [g(Y )] = 0. The regression function m of (1.2) is
rewritten as m(x, y) = E

[
Z/(X,Y ) = (x, y)

]
.

To make the paper more readable, general material is formulated
using form (2.2) and we use form (2.1) when actual models are con-
cerned.

2.1.2. Simulated models
In this paper, simulations will illustrate step-by-step the behaviour of
the different proposed estimators. The material introduced here will be
useful for all the sequel of the section.

We consider two nonlinear additive models of the form (2.1), with d
equal to 2 or 3, well suited for illustration purposes since the difficulties
arising for large d using marginal integration method are well known.
These two models, denoted by (M1)ρ and (M2)ρ, are defined by

(M1)ρ : Zn = f1(X1
n) + f2(X2

n) + εn

(M2)ρ : Zn = f1(X1
n) + f2(X2

n) + f3(X3
n) + εn

where f1(x) = x2 − 1, f2(x) = x/2, f3(x) = |x |1/2 − E(
∣∣X3

∣∣1/2),
εn ∼ N

(
0 , 0.52

)
and (X1

n, X
2
n, X

3
n) ∼ N (0 , Γ) with Γ(j, j) = 1 and

Γ(j, k) = ρ for j 6= k. Functions f1, f2 and f3 satisfy the identifiability
constraint.
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These models are examined with ρ = 0.2 and ρ = 0.8, for moderate
sample sizes n = 200, 800 and 2000. The functions f i considered here,
have been previously examined by (Linton and Härdle, 1996).
For each model, we simulate 10 realizations of (X1

j , . . . , X
d
j , Zj)1≤j≤n

and then obtain 10 realizations of each f̂ in, denoted by
(
f̂
i(k)
n

)
1≤k≤10

.

The different estimators introduced below, involve some parameters
which are chosen for the simulations as follows. The kernels are direct
products of Gaussian densities and the bandwidth in the ith-direction
is of the form σ̂in

−α where α = 0.2 and σ̂i is an estimate of the standard
deviation of Xi.

2.2. Global estimator

2.2.1. Principle
Using the notations of model (2.2), let us recall the principle leading to
the global estimator based on marginal integration. Let us denote by pY

the probability density function of Y . Then, integrating the regression
function m with respect to pY leads to∫

m(x, y) pY (y) dy = f(x) + E [g(Y )] = f(x)

Then, starting from m̂n(x, y) and p̂Yn (y), two usual kernel-based esti-
mators of m(x, y) and pY (y) respectively, we derive, what we call the
global estimator of f(x). It is given by

f̂n(x) =
∫
m̂n(x, y) p̂Yn (y) dy (2.3)

REMARK 2.1. A slightly modified version of this global estimator
converges almost surely to f(x), as proved in Appendix D.

Using simulations, let us illustrate some well-known serious diffi-
culties arising when such a global estimator is used. Let us mention
that results obtained for the global estimator will only be used as a
reference to help the reader to visualize typical performance (for an
extensive study, see Sperlich et al., 1999).

2.2.2. Illustration
Let us examine two extreme situations: a model with two weakly de-
pendent explanatory variables, for a small sample size (Fig. 1, Model
(M1)0.2 with n = 200) and a model with three strongly dependent
explanatory variables, for a large sample size (Fig. 2, Model (M2)0.8

with n = 2000). To visualize bias and variance of the estimators,
Fig. 1 and Fig. 2 present four curves for each function f i: in dotted
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Figure 1. Global estimators for Model (M1)0.2 with n = 200.

Figure 2. Global estimators for Model (M2)0.8 with n = 2000.

line, function f i to be estimated, restricted to [−3 , 3] ; in solid line,
the mean of the f̂ i(k)

n , to reduce sampling effects, and, surrounding the
last curve, the curves f̂ i ± 2σ

f̂ i
where σ

f̂ i
is the standard deviation of(

f̂
i(k)
n

)
1≤k≤10

.

For Model (M2)0.8 the results are of bad quality even if n is quite
large (for n = 2000, see Fig. 2), especially outside the interval [−2 , 2].
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For Model (M1)0.2, the estimation is quite satisfactory as soon as
n = 200 (see Fig. 1). In other words, multiplying the sample size by
ten does not suffice to compensate the addition of one explanatory
variable and the switch from weak to strong dependence. This illus-
trates that estimation performances depend heavily on the dependence
of the explanatory variables and the number of them (see Nielsen and
Linton, 1998, p. 221).

In addition to evaluate estimation and prediction errors, we compute
two quadratic criteria, defined in Appendix E. The first one is the
estimation error criterion calculated for each function f i and denoted
by Sf i. Quantities Sf i allow to appreciate the quality of the estimation
of f i: the smaller Sf i, the better is the estimation. The second one is
the prediction error criterion, denoted by SZ. It estimates Var(ε) and
quantifies the quality of the prediction of Z: the closer to Var(ε) = 0.52,
the better is the prediction.

From Table VI of Appendix E, as expected the larger n, the better
are the convergence and prediction results (see quantities Sf i and SZ).
The larger the correlation, the slower is the convergence rate. The
results obtained for Models (M1)0.8 and (M2)0.8 are clearly less sat-
isfactory (for the same sample size) than the results for models (M1)0.2

and (M2)0.2 respectively. From d = 2 to d = 3 explanatory variables,
the performance are dramatically altered for the high correlation case,
but are of the same order of magnitude for the small correlation case.

2.3. Partial estimators

2.3.1. Principle
Using the notations of model (2.2), let us present the idea leading to
define what we call partial estimators. Let D be a compact set of
R
d−1 such that P [Y ∈ D] 6= 0. Then, integrating m(x, y) with respect

to pY (y) over D, instead of Rd−1, and normalizing the integral by
P [Y ∈ D], we obtain f(x) up to an additive constant, independent of
x. Indeed, we have:∫ 1D(y)

P [Y ∈ D]
m(x, y) pY (y) dy = f(x) + CD (2.4)

Then, replacing m and pY by their corresponding kernel-based estima-
tors m̂n(x, y) and p̂Yn (y), we define what we call a partial estimator
by: ∫ 1D(y)

P [Y ∈ D]
m̂n(x, y) p̂Yn (y) dy (2.5)
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REMARK 2.2. This estimator almost surely converges to f(x) + CD
(see Theorem 4.1 in Paragraph 4.3).

In order to build an “unbiased” version of the partial estimator (2.5),
we can use the following remark: since the constant CD does not depend
on x, we have for any given real x0,

CD =
∫ 1D(y)
P [Y ∈ D]

m(x0, y) pY (y) dy − f(x0) (2.6)

Therefore, using this relation combined with (2.5) and estimating f(x0)
by f̂n(x0) and P [Y ∈ D] by

∫
D p̂

Y
n (y) dy, an “unbiased” partial estima-

tor of function f is given by:

f̂ Dn (x) =
∫ 1D(y)∫
D p̂

Y
n (y)dy

(
m̂n(x, y)− m̂n(x0, y)

)
p̂Yn (y)dy + f̂n(x0) (2.7)

REMARK 2.3. As proved by Lemma A.1 (see Appendix A), when D
is a compact set of Rd−1, we have∫

D
p̂Yn (y) dy a.s.−→

n→∞
P [Y ∈ D] (2.8)

Therefore, combining the almost sure convergence result of (2.5) with
result (2.8), we derive that f̂ Dn (x) a.s.−→

n→∞
f(x), as soon as f̂n(x0) almost

surely converges to f(x0).

REMARK 2.4. This strategy to obtain “unbiased” partial estimator
depends on the choice of x0. An other way can also be used to obtain
constant CD: as E [f(X)] = 0, we infer from (2.4) that

CD =
∫ (∫ 1D(y)

P [Y ∈ D]
m(x, y) pY (y) dy

)
pX(x) dx (2.9)

where pX is the probability density function of X. Then, estimating the
integral leads to a non-localized estimation of the additive constant.
This alternative procedure can be useful when the actual data are far
from the realizations of an additive model.

Finally, let us mention that by partitioning Rd−1, we can define not
only one but a family of partial estimators of f , in order to recombine
them from a non-asymptotic perspective (see Paragraph 2.4). Let us be
a little bit more precise. Let D1, . . . ,Dq be a partition of Rd−1 such
that for any j, P [Y ∈ Dj ] 6= 0. Then, integrating over each Dj instead
of D, we can build q “unbiased” partial estimators of f(x), denoted by
f̂
Dj
n (x) and defined by (2.7), replacing D by Dj .
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The terminology of partial estimators comes from the following re-
construction property :

q∑
j=1

(∫
Dj
p̂Yn (y) dy

)
f̂
Dj
n (x) = f̂n(x) (2.10)

REMARK 2.5. More generally, for any given positive real numbers
(αj)1≤j≤q summing to 1,

∑q
j=1 αj f̂

Dj
n (x) is an estimator of f(x).

REMARK 2.6. The basic definition of partial estimators allows to
handle arbitrary complex domains Dj of Rd−1. We restrict our attention

on domains of the form Dj =
d−1
⊗
k=1

(aj,k , bj,k) for obvious computational

reasons. On one hand, this choice leads to simple evaluations of integrals
over Dj . On the other hand, another attractive feature of this choice,
of course more relevant for a real world problem, is that a partial esti-
mator associated with such a domain Dj has a simple interpretation in
terms of the initial variables taken separately instead of a complicated
one involving new variables, more difficult to interpret (for example,
linear combinations of the set of the covariables). The choice of the
thresholds (aj,k , bj,k) for a given k is based on the analysis of the kth
covariable. For simulations, we select those leading to the same number
of observations within each interval, for a prescribed small number of
intervals. For real world problems, more meaningful thresholds could
be derived from the knowledge of the case studied (see paragraph 3.2
for an example).

2.3.2. Illustration
Let us briefly consider a single sample generated from Model (M1)0.2

with n = 800. Fig. 3 displays the partial estimators of function f1

and contains six plots. At the top left, X2 versus X1: the horizontal
lines are defined by the four intervals Dj . At the top right, the four
partial estimators are superimposed. Each of the four plots located at
the bottom of the figure contains a partial estimator.

The intervals (Dj)1≤j≤4 defining the partial estimators of f1 are
chosen in such a way that the estimations of probabilities P

[
X2 ∈ Dj

]
are equal to 1/4. The additive constant defined in (2.6) is estimated by
taking x0 equal to 0.

The four partial estimators are close to each other and each of them
is as satisfactory than the global estimator.

Of course, from a practical point of view, the partial estimators
examination can allow to diagnose and localize the lack of additivity
of the modelized phenomenon. This point is illustrated in Section 3,
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Figure 3. Partial estimators of f1 for model (M1)0.2 with n = 800.

dedicated to air pollution analysis. In addition, partial estimators could
also be used to build a test for partial additivity (see Section 5).
Next, we shall see that, when the convenient model is additive, the
partial estimators can be used to improve the estimation for small to
moderate sample size, by defining what we call recombined estimators.

2.4. Recombined estimators

2.4.1. Motivation
The inspection of the partial estimators on a simple situation presented
below, suggests a new estimator based on a better way of taking the
joint distribution of the explanatory variables into account.

Let us consider a single sample generated from Model (M1)0.8 with
n = 800. Fig. 4 displays the global estimators of f1 and f2 and shows
that these functions are not well estimated except within [−1 , 1].

This unsatisfactory behaviour of the global estimators is explained
by the relatively small sample size and the strong dependence between
the explanatory variables. Since the variables X1 and X2 are strongly
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Figure 4. Global estimators for model (M1)0.8 with n = 800.

Figure 5. Model (M1)0.8 with n = 800. Explanatory variables X2 versus X1.

positively correlated, the observations are concentrated around the first
bisecting line (see Fig. 5). So, one cannot expect an estimate of m of
good quality far from this line. Then, the estimators of f1 and f2,
built by integrating m̂n with respect to the estimated marginal density
of X2 for f1 and of X1 for f2, are of good quality only within the
square [−1 , 1]× [−1 , 1].

This illustrates once again, one of the well-known limitations of
the marginal integration estimators for highly dependent explanatory
variables and moderate sample size.

Nevertheless, the inspection of the partial estimators of each func-
tion (see Fig. 6 for f1), leads to a more subtle diagnosis: each partial
estimator is globally not satisfactory but is of very good quality on a
proper domain.
For example, let us focus on the first partial estimator of f1 displayed
on the left of the second row of Fig. 6. This estimator behaves correctly
on the interval [−2 , 0.4] but is of very bad quality otherwise. This can
be explained by recalling that this partial estimator comes from the
integration of m̂n over the domain [−3 , −0.8] of X2, for which, as it
can be seen on the top left of Fig. 6, the observations of X1 are mainly
concentrated on [−2 , 0.4].
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Figure 6. Partial estimators of f1. Model (M1)0.8 with n = 800.

Therefore, as the global estimator of f1 is obtained by combining
linearly the four partial estimators, with equal weights and without
reference to the joint distribution of X1 and X2, the less accurate
partial estimators contaminate the sum. This phenomenon leads to an
unsatisfactory global estimator.
To improve the quality of the global estimator, a basic idea is to differ-
ently combine the partial estimators using weights reflecting the quality
of each of them.

2.4.2. Definition
Let us use the notations of model (2.2). Let us consider D1, . . . ,Dq a
partition of Rd−1 such that for any j, P [Y ∈ Dj ] 6= 0. Starting from q

partial estimators of f denoted by f̂
Dj
n and given by (2.7), we define

the estimator
∑q
j=1 αj(x) f̂ Djn (x) where αj(x) are data driven weights

such that
∑q
j=1 αj(x) = 1.

In order to improve the quality of the global estimator, we propose
to choose weights depending on the joint density of the explanatory
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variables as well as the location of the estimation point x. A convenient
choice is to set αj(x) = P [Y ∈ Dj |X = x], since the greater αj(x), the
better is (locally) the estimation of m̂n and then, the better is the
estimation of f̂ Djn (x).

The weights αj(x) are estimated by α̂j(x) defined by

α̂j(x) =
(∫
Dj
p̂XYn (x, y) dy

)/
p̂Xn (x)

where p̂XYn and p̂Xn are usual kernel-based estimators of pXY and pX

the probability density functions of (X,Y ) and X respectively. This
leads to what we call a recombined estimator:

f̂ ren (x) =
q∑
j=1

α̂j(x) f̂ Djn (x) (2.11)

REMARK 2.7. As a consequence of Remark 2.3 to obtain an almost
sure convergence result for the recombined estimator, the domains Dj
must be compact subsets of Rd−1. This constraint is of course not
restrictive from a practical point of view, but an obvious modification of
the weights α̂j(x) is needed. Let us choose q arbitrary compact domains
Dj and consider the weights β̂j(x) defined by

β̂j(x) =
∫
Dj
p̂XYn (x, y) dy

/∫
q
∪
j=1
Dj
p̂XYn (x, y) dy (2.12)

From Lemma A.1 of Appendix A, β̂j(x) converges to the deterministic
counterpart of the right hand side of (2.12), and then, the slightly

modified recombined estimator
q∑
j=1

β̂j(x) f̂ Djn (x) a.s.−→
n→∞

f(x) as soon as

f̂n(x0) is a consistent estimator of f(x0).

2.4.3. Illustration
The results obtained using the recombined estimator on the example
considered in paragraph 2.4.1, can be visualized in Fig. 7 and are to be
compared with Fig. 4. Functions f1 and f2 are now very well estimated
in this hard context of high dependence and moderate sample size.

To illustrate the performance of the recombined estimators, one can
find in Table VII of Appendix E the results obtained for the models
previously examined for the global estimator. It has to be compared
with Table VI of Appendix E.
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Figure 7. Recombined estimators for model (M1)0.8 with n = 800.

Figure 8. Recombined estimator. Model (M2)0.8 with n = 2000.

Firstly, the recombined estimator does not alter the good performance
obtained by the global one in the weakly dependent case, ie. for Models
(M1)0.2 and (M2)0.2, and slightly improve it. Secondly, it tremendously
improve those obtained in the strongly dependent case, ie. for Models
(M1)0.8 and (M2)0.8 : the performance become close to those obtained
for Models (M1)0.2 and (M2)0.2. For example, for (M2)0.8 with n = 800,
SZ which estimates Var(ε) = 0.25, is equal to 0.74 in Table VI and
becomes 0.3 here. The quantities Sf i also strongly decrease.
As an illustration, Fig. 8 shows the good performance of the recom-
bined estimator for Model (M2)0.8, which is hard to estimate even
for a large sample size of n = 2000. When it is compared to Fig. 2,
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the improvement is important and becomes huge outside the interval
[−2 , 2].

3. Analysis and prediction of ozone concentration

This section is dedicated to a real world problem: the analysis and
prediction of ozone concentration. The partial estimators are used for
data analysis purposes whereas the recombined estimators are used to
build the prediction model. Details about forecasting ozone peaks in
Paris area using additive models, can be found in (Bel et al., 1999;
Bel et al., 2001) which precisely describe the entire project performed
with the support of Airparif, the air pollution organism for Paris. This
problem has been previously examined in some other cities all over the
world, see for example (Hastie and Tibshirani, 1990). Let us mention
that in Paris area, different models have been used to investigate the
forecasting ozone peaks problem, including the fully nonparametric one
and CART model for instance. The comparison between these different
approaches shows that the simple nonlinear additive model described
below, captures the main features of the complex underlying dynamics.
In addition, it is well suited to correctly predict ozone concentration
exceedances of extreme thresholds for which only few observations are
available, which is the main difficulty.

3.1. The model

We focus on the following basic model which is currently used to
forecast the daily maximum of ozone concentration in Paris area:

ozon(j) = f1(temp(j)) + f2(wind(j))
+ f3(mozon(j − 1)) + µ + e(j) (3.1)

where j is the index of the day, ozon(j) is the maximum of ozone concen-
tration (µg/m3) during day j, temp(j) is the maximum of temperature
(◦C) during day j, wind(j) is the mean of the wind speed (m/s) during
the afternoon of day j, mozon(j − 1) is the regional spatial mean of
maximum ozone concentration (µg/m3) during day j−1; µ is a constant
and e(j) is an error term.
This model is estimated using the realizations and is then used for
real-time prediction purposes following the perfect prognosis strategy
(Wilks, 1995) by replacing the unobservable explanatory variables by
their predictions coming from Météo France, the french meteorological
company.
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The bandwidths for nonparametric estimators are of the classical form
σ̂Xn

−α with α around 0.2 and where σ̂X is the empirical standard
deviation of the concerned explanatory variable.

3.2. Choice of the partial estimators

The regions leading to the different partial estimators are defined by in-
terval limits chosen from the marginal distribution of each explanatory
variable and according to the knowledge of the problem. These sensible
limits divide each variable range in three intervals : low, medium, and
large. Limits are of 16 and 24◦C for the temperature, 2 and 4 m/s for
the wind speed and 43 and 85 µg/m3 for the previous day ozone.

3.3. Ozone data analysis using partial estimators

For a typical measurement station located in the thirteen arrondisse-
ment of Paris (abbreviated p13), we consider the partial estimators of
the effects of the temperature, the wind and the previous day ozone,
based on the summer days (about 1200 days) during the period 1992-
1998 (see Figures 9 and 10). Each figure contains twelve plots. At the
top left, one can find the histogram of the considered explanatory vari-
able and in the middle, the data are displayed in the plane of the two
other explanatory variables, with the delimited domains Dj . At the top
right, the nine partial estimators are superimposed. Each of the nine
plots located at the bottom of the figure contains a partial estimator.
The nine plots are organized as a 3× 3 matrix, reflecting the nine
integration regions defined following the rule specified in Paragraph 3.2.

Let us analyze the effect of the temperature (see Fig. 9). The in-
creasing global shape is a common feature of all partial estimators. The
estimated partial effects are negative for low and medium temperatures
and become positive for large temperatures.
Despite the homogeneous global shape, the intensity of the estimated
partial effect is highly varying, invalidating the global additivity of the
modelized phenomenon. The larger the importance of the estimated
partial effect of the temperature, the more polluted is the previous
day. Comparing the extreme curves located at the top left and at the
down right of the 3×3 square displaying the partial estimators, one
can point out a large variation of the intensity of the estimated effect:
from −30 to 100µg/m3 for the partial estimator associated to a low
wind speed and a polluted previous day and on the other hand, from
−20 to 20µg/m3 for the partial estimator associated to a large wind
speed and an unpolluted previous day. Then, a global effect obtained
by combining all these partial effects will underestimate the effect of
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Figure 9. Partial estimators of the effect of the temperature.

the temperature for a low wind speed and overestimate it for a large
wind speed.
The columns of the 3×3 square displaying the partial estimators, are
more homogeneous that the rows. Then it follows that the estimated
partial effects of the temperature for similar wind speed amount are
reasonably compatible with the additivity property of the model.

Let us now analyze the effect of the wind speed (see Fig. 10). The
inspection of the general shape of the curves immediately leads to three
different behaviors, since the columns of the 3×3 square displaying
the partial estimators are homogeneous, but the rows are not. For low
temperatures (first column), the effect of the wind speed is very small.
This is the main point. It should be noted that it is slightly increasing
from −10 to 10, which is counterintuitive. This probably comes from
the fact that for low temperatures, the measured ozone is the ozone
naturally present in the air, whose concentration decreases with the
NO2 titration when the wind speed is small (Bel et al., 2001). For
medium temperatures (column 2), the effect of the wind speed is also
very small, the estimation is close to 0 for wind speeds less than 7m/s
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Figure 10. Partial estimators of the effect of the wind speed.

and slightly negative otherwise. But this last element must be consid-
ered with caution whereas the number of observations in this last zone
is small (see the wind speed histogram at the top left of Fig. 10). So, for
temperatures less than 24 ◦C, the effect of the wind speed is very small
and then the wind speed is not a significant explanatory variable of the
model. On the other hand, for large temperatures (column 3), the effect
of the wind speed is different from 0, decreasing from slightly positive
values to −40, which is in accordance with the physical intuition since
the wind dissipates pollution. Therefore the wind speed is a significant
variable in the model as soon as the temperature is sufficiently large to
allow the photo-chemical ozone production and its effect is negative.
Let us note that the estimated partial effects of the wind speed for
similar temperatures seem compatible with the additivity property of
the model.

For the last explanatory variable, the general shape of the estimated
effects of the previous day ozone is homogeneous. The estimators are
close to each other, leading to a full compatibility with the additiv-
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Figure 11. Global and recombined estimators.

ity property. As expected, the estimated effects increase from −20 for
unpolluted previous days, to 40-60 for polluted previous days.

To summarize, the partial estimators are a useful tool to analyze
ozone concentration. Indeed, they reveal the homogeneity of the shape
of the effects and a kind of conditional additivity of the modelized
phenomenon. In addition they suggest to model the interaction between
temperature and wind speed. This is not considered here because this
does not modify the actual performance evaluated as defined in the
next paragraph.

3.4. Ozone prediction using a recombined estimator

For the same measurement station, we consider the global and recom-
bined estimators of the effects of the temperature, wind speed and
previous day ozone, displayed in Fig. 11.
The constant µ in (3.1) is estimated by the mean of the ozone concen-
trations which is equal to 73µg/m3. Let us compare the two estimators.

The effects of the temperature for the two estimators are identical
for temperatures less than 24◦C. Otherwise, the recombined estimator
grows quicker and the difference reaches 40 µg/m3 for a temperature
of 38◦C.
The effects of the previous day ozone are very similar for the two esti-
mators. This is a consequence of the previously mentioned homogeneity
of the partial estimators.
The effects of the wind speed are the same up to 4 m/s and are very
small. Next, the global estimator decreases up to −20 whereas the
recombined estimator is very small. Of course, the wind speed effect
fitted by the recombined estimator is not satisfactory from a physical
point of view. It should be easily improved by considering another
recombined estimator using a constrained weighting scheme only built
with the three partial estimators corresponding to large temperature
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Table I. Alarms table

Estimated

Level 0 Level 1 Level 2

Level 0 Good alarms False alarms

Measured Level 1 Good alarms

Level 2 Missed alarms Good alarms

Table II. Simplified alarms table

Estimated 0 Estimated 1 or 2

Measured 0 t00 t01

Measured 1 or 2 t10 t11

(right column of Fig. 10). This point will be addressed at the end of
this paragraph.

Let us first illustrate the gap between the global estimator and a
crude version of the recombined estimator, by comparing the predic-
tions given by the models, what is more interesting from the decisional
viewpoint. More precisely, we will only compare the estimated val-
ues to the actual values, without replacing the temperature and wind
speed measures by their predictions. In this application, the crucial
objective is to correctly predict alarms defined by the maximum of
ozone concentration exceedances of two thresholds: 130µg/m3 (level
1) and 180µg/m3 (level 2). The days of level 0 are those for which
the maximum of ozone concentration is less than 130µg/m3. Criteria
closely related to the decisional problem are defined starting from the
contingency table I.
The rows are labelled by the measured levels and the columns by the
estimated levels. The concerned days are then dispatched in the table.
The levels correctly estimated are on the diagonal, otherwise we have
the false alarms and the missed alarms. Then the ideal table is diagonal.
Of course and fortunately for health, all but a few days are of level 0.
Starting from table I, let us define three usual synthetic criteria coming
from the simplified binary contingency table II.
The first criterion is the missed alarms rate given by t10/(t11 + t10),
the second one is the false alarms rate given by t01/ (t11 + t01). The
last one, measuring the rate of good alarms and called the threat
score, is widely used in meteorology and pollution and is defined by
t11/ (t11 + t10 + t01).
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Table III. Alarms table for the global and recombined estimators

Global Estimator Recombined Estimator

Estimated Estimated

level 0 level 1 level 2 level 0 level 1 level 2

level 0 494 1 0 479 16 0

Meas. level 1 60 9 0 19 48 2

level 2 7 8 0 0 11 4

Table IV. Alarms table (simplified) for the global and recombined estima-
tors

Global Estimator Recombined Estimator

Estimated 0 Est. 1 or 2 Estimated 0 Est. 1 or 2

Measured 0 494 1 479 16

Meas. 1 or 2 67 17 19 65

The smaller the first two criteria, the better is the prediction model.
The greater the threat score, the better is the prediction model. As it
can be seen, the value t00 does not contribute to any of these quantities
since it is considered to be easy to correctly predict the level of days
of level 0, so these criteria focus on nontrivial, hard and interesting
situations.

The performance evaluation is based on the days between 1994 and
1998. Tables III to V give the performance of the global and recombined
estimators.

For the global estimator, the obtained contingency table is typical of
an underestimation for interesting days despite the fact that the mean
of absolute errors is satisfactory since it is close to the measurement
error. None of the days of level 2 are detected and the table of alarms is

Table V. Performance indices for the global and recombined estimators

Global estimator Recombined estimator

Missed alarms rate 79.8% 22.6%

False alarms rate 5.6% 19.8%

Threat score 20.0% 65.0%

Mean of absolute errors 17.7 15.6
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Figure 12. Global and recombined estimators.

highly non-symmetric: 67 missed alarms for 1 false alarm. The threat
score of 20% is small and 7 days of level 2 are estimated as levels 0.

With the recombined estimator, the performance are tremendously
improved. Four levels 2 are detected and the alarms table is near sym-
metric: 19 missed alarms for 16 false alarms. A very satisfactory threat
score of 65% is obtained with a small mean of absolute errors of 16.
Lastly, none of the days of level 2 are estimated as levels 0.

Now, let us turn back to the wind speed effect given by the re-
combined estimator which is not satisfactory from a physical point of
view and which is the main evidence of the lack of additivity. Since
the model is built for the prediction of extreme values of ozone con-
centration, previous analysis leads to consider a constrained weighting
scheme only built with the three partial estimators corresponding to
large temperature (right column of Fig. 10), leading to the new effect
displayed in Fig. 12. The shape of this new recombined estimator is
decreasing, which is physically consistent: the wind pushes pollution
outside of Paris area.

4. Asymptotic results

For nonlinear additive models written under the form

Zn = f(Xn) + g(Yn) + εn (4.1)

where E [f(X)] = 0 and E [g(Y )] = 0, this section presents some asymp-
totic properties of the marginal integration estimator f̂wn (x) defined
by

f̂wn (x) =
∫
w(y) m̂n(x, y) p̂Yn (y) dy (4.2)
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where w is a compactly supported function satisfying E [w(Y )] = 1.
This estimator is directly connected to the partial estimator (2.5) con-
sidered in Paragraph 2.3, by choosing w as the normalized characteristic
function of domain D, ie. w(y) = 1D(y) /P [Y ∈ D]. From a theoretical
point of view, introduction of the compactly supported weight function
w ensures the existence of the variance of f̂wn (x). If w is dropped, the
classical limitation pointed out by Linton occurs (for an example see
Linton, 1997, p. 471).

4.1. Model assumptions

In model (4.1), (Xn, Yn)n≥1 is a strictly stationary sequence of ran-
dom vectors and (εn)n≥1 is an unobservable noise, supposed to be
independent of (Xn, Yn)n≥1. In addition, we assume:

Assumptions [M].

[M1] Z has a finite moment of order µ > 4 ;

[M2] the regression function m is Cδ-class with bounded partial deriva-
tives of order δ, where δ is an integer ≥ 2 ;

[M3] the sequence of random vectors (Xn, Yn)n≥1 is β-mixing with ex-
ponential rate (see Doukhan, 1994, for a complete review of mixing
notions) ;

[M4] pXY , the probability density function of (Xn, Yn), is Cδ-class with
bounded partial derivatives of order δ ;

[M5] (εn)n≥1 is a sequence of independent and identically distributed
random variables with zero-mean and variance σ2.

These assumptions are classical for this kind of models, except for
the third one which allows the explanatory variables to be mixing
instead of independent, as it is frequently required.

4.2. The kernel-based estimators

Let us present the kernel-based estimators involved for defining f̂wn in
(4.2). The estimator m̂n of the regression function m is given by:

m̂n(x, y) = ̂̀
n(x, y)/p̂XYn (x, y) (4.3)
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with

̂̀
n(x, y) =

1
n

n∑
k=1

K
(1)
h1,n

(Xk − x) K(2)
h2,n

(Yk − y) Zk (4.4)

p̂XYn (x, y) =
1
n

n∑
k=1

K
(1)
h1,n

(Xk − x) K(2)
h2,n

(Yk − y) (4.5)

where, for a s-dimensional kernel K, Kh(t) = (1 / hs)K(t / h).
The numerator of m̂n, denoted by ̂̀

n, estimates the function ` de-
fined by ` = m × pXY , whereas the denominator p̂XYn estimates the
probability density function pXY .
The kernel-based estimator p̂Yn of pY is given by:

p̂Yn (y) =
1
n

n∑
k=1

K
(3)
h3,n

(Yk − y)

The kernels K(1) : R→ R and K(2), K(3) : Rd−1 → R are subjected to
the following assumptions.

Assumptions [K].

− K(1) is a one-dimensional kernel of order greater than δ ;

− K(2) is a (d− 1)-dimensional kernel of order greater than δ ;

− K(3) is a positive (d− 1)-dimensional kernel of order 2,

where a s-dimensional kernel of order γ is a compactly supported sym-
metric Lipschitz function K, from R

s to R, integrating to 1, such that
for ` = 1, . . . , γ − 1 and any i1, . . . , i` ∈ {1, . . . , s},∫ (∏̀

j=1

tij

)
K(t1, . . . , ts) d(t1, . . . , ts) = 0.

The bandwidths h1,n, h2,n and h3,n are sequences of positive real num-
bers decreasing to 0, such that nh1,nh

d−1
2,n → ∞ and nhd−1

3,n → ∞. In
addition, according to the context, these bandwidths will satisfy some
of the following conditions:

[B1] log2 n = o
(
nh1,nh

d−1
2,n

)
and log2 n = o

(
nhd−1

3,n

)
;

[B2] n4/µ log3 n = O
(
nh1,nh

d−1
2,n log(h−1

1,nh
−(d−1)
2,n n4/µ)

)
;

[B3] nh1+2δ
1,n = o(1), nh1,nh

2δ
2,n = o(1), nh1,nh

4
3,n = o(1) ;

[B4] h6δ
2,n = o(h1,n) and nh

4/3
1,n →∞ ;

[B5] log4 n = o
(
nh1,n h

2(d−1)
2,n

)
, log4 n = o

(
nhd−1

2,n hd−1
3,n

)
.
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REMARK 4.1. In Theorems 4.1 and 4.2 stated below, if we replace
[M1] by the stronger moment condition [M1bis], then the bandwidth
condition [B2] could be relaxed and replaced by [B2bis], where

[M1bis] E[exp(a |Z|b)] <∞ for some a > 0 and b > 0.

[B2bis] (log n)3+2/b = O
(
nh1,nh

d−1
2,n log(h−1

1,nh
−(d−1)
2,n (log n)2/b)

)
.

REMARK 4.2. If (Xn, Yn)n≥1 are independent instead of mixing, then
condition [B4] is cancelled. In addition, if w is of class Cδ instead of C2,
then we can take K(3) = K(2) and h3,n = h2,n leading to cancel the
conditions nh1,nh

4
3,n = o(1) of [B3] and log4 n = o

(
nhd−1

2,n hd−1
3,n

)
of

[B5].

4.3. Asymptotic results

The following theorem gives an almost sure convergence result for f̂wn ,
allowing us to derive almost sure convergence properties for partial and
recombined estimators.

THEOREM 4.1. Assume that [M], [K], [B1] and [B2] hold. Then,

f̂wn (x) a.s.−→
n→∞

f(x) + Cw

where Cw = E [w(Y ) g(Y )].

REMARK 4.3. If we choose w(y) = 1D(y) /P [Y ∈ D], then f̂wn (x)
reduces to a partial estimator as previously mentioned and in addition,
if w is such that P [Y ∈ D] is close to 1, then Cw is close to 0 since
E [g(Y )] = 0.
Of course, constant Cw is unknown but can be estimated following
the idea used in Paragraph 2.3 to propose unbiased versions of partial
estimators.

Now, let us present a central limit theorem for f̂wn (x).

THEOREM 4.2. Assume that [M], [K] and [B1] to [B5] hold. Assume
also that w is C2-class. Then,

Gn(x) =
√
nh1,n

(
f̂wn (x)− f(x)− Cw

) L−→
n→∞

N
(
0 , v(x)

)
= G(x)

where Cw = E [w(Y ) g(Y )] and v(x) = σ2‖K(1)‖22
∫ (w(y) pY (y))2

pXY (x, y)
dy.

Besides, for x1, · · · , xq, q distinct points of R,(
Gn(x1), · · · , Gn(xq)

) L−→
n→∞

(
G(x1), · · · , G(xq)

)
where G(x1), · · · , G(xq) are independent.
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Proofs. The proofs of Theorem 4.1 and Theorem 4.2 are respectively
given by part 1 and by parts 2 and 3 of Theorem B.1 (see Appendix B),
setting Sn(x) = f̂wn (x) and taking function w such that E [w(Y )] = 1.
Function S(x) is then equal to f(x) + Cw.

REMARK 4.4. The central limit theorem for f̂wn (x) holds with the
one-dimensional nonparametric rate which is the expected result in the
context of estimation for nonlinear additive models. But as usual in
the marginal integration context, bandwidth conditions depend on the
regularity δ and the dimension d.

REMARK 4.5. For additive models, an estimator of f using marginal
integration is said to be efficient (following Linton, 1997) if its vari-
ance v(x) attains the optimal variance v∗(x) = σ2‖K(1)‖22 / pX(x).
For their estimator, (Fan et al., 1998) mention that one can choose a
weight function w achieving, at least theoretically, the optimal vari-
ance v∗(x). In our case, this optimal weight function is defined by
w∗(y) = pXY (x, y) / pX(x) pY (y).
Unfortunately, this weighting method is not appropriate from a prac-
tical point of view since w∗ is unknown and must be estimated by
ŵ∗n(y) = p̂XYn (x, y) / p̂Xn (x) p̂Yn (y). When, we replace w by ŵ∗n in (4.2),
we obtain the following estimator of f

1
nh1,n p̂Xn (x)

n∑
k=1

K(1)
(
(Xk − x)/h1,n

)
Zk

which is obviously not efficient.

5. Towards a test for partial additivity

The multivariate central limit theorem established for f̂wn allows us to
easily derive a test for partial additivity. More precisely, let us consider
general regression models of the form

Zn = m(Xn, Yn) + εn (5.1)

where Z ∈ R is the explained variable, X ∈ R is a given explanatory
variable and Y ∈ Rd−1 is the vector of the other (d − 1) explana-
tory variables. We are interested in the subclass of nonlinear partially
additive models of the form

Zn = f(Xn) + g(Yn) + εn (5.2)

where function g is not supposed to be additive and separable.
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To test this kind of partial additivity of model (5.1), we introduce the
following hypotheses about the regression function m:

H0 : �m is partially additive of the form m = f + g �

H1 : �m is any function of Rd to R�

The null hypothesis H0 means that the nonlinear effects of the given
explanatory variable X on one hand and the vector of explanatory
variables Y on the other hand, are additive and separable. This leads to
the special form of the regression function m, ie. m(x, y) = f(x)+g(y).

Such a testing problem is different from testing for the global addi-
tivity of model (5.1) which has been initially addressed by (Hastie and
Tibshirani, 1990), and then by (Auestad and Tjøstheim, 1994; Barry,
1993; Chen et al., 1995; Eubank et al., 1995) and more recently by
(Amato and Antoniadis, 2001; Camlong-Viot, 2001).

In this section, we derive the principle of the test statistic and we
prove an asymptotic result for building the test. It is a first step towards
an entirely applicable procedure which is out of the scope of the paper.

5.1. Principle

The test procedure is based on simple remarks about the property of
partial estimators for additive models. Assume that H0 is true and let
us consider two different partial estimators f̂w1

n (x) and f̂w2
n (x) given by

(4.2), where w1 and w2 are two different weight functions integrating to
1. Since these two partial estimators converge to the same limit f(x),
but up to an additive constant, then the difference estimates a constant.
Indeed, we have

f̂w1
n (x) − f̂w2

n (x) =
∫

(w1(y)− w2(y))m̂n(x, y) p̂Yn (y) dy

and by Theorem 4.1, we have

f̂w1
n (x) − f̂w2

n (x) a.s.−→
n→∞

Cw1,w2

where Cw1,w2 is independent of x. Thus, for any weight function w
integrating to 0, the estimator

Sn(x) =
∫
w(y)m̂n(x, y) p̂Yn (y) dy (5.3)

almost surely converges to S(x) equal to

S(x) = E [w(Y )m(x, Y )] (5.4)
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Under H0, S(x) is equal to a constant which is independent of x.
Therefore, for two distinct points x1 and x2, we have

Sn(x1)− Sn(x2) a.s.−→
n→∞

S(x1)− S(x2) = 0 (5.5)

Of course, this result does not hold under H1. This is the starting idea
of our test procedure that we combine with the previous multivariate
central limit theorem.

5.2. Testing for partial additivity

Let us consider w : Rd−1 → R with compact support and such that
E [w(Y )] = 0. Let x1, . . . , x2q be 2q distinct design points of R. Starting
from (5.5), we introduce the following test statistic Tq(n) which is a
suitably normalized sum of squares of quantities estimating 0 under
H0:

Tq(n) = nh1,n

q∑
j=1

1
v̂n(xj) + v̂n(xj+q)

(
Sn(xj)− Sn(xj+q)

)2

where v̂n(x) = σ2 ‖K(1)‖22
∫
w2(y) (p̂Yn (y))2

p̂XYn (x, y)
dy.

Then, for the test statistic Tq(n), we have the following theorem.

THEOREM 5.1. Assume that [M], [K] and [B1] to [B5] hold. Assume
also that w is C2-class. Then,

1) under H0 , Tq(n) L−→
n→∞

χ2(q).

2) under H1, (nh1,n)−1 Tq(n) a.s.−→
n→∞

`q where constant `q > 0 if there
exists j ∈ {1, . . . , q} such that E [w(Y ) (m(xj , Y )−m(xj+q, Y ))] 6= 0.

Proof The proof is given in Appendix C.

These asymptotic results make it possible to construct a test for
partial additivity of m: Part 1 gives the null distribution and Part 2
guarantees that the asymptotic power of the test is equal to 1 since the
test statistic almost surely explodes.

Appendix A.

This appendix presents some technical results about uniform almost
sure convergence of the kernel-based estimators introduced in Para-
graph 4.2.
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LEMMA A.1. Assume that [M] and [K] hold. Then, for any compact
subset D of Rd−1, we have

sup
y∈D

∣∣∣p̂XYn (x, y)− pXY(x, y)
∣∣∣ a.s.= O

( log n√
nh1,nh

d−1
2,n

+ hδ1,n + hδ2,n

)
(A.1)

sup
y∈D

∣∣∣p̂Yn (y) − pY (y)
∣∣∣ a.s.= O

(
log n/

√
nhd−1

3,n + h2
3,n

)
(A.2)

Besides, if (log n)2 = o
(
nh1,nh

d−1
2,n

)
, then∫

D
p̂Yn (y) dy a.s.−→

n→∞
P [Y ∈ D] (A.3)∫

D
p̂XYn (x, y) dy a.s.−→

n→∞

∫
D
pXY (x, y) dy (A.4)

and

lim inf
n→∞

inf
y∈D

∣∣∣p̂XYn (x, y)
∣∣∣ > 0, a.s. (A.5)

LEMMA A.2. Assume that [M] and [K] hold. Assume also that [B2]
holds (or [B2bis] if [M1bis] is assumed instead of [M1]). Then, for any
compact subset D of Rd−1, we have

sup
y∈D

∣∣∣̂̀n(x, y)− `(x, y)
∣∣∣ a.s.= O

( log n√
nh1,nh

d−1
2,n

+ hδ1,n + hδ2,n

)
(A.6)

and

sup
y∈D
|m̂n(x, y)−m(x, y)| a.s.= O

( log n√
nh1,nh

d−1
2,n

+ hδ1,n + hδ2,n

)
(A.7)

The sequel of the appendix is concerned with the proofs of Lemma A.1
and Lemma A.2.

Proof of Lemma A.1. As pXY is Cδ-class with bounded deriva-
tives of order δ, we obtain using a Taylor’s expansion of order δ and
assumptions on kernels K(1) and K(2) that

sup
y∈Rd−1

∣∣∣E p̂XYn (x, y) − pXY (x, y)
∣∣∣ = O

(
hδ1,n + hδ2,n

)
(A.8)

In the same manner, using a Taylor’s expansion of order 2, we easily
show that

sup
y∈Rd−1

∣∣∣E p̂Yn (y) − pY (y)
∣∣∣ = O

(
h2

3,n

)
(A.9)
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In addition, results of (Liebscher, 1996) can be applied in our context
and give

sup
y∈D

∣∣∣p̂XYn (x, y) − E p̂XYn (x, y)
∣∣∣ a.s.= O

(
log n/

√
nh1,nh

d−1
2,n

)
(A.10)

sup
y∈D

∣∣∣p̂Yn (y) − E p̂Yn (y)
∣∣∣ a.s.= O

(
log n/

√
nhd−1

3,n

)
(A.11)

Then, combining (A.8) with (A.10), and (A.9) with (A.11) give (A.1)
and (A.2), respectively. Results (A.3) and (A.4) are directly deduced
from (A.1) and (A.2), respectively. Finally, (A.5) comes from (A.1) and
the following inequality:

inf
y∈D

∣∣∣p̂XYn (x, y)
∣∣∣ > inf

y∈D
pXY (x, y) − sup

y∈D

∣∣∣p̂XYn (x, y) − pXY (x, y)
∣∣∣

Proof of Lemma A.2. Firstly, let us recall that by Collomb’s decom-
position (Collomb, 1984),

m̂n −m =
(
p̂XYn

)−1 [(̂̀
n − E ̂̀n) − m

(
p̂XYn − E p̂XYn

)
(A.12)

+
(
E
̂̀
n −mE p̂XYn

)]
(A.13)

As pXY and m are Cδ-class with bounded derivatives of order δ, we
obtain using a Taylor’s expansion of order δ and assumptions on kernels
K(1) and K(2) that

sup
y∈Rd−1

∣∣∣E ̂̀n(x, y) − m(x, y)E p̂XYn (x, y)
∣∣∣ = O

(
hδ1,n + hδ2,n

)
(A.14)

sup
y∈Rd−1

∣∣∣E ̂̀n(x, y) − `(x, y)
∣∣∣ = O

(
hδ1,n + hδ2,n

)
(A.15)

Now, adapting the proof of Proposition 2 of (Ango Nze and Portier,
1994) to the multi-dimensional case, we derive that

sup
y∈D

∣∣∣̂̀n(x, y) − E ̂̀n(x, y)
∣∣∣ a.s.= O

(
log n/

√
nh1,nh

d−1
2,n

)
. (A.16)

This result holds under the following bandwidth condition

u2
n (log n)3 = O

(
nh1,nh

d−1
2,n log

(
(h1,nh

d−1
2,n )−1u2

n

))
(A.17)

with un = cten2/µ (leading to bandwidth condition [B2]) if assump-
tion [M1] holds, and with un = cte (log n)1/b (leading to bandwidth
condition [B2bis]) if assumption [M1bis] holds, where “cte” denotes
any strictly positive constant.
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Finally, combining (A.15) with (A.16) gives (A.6), and (A.1), (A.5),
(A.14) and (A.16) together with (A.13) gives (A.7).

Appendix B.

In this appendix, we establish an almost sure convergence result and a
multivariate central limit theorem for the estimator Sn(x) defined by

Sn(x) =
∫
w(y) m̂n(x, y) p̂Yn (y) dy (B.1)

where w : Rd−1 → R may be any bounded compactly supported
function. It estimates

S(x) = E [w(Y )m(x, Y )] (B.2)

If in addition w is such that E [w(Y )] = 1 (this condition plays no role
in the study of Sn(x)), then Sn(x) and S(x) reduce to the estimator
f̂wn (x) and its limit f(x)+Cw, respectively. Therefore, Theorem 4.1 and
4.2 are consequences of the following theorem.

THEOREM B.1. Assume that [M] and [K] hold. Assume also that the
bandwidth h1,n, but also bandwidths h2,n and h3,n (used for m̂n and
p̂Yn respectively) satisfy [B1] and [B2] (or [B2bis] if [M1] is replaced by
[M1bis]).
1. Then, we have Sn(x) a.s.−→

n→∞
S(x).

2. In addition, if w is C2-class and if [B3], [B4] and [B5] hold, then

Gn(x) =
√
nh1,n

(
Sn(x) − S(x)

) L−→
n→∞

N
(
0 , v(x)

)
= G(x)

where v(x) = σ2‖K(1)‖22
∫ (w(y) pY (y))2

pXY (x, y)
dy.

3. Besides, for x1, · · · , xq, q distinct points of R,(
Gn(x1), · · · , Gn(xq)

) L−→
n→∞

(
G(x1), · · · , G(xq)

)
where G(x1), · · · , G(xq) are independent.

Proof. To establish Part 1, let us rewrite Sn(x)−S(x) under the form

Sn(x) − S(x) =
∫
w(y) (m̂n(x, y)−m(x, y)) p̂Yn (y) dy

+
∫
w(y)m(x, y)

(
p̂Yn (y)− pY (y)

)
dy
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As w is compactly supported, we deduce that
∫
|w(y)m(x, y)| dy <∞

and
∫ ∣∣∣w(y) p̂Yn (y)

∣∣∣ dy < ∞, and we infer from Lemmas A.1 and A.2

and the bandwidth conditions [B1] and [B2] that Sn(x) a.s.−→
n→∞

S(x).

Now, let us prove Part 2. Starting from the definition of Sn(x), we can
rewrite Sn(x)− S(x) under the form

Sn(x) − S(x) = An(x) + Bn(x) + Cn(x) + Dn(x)

where

An(x) =
∫
w(y)m(x, y)

(
p̂Yn (y)− pY (y)

)
dy

Bn(x) =
∫

w(y)
pXY (x, y)

(
m̂n(x, y)−m(x, y)

)
(
pXY (x, y)− p̂XYn (x, y)

)
p̂Yn (y) dy

Cn(x) =
∫

w(y)
pXY (x, y)

(̂̀
n(x, y)−m(x, y) p̂XYn (x, y)

)
(
p̂Yn (y)− pY (y)

)
dy

Dn(x) =
∫

w(y)
pXY (x, y)

(̂̀
n(x, y)−m(x, y) p̂XYn (x, y)

)
pY (y) dy

Now, let us study the convergence of each term and show that,√
nh1,n

(
An(x) +Bn(x) + Cn(x)

)
a.s.−→
n→∞

0 (B.3)√
nh1,nDn(x) L−→

n→∞
N
(
0 , v(x)

)
(B.4)

Convergence study of An(x). Starting from the definition of p̂Yn , we can
rewrite An(x) under the form A1,n(x) +A2,n(x) where

A1,n(x) =
1
n

n∑
k=1

∫ (
w(Yk + h3,nu)m(x, Yk + h3,nu)

− w(Yk)m(x, Yk)
)
K(3)(u) du

A2,n(x) =
1
n

n∑
k=1

w(Yk)m(x, Yk) − E [w(Y )m(x, Y )]

Using a Taylor’s expansion of order 2 of w( . )m(x, . ) and the kernel
assumption on K(3), we derive that

|A1,n(x)| a.s.= O
(
h2

3,n

)
(B.5)
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In addition, since E
[(
w(Y )m(x, Y )

)2]
<∞ and (Yn) is β-mixing with

exponential rate, Theorem 2 of (Rio, 1996) gives

|A2,n(x)| a.s.= O

(( loglog n
n

)1/2
)

(B.6)

Therefore, as nh1,n h
4
3,n = o(1) and h1,n loglog n = o(1) by the band-

width conditions [B1] and [B3], then (B.5) together with (B.6) imply
that

√
nh1,nAn(x) a.s.−→

n→∞
0.

Convergence study of Bn(x) and Cn(x). Let us rewrite Cn(x) under the
form C1,n(x) + C2,n(x) where

C1,n(x) =
∫

w(y)
pXY (x, y)

(̂̀
n(x, y)− `(x, y)

)(
p̂Yn (y)− pY (y)

)
dy

C2,n(x) =
∫
w(y)m(x, y)
pXY (x, y)

(
pXY (x, y)− p̂XYn (x, y)

)
×
(
p̂Yn (y)− pY (y)

)
dy

As
∫ |w(y)|
pXY (x, y)

dy and
∫ |w(y)m(x, y)|

pXY (x, y)
dy are bounded, we easily

deduce that

|Bn(x)| a.s.= O
(

sup
y∈D
|m̂n(x, y)−m(x, y)| sup

y∈D

∣∣∣pXY(x, y) − p̂XYn (x, y)
∣∣∣)

|C1,n(x)| a.s.= O
(

sup
y∈D

∣∣∣̂̀n(x, y)− `(x, y)
∣∣∣ sup
y∈D

∣∣∣p̂Yn (y)− pY (y)
∣∣∣)

|C2,n(x)| a.s.= O
(

sup
y∈D

∣∣∣pXY (x, y)− p̂XYn (x, y)
∣∣∣ sup
y∈D

∣∣∣p̂Yn (y)− pY (y)
∣∣∣)

Finally, combining results of Lemma A.1 and Lemma A.2, we deduce
that √

nh1,n

(
Bn(x) + Cn(x)

)
a.s.−→
n→∞

0 (B.7)

as soon as √
nh1,n

( log n√
nh1,nh

d−1
2,n

+ hδ1,n + hδ2,n

)2
= o(1)(B.8)

√
nh1,n

( log n√
nh1,nh

d−1
2,n

+ hδ1,n + hδ2,n

)( log n√
nhd−1

3,n

+ h2
3,n

)
= o(1)(B.9)

From the bandwidth conditions [B1] and [B3], conditions (B.8) and
(B.9) reduce to the bandwidth condition [B5].
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Convergence study of Dn(x). Let us rewrite Dn(x) as D1,n(x) +D2,n(x)
where

D1,n(x) =
1
n

n∑
k=1

Uk,n(x)

D2,n(x) =
1
n

n∑
k=1

K
(1)
h1,n

(Xk − x) εk
∫
K

(2)
h2,n

(Yk − y)H(x, y) dy

with H(x, y) = w(y) pY (y) / pXY (x, y) and

Uk,n(x) = K
(1)
h1,n

(Xk − x)
∫
K

(2)
h2,n

(Yk − y)

×
(
m(Xk, Yk)−m(x, y)

)
H(x, y)dy

Let us remark that for any x, ‖H(x, . )‖∞ is bounded since w is com-
pactly supported. The asymptotic normality of Dn(x) will be given by
D2,n(x). First of all, let us show that

√
nh1,nD1,n(x) P−→

n→∞
0. Starting

from

E [U1,n(x)] =
∫∫∫

K(1)(u)K(2)(v)H(x, y) pXY (x+ uh1,n, y + v h2,n)

×
(
m(x+ uh1,n, y + v h2,n)−m(x, y)

)
dy du dv

and using a Taylor’s expansion of order δ for m and pXY as well as the
kernel assumptions on K(1) and K(2), we obtain that

|E [U1,n(x)]| = O
(
hδ1,n + hδ2,n

)
. (B.10)

Furthermore,

nh1,nVar
(
D1,n(x)

)
= h1,nVar

(
U1,n(x)

)
+

2h1,n

n

n−1∑
i=1

n∑
j=i+1

Cov
(
Ui,n(x), Uj,n(x)

)

Let us study the term of variance. From (B.10) and the bandwidth
condition [B3], we deduce that

h1,nVar
(
U1,n(x)

)
= h1,n E

[
U2

1,n(x)
]

+ o (1) (B.11)
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In addition, after change of variable, we obtain that

E

[
U2

1,n(x)
]

= h−1
1,n

∫∫∫∫ (
K(1)(u)

)2
K(2)(v)K(2)(t)H(x, y)

H(x, y + h2,n(t+ v))pXY (x+ uh1,n, y + v h2,n)(
m(x+ uh1,n, y + v h2,n)−m(x, y + h2,n(t+ v))

)
(
m(x+ uh1,n, y + v h2,n)−m(x, y)

)
du dv dy dt

and Lebesgue’s theorem implies that h1,n E

[
U2

1,n(x)
]
−→
n→∞

0. Then,
combining this result with (B.11) leads to

h1,nVar
(
U1,n(x)

)
−→
n→∞

0 (B.12)

Now, applying a well-known bound for covariance of α-mixing random
variables (Davydov, 1970), we obtain∣∣∣Cov

(
Ui,n(x), Uj,n(x)

)∣∣∣ ≤ 10α1−2/a
j−i

(
E |Ui,n(x)|a E |Uj,n(x)|a

)1/a

with 2 < a <∞. Thus, taking a = 3 and using the exponential rate of
the mixing coefficients, we derive that∣∣∣∣∣∣

n−1∑
i=1

n∑
j=i+1

Cov
(
Ui,n(x), Uj,n(x)

)∣∣∣∣∣∣ = O
(
n
(
E |U1,n(x)|3

)2/3)
(B.13)

Let us give a bound for E |U1,n(x)|3. Let us denote

Ln(u, v, x) =
∫
K

(2)
h2,n

(v − y)
(
m(u, v)−m(x, y)

)
H(x, y) dy

=
(
m(u, v)−m(x, v)

) ∫
K(2)(t)H(x, v + t h2,n) dt

+
∫
K(2)(t)

(
m(x, v)−m(x, v + t h2,n)

)
H(x, v + t h2,n) dt

Using once again Taylor’s expansions and the kernel assumptions on
K(2), we derive that

|Ln(u, v, x)| = O
(
hδ2,n + |m(u, v)−m(x, v)| (1 + h2

2,n)
)

Then, as U1,n(x) = K
(1)
h1,n

(X1 − x)Ln(X1, Y1, x), it follows easily that

E |U1,n(x)|3 = O
(
h−2

1,n

∫ ∣∣∣K(1)(t)
∣∣∣3 (h3

1,n |t|
3 + h3δ

2,n

)
pX(x+ h1,nt) dt

)
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Hence, we obtain E |U1,n(x)|3 = O
(
h1,n + h3δ

2,nh
−2
1,n

)
and therefore

2h1,n

n

∣∣∣∣∣∣
n−1∑
i=1

n∑
j=i+1

Cov
(
Ui,n(x), Uj,n(x)

)∣∣∣∣∣∣ = O
(
h

5/3
1,n +

h2δ
2,n

h
1/3
1,n

)
(B.14)

From the bandwidth condition [B4], then h2δ
2,nh

−1/3
1,n = o(1). Therefore,

combining (B.12) and (B.14), we derive that

nh1,nVar
(
D1,n(x)

)
−→
n→∞

0 (B.15)

which implies that
√
nh1,nD1,n(x) P−→

n→∞
0.

Convergence study of D2,n(x). Let us rewrite
√
nh1,nD2,n(x) under the

form
∑n
k=1 ξn,k(x) with ξn,k(x) = Gn(x,Xk, Yk) εk and

Gn(x,Xk, Yk) =

√
h1,n

n
K

(1)
h1,n

(Xk − x)
∫
K

(2)
h2,n

(Yk − y)H(x, y) dy

Let us denote by Fnk the σ-field generated by (εj , Xj , Yj)j=1,... ,k. For

any x,
{∑k

j=1 ξn,j(x),Fnk , 1 ≤ k ≤ n, n ≥ 1
}

is a zero-mean, square
integrable martingale array. Then, to establish that

√
nh1,nD2,n(x) =

n∑
k=1

ξn,k(x) L−→
n→∞

N
(
0 , v(x)

)
(B.16)

we have only to check the assumptions of Corollary 3.1 of (Hall and
Heyde, 1981, p.58), i.e.

n∑
k=1

E

[
ξ2
n,k(x)/Fnk−1

]
P−→

n→∞
v(x) (B.17)

∀ η > 0, ρn(η) P−→
n→∞

0 (B.18)

where ρn(η) =
n∑
k=1

E

[
|ξn,k(x)|2 1{|ξn,k(x)| ≥ η

}/Fnk−1

]
.
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To establish (B.17), let us rewrite
n∑
k=1

E

[
ξ2
n,k(x)/Fnk−1

]
under the form

J1,n(x) + J2,n(x) where

J1,n(x) =
n∑
k=1

E

[
ξ2
n,k(x)

]
= σ2

∫∫∫∫ (
K(1)(u)

)2
K(2)(v)K(2)(t)H(x, h2,n(t+ v) + y)

× H(x, y) pXY (x+ uh1,n, y + v h2,n) du dv dy dt

J2,n(x) =
n∑
k=1

(
E

[
ξ2
n,k(x)/Fnk−1

]
− E

[
ξ2
n,k(x)

])
= σ2

n∑
k=1

G̃n(x,Xk, Yk)

with G̃n(x,Xk, Yk) = E

[
G2
n(x,Xk, Yk)/Fnk−1

]
− E

[
G2
n(x,Xk, Yk)

]
.

By virtue of Lebesgue’s theorem, we prove that

J1,n(x) −→
n→∞

σ2‖K(1)‖22
∫
H2(x, y) pXY (x, y) dy = v(x)(B.19)

Let us now study the convergence of J2,n(x). We have

Var
(
J2,n(x)

)
= σ4

n∑
k=1

Var
(
G̃n(x,Xk, Yk)

)

+ 2σ4
n−1∑
j=1

n∑
k=j+1

Cov
(
G̃n(x,Xj , Yj); G̃n(x,Xk, Yk)

)
Starting from the inequality

Var
(
G̃n(x,Xk, Yk)

)
≤ E

[(
E

[
G2
n(x,Xk, Yk)/Fnk−1

])2]
and using Jensen’s inequality, we deduce that

Var
(
G̃n(x,Xk, Yk)

)
≤ E

[
G4
n(x,Xk, Yk)

]
(B.20)

Now, let us remark that as w is compactly supported then ‖H(x, . )‖∞
is bounded. Hence, we can find a finite constant Cx such that∣∣∣∣∫ K

(2)
h2,n

(Yk − u)H(x, u) du
∣∣∣∣ ≤ Cx (B.21)

and derive that

E

[
G4
n(x,X1, Y1)

]
≤

C4
x h

2
1,n

n2
E

[(
K

(1)
h1,n

(X1 − x)
)4
]

(B.22)



Partial and Recombined Estimators for Additive Models 39

Therefore, we infer from (B.20) together with (B.22) that

Var
(
G̃n(x,Xk, Yk)

)
= O

(
(n2 h1,n)−1

)
(B.23)

The term of covariance remains to be studied. Applying the Davidov’s
inequality and using Jensen’s inequality once again, we derive that∣∣∣n−1∑

j=1

n∑
k=j+1

Cov
(
G̃n(x,Xj , Yj); G̃n(x,Xk, Yk)

)∣∣∣
= O

(
n
(
E

[
G6
n(x,X1, Y1)

])2/3)
(B.24)

By proceeding as for (B.22), we obtain that

E

[
G6
n(x,X1, Y1)

]
= O

(
(n3 h1,n)−2

)
(B.25)

and together with (B.24), we deduce that∣∣∣n−1∑
j=1

n∑
k=j+1

Cov
(
G̃n(x,Xj , Yj); G̃n(x,Xk, Yk)

)∣∣∣ = O
(
(nh4/3

1,n )−1
)

This result together with (B.23) ensures that J2,n(x) P−→
n→∞

0 as soon as

nh
4/3
1,n −→n→∞ ∞, which holds by the bandwidth condition [B4]. Finally,

combining the convergence results of J1,n(x) and J2,n(x) gives (B.17).
The Lindeberg’s condition (B.18) remains to be proved. Let us denote
Φ(t) = E

[
ε2

11{|ε1| ≥ t}
]
. For any η > 0 , we have

ρn(η) ≤ Φ

( √
nh1,n η∥∥K(1)

∥∥
∞ ‖H(x, . )‖∞

)
σ−2

n∑
k=1

E

[
ξ2
n,k(x) /Fnk−1

]
As ε has a finite moment of order > 2, then lim

t→∞
Φ(t) = 0. There-

fore, combining this result with (B.17), we derive that for any η > 0,
ρn(η) P−→

n→∞
0, and Lindeberg’s condition is fulfilled, which achieves the

proof of Theorem B.1, part 2.

Now, let us establish the joint asymptotic normality. Taking the previ-
ous results into account, it suffices to prove that for q distinct points of
R, denoted x1, . . . , xq, the vector

√
nh1,n

(
D2,n(x1), . . . , D2,n(xq)

)
con-

verges in distribution to a centered Gaussian vector with independent
components. We easily verify this by remarking that for x 6= y,

n∑
k=1

E

[
ξn,k(x) ξn,k(y)/Fnk−1

]
P−→

n→∞
0 (B.26)
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Indeed, we have

E

∣∣∣ n∑
k=1

E

[
ξn,k(x) ξn,k(y)/Fnk−1

]∣∣∣
≤ C2

x σ
2 h1,n E

[∣∣∣K(1)
h1,n

(X1 − x)K(1)
h1,n

(X1 − y)
∣∣∣]

≤ C2
x σ

2
∫ ∣∣∣K(1)(z)K(1)(z + (x− y)/h1,n)

∣∣∣ pX(x+ z h1,n) dz

and since K(1) is compactly supported, we deduce by the Lebesgue’s
theorem that

E

∣∣∣ n∑
k=1

E

[
ξn,k(x) ξn,k(y)/Fnk−1

]∣∣∣ = o(1)

This last argument establishes (B.26) and closes the proof of Theo-
rem B.1.

Appendix C.

This appendix is concerned with the proof of Theorem 5.1. From Theo-
rem B.1 used with a compactly supported weight function w satisfying
E [w(Y )] = 0, we easily derive that for two distinct points x and t,√

nh1,n

(
Sn(x) − Sn(t) + E

[
w(Y )(m(x, Y )−m(t, Y ))

])
L−→

n→∞
N
(
0 , v(x) + v(t)

)
(C.1)

Therefore, as soon as v̂n(y) a.s.−→
n→∞

v(y) for any y ∈ R, we infer from
(C.1) that

nh1,n

v̂n(x) + v̂n(t)

(
Sn(x) − Sn(t) + E

[
w(Y )(m(x, Y )−m(t, Y ))

])2

L−→
n→∞

χ2(1)

and as E
[
w(Y )

(
m(x, Y ) − m(t, Y )

)]
= 0 under H0, Part 1 is easily

derived. Part 2 directly comes from Part 1 of Theorem B.1.

To close the proof, let us establish the convergence of v̂n(x) which
reduces to show that∫

w2(y) (p̂Yn (y))2

p̂XYn (x, y)
dy

a.s.−→
n→∞

∫
w2(y) (pY (y))2

pXY (x, y)
dy (C.2)
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Result (C.2) is easily obtained from Lemma A.1 together with:∣∣∣∫ w2(y)
( p̂Yn (y))2

p̂XYn (x, y)
− (pY (y))2

pXY (x, y)

)
dy
∣∣∣ =

O


sup
y∈D

∣∣∣p̂Yn (y) − pY (y)
∣∣∣

inf
y∈D

∣∣∣p̂XYn (x, y)
∣∣∣

+O


sup
y∈D

∣∣∣p̂XYn (x, y) − pXY (x, y)
∣∣∣

inf
y∈D

∣∣∣p̂XYn (x, y)
∣∣∣

 .

Appendix D.

This appendix presents an almost sure convergence result for a slightly
modified version of the global estimator introduced in Paragraph 2.2.
The proof is based on results of almost sure convergence over dilating
sets for kernel estimators (Bosq, 1996).
Notations, definitions and assumptions used in this appendix can be
found in the paragraphs 4.1 and 4.2.

THEOREM D.1. Assume that [M1bis], [M2] to [M5] and [K] hold with
δ = 2. Let the bandwidths h1,n, h2,n and h3,n be of the form h1,n = h2,n

with h2,n = cte ((log n)2−1/b/n)1/(d+4), and h3,n = cte (log n/n)1/(d+3),
where cte denotes any strictly positive constant.
Let (cn)n≥1 be a sequence of positive real numbers, increasing to ∞ and
such that cn = O(nν) with ν > 0.
Then, if pn = inf

‖y‖≤cn
pXY (x, y) > n−2/(d+4), we have:

f̂n,cn(x) =
∫ cn

−cn
m̂n(x, y) p̂Yn (y) dy a.s.−→

n→∞
f(x).

Proof. Let us rewrite f̂n,cn − f(x) under the form

f̂n,cn(x)− f(x) = An(x) +Bn(x)− E
[
m(x, Y )1{‖Y ‖≥cn}

]
(D.1)

where

An(x) =
∫ cn

−cn

(
m̂n(x, y)−m(x, y)

)
p̂Yn (y) dy (D.2)

Bn(x) =
∫ cn

−cn
m(x, y)

(
p̂Yn (y)− pY (y)

)
dy (D.3)

Since E
[
|Z|2

]
<∞ and cn →∞, then by a Markov’s inequality

E

[
m(x, Y )1{‖Y ‖≥cn}

]
−→
n→∞

0 (D.4)
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Now, using Theorem 2.2 of Bosq (1996, p. 49), we obtain that

sup
‖y‖≤cn

∣∣∣p̂Yn (y)− pY (y)
∣∣∣ a.s.= O

(
log n

(
(log n)/n

)2/(d+3))
(D.5)

It follows that

|Bn(x)| a.s.−→
n→∞

0 (D.6)

as soon as log n
(
(log n)/n

)2/(d+3)
×
∫ cn

−cn
|m(x, y)| dy −→

n→∞
0. This

condition is obviously fulfilled since
∫ cn

−cn
|m(x, y)| dy ≤ p−1

n E [|Z|] and

pn > n−2/(d+4). In addition, using Theorem 3.3 of Bosq (1996, p. 74),
we have

sup
‖y‖≤cn

|m̂n(x, y)−m(x, y)| a.s.= o(1) (D.7)

leading to

|An(x)| a.s.−→
n→∞

0 (D.8)

Finally, combining (D.4), (D.6) and (D.8) together with (D.1) closes
the proof of Theorem D.1.

REMARK D.1. When the explanatory variables are Gaussian, we can
easily specify the sequence (cn). Indeed, if (X,Y ) ∼ N (0 , Γ) with Γ
invertible, we have

inf
‖y‖≤cn

pXY (x, y) ≥ cte exp
(
− c2

n

2λmin(Γ)

)
Therefore, for cn = A(log log n)1/2 with A < ∞, or cn = A(log n)1/2

with A such that A2 < 4λmin(Γ) / (d+ 4), we have f̂n,cn(x) a.s.−→
n→∞

f(x).

Appendix E.

This appendix is concerned with the performance of the global esti-
mator defined by (2.3) and the recombined estimator defined by (2.11)
(see Table VI and Table VII respectively). The models considered in
both cases are defined in Paragraph 2.1.2.
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Table VI. Global estimator performance

Model n SZ Sf1 Sf2 Sf3

200 0.2529 0.0412 0.0066

(M1)0.2 800 0.2465 0.0073 0.0026

2000 0.2506 0.0036 0.0015

200 0.4436 0.1372 0.0569

(M1)0.8 800 0.3369 0.0532 0.0298

2000 0.3325 0.0401 0.0266

200 0.3270 0.0577 0.0115 0.0274

(M2)0.2 800 0.2855 0.0128 0.0059 0.0123

2000 0.2716 0.0078 0.0037 0.0077

200 1.0174 0.2627 0.0820 0.1075

(M2)0.8 800 0.7373 0.1444 0.0491 0.0677

2000 0.5950 0.0902 0.0425 0.0516

To evaluate estimation and prediction errors, we compute two quadratic
criteria. The first one is the estimation error criterion calculated for
each f i on [−2 , 2], and defined by:

Sf i =
1
10

10∑
k=1

1∣∣J i(k)
∣∣ ∑
j∈Ji(k)

(
f̂ i(k)
n (Xi(k)

j )− f i(Xi(k)
j )

)2

where J i(k) = {j ∈ N , 1 ≤ j ≤ n /X
i(k)
j ∈ [−2 , 2]}. Quantities Sf i

allow to appreciate the quality of the estimation of f i over [−2 , 2]: the
smaller Sf i, the better is the estimation of f i.
The second one is the prediction error criterion, defined by:

SZ =
1
10

10∑
k=1

1∣∣∩iJ i(k)
∣∣ ∑
j∈∩iJi(k)

(
Ẑ

(k)
j − Z

(k)
j

)2

where Ẑ
(k)
j is the prediction of Z(k)

j . It estimates the noise variance
Var(ε) and quantifies the quality of the prediction of Z: the closer to
Var(ε) = 0.52, the better is the prediction.
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pour le dioxyde d’azote et l’ozone. Technical report for Airparif, 215 pages, July
1999.

Bel, L., Bellanger, L., Bonneau, V., Ciuperca, G., Dacunha-Castelle, D., Deniau, C.,
Ghattas, B., Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M. and Tomassone,
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