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ABSTRACT: We present a probabilistic interpretation of some Navier-Stokes equations which
describe the behaviour of the velocity field in a viscous incompressible fluid. We deduce from this
approach stochastic particle approximations, which justify the vortex numerical schemes introduced
by Chorin to simulate the solutions of the Navier-Stokes equations.

After some recalls on the McKean-Vlasov model, we firstly study a Navier-Stokes equation
defined on the whole plane. The probabilistic approach is based on the vortex equation, satisfied
by the curl of the velocity field. The equation is then related to a nonlinear stochastic differential
equation, and this allows us to construct stochastic interacting particle systems with a “propagation
of chaos” property: the laws of their empirical measures converge, as the number of particles tends
to infinity, to a deterministic law of which the time-marginals solve the vortex equation. Our
approach is inspired by Marchioro and Pulvirenti [26] and we improve their results in a pathwise
sense.

Next we study the case of a Navier-Stokes equation defined on a bounded domain, with a no-
slip condition at the boundary. In this case, the vortex equation satisfies a Neumann condition at
the boundary, which badly depends on the solution. We simplify the model by studying in details
the case of a fixed Neumann condition and we finally explain how the results should be adapted
in the Navier-Stokes case.

KEYWORDS: 2d Navier-Stokes equation ; vortex method ; interacting particle systems; prop-
agation of chaos.
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1 Introduction

We present in this course a probabilistic interpretation of some Navier-Stokes equations,
from which we will deduce stochastic particle approximations and numerical schemes for

the solutions of the equations.

The Navier-Stokes equations we consider describe the evolution of the velocity of a

viscous and incompressible fluid in dimension two. About twenty years ago, Chorin [9]
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proposed a vortex method to simulate the solutions of these equations, based on the
equation satisfied by the vorticity and involving cutoff kernels. His approach was not
mathematically proved and many authors tried to give a proof of the convergence of the

algorithm.

The main fact for explaining this approach is that in dimension two, the Navier-Stokes
equation can be expressed as a simpler equation for the curl of the velocity, called the
vortex equation. In the stochastic framework, this equation appears as a McKean-Vlasov
equation, in which the coefficient of the drift term can explode. This remark is the basis

of the probabilistic interpretation.

In 1982, Marchioro and Pulvirenti [26] have given a probabilistic interpretation of the
Navier-Stokes equation thanks to a nonlinear diffusion, for bounded integrable initial data.
They have rigorously introduced a cut-off model and some particle systems, and proved
for each fixed time the convergence of the expectations of the empirical measures of the

particle systems to the solution of the N.S. equation.

Then an open question was the pathwise convergence of these empirical measures to the
law of the nonlinear diffusion, or equivalently, the propagation of chaos for the interacting

particle systems.

In 1987, Osada [32] proved a propagation of chaos result for an interacting particle
system without cut-off by an analytical method based on generators of generalized diver-
gence form, but only for large viscosities and bounded density initial data. The tightness
of the laws of the particle systems was always satisfied and the constraint on the viscosity
appeared in the identification of the limit laws. This result is not satisfying, since the
numerical stochastic particle methods are most efficient in the case of small viscosities,
case which was not considered by the author. (See for example the comparison between

finite volume deterministic methods and stochastic particle methods in [4]).

In this course, our aim is to obtain some pathwise particle approximations of the
solution of the Navier-Stokes equation, by easily simulable systems. We consider two
situations. In the first one, the equation is considered in the whole plane with an integrable
and bounded initial condition (cf. [29]). We will interpret the vortex equation in a
probabilistic point of view and will deduce some pathwise approximations with a precise
rate of convergence. The second case will be devoted to equations in a bounded domain
of the space, with a Dirichlet condition at the boundary (a no-slip condition). This
will correspond to a vortex equation with a Neumann condition at the boundary, as it
has been heuristically proven in [10]. We will study the simplified case in which the

Neumann condition is fixed, as it has been developed in [21]. We will explain how we



should modify the approach to approximate the solution of the Navier-Stokes equation

with no-slip condition on the boundary of the domain.

We will essentially consider the framework introduced by Marchioro and Pulvirenti
and will define particle systems with cut-off drift coefficients. Then we will study the
convergence of these particle systems when the number of particles tends to infinity and
the cut-off parameter tends to zero. In both cases above described, one defines a nonlinear
diffusion process associated with the vortex (nonlinear) equation. In the bounded domain
case, it is a reflected process with space-time random births at the boundary. At the
level of processes, the nonlinearity means that the drift coefficient depends on the law of
the diffusion process. We define a coupling between independent copies of this nonlinear
process and some interacting particle systems with cut-off drift kernels. We work in the
path space, and we consider initial data which are not necessarily probability densities.
So, we associate with any sample path a signed weight depending on the initial condition.
We prove that, when the size of the systems tends to infinity and the size of the cut-
off tends to 0 in correlated asymptotics, the weighted empirical measures converge, as
probability measures on the path space, to a deterministic probability measure whose
time marginals are measure solutions of the vortex equation. This proof is obtained by
showing a propagation of chaos result for the particle systems. We deduce from this result

an algorithm to simulate the solution of the Navier-Stokes equation.

We will in the second section recall the main results concerning the probabilistic inter-
pretation of the McKean-Vlasov equation and the associated interacting particle systems.
We will explain what “propagation of chaos” means. Next, we will describe the two-
dimensional Navier-Stokes equation in the whole plane and show the relation with the
vortex equation. We will then introduce the probabilistic framework and develop the in-
teracting particle approximations. In the fourth section, we will explain what happens
in a bounded domain. We will see that things are really more complicated, especially if
we wish to approximate a solution of a Navier-Stokes equation with no-slip condition at
the boundary. We will rigorously study a simple case and explain what we should do to

obtain the realistic case.

Notation

- For any integer 1 < p < 400, we denote by L the space LP(IR?). We will denote by
|.| the euclidian norm in IR%, by ||.||e the L®-norm and by ||.||; the L'-norm in IR%.
- For any polish space E, the space P(E) will be the space of probability measures on E.
- For p € P(E) and for any bounded measurable function f defined on E, we denote by

(p, f) the integral [ f(z)p(dzx).



- The letter C will denote a positive real constant which can change from line to line.

2 Recalls on the McKean-Vlasov Model

Let us now recall the classical McKean-Vlasov model. The first one to study these equa-
tions, following ideas of Kac, was McKean in [27], and Géartner in [14] introduced the
terminology, relying the McKean works concerning stochastic systems in weak interaction,
with the problem of the Vlasov equation as limit of particle systems evolving following the

laws of the Newtonian mechanics.

2.1 The McKean-Vlasov Equation and the Associated Nonlinear Mar-
tingale Problem

The nonlinear partial differential equation, called McKean-Vlasov equation, is a nonlinear

Fokker-Planck equation given in dimension d by
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where p; is for any time ¢ a probability measure on IR, and for m € P(IR?),

blz,m] = /le b(x,y)m(dy), b(z,y) being a vector of R?
alz,m] = ofz,m]o[z,m]*, and
olz,m] = /Rd o(z,y)m(dy), o(z,y) being a matrix of size (d,k).

The equation is understood in a weak sense. For nice test functions ¢, we have

Q< S = < lfa..[ ]827@()+ib~[ ]3_"0()>
B, b, ¥ = b, 2i’j:1 ijl- Dt 8:132-8:5]- . 2 il-) Pt oz,
= < p, L(p)p > (2.2)

where the second order differential generator £(m)¢ is defined for ¢ in CZ(IR%) by

d 2 d
Llmle@) = 5 3 aglemlz 2 (@) + 3 blemlgE ). .3)
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This equation has been studied from a probabilistic point of view by several authors,
in particular McKean [27], Tanaka [38], Léonard [24], Gartner [14], Sznitman [37] and
[28]. The probabilistic approach for the study of these nonlinear Fokker-Planck equations

consists in looking for underlying processes whose time marginals of the distribution are
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solutions of the equation. More precisely, one assumes some Markovian behaviour and
one tries to define these processes as solutions of nonlinear martingale problems. The

martingale problem will be nonlinear in a sense that we now define.

Definition 2.1 Let {X;, t € [0,T]} be the canonical process on C([0,T], IR?) and let us
consider Py belonging to P(IR?). The probability measure P on C([0,T)], IR?Y) is a solution
of the nonlinear martingale problem (Mry) issued from Py if for every ¢ € Cg(Rd),

oK)~ o(Xo) = [ L(P)o(X,)ds (2.4)

is a P-(F;) martingale where Py = Po X, 1, Py=Po XO_1 and F; = o(Xs, s < t).

Remark 2.2 1) If we take expectations in (2.4), the family (P;);>o is a solution of the evo-
lution equation (2.1). The martingale problem gives more information than the evolution
equation. It enables to consider multidimensional time-marginals as P[X, € A, X; € B] or
functionals depending on the whole process, as for example hitting times. So we consider

the whole Markov process corresponding to the underlying physical model.

2) This martingale problem defines a class of generalized Markov processes. Given
an initial condition p € 'P(]Rd), we are looking for a law P* on the canonical space
satisfying P*(X(0) € A) = u(A), but we do not demand that P*(B) = [ P*(B)u(dz)
(with P* = P% ).

If we denote pi(A) = P*(X; € A), the process (X ., P*) is Markovian in the sense that
for any t, the quantity Py(X;,. € B|Xs,s < t) is a function of Xy and p; and Vz € R?,

PH(X;,. € B|X; =1z) = PP*(X_€ B|X(0) = z).

Theorem 2.3 If the coefficients o and b are Lipschitz continuous on IR*, and if Py has

a second order moment, the nonlinear martingale problem (Mry) has a unique solution.

Proof. In fact, we prove here a stronger result, namely the existence and uniqueness,
pathwise (given Xy and B) and in law, of the solution of the following nonlinear stochastic

differential equation :

t t
X, = Xo+ / o[X,, P,JdB, + / b[X,, P,]ds, (2.5)
0 0

where B is a k-dimensional Brownian motion and X, independent of B is distributed
according to Fy. The nonlinearity appears through P,, which is the marginal at time s of
the law P of X,



This proof is completely detailed in Sznitman [37] Theorem 1.1 and is based on a fixed
point theorem. Let P(Cr) be the space of probability measures on Cr = C([0, T], R%)
endowed with the weak convergence. This topology is metrisable with the Vaserstein

complete metric pr (cf. Rachev [34]), defined for mq,mq by

pr(m1,mg) = inf{ o dr(z,y) A1 m(dz,dy) : m € P(Cr x Cp) with marginals m; and mq}
ct'xC

Here, dp denotes the uniform metric on Cpr. One considers the mapping ¢ : P(Cr) —
P(Cr) which associates with every m € P(Cr) the law of X™ defined by :

t t
X" = Xo+ / o[X™, m,)dB, + / BX™, my]ds, t<T.
0 0

Observe that if (X) is a solution of (2.5) then the law of (X) is a fixed point of the function

1) and conversely.

By pathwise considerations one proves that for ¢ < T,

t
P mt), plm?) < K [ g’ ),
0

for m!',m? € P(Cr). Then one deduces from the fixed point theorem the existence and
uniqueness of the solution P of the martingale problem (2.4) defined on [0,7]. Pathwise

uniqueness follows immediately due to the Lipschitz continuity of the coefficients. O

2.2 The Stochastic Interacting Particle System

Let us now describe a way to approximate the solution P of (M) previously obtained
by the empirical measures of interacting particle systems. It is then natural to “replace”
the nonlinearity in (Mjsy) by the empirical measure of the particles, and that leads to

the following definition of the (triangular) systems.

Definition 2.4 Let us consider independent IR*-valued Brownian motions (Bi)ieN and
independent random variables (X(%)ie]N* with law Py and independent of (B*). For each
n € IN*, we define the n-particle system (X", X?" ..., X™) as solution of the stochastic

differential system
. . t . . t .
Vie{l,...,n}, Xi"=X; +/ o[ X", py)dB: —I—/ b[X:", py)ds (2.6)
0 0

where p™ is the empirical measure of the system, i.e. the (random) probability measure on
the path space Cr defined by :

1 n
u" = - Z dxin, (0 denoting the Dirac measure).
i=1



The stochastic differential system (2.6) means that for every 1 < j <d, 1 <i<mn,
_X]z,0+/ Zajh[Xsnaus chs / b [Xma/"s

It is easy to prove that under the assumptions of Theorem 2.3, (2.6) has for each n a
unique pathwise solution. To compare the behaviour of these particles with the nonlinear
problem, we use coupling techniques, consisting in comparing the n-particle system with
n independent copies of the limiting equation (2.5) constructed on the same probability
space. More precisely, we define for (B'); and (X{); previously given, the system (X*), IV

of independent processes with distribution P by

Vie W, Xi= X0+/ X%, P,] dBZ—I—/ bX, P
Let us prove pathwise estimates comparing X" and X°.

Theorem 2.5 Let us assume that the functions o and b are bounded by a real constant

M and Lipschitz continuous with Lipschitz constant L.

Then for all i € {1,...,n} and for any T > 0, one gets
supE(sup|Xf’"|2) < 400 ; E(sup|X{|?) < 400
n o <T t<T

2
OrM ep(CI?T). (2.7)

E(sup [X{" — X{|”) <
t<T

(2.7) obviously implies that the law of every subsystem of size k (k is a fixed integer),
issued from the system (X®"), converges when n tends to infinity to the law P®*. This
property is called propagation of chaos, which means a propagation of independence.
Although the particles interact, the initial independence assumption propagates in time
when the size of the system tends to infinity. That is mainly due to the exchangeability
of the systems and to the fact that the interaction is a function of the empirical measure.

Such an interaction is called weak interaction or mean field interaction.

Proof. The two first assertions are standard. Let us give a proof of the third one. The
form £ of the convergence rate has been proved in Sznitman [37], but for all what follows
in the next sections, we need to know how K depends on M and L. So we will detail the

computation.

We denote by p. the empirical measure of the system (X1, ..., X™). Using Burkholder-
Davis-Gundy’s and Holder’s inequalities and the exchangeability of the system



(X157, X1, ...y (X7, X)), we get for any t < T,

E(sup | X" — X;/%)
s<t

d k t ) ) d t ) )
< (XX [ Blonlx ) - ol PYds + 3 [ B0, 00012 = b5, P))ds)
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A convexity inequality is not sufficient to obtain good estimates in the second and the
third terms of the last expression. One remarks that since the variables (X i)lgz'gn are

independent with law P, then
E(ojn (X5 X)X, for all 7 # J) = oju[ XL, Py, fori# J,
and then, for J # k and i # J,
E((ojn(X;, X]) — 0 X3, Bs]) - (0jn(X3, X5) — 0jnl X3, Bs]) = 0

Thus, it suffices to consider the n terms of the form (o, (X, X7) — 0,[X?, P;])%. Hence,

; ; t ; ; C'M?t
E(sup | X" — X!?) < CLQ/ E(| X" — XE?)dr + : (2.8)
s<t 0
If we take ¢(t) = E(sup,<, | X" — X1|?) + %;, we have
CIMQ t
<T < — + CL? / d 2.9
VST, 9) < o+ CL [ plr)ar (29)
By Gronwall’s lemma, we conclude that
' r2 9
o(t) < —OL2 exp(CLT) (2.10)
where C and C' are two real constants depending on 7. O



2.3 Some Words about the Numerical Approach

Let us describe the numerical algorithm we deduce from this study to simulate the solution

of the McKean-Vlasov equation. We refer to Bossy [2] and Bossy-Talay [5].

We only consider the case of dimension one, all what follows being easily generalized to
every finite dimension. We follow [5] and explain how to simulate the cumulative distribu-
tion function of the solution P; of the McKean-Vlasov equation at time ¢. This algorithm
can easily be adapted to simulate other functionals of P;, as for example moments of
different orders. Let us define V(t,z) = [jp H(z — y)Pi(dy), the cumulative distribution
function of P, where H is the Heavyside function defined by H(z) = 1;>.

From now on, the number n of particles is fixed and the initial law P, is assumed to

satisfy one of both following assumptions:
(1) Py is a Dirac measure at zg.

(2) Py has a continuous density function wuy such that there exist constants M > 0,
n >0 and a > 0 with ug(z) < nexp(—a%) for |z| > M. (If n = 0, the measure P, has a
compact support).

The algorithm starts with an approximation of the initial condition V(0,.) = V(.)
which is the cumulative distribution function of Py. One chooses n points (yg, ..., 4}) in

IR such that the piecewise constant function

approximates Vp in L' (IR). In the case (1), one takes y§ = ro and in the case (2), a possible
choice is to set y§ = inf{y; Vo(y) = %} ifi=1,..,n—1, and y§ = inf{y; Vo(y) =1 — %}

Then, we discretize in time the interacting particle system following an Euler scheme.
We take At > 0 and K is chosen such that 77" = KAt. The discrete times are denoted
ty = kAt with 1 < k < [K]. The Euler scheme leads to the following discrete-time system:

n

1 .
Yoo = Yo+ Zb Y, YY) At+52 (Y3, Y2)(B}, 41 — Bi,)
j=1
YE = b, izl,...,n. (2.11)

Thus we approximate the empirical measure p;, by the measure ji;, = % Yo (5Yt¢ .
k
In a similar way, we approximate V(tx,.) by the cumulative distribution function of
ﬂtk
n

V(o) = =3 Hz - V) (212)

i=1



Then Bossy-Talay in [5] prove that

Theorem 2.6 Assume that b is a bounded Lipschitz continuous function on IR?, that
o€ Cbl(]RQ) and that there exists a constant s > 0 such that o(z,y) > s for every z,y.
Assume moreover that Py satisfies (1) or (2). Then there exist strictly positive constants
C1 and Cy depending on o,b,Vy, T, and C depending on M, n and «, such that for all
ke{l,..,K}, one gets

Cy/logn

n

q@%—wm+

Vo — Voll 1

IN

E(IV (te,-) = Vi (1)

IN

1
Nl \/A_t>. (2.13)

3 The Vortex Equation in the whole plane

We will now adapt these results to the specific case of the two-dimensional Navier-Stokes

equation.

3.1 The deterministic framework

Let us consider the velocity flow u(t,z) € R?,t € R,,z € IR? of a viscous and incom-
pressible fluid in the whole plane. The equation governing this motion is the Navier-Stokes

equation given by

ou
E(t’ z) + (u.Vu(t,z) = vAu(t,z) — Vp ;

Va(t,z) =0; u(z,t) = 0 as || = +o0, for 0 <t < +oo, (3.1)

where p is the pressure function and v > 0 the viscosity (assumed to be constant).

The first step in the probabilistic approach consists in considering the equation satisfied
by the vorticity flow w(t, z) = curl u(t, z). Heuristically, since the divergence of u is zero,

w is solution of the nonlinear partial differential equation, called vortex equation

X t0) + (- Vwlt,z) = vAw(t,a)
w(t,z) = 0 as |z] = +oo0, for 0 <t < 400 ; wo(z) =w(0,z). (3.2)

This second equation is a one-dimensional equation in which the unknown pressure term
has disappeared. It is not closed, and one has to write u in function of w, which is possible
since V.u = 0. Indeed, the function u can then be formally written as the orthogonal

gradient of a courant function v, and then w(t,z) = curl u(¢,z) writes Ay = w. The
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function % is then equal to G*v, where x denotes the convolution and G is the fundamental

solution of the Poisson equation in dimension two. For each r > 0, G(r) = —5-Inr.

Then, we deduce that for every ¢ > 0,
ult,z) = [, VGlla =yt )y = [, Ko —ypolty)dy (33

where V+ = (8,, —0z,). The equation (3.2) is then closed and we are interested in weak

solutions of this equation.

The Biot-Savart kernel K (z), equal to the orthogonal gradient of G, is given for all

z = (z1,12) € IR? by
1 1

- %(x% + x3)

Note that V - K = 0. The main difficulty with the kernel K is its explosion at 0.

K(x) (—x2,21). (3.4)

However, if w € L> N L'(IR?), (3.3) makes sense, as it can be seen as follows.

Lemma 3.1 The function K is bounded at infinity and integrable near zero. Let us in-

troduce Ky = fB(o,l) |K(y)|dy and Koo = SUPyeB(0,1)° |K(y)|-

Then for every function g € L' N L™ and x € IR?,

|K * g(z)| < Killgllzee + Koollgll L1 - (3.5)

The proof is very simple, and (3.5) leads to work in the space L' N L*, which is well

adapted to a probabilistic point of view. In all the following, we will assume that

wy € L' N L™, (3.6)

At this level, there are two probabilistic approaches in the literature. The first one
consists in interpreting classical solutions of the vortex equation, using a Feynman-Kac
approach, as the expectations of some stochastic processes. This approach has been de-
veloped by Busnello in [8] and allows to prove an existence and uniqueness theorem, but
not to obtain a constructive method to simulate the solutions of the equation. So in the
following, we will present the second approach which consists in looking for weak solutions
of the vortex equation, considered as a Fokker-Planck equation. This approach follows the
precursive ideas of Chorin and has been firstly mathematically developed by Marchioro
and Pulvirenti in [26] and then in [29].

We have seen that the drift kernel K explodes at 0, so the first step is to approximate
it by bounded kernels.

11



3.2 A cut-off equation

Let us consider as in [26] the cut-off kernel K, defined in the following way. We denote
by G(r) = —% Inr the fundamental solution of the Poisson equation. One knows that
for € R?, K(z) = V+G(|z|). For each € > 0, we consider G, defined as G.(r) = G(r)
if |r| > ¢ and arbitrarily extended to an even C?(IR) function such that |G.(r)| < |G'(r)|
and |GZ(r)| <|G"(r)|. Then we define

K. (z)= VLGE(|:1:|).
The function K, is then bounded by a real M, and Lipschitz continuous with a Lipschitz
constant L, .
Let us also remark that by construction, V.K. = 0, and that K. satisfies a similar

inequality as (3.5): for every £ > 0 and every function g € L' N L™

1Ke * glloo < Killgllze + Koollgllzr- (3.7)

For each fixed € > 0, we consider the regularized equation
Opw® = vAw® — (K, xw®.V)w® ; wg € L' N L*. (3.8)

We are in the McKean-Vlasov context, except that the initial condition is not a probability
measure. To overpass this problem, we use a trick due to Jourdain [20] to pass from a

density initial function to any wy € L' N L.

We define the bounded function h by

Vz € R?, h(z)= M, with the convention 0_ 0. (3.9)
lwo ()| 0
Let us remark that for each z € IR?,
—[lwollr < h(z) < [lwoll1, (3.10)

and that wy(z)dz = h(z) 282l 4z where %01 is thus a probability density.

[lwoll1 Nlwol[1
Now, for @ a probability measure on C([0,+00), IR?), we define the family (Qt)tzo of

weighted signed measures on IR? by
VB Borel subset of R? , Q;(B) = E9(15(X;)h(Xy)), (3.11)

where X denotes the canonical process on C([0, +00), IR?). (One associates with each

sample-path a signed weight depending on the initial position).

The following lemma will be usefull in the following.
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Lemma 3.2 1) For each t > 0, the signed measure Q; is bounded, and its total mass is

less than ||wol|1.

2) If Qq is absolutely continuous with respect to the Lebesque measure, then the same

holds for Q.
Proof. Since the function 4 is bounded by ||wy||; and using (3.11), the lemma is obvious. O

The equation (3.8) understood in its weak form leads naturally to the following non-

linear stochastic differential equation.

Definition 3.3 Let us consider a random IR?-valued variable Xo with distribution ‘Illuu?§ﬁ2| dr

and B be a 2-dimensional Brownian motion independent of Xy. A solution Z¢ € C(IR,, IR?)

of the nonlinear stochastic differential equation satisfies Vt € IR

t .
Z; = Xo + V2B + / K. x P< (Z¢)ds,
0

P? = L£(Z%) and P¢ is related to P by (3.11). (3.12)
Since K. is Lipschitz continuous and bounded, we can adapt the previous section to show
the existence and pathwise uniqueness of the solution Z¢ of this equation. By the Girsanov
theorem, one knows moreover that for each time ¢ > 0, its law P has a density pf with
respect to the Lebesgue measure. That also implies the existence of a density p; for the

weighted measure Pf.

By Ito’s formula, one proves that for any 7' > 0, the probability measure P¢ on
P(C([0,T], IR?)) is solution of the nonlinear martingale problem (M?®): for any ¢ € CZ(IR?)
andt < T,

t _ t
#(X;) — b(Xo) — /0 K % By(X,).V(X,)ds — v /0 Ad(z,)ds (3.13)

is a P°-martingale, where X is the canonical process on C([0,7], R?), P, is equal to
[wo@)] 7, and P? is related to P = P* o X! by (3.11).

llwollx
Multiplying all terms of (3.13) by h(Xj), taking expectations and using that V.K, = 0,
we show that (p7); is a weak solution of the equation (3.8), and further for each ¢ > 0,

17111 < B (|h(Xo0)]) < [lwoll1- (3.14)

That implies in particular that the drift coefficient K. x p* is bounded, uniformly in time,

by ||wo||z1- Then one can apply analysis results due to Friedman [12] to deduce that the
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solution $° of (3.8) is continuous on [0,7] x IR? and belongs to C2((0,T] x R?). But

since V.K, = 0, one proves that p° is also a strong solution of the equation
Opw = vAv — K. *xv.Vv ; vy = wy

Then one knows (cf. [13] or [22]) that p® satisfies a Feynman-Kac formula and can be
written for any ¢ < T as E(wo(Y;"*)), where the process (V,") is defined by

t
Y}x’g =x+ V2UW; + / K. ‘kﬁi(ysw’s)ds
0
from which we deduce that

sup [|p7 || oo < [Jwol| e (3.15)
t<T

Hence the good space to define the solutions is the space
M ={g € L=([0,T],L' N L*=); sup|lg]| 1+ < |fwollz and sup [lgs|re < [[wol|z=}
t<T t<T
and we define, for ¢ € V and ¢ < T, the norm

llgelll = llgell e + llgell zoe-

Let us now prove the uniqueness of the solution of (3.8) in this space. We use to this aim
the mild form of the equation and firstly remark that the heat kernel G¥ on IR? defined

22 .
by GY(z) = s2e~ % satisfies

Lemma 3.4

VGl < (3.16)

<
Vvt

where C is a real constant, and then fg IVzGY_ llz1ds < +o0.

Proposition 3.5 1) Each weak solution w® € H of (3.8) is a.s. solution of the evolution

equation

t
wE(t, 2) = GY % wo(z) + /O /132 VoG ( — ). K. % w (y)w (y)dyds. (3.17)

2) There ezists a unique weak solution of (3.8) in H.

Proof. 1) Using Fubini’s theorem (allowed by Lemma 3.16 and (3.7)), we easily prove
that for every function (¢, z) € 01’2(1R+ x IR?),

/ b(t, 2w (z )dm—/}R b (0, z)wo (= d:c+1// / Ag(s, w)wf (z)dzds
+/ / W (s, )w d:cds—i—/ / (K. % (). Vot (s, ) )ut () dwds.

14



Then by choosing for a fixed time ¢, 9(s,z) = ijz GY_,(z—y)d(y)dy for ¢ € CZ(IR?) and
thanks again to Fubini’s theorem, we obtain the mild equation (3.17).

2) Let g and ¢’ be two solutions of (3.8) belonging to H. Then

@)~ e) = [ [ VG (—0) (Keras (0)0s(0) s 0)+ Ken(as(4) ~ o (0))gh 1))y,

Thus by (3.16) and (3.7), a simple computation gives (the constant C' may change from

line to line),

g () — g O]
< / |||/V Gy s(x — y) (Ke % qs(y) (g5 (y) — q5(y)) + Ke * (gs(y) — q5(y))ds(v))dyl||ds
< CO(Ky + Koo (lwoll 1 + ||w0||L°°)/0t||sztVs||L1|||qS(') —q5()|llds
< /Illqs t—_q; I,

By an iteration, we obtain

la) -goll < o[ L= [l 60l
< 0 [ llal) - Ol | St s
< ¢ [ ) - )l

Therefore, by Gronwall’s lemma,
sup |[lg:(-) — ¢;(-)I| =0
t€[0,77]

and the uniqueness in (3.8) is proved. O

3.3 Existence and uniqueness of the vortex equation

We are now able to study the existence and uniqueness of a solution of the vortex equation
inH.

Theorem 3.6 Assume wy € L' N L®. There ezxists a unique weak solution w € H to the

vortez equation (3.2). This solution is moreover solution of the evolution equation

wi(z) = GY *wo(z) + /Ot /]R2 VGY_(z — y).K *ws(y)ws(y)dyds. (3.18)

15



Proof. The uniqueness is proved following a similar proof as the one in Proposition 3.2,
using (3.5) instead of (3.7).

Let us now show the existence. Let us first remark that the space L' N L>® endowed

with the norm [||.||| is a complete space.

For each € > 0, we have constructed a solution (p§); of (3.8). Our aim is now to prove
that this family is Cauchy (in €) and that the limit point satisfies the vortex equation. Let
us fix € > 0 and ¢’ > 0 and consider the two families (55); and (% ); previously defined.

They are solution of the corresponding mild equations (3.17) and we write

/

pi(z) —p; (z) = /Ot/szt”s(w ) (K %5 ()5 (y) — Ko % 55 (9)55 (y))dyds
= /Ot/VmG’{—s(x — ) (K= * (55 (y) — 55 ())55()

(Ko x 55 (y) — Ko % 55 (9))55(y) + Ko % 55 (y) (55(y) — 55 (y))dyds.

Since the functions (5%); and (5% ); belong to # and by (3.16) and (3.7), we will do similar
calculations as before to estimate the first and third terms of the right hand side. Now,

to control the second term, we need the following lemma.
Lemma 3.7 For each t < T, for each z € IR?,

| /111‘52 (Ko (2 —y) — Ke(z — )i (y)dy| < 2¢'||wo]|co- (3.19)
Proof. Let us assume that ¢/ > €. Since K and K. coincide for |z| > &', we have

| [ e Ber@ =) = Koz — y)B§ (y)dy|

< [ IKelo—y) — Kela =)l w)ldy
lz—y|<e’
[ K@= )|+ |Kele = )i (0)ldy
|lz—y|<e’
< 2 K (o= 9)lI5F ldy < 2woll [ Kz by (315)
|z|<e’

T—y|<e’
< 2¢|lwollo by an easy computation.

We have used that by definition and for every € > 0, |K.(z — y)| < |K(z — y)|- O

Let us now come back to the proof of Theorem 3.6. We apply Lemma 3.7 to show that
1
Vt—s

and by iteration of this inequality and Gronwall’s lemma, we finally obtain that for &’ > ¢,

1155 — 75 ll1ds (3.20)

, t
5 -5l < aa+@A

sup |15 — 7 ||| < Cé'exp”". (3.21)
t<T
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The family € — $° is then a Cauchy family in L>([0,T], L' N L*°).

Hence, there exists a function w € L*°([0,T], L' N L™), such that for each t < T
: . _
glg(l)ilslg 1157 —well| =0
That implies that
sup [|wy |1 < [[wol[r1 5 sup [lwel|zee < ||wol|zes- (3.22)
t<T t<T

Next, with similar arguments as before, one can pass to the limit in € in the mild equation

(3.17) and show that w is solution of the linear equation

t,2) = Y swo(@) + [ [VaGY (- K v walon)dy. (329

It is not hard to deduce from it that w is a weak solution of the vortex equation. The

theorem is proved. O

3.4 The Nonlinear Process Associated with the Vortex Equation

As previously, the equation (3.2) leads naturally to a nonlinear martingale problem. Let
us fix T' > 0.

Definition 3.8 The probability measure P € P(C([0,T], IR?)) is solution of the nonlinear
martingale problem (M) if for each ¢ € CZ(IR?) and t < T,

t B t
$(X1) — $(Xo) — /0 K + By(X,).V$(Xy)ds — v /0 A(x5)ds

is @ P-martingale, where X is the canonical process on C([0,T],IR?), Py is equal to
ngl[da:, and Py is related by (3.11) to Ps = P o X;'.

[[woll1

This nonlinear martingale problem is related to the following nonlinear stochastic

differential equation.

Definition 3.9 Let us consider a IR?>-valued random variable X with distribution ‘ﬁiﬂéﬁz' dx

and B be a 2-dimensional Brownian motion independent of Xy. A solution X € C (IR, IR?)

of the nonlinear stochastic differential equation satisfies Vt € IR

t -
X: = Xo + V2vB, +/ K x Py(X;)ds,
0
P; is the marginal ot time s of the law of X. (3.24)
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Notations: We denote by Py (C([0, T], IR?)) the space of probability measures on C([0, T, IR?)
such that for each s < 7', the time-marginal P, (and then P,) has a density with respect

to the Lebesgue measure, belonging to L (IR?). Then there exists (cf. Meyer [31] p.194)

a measurable version (s, z) — p(s,z) in L™ such that for s € [0,T], P;(dz) = p(s, z)dz.

We will prove the following theorem.

Theorem 3.10 Let us consider wy € L' N L®. Then there exists a unique solution
P € Py (C([0,T], IR?)) to the martingale problem (M) such that Py(dx) = wo@)] 7o

~ Jwollx

Moreover, for each t € [0,T], the “weighted” density p(t,x) is a.s. equal to wy; defined

in Theorem 3.6.

Proof. 1) If P € P, (C([0,T], IR?)) is a solution of (M) and f; a measurable version of
the densities of P, then by multiplying by h(X,) and by taking the expectation in (M),
we get that p is a weak solution of (3.2) with initial condition wg. Then by the uniqueness

given in Theorem 3.6, for each ¢ € [0,T], pi(z) = w(z) a.s..

2) let us consider this unique weak solution w of (3.2) issued from wg. Then w; is for
each t a bounded integrable function. We say that P* € P(C([0,T], R?)) is solution of
the classical martingale problem (M®) if for each ¢ € CZ(IR?),

t t
$(X,) — 3(Xo) — v /0 AG(X,)ds — /O K % wy(X,).V(X,)ds

= %dm. This martingale problem is well-posed. In-

deed, by Lemma 3.1 and (3.22), for each s > 0,

is a P"-martingale and P}’ (dx)

1K % wsloo < Killwslloo + Kool lws 1 < Killwolloe + Koollwollx (3.25)

so the drift coefficient is bounded, and by Girsanov’s Theorem, we get the existence and
uniqueness of the solution of (MWY). Moreover, every time marginal of P admits a
density p¥, and multiplying by h(Xy) all the terms of the martingale problem and taking
expectations, we obtain immediately that (p§’)sejo,r] is solution of the weak equation: for
each ¢ € CZ(IR?),

t
ot = [ d@pm@ds+ [ [ As@)@)deds
t
+ / /]R2(K « wy(z).V ()5 (x)dwds. (3.26)
0
Then the flow p; is solution of
8"”11)
o (K xw )" = v =,

18



Adapting what we have done in Section 3.2, since the divergence of K is zero and wy

belongs to L>® N L', we are able to prove that for each ¢ € [0, 77,

1% lloo < llwolloo- (3.27)

3) Let us now prove the existence and uniqueness of a solution of (3.26) in L>([0, T, L' N
L*°). We obtain as before by Fubini’s theorem and thanks to Lemma 3.1 that p* is solution

of the following evolution equation
t
() = GY * wo(x) + /O [ VGl a = K 0 )i (s dy. (3.29)

We can easily prove the uniqueness of the solution of (3.28) in L*°([0,7], L*°). Since

p¥ and w are solutions of (3.28),
sup Hﬁw(t’ ) - w(ta )Hoo = 0.
t€[0,T]

So the probability measure P" is solution of the nonlinear martingale problem (M).

4) Let us now prove the uniqueness of a solution of this martingale problem. Let P
and @ be two solutions. By the same reasoning as above, it is easy to prove that (Pt)tzo
and (Qy)i>0 are equal to (w(t,z)dz);>o. Hence P and @ are solutions of the classical

well-posed martingale problem (M™) and are then equal, and Theorem 4.7 is proved. O

3.5 The Particle Approximations

3.5.1 The Cut-off Case
Let us firstly adapt to the cut-off case the results of Section 2.

Definition 3.11 Consider a sequence (Bi)ie]N of independent Brownian motions on IR?

jwo(z)|
Twollr 4%

and independent of (Bi)iell\/" For a fized €, for eachn € IN*, and 1 < i < n, let us consider

and a IR?-valued sequence of independent variables (Zg)ieﬂv distributed according

the interacting processes defined by
) : . t )
Zim¢ — 78 4 /2Bl + / K. * [ (Z")ds (3.29)
0

where g™ = % ?:1 h(Zg)(SZjn,s is the weighted empirical measure of the system. (That

is a random finite measure on C(RRy, R?)).

We also define the limiting independent processes by

. . . i ~ . .
Z° = ZL + V2uBj —I-/ K. x P;(Z»°)ds, Pt is the law of ZV° (3.30)
0
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Proposition 3.12 1) For each T > 0 and for each n, there exits a unique (pathwise)
solution to the interacting particle system (3.29) in C([0,T], R*™) and a unique (pathwise)
solution to the nonlinear equation (8.30) in C([0,T], R?).

2) For each T > 0,

M,
NIA

Blsup| 7" - 2 < <= exp(uwol TLe). (3.31)

Proof. By the boundedness of h, the proof of the first assertion is obvious. The second
assertion is obtained by an adaptation of the proof of Theorem 2.5. Since the diffusion

coefficient is a constant, one can lead the computation in L'. O

3.5.2 The Approximating Interacting Particle System

We now define the interacting particle system we are interested in.

We now consider 7' > 0 and a sequence (g,) tending to 0 such that

. M, .
1171Ln N exp(||lwo|1TLe,) = 0. (3.32)

For each n and given independent Brownian motions (Bi)lgign, we consider a coupling
between the n particle system (Z‘* = Z?™¢n) defined with the drift K. as in (3.29), and
the corresponding n independent limiting processes Y = Z%¢» defined for each t < T

and n by
. : . t - .
Y/ = Z} + V2vB; +/ K., « P*(Y!")ds, (3.33)
0

where P is the law of the Y.

S

By similar arguments as before, P" admits a density function p” and then P admits

a density function p7 belonging to #, weak solution of the equation

aﬁn ~n ~n ~“n . ~n
W = VA — (KETL *p - V)p H po = Wg- (334)

and solution of the mild equation
t
5 (z) = G¥ * wolz) + /0 VoGY % (F1 K., + 77)()ds. (3.35)

Let us now introduce for each n the coupling of processes (Z, Y™ X i)lgign, where
(X?) are independent copies of X defined as in (3.24) on a certain probability space and

Z"™ Y' are driven, for each i respectively, following the same Brownian motion as X".
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We will now compare the two processes Y and X*. So we need to estimate w —p". Using
(3.23) and (3.35), we obtain

@)~ wi(a) = | Ve ). (Ker + B0 0) — K wsly)ualy)) dyds

BZ
(3.36)
We will prove the
Theorem 3.13 There exist positive real constants C1 and Cy such that
=n Ci 2
sup |||p} — wll| < —=enl||wo|[*VT exp(Cy||[wol||T), (3.37)
t<T Vv
The proof begins with the lemma.
Lemma 3.14 For each t < T, for each z € IR?,
| = (K, (z —y) — K(z — y))p} (y)dy| < 2en|lwoloo (3.38)
[Ke,, * Py — K * wt|loo < 2€n||wolloc + (K1 + Koo)||[PF — wi]]- (3.39)

Proof. 1) (3.38) is proved as (3.19).
2) For z € IR?,

Ko, * P} (z) — K x wi(z)|

IN

2en ||wolloo + /1R2 |K (2 — )lpt (y) — we(y)ldy

< 2enllwolloo + Kool|p — willy + Kil|pf — wilco-

Let us now prove Theorem 3.13.
Proof. We consider (3.36). Then,

|p¥ (x) — wi()]|
< | /f - VieGi_s(z —y). (ﬁ?(y) (K., * 72 (y) — K *ws(y)) + K *ws(y) (57 (y) — ws(y))) dyds|

< [ [ 192G o= )l (1720 enllwolloe + 20K + K)ol 172 = 1))y
by (3.39), (3.25) and (3.5)

< I ﬁ(nwonm@ennwonm+2(KOO+K1)|||wo||||||zs2—wsm))ds
C
< (tenltonl VT + 28 + Kl [ 157 — ol ds).
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Consider now the L'-norm of $7? —w; and by similar computation,

/ , 1P (2) — wi(z)|dz

t 1 _ B | ~
< [ s enlwolle + (oo + KDL —wsllDds + [ =LK sl — il s
A

to1
$(4€n|||w0|||2ﬁ+2(Koo +K1)\Hw0m/0 \/ﬁlllﬁ? —ws|||d8)-

AN

By associating the two previous results, we obtain

_ C b _
1178 = unlll < <= (Beulluwoll VT + 20 ol | —=I17% = w1 ).

We iterate twice this inequality and obtain finally by Gronwall’s lemma that

- Ci
sup [||py — wil|| < —=¢nl||wol|[*V'T exp(Ca||Jwol||T).
t<T v

7

O
Adding now (3.39) and (3.37), we deduce the
Corollary 3.15 For each t <T
| Ke, * Py — K * wi]loo < Arén, (3.40)

where At = 2|[wolloo + (Koo + K1) Ten||lwol|[* VT exp(Ca[woll|T).
We are now able to obtain our main theorem.

Theorem 3.16 Let us consider independent processes, solutions of the stochastic differ-
ential equations defined on [0,T], T > 0 by

_ . . . t _ .
Xi=2Zi+vVwBi+ / K py(X)ds, (3.41)
0

where (Bi)ielN are independent Brownian motions on IR? and (Z(%)z'e]N are IR?-valued iid
random variables independent of (B'),_py with law Py(dx) = wol@)| gy € L1 N L.

[lwoll1

The function ps is the density of the signed measure P; associated with the law P; of X?
by (3.11)

Let (en),c v be a sequence of positive numbers which tends to 0 and such that

. M, _
lim NG exp(|lwol[1TLe,) = 0.

We consider the coupled n-particle system (Zi")1§i§n defined by

) . ) t1 2 . ) )
Zin — 7 4 B + / =S WZ) K., (Zi — Zi")ds. (3.42)
0 n-“
7j=1
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Then, for each 1 <i <n,

lim E(sup|Z§” Xf|> =0, (3.43)

n—-+o0o t<T
(in the precise asymptotics given by (3.47)).

That implies the propagation of chaos and the convergence in law (uniformly in time),
of the weighted empirical measures it = % i h(ZS”)(fzgn to Py and Py = wy(z)dz where

w s solution of the vorter equation with initial datum wy.

Proof.

IN

B(sup|z" - Xi|) < B(sup|z" - V") + B sup 7" - X))
t<T t<T t<T

IA

“ exp(|uwols TL.,) + B sup V" = X{]).  (344)
nL, t<T

n

But
_ — t <1 v t Xt
V5 = X < [ 1o P = Ko (DI + [ 1Ko, 75X — K (K1) s,

The second right hand-side term is controled thanks to Corollary 3.15. It remains to study
the first right hand-side term, what we do following [26] Lemma 3.1 and Theorem 3.1. It

is proved that for z and z in IR?,

|Ke, Py (z) — Ko, + P (2)] < Co([lwollr + [[wolloo) p(z, 2),

where ¢(z,z) = ¢(|z — z|), and $(r) =r(1 —Inr) if 0 < r < 1 and $(r) = 1 if r > 1. Let

us remark that the the function ¢~5 is non-decreasing and concave.

Then, by noting C = Cy(||wo|l1 + ||wol|sc), one deduces that
_ _ . o
Vi = X{| < Area+C [ $(¥;", X)ds.
Thus,

E(sup|17;f’” —Xﬂ) < ATen—I—C/ (supqﬁ (Yim Xz))d
u<t u<s

< ATen+C/ (supqS Y”LX“))d
u<s
< Are, —l—C/ ( sup|YZ" Xﬂ))ds
since ¢ is non decreasmg
< Are, + C/Ot <;~S(E(s1ip |yim — Xm))ds by concavity of ¢
u<s
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Let us denote by H(t) = E ( SUp,, </ |Yim — X&\) Then by the previous computations,

H(t) < Apen + C /O ' B(H(s))ds. (3.45)
As in [26], we introduce the solution h(zg,t) of the equation

Z(t) =Co(z(t)) 5 2(0) =m0 >0.
Then, if o < 1, and if ty = inf{¢, h(zo,t) > 1},
h(zg,t) = xSXp(_Ct) exp(1 — e ) if h(zo,t) <1, t <t

= 14+C(t—ty) if h(zg,t) > 1, t > 1

and if zg > 1, h(zo,t) = zo + Ct. Hence, by (3.45), we get H(t) < h(Aren,t). But since

en tends to 0 as n tends to infinity, for n sufficiently large, we deduce that
H(t) < (A7en)™P exp(1 — e~
and finally
E( sup |Yin — X:A) < (Aren)®PECT) exp(1 — e 7). (3.46)
u<

Now, by (3.44), and (3.46), we finally conclude that

: iy M,
B((supl2i" - Xi1) < <2 expllwoll T, ) + (Aren) ™7 exp(1 =),
t<T nLe,
(3.47)
where C = Cy(||lwoll1 + ||wo||sc) and then tends to 0 when n tends to infinity. O

3.5.3 Numerical Results

We finally deduce from this study an algorithm for the simulation of the solution of the
vortex equation. To approximate numerically this solution, it is necessary to discretize
in time the particle system with an Euler scheme, as it has been described in Section 2,
Theorem 2.6. Mimicking the result obtained by Bossy-Talay [3] for the Burgers equation,
and if s, denotes the weighted empirical measure of the discretized system, one hopes
that K., x fifx, converges to K % wja in L' with rate O(vVAt + ﬁ), where At denotes

the time-step. The simulations realized with specific kernels K. confirm this behaviour.
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3.6 Generalization to a Finite Measure Initial Condition

It is possible to generalize what we have done to the case of a finite measure initial
condition, instead of wg € L' N L>®. We refer to [30] for details. In that case, the study of
the vortex equation exposed by Giga-Miyakawa-Osada in [16] involves analytical results,
in particular on generators of generalized divergence form. The solutions of the vortex
equation live in L-spaces, with 1 < g < 2. This induces new difficulties, even if the particle
approximation method is essentially similar to the previous one. Due to the explosions of
the estimates (3.46), we obtain a convergence in law for the particle systems, instead of a

L'-convergence as in the bounded case.

4 The case of a bounded domain

We now consider a Navier-Stokes equation in a bounded domain © of IR? satisfying the

no-slip boundary condition:

ou(t,z) + (u.-V)u(t,z) = vAu(t,z) — Vp in ©;
Va(t,z) =0 in © ; u(0,z) = ug(z) for z € O ; u(z,t) = (0,0) for z € 9O,

where p is the pressure and v > 0 the viscosity coefficient. A probabilistic approach of
this equation, based on branching processes, has already been developed by Benachour,
Roynette, Vallois [1] and generalized in dimension 3 by Giet [15]. But even if the authors
propose some particle approximations, the convergence of the method is not shown and
the particle systems they describe are not for use in practice. Our purpose is to construct
some easily simulable particle systems, and to rigorously show the convergence of some
associated weighted empirical measures to a deterministic finite measure associated with

the solution of the Navier-Stokes equation.

As in Section 3, we try to associate a vortex equation with this Navier-Stokes equation.
This approach would consist in replacing the Biot and Savart kernel by the orthogonal
gradient K of the Green function of the Dirichlet problem in the domain. But one then
only obtains the nullity of the normal component of the velocity on the boundary. To
obtain in addition the nullity of the tangential component, we are inspired by Cottet [10],
who proves that by adding a Neumann condition to the vortex equation, one obtains an
admissible vorticity field in the sense that the associated velocity satisfies a posteriori the

no-slip condition.

This Neumann condition badly depends on the vorticity and is really hard to take into

account. So we will mainly deal in the following with a vortex equation in a bounded
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domain of R? with a given Neumann condition at the boundary. We obtain the existence
and uniqueness of the solution of this vortex equation in an appropriate space. We are
interested in proving the convergence of Monte-Carlo approximations to this solution. To
our knowledge, there was so far no proof of convergence of deterministic or stochastic

particle methods in this simplified case.

We associate with the vortex equation a nonlinear diffusive and reflected process, with
random birth at the boundary governed by the Neumann condition. We construct inter-
acting normally reflected particle systems with space-time random births at the boundary
and prove the propagation of chaos to the law of the nonlinear process associated with
the vortex equation. We are inspired by the paper of Sznitman [36], which concerns inter-
acting and reflected McKean-Vlasov particle systems living in a bounded domain. Some
additional difficulties appear here, due to the singular interacting kernel K and to the
space-time random births. Moreover, since wy and g are not probability densities, we

introduce as in Section 3 some weights associated with the initial position.

We will be then able to describe the simulation algorithm, and we will finally explain
how to adapt this numerical approach if we assume the Cottet condition (cf. [10]) to come
back to the Navier-Stokes case.

Notation: If © is a bounded domain of IR?, the Sobolev space H'(0) consists in functions
which belong together with their first order distribution derivatives to L?(©).

4.1 The model
Let T' > 0. Let us consider a function g defined on 0. We are interested in the equation

Ow(t,z) + V.(wKw)(t,z) = vAw(t,z) in]0,T] X ©;
w(0,z) = wy(z) in © ; Jpyw = Vw.n =g on |0,7] x 00 (4.1)

where n(z) denotes the outward normal to 90 at the point z and Kw(t, z) = [g K(z,y)w(t,y)dy.
The kernel K (z,y) is equal to Vi+G(z,y) = (—0.,G(z,y),0s, G(z,y)) where G(z,y) is

the fundamental solution of the Poisson equation
ALG(z,y) = 0y(z), z€ O ; G(z,y) =0, z € 00 (4.2)
Let us remark the important properties of the kernel K:
Ve #y€e®, Vo.K(z,y) =0; Vzedo,Vyec0, K(z,y).n(z) =0 (4.3)

In all the following, we will moreover assume
Hypotheses (H):
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The domain © of IR? is bounded, simply connected and of class C*.
wy € L*(©) ;5 g(t,z) € L{([0,T], L3(96, do)), (4.4)

where do(z) denotes the surface measure on the boundary.

Thanks to the assumptions made on ©, the following properties hold for the Green
function G and the kernel K = (K1, K») :

Lemma 4.1 3Cy > 0, Vz # y € O,
Co
|z -yl
Co .
Ve Ki(z,y)| + |VyKi(z,y)| < z—yP Jor i=1,2.

G(z,y)| < Co(1+ |Infz —yl]); [K(z,y)| <

Proof. For y = (y1,y2) € IR?, let y* = (—ya,y1) and y* = y/|y|* if y # (0,0).
In case © is the unit disk B(0,1) of IR?, one has the following explicit expression for the
Green function (see [17] p.19)

1 |z — y| )
G =—In{——"—]. 4.

We remark that

Vz,y € B(0,1), |z —y*| > Jyllz —y*| = \/|5L‘ —yl2+ (|z]2 = D)(jy[* = 1)) > |z —yl. (4.6)
As a consequence,
127Go(z,y)| < —In|z — y[lz—y <1y + In(|yllz — ¥ ) 1jy)1z—y= >1}-

As lyllz — v*| = |z|y| — y/|y|| < 2, we conclude that [27Gy(z,y)| < |In|z — y|| + In(2).

We also deduce from (4.6) the bound on the corresponding kernel

T — L T — *x) L
K(z,y) = <( v ey ) L (o -9 (@ -y

m\fe—y?  Je—y P ) 2n

To estimate VK;, we combine (4.6) and the fact that each term of the Jacobian matrix of
z — 2z* is bounded by 1/|z|?.

When © is a general bounded and simply connected domain of class C3, according to
[33], there is a conformal mapping from B(0,1) onto © which extends to a one-to-one C?
mapping from B(0,1) to © denoted by f and such that Df, (Df) ! and D?f are bounded
on B(0,1). Since the Green function for © is given by

G(z,y) = Go(f (=), (),
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the estimations on G, K and VK; follow from those obtained for the unit disk and the

just mentionned properties of f. O

We are interested in weak solutions of (4.1) defined in the following sense

Definition 4.2 We say that w: [0,T] x ©® — IR is a weak solution of (4.1) if w(0,.) = wp
and

(i) w € L(L2)NLE(HL) where L$°(L2) and L2(H?) stand respectively for L=([0,T], L?(0))
and L*([0, T, H'(©))

(i3) for any v € HY(O), % Jowv + v o Vwr.Vv = [gwiKw. Vv + v [ grvdo.

Before stating the existence of a unique weak solution to (4.1), we are going to check

the following Lemma which prepares the study of the nonlinear term in (4.1).

Lemma 4.3

V2 < p < +o0, 3C > 0, Yw € LP(O), Kw € C(O) and ||[Kw||1~ < C||w||r» (4.7)
3C >0, Yw € L*(0), ||Kwl||2 < C|lwl|2 (4.8)

Proof. For a > 0, let Ko(7,y) = 1{;_y|>a} K (2,y). By Lebesgue’s theorem and using the
continuity of K away from the diagonal, we obtain the continuity of z € © — K,(z,.) €
Lj, for each ¢ > 1. When in addition ¢ < 2, according to Lemma 3.3, Kq(z,.) converges
to K(z,.) in L] uniformly on ©, when « tends to 0. We deduce that K(z,.) is continuous
in L] and obtain (4.7) by Hélder inequality.

Let w € L?(0©). Using Lemma 3.3 and Cauchy-Schwarz inequality, we get

C Cow? C ’
| Kw||2s S/ ( %dy) (/ Mdy) dz < <su1_)/ %dy) l|lwl2.
o \Jo |z —y| o |z—yl ze6 /o |7 =yl

O

We can now state the following existence and uniqueness theorem, and refer to [21]
for the proof. It consists in obtaining energy estimates and in adapting the Galerkin

approximation method.

Theorem 4.4 Under hypotheses (H), equation (4.1) has a unique solution w in the sense
of Definition 4.2. In addition, w € C([0,T],L2) N L}(L%).

In order to give a probabilistic interpretation to the obtained weak solution of (4.1),
we introduce the semi-group P/ (z,y) associated with v/2v times the Brownian motion

normally reflected on the boundary and prove the following mild representation
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Proposition 4.5 Let w denote the weak solution of (4.1) given by Theorem 4.4. Then
Vt € [0,T], dr a.e. in O,

wi(e) = Pruoty) + [ VRL (oKu)@ds+v [ [ P2t n)dot)ds (49
where VP .(wsKws)(z) = [o Vy P (y, x).ws(y) Kws(y)dy.
Proof. Let ¢ €]0,7] and ¢ be a smooth function on © with a vanishing normal derivative

at the boundary : 9,p(z) = 0 for z € 00. According to [23] Theorem 5.3 p.320, the

boundary value problem
O+ vAYy =0 on[0,t] xO; I,p =0 on [0,t] x 9O ; (t,.) = ¢(.) on O

admits a classical solution (s, z) which is C1? on [0,#] x ©. By the Feynman-Kac ap-
proach, this solution has the following representation : (s,z) = P/  p(z). Clearly
Y € L2([0,t], H'(©)) and 9s¢p € L2([0,t], (H'),(©)). By [39], Lemma 1.2 p. 261, we
deduce that in D'(]0, ¢[),

d%/@wsw( /wsaqp / Vws.Vip(s +/ wsKws.V(s, )+V/6® gsp(s,.)do

By the equation satisfied by %, the sum of the two first terms of the r.h.s. is nil. Hence

/@wt(x)tp /wo ¥(0, z) dav—i—/ /wsKws( ).V(s, z)dzds

+1/// (s,x)g(s,z)do(x)ds.

By the symmetry of P and hypotheses (H), J7 [5o fo Pr_s(z:y)|o(¥)|dylg(s, z)|do(z)ds <
sup |¢|||gll 1 (£1 (90)) < +00- Hence, by Fubini’s theorem the last term of the r.h.s. is equal
tov [o fo Jo0 PYs(y,x)g(s,y)do(y)dsdz. We conclude the proof by applying similarly
Fubini’s theorem to the other terms of the r.h.s. and remarking that the derived equality
holds for any smooth function ¢ with vanishing normal derivative.

To justify the use of Fubini’s theorem in the second term, we need the following estimations
given by [35] (a.13) and (a.14) p.600 :

Vz €0, Vy € 0, |Vo P (z,y)| < C1/t*? and | Vo P! (,9) |11 0) < C1/VE  (4.10)

Indeed the first one ensures that Vi (s,z) = [o Vo P/ ((z,y)¢(y)dy. By the second
one and (4.8),

t t
| [ wkwl@) [ 192PE (@ )lle) dydeds < Csup ol Fezz) [ (6= 9)72ds.

O
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4.2 The Probabilistic Interpretation of the Vortex Equation with a Neu-
mann Boundary Condition

We are again in a McKean-Vlasov context and we will associate a nonlinear martingale

problem.

To bypass the difficulty due to the Neumann condition involving g, we essentially
follow Fernandez-Méléard [11], proving that this term is related to space-time random
births located at the boundary. We have also to take into account to the bounded domain
instead of the whole space and the diffusion processes we consider will be reflected on the
boundary. There are also births inside the domain at time 0 and the functions wy and
g are not probability densities. As in Section 3, we follow Jourdain [20] to overpass this

problem.

Let [woll1 = fo [wol and |lgllx = fio rjxae |9/dodt. To govern the times and positions
of births we introduce on [0,7] x © the probability measure

|wo ()]

Poldt, dz) = Lz Ot () o ==

t
da:+1{mea@}”w”‘g( I do(z). (4.11)

oll1 + vllgllx

We also consider for ¢ € [0,T] and = € © the measurable function

h(t,z) = 1 Oxe@}%mmulwngn )+1{wea@}%<nwonl+u||g|| ) (412)

with values in {—(|lwol|1 + v|lgl]1),0, [|wo|l1 + v||lg|l1}. Let us remark that if ¢ a bounded
measurable function on [0,7'] x ©, then

/ o, 2)h(t,z) Py (dt, dz) = / (0, 2)wo (z)dz + v / o(t, 2)g(t, ) dtdo(z)
[0,T]x© e [0,T]x 80

(4.13)

Let (7, (X¢)t<r, (kt)t<) denote the canonical process on [0, T]xC([0, T], ©) xC([0, T], IR?).
For a probability measure () on this space, we define the family (Qt) (0,7] of signed mea-

sures on © by

VB € B(©), QuB)=E?(h(r,X0)1{;<yy1B(X1)), (4.14)

It is easy to check that for each ¢ € [0,T], the signed measure Q; is bounded with a

total mass less than ||wo||; + v||g]|1-

To give a probabilistic interpretation to the equation, we are inspired by Sznitman [36]
and Bossy-Jourdain [6] for the reflected contribution and by Fernandez-Méléard [11] for

the space-time random births.
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Definition 4.6 Let T > 0. We denote by Pr the space of probability measures Q@ on
[0,T] x C([0,T),0) x C([0,T], R?) such that for each t € [0,T], the signed measure Q;
has a density G¢ with respect to the Lebesgue measure on © and the measurable version §
belongs to L°(L2) N L2 (H}).

Definition 4.7 A probability measure P € Pr is solution of the nonlinear martingale

problem (Mp) if
1) Po (1, Xy, ko)_l =FP® 5(0,0)
2) for each ¢ € C2(IR?),
t
MP = $(X; + ) = $X0) — [ ey (KR(X) V9K, ) + 2K, + k) ) ds

is a P-martingale, for the filtration Fy = o (7, (X5, ks), s < t) (p(s,x) denotes a measurable

version of the densities of 135).

3) P a.s., ¥Vt €[0,T],
t t t
[ ikl < oo by = [ 1k, coopLpcadlbls o k= [ n(Xo)dl.
The following lemma states the link between (Mpg) and the vortex equation (4.1).
Lemma 4.8 If P € Py solves Mp then p is a weak solution of (4.1).

Proof. By Definition 4.7 1), (4.14) and (4.13), po = wo.
According to Definition 4.7 2), £ = Xy — X — f(f 1<) Kps(Xs)ds + k¢ is a P-

continuous martingale with bracket < 8 >;= 2v(t — 7)TI, where I, denotes the 2 x 2
identity matrix, which implies that 8; = 0 for ¢ € [0, 7]. Using moreover Definition 4.7 3),
we deduce that X; = X for ¢ € [0,7]. Hence for v € C12([0,T] x ©),

T T
/0 Ostb(s, X,)ds + (0, Xo) = (7, Xo) + /0 1(r<50stb(5, X,)ds.

If moreover V(s,z) € [0,T] x 00, 0,1(s,z) = 0, by Itd’s formula, we deduce that
T
WTX) = $lrXo)+ [ V(s X,).d6,

T
+ /0 1<) (Bsp(5, Xo) + Ka(Xa).Vip(5, Xs) + vAp(s, X,))ds

Multiplying by the Fy-measurable variable h(7, Xj), taking expectations and using the
definition of p and (4.13), we deduce that

/éip(T,w)ﬁ(T,w)dx = /ézp(O,x)wo(x)dx—f—V/oT Aew(s,x)g(s,x)da(x)ds

—l—/OT/é(as?P(s,x) + Kpg(x).Vip(s,z) + vAY(s,x))p(s, z)dzds,
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For the choice 9(s,z) = ¢(s)v(z) where v is a C? function on © such that d,v = 0 on 00
and ¢ € D(]0,T[), we obtain

T
/ ((p'(s) /_ Psv + () (/ ps Kps. Vv + 1// PsAv + 1// gsvda>> ds = 0.
0 6 e e 80

As P € Pr, p € L?(H]}). By Green’s formula for functions in H'(©) ([7] p.197) and since
Onv vanishes on the boundary, ds a.e. in [0,T], [ PsAv = — [o VPs.Vo.
Since O is C*, the C%(O)-functions with a vanishing normal derivative are dense in H'(©)

and we conclude that p satisfies Definition 4.2 (ii). O

Theorem 4.9 Under Hypotheses (H), the martingale problem (Mp) has a unique solu-
tion P. In addition, the corresponding p is a weak solution of (4.1) and satisfies (4.9).

Proof. 1) Uniqueness

Let P! and P? be two solutions of (Mp). Then according to Lemma 4.8, ' and p?
are weak solutions of (4.1). According to Theorem 4.4, $; = p» = w. Hence P! and
P? both solve the martingale problem defined like (M p) but with known drift coefficient
Kuw, replacing Kp, in Definition 4.7 2). Since w € Lj(L3), by (4.7), ||[Kws| e € Lt.

Let T' denote the first marginal of the probability measure Py on [0,7] x © and for i =
1,2 and u € [0,T], p*(u,.) be a regular conditional probability on [0, 7] x C([0,T],©) x
C([0,T), IR?) endowed with P! given 7 = w.

Then dT'(u) a.e., p*(u,.) a.s., 7 = u, Definition 4.7 3) is satisfied and p’(u, .) o (Xq, ko) !
is equal to

|g(u, z)|do(z)
o l9(u,y)|do(y)

|wo () |dz
l|lwo |1

1iu=0} ® 5(0,0) + 1us0) T, ® (5(0,0) (4.15)

and V¢ € CZ(IR?),

t
A Xt + k) — $(Xo) — /O liu<sy (Kws(Xs)-v¢(Xs + ks) + vAH(X;s + ks)>ds

is a p’(u,.)-martingale.

Reasoning like in the proof of Lemma 4.8, we obtain that dT'(u) a.e., p*(u,.) a.s., X; =
Xo and k; = (0,0) for ¢t € [0,u]. With (4.15), we deduce that dT'(u) a.e., p'(u,.) o
(Xu, ko)™t = p%(u,.) o (Xyu,ky) ™! and that for i = 1,2, p*(u,.) is equal to the image of
p'(u,.) © (Xttus Ktsu)iecfo,r—uy) " by the mapping

(X1, kt)i>0 € C([0, T — u], © x IR?) = (X(1_uy+, k(t—uy+)iep.) € C([0,T],0 x R?).
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Moreover dl'(u) a.e. , W; = \/% (XHU — Xy — [T Kwg(X)ds + kt+u) is a p'(u,.)
Brownian motion. Since s — |[Kws||r~ is square integrable, combining trajectorial
uniqueness for the Brownian motion normally reflected at the boundary of © (see [25]),
Girsanov’s theorem and the equality p'(u,.) o (Xy,ky)™' = p?(u,.) o (Xy, ky)~! which

holds dI'(u) a.e., we deduce that dI'(u) a.e.,

P (u,.) o (Xtgu, brsu)teor—u) ~' = P2(6, ) © (Xigus keu)ieo,r—u)

Hence dI'(u) p.p. p'(u,.) = p*(u,.) and P! = P2,
2) Existence.

Let w be the solution of the vortex equation given by Theorem 4.4. We recall that
|Kws||z~ € L. We construct a solution to the linear martingale problem defined like
(Mp) but with known drift coefficient Kw;(.) replacing K, in Definition 4.7 2) and we
check that this probability measure solves (Mp).

Let (7, Xo) be a random variable with law P independent from (W});¢[o,7] @ two-dimensional
Brownian motion. Existence and trajectorial uniqueness hold for the stochastic differential

equation with normal reflection

¢ ¢ ¢
X = Xo + V2V/0 1<) dWs — ki 5 |k :/0 1(x,co0}L{r<sdlkls ; Kt 2/0 n(X;)d|k|s.

Moreover V¢ € [0,T], X; admits

1
_)
lwoll1 + vllgll L1 (j0,9x00)

t

- (lwol?t @)+ [ [ lolts, )P (v, 2)otdy)ds)

as a density w.r.t. the Lebesgue measure on ©. Since |[Kw;||z is square integrable,
by Girsanov’s theorem we deduce that the martingale problem defined like (Mp), but
with Kw;, replacing Kp;, admits a solution P such that V¢ € [0, 7], the measure P, has a
density. Let p denote a measurable version of the densities.

We set t € [0,T]. Reasoning like in the proof of Lemma 4.8, we obtain that for ¢ €
C12([0,%] x ©) such that V¥(s,z) € [0,t] x 90, Op)(s, ) = 0,

t
[ vtoitade = [p0.au@da+v [ [ psa)g(s,2)do@ds
e) t e} 0 Joe
-I—/ /_(Bsw(s,w) + Kws(z).Vi(s,z) + vAY(s, z))p(s, z)dzds.
0 J&

Choosing 9(s,z) = P/ p(z) like in the proof of Proposition 4.5 and remarking that
because of (4.10) and the uniform in time bound ||p¢||;1 < [Jwoll1 + v||g]l1,

E | Kwg||peods

r— < +00,

t
| [ VP @ llew @K ws (@) dodyds < © [
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we deduce by Fubini’s theorem that
t
dz a.e., pi(z) = P wo(x) —I—/0 VP .(psKws)(x)ds + 1//(0 Ixo0 P! (z,y)g9(s,y)do(y)ds.
A%

Now, using the mild equation (4.9) satisfied by w and (4.10), we obtain
([ Kws || oo
Vi—s

By iterating this bound, then using Holder’s inequality, we obtain
t K wy||pe du .
s Vi—uvu—s
to t 03 3/4
C [, = wallos Kl e | Kl gy ([ (¢ = w)w = 5)du)  ds.

S

t
3C >0, Vt € [0,T), ||pr — willps < c/ 55 — ws| 11 ds. (4.16)
0

t
1 —willp < CAH@—%MWK%MW

IN

Hence (4.16) holds with (¢ — s)~ /2 replaced by (¢t — s)"'/* in the r.h.s. After the next
iteration we obtain that (4.16) holds with (¢ —s)~'/? replaced by 1 and conclude by Gron-
wall’s lemma that V¢ € [0,T], p = wy. O

4.3 Stochastic Approximations of the Solution of the Vortex Equation

4.3.1 The Case of a Cut-off Kernel

As in Section 3, we introduce a cut-off kernel K. preserving the properties (4.3). More
precisely we consider an increasing C2-function 7 from IR, to IR, such that n(z) = x for

xS%andn(w)zlfoerl. For € < 1, we set

|z —y|?

Ge(r,y) = U(T> G(z,y) :; (4.17)
Ké‘(xay) = viJE_GE(:L.’y)

T — 3 T — 3 €T — J‘:L‘—
= 0 (B2 e o (ES) I G

g3 g3

The following Lemma, states usefull properties of this cutoff kernel :

Lemma 4.10 1) There ezists a constant C independent of €, such that

VoK (z,y) =0 5  Kc(z,y) -n(z) =0 for z € 00,
Ke(z,y) = K(z,y) iflz—yl=e¢
C(1+ [In|z —yl])

Va,y €6, |Ko(a,y)| < (4.19)

|z =yl
2) sup,cg || K(,.) — Ke(z, .)||L§ tends to 0 as e tends to 0 as soon as p < 2.
3) For ¢ sufficiently small, the kernel K. is bounded by M, < @ and Lipschitz

continuous in both variables with constant L, < C—‘El;ﬂ where C' does not depend on ¢.

34



Proof. The two first properties in 1) are obvious and 2) is an easy consequence of (4.19).
By Lemma 4.1 and the above definition of 7, the norm of first term of the r.h.s. of

) 2 )
(4.18) is smaller than Co(ﬁ A SUp,¢(o,ea-1/3) 7) < Co(ﬁ A 1). By the estimate of G
in Lemma 3.3 and since 7'(z) = 0 for z > 1, the second term of the r.h.s. of (4.18) is

smaller than 3Cy||n'||cc times
141 —
( il gl et
|‘7" - y| r€[0,€] €
as € < 1. We deduce both (4.19) and the upper-bound in C|In(e)|/e. To prove that K. is

Lipschitz continuous, we use in a similar way Lemma 3.3 combined with the definition of

T2(1+|1n(T)|)> - (1—|—ln|$—y| s |ln(s)|)

|z — y| €

7 to check that the gradient of each coordinate of K, w.r.t. either x or y is bounded by
C|In(e)|/e? (the contribution of the first term of the r.h.s. of (4.18) is C/e? whereas the

one of the second term is C|In(e)|/e?). O

With a slight adaptation of Sznitman [36] to take into account the random births on
the boundary, we obtain the existence and pathwise uniqueness of the following interacting

particle systems.

Definition 4.11 Consider a sequence (Bi)ielN of independent Brownian motions on IR?
and a sequence of independent variables (Ti,Zé)iEW with values in [0,T] x © distributed
according to Py, and independent of the Brownian motions. For a fized €, for each n € IN*,

and 1 <1 <mn, let us consider the interacting processes defined by
Z™ € ©,Vt € [0,T]

. ) t . t . .
ZZ"’E = Zy+ 21//0 1{Ti§s}dB; + /0 1{TiSs}K5/7‘2’E(Z;n’S)d3 - k?&n’s ;
. t 3 . i . .
71 = [ mccaoy Liread 740, K02 = [z, @20)

where [i7° = % =1 h(Tj,Zg)l{TjSS}(s « 15 the weighted empirical measure of the sys-

zim

tem.

Let us remark that the particles either have birth at time 0 inside the domain and evolve as
diffusive particles with normal reflecting boundary conditions, or have birth at a random
time on the boundary of the domain, and evolve after birth as the other ones. Moreover,
all particles, as soon as they are born, interact together following a mean field depending

on the parameter .

Again according to [36], we also get the existence and pathwise uniqueness of the
limiting processes (when n tends to infinity and € is fixed), coupled with the interacting

processes, as follows.

35



Definition 4.12 We define Z¢ by

71 € ©,Vt € [0, T]

70 =75+ \/2_1//(: 1iricsydB + /Ot i<y KeQ5(Z297)ds — Ry ;

B9 = /()t1{23’5689}l{TiSS}d|l?:i’E|s R = /Ot”(zﬁ’s)dll_fi’fls (4.21)
where Q° is the common law of (1%, Z¢, k"), and Qi is defined from Q° by (4.14).
Sznitman also proves a propagation of chaos result, but without precise estimates on the
rate of convergence. In order to get such estimates, we denote by H a CZ(©)-extension of

the distance-function d(., 90) (defined on a restriction to © of a neighbourhood of 90).
The function H satisfies (see [17])

VH = —n on 00. (4.22)

We also recall that the domain © (since C*) satisfies the uniform “exterior sphere” condi-

tion:

3Cs >0 ,Vr €00 , V' € O, Cyplz — 2')* + n(z).(x — ') > 0. (4.23)

Proposition 4.13 Fort <T, for each i € {1,...,n},

, _ | A
E(Sg}; |2 = Zp°17) < 2d(0) —exp(Ku(1+ ([lwolly + vlglh)(Me/2 + Le)t))

. _. . _ . . _. M.
E(sup [k = k3¥|) < E(sup|Z5™° — Z%[) + 2t(||lwollr + vllgll1) (LEE(SUP |Z5™* — Z57) + —E)
s<t s<t s<t \/ﬁ
where Ky is a constant only depending only on the upper-bounds of the function H and

its derivatives, d(©) is the diameter of © and A, = 5 +(ﬁf}'{'}'ﬁﬂl’/ﬁ;||‘|lg)||(lﬂ);fgLs)).

Remark 4.14 The convergence rate giwen above is not optimal in n. Indeed one can
check that E(sup,<, |2 — Z1#|*) is smaller than c;:zﬂgé‘t exp(C(M2 + 4L2)t?), but in the

next section, we will choose € = €, depending on n and converging to 0 in such a way that

E(sups<, |Zimen — ZUEn|2) tends to 0. The estimation given in the proposition allows a

quicker (but still very slow) convergence of €, to 0 than the previous one.

Proof. We compare the two processes Z™¢ and Z*¢. We denote for simplicity Z, k, Z
and k instead of Z™¢ k™¢ Z%¢ and k%, hy = H(Z;), hy = H(Z;), b, = VH(Z;), hl, =
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VH(Zy), b = AH(Z;), B = AH(Z;), by = K.ji™(Z;) and by = K.Q:(Z;). Computing
dexp(—2Csp(hy + ht))| Ze — Z4|? by 1t6’s formula, we get
1<ty exp(—2Cup(he + Fy)) X [2(zt — Z))(dF, — dky) — 2Csp|Z0 — Z?(dlk; + dIF],)
— 2Csp|Z — Z4)? (\/ﬁ(h; + h})dB! + {h;bt + hyby + v(—2Csp |k} + hy|* + by + B;’)}dt)
+ 2(Zi — Zy).(br — bt)dt] (4.24)

Because of the “exterior sphere” condition, the local time terms of the first line have a
non-positive contribution after integration over time. We deduce that for Ky a constant
which can be computed and depends only on upper-bounds of the function H and its

derivatives,
in,e ~1,612 t ) —ie12
E(1Z™ = 2°°) < Kn ((1 + Me([[wollx +V||9||1))/O E(|Z5™" — 25°[7)ds
t . _. . ~ .
+/ E(|Z™" — Z9°|| Kefig ™ (Z"™°) — KeQi(Zi’g)l)dS) (4.25)
0

Using the Lipschitz continuity of K, the boundedness of h and the exchangeability of the
processes (Z¢, Z¢), 1 < i < n, we obtain

E (|2 = Z°|| Ky (2) — KQ(ZF)))

) _ . ) _ 1™ . _
< (lwolly + vlglh) L E(1Z5™ — Z5°[(125 — Z5°] + 1z = Z19))
j=1

. . 1 . o o
+E(|Z;ﬂ,6 — Z;aEHE Zh’(Tj’Z(J))l{Tjgs}Ks(Z;’g,Zg’s) _ KsQi(Z;’E)D
j=1

IA

(1 +2(lwolls + vllgl) Le) E(1Z™ — Z3° %)

1< ; R ~ =
FB(| =D W1y, Z3)1(ri <y Ko (23, Z37) = KQ5(Z5°)]°)
=1
After expansion of E(|2 > =1 h(j, Zg)l{TjSS}KE(Z?‘E, Z1*) — K.Q%(Z'*)|?), many terms
disappear by independence of the variables which are centered conditionnally to Z%¢ and

it only remains n bounded terms. We deduce that

; _. t . .
E(Z™* - Z;°]) < Kn ( 2+ (lwollx + vllgll) (Me + 2Ls))/0 B(|Z* - ZiF)ds

+ A(lwollx + V||9||1)2M3t>
n

(4.26)

Using Gronwall’s Lemma, we obtain that both sides of (4.25) and (4.26) are smaller than

Ft) = 4(]|wolh + |vgllr)* M2

= T loc s T ol T 3Esy P2+ (ol +vlglh) (M. +22)))
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Integrating (4.24) w.r.t. time, dealing with the stochastic integral thanks to Doob’s in-
equality and using that the r.h.s. of (4.25) is smaller than f(¢), we get

, . t . _. 1/2
Boup| 70— ZP) < (Kn [ Bz - 270ds) 4 10)
s<t 0

IA

@) (K [ Buzne -~ zimas) 4 50

d(©)1/f(t) + f(t) since the r.h.s. of (4.26) is smaller than f(t)

IN

The Lh.s. being smaller than d(©)2, it is smaller than 2d(0)./f(t) when f(t) > d(©)?
and the r.h.s. is smaller than 2d(©)+/f(t) otherwise. We deduce the desired estimate for
E(sup,<; |28 = Z°P).
Now remarking that

sup [k{" — kg7| </ K-y °(Z°) — K-Q5(Z57)|ds + sup | 2 — Z;*|

s<t s<t

and using arguments developed above we obtain the other estimate. O

Remark 4.15 Let us remark that if © is a convez region then the rate of convergence is

easier to obtain. Indeed the constant Cyp defined in (4.23) can be chosen equal to O :
Vz €00 , Vz' € © , n(z).(z — ') > 0. (4.27)

In the expression of |Ztm’5 — Zti’6|2 given by Itd’s formula, the local times terms are non-

positive and therefore

E(sup |2y — Z;*?) < (14 2([lwoll +vllgli)L / E( sup |st
s<t

Hds

Allwolls + vliglh)? M2t
n

_|_

and we conclude by Gronwall’s Lemma.

4.3.2 Convergence of the Limiting Laws

We will prove that the laws Q° of (7!, Z%¢, k1) converge to the unique solution P of (Mp)
as € tends to 0. We are first going to check that the drift coefficient Kgéi converges to
Kp,.

By Girsanov’s theorem, it turns out that Vs > 0, the measure Qi admits a density function
q;. Moreover, reasoning like in the proof of Theorem 4.9 and using the boundedness of K,

we show that ¢° is the unique solution in L} = {p,sup,<7 ||ps||11 < +oc0} of the equation
t t
(@) = Plwn(a) + | VaPt (K @ds+v [ [ PLg(s,p)do)ds.  (@4.28)
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On the other hand, thanks to Lemma 4.19 1), we can apply to the equation

Ow(t,z) + V.(wK.w)(t, z) = vAw(t,z) in O;
w(z,0) =wp in © ; Jyw = Vw.n =g on 900 (4.29)

all what we have done for the equation (4.1). Then there exists a unique weak solution
w® belonging to L$°(L2) N LZ(H}). Now, like in Proposition 4.5, we obtain that w® is
also solution of (4.28). Since it belongs to L} (© is bounded), we conclude that w® = ¢°.
Thanks to (4.19), one can check that

sup (e llzgez2) + gl z2arz) + 10 | 2y + e paeay) < +o0.  (4.30)
eec(0,

Remark 4.16 Similarly the non-negative measures B € B(0©) — EQE(I{TSt}lB(Xt))
have densities pi w.r.t. the Lebesgque measure which are the unique solution in L of
the mild equation obtained by replacing respectively wo and g by |wo|/(|lwoll1 +v||gl|1) and

g1/ ([wollx + vliglly) in (4.28).
Identifying p® with the unique weak solution of the problem obtained from (4.29) by re-

placing wy and g in the same way, we check that (4.30) holds for p°.
We can now prove the convergence of ¢° to w.

Proposition 4.17
. € _n-. % £ _
lim [l¢" —wlirz(z2) = 05 lim |[Keq® — Kwl[(r2) = 0.

Proof. Thanks to (4.30), one can extract from each sequence ¢*» with ¢, tending to 0, a
sub-sequence (still denoted ¢°» for simplicity), which converges strongly in LZ(L2) and in
L?(H}) and weakly* in L{°(L2) to w. We can show that 1 is a weak solution of (4.1) and

conclude that w0 = w by uniqueness for this equation.

Let 1 < p < 2. Combining the Sobolev inequality ||¢5 < C|¢¢" || g1, Lemma

"l e

Lp-1
4.10 2) and (4.30), we obtain that the term (K., — K)g:" converges to 0 in L7(L°). Now,
writing

IKeqf — Kwll gy < 1K (@ — )l e + 1Kz — K)all e,

and using (4.8), one easily deduces the second assertion. m|

Theorem 4.18 The probability measures Q¢ on [0, T]xC([0,T],0)xC([0,T], R?) converge
weakly to the unique solution P of (Mp), as € tends to 0.
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Proof. The weak convergence topology being metrizable, we check that (Q" = Q*"), .
converges weakly to P when the sequence ¢, tends to 0 as n tends to +o00. Let us firstly

prove the uniform tightness of the sequence (Q"),, next identify the limiting points.

1) By (4.19) and (4.30), we easily obtain that
sup 1K 05" | L3250y < Fo00. (4.31)
Then the Kolmogorov tightness criterion is satisfied for the laws of
Vi = 25tV [ UcgdBLt [y Koy (200 ds.

Now the uniform tightness of the laws Q" of the processes (7!, Z1%» kl#7) is a simple
consequence of the fact that the application sending y € C([0,T], IR?) on the solution
(z,k) € C([0,T],0) x C([0,T], IR?) of the Skorohod problem is continuous (See [25]).

2) Let us now denote by @ a limit value of a convergent subsequence still denoted by

(Q™) for simplicity and prove by arguments inspired from Sznitman ([36]) that Q> = P.

If as usual (7, X, k) denotes the canonical process on [0, 7] x C([0, T], ®) x C([0, T], IR?),
let us define, for p € IN*, 0 < 51 < ... <5, < s <t < T, ¢ € C2(IR?), g € Cy([0,T], (O x
IR?)P) the function

Gn(Ta X7 k) = g(T7 XSUkSU -'-aXspaksp) (¢(Xt + kt) - ¢(Xs + ks)

[ Aoy (OGO + ) + Ko (X,). 90U, + ) )

Then EQ" (G, (7, X, k)) = 0. Now if we define the function G by replacing K. q* by Kw;
in (4.32), we want to prove that EQ” (G(r, X, k)) = 0.

EQOO (G(Ta X7 k)) = EQOO (G(Ta Xa k)) - EQn (G(Ta Xa k)) + EQn (G(Ta Xa k) - Gn(Ta X7 k))
Since w € L}(L3), by (4.7), ds a.e. in [0,T] z € © — Kw,(z) is continuous and Kwg €
L}(LP). We deduce that G(r, X, k) is a continuous function on the path space, and the

first term of the r.h.s. tends to 0 as n tends to infinity. On the other hand, using Remark
4.16 and Proposition 4.17, we obtain

t — —

B9 |G (1, X, k) — G(r, X, )| < C’E( / 11 gy [ Ko g5 (Z157) — Kws(Zsl’E“)|ds>
L

< CHPE"HLf(Lg)HKanE" — Kw||L%(L%) —0asn— +oo.

Hence EQ” (G(r, X,k)) = 0. Since Vn, Q"o(r, Xq, ko) ' = Py®4(0,0y, @0 (T, Xo, ko)t =
Py ® 0(0,0)- We are now going to prove that °°-almost surely,

t t
[kl < oo and Vt € [0,T], |kl 2/0 Lix,co0ylir<sydlkls ; ke :/0 n(Xs)d|k|s.
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As according to the proof of Theorem 4.9, P is the unique solution of the linear martingale
problem defined like M7 but with known drift coefficient Kw,, we will conclude that
Q*° = P. According to the following Lemma, the proof of which is postponed,

Lemma 4.19 For any A > 0, the following subset of [0,T] x C([0,T],0) x C([0,T], R?)
T t

Fa= {<u,x,k> bl = [ Lo Lis,coopdlls < A and Ve € 0,7, ki = | n(ms)dws}

18 closed.

we have

Qn
. . . . sup, WE |k|T
[es} >1— [0 Yy > 1 ne '
¢ (AL>JO FA) 21— lm lminfQ"(F4)>1— lm k
Therefore it is enough to check that sup,,  jy & |k1#n |7 < 400 to conclude the proof.

Since VH = —n on 00, applying It6’s formula to compute H(Z%,E")’ we get that |kl |7

is equal to

T _ _
H(Z5™) = H(Z3) = [ Ly (WAH + Keydir VH)(Z)*)ds + VIV H(Z}).4BY).

Taking expectations and using (4.31), we obtain the desired result. O

Proof.of Lemma 4.19 Let (u",z", k™) € F4 converge to (u,z,k) as n — +oo. Since
sup,, |k"|r < A, by extraction of a subsequence, we can suppose that the measure d|k"|
(resp. dk™) converges weakly to a positive measure da with mass smaller than A (resp.
to dbs). Of course dbs = A(s)das for some measurable function X : [0,7] — IR? and since
k™ converges uniformly on [0,7] to k, dbs = dks. Since d(z7,00), where d(.,00) denotes
the (continuous) distance from the boundary function, converges uniformly on [0,7] to
d(zs,00),
T T
/O d(z;,00)da, = lim /0 d(z", 00)d|k|" = 0.

We deduce that das a.e. and therefore d|k|s a.e., x5 € 0O. Since the functions k™ which
are equal to (0,0) on [0,u"] converge uniformly to k, this function is equal to (0,0) on

[0,u] and |k|, = 0. To check the only lacking property : dks = n(zs)d|k|s, we remark that

B T
Vi € C(0. 71, Ry), Vg € C0.7),0), [ £(5) (. = 9()-dby + Ciple, — g(s) Pda,) > 0

by taking the limit n — +o0 in the similar inequalities satisfied with (z,dk, da) replaced
by (z",dk™,d|k™|) according to the uniform “exterior sphere” condition (4.23). We deduce
that dks = |A(s)|n(zs)das which implies the desired property. O
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4.4 The Convergence Theorem

We now consider a sequence (g,,) tending to 0 as n tends to infinity, in such a way that

, (4., M.,
Jim L2 /== exp(Kp (1+ (lwolly + vlgll) (Me, /2 + Le,)T)) + % =0. (432

Of course, the convergence of ¢, to 0 is very slow and this choice is certainely not optimal.

Let us now consider for each n the system of processes (¢, Z, k') where Z" = Zi™én
and k" = k™ are defined as in (4.35) but with K. replacing K.. We are now able to

obtain our main theorem.

Theorem 4.20 1) The laws of the n-particle system (7%, Z™ k')1<i<n, are P-chaotic
(where P is the solution of the problem (Mp)):

Wpe IV, L((rL, 217 k), (72, zom oY) YO pep pon oo (433)
2) The approzimate velocity field converges to Kw:
tim B(Ke, i (@) — Kun(@)]2542)) = 0. (4.34)

Proof.

1) Since the processes (¢, Z*» k"n); are independent, Theorem 4.18 implies that
for every fixed p € IN*, the law of ((7!, Zb%n, k1#n), ..., (TP, ZP#n kP#7)) converges weakly
to PP, Let Cr = [0, T]xC([0,T],0) xC([0,T], IR?). We endow C%. with the uniform metric
and P(C}.) with the Vaserstein metric p(u, v) = inf{ fchcg d(z,y)A1R(dz,dy); R has marginals p and V}

compatible with the topology of the weak convergence. Hence
p(ﬁ((Tl,ZI;Sn’EI;En)’ . (Tp’Zp,sn’Ep,sn))’Ppr) —~0asn— 4oo.
By Proposition 4.13, and (4.32)

tim 2 (d (7, 27 K)o (2, 27 B), (5 2550, R, (1, 207, B50))) = 0

n—-+00o

which ensures that

lim p(£((r%, 2" k™), (77, 277, K ) L £ (71, 2150 Y50, o, (77, 2950 BPEn) ) ) = 0.

n—-+0o0o

We conclude that p(L((T!, Z!", k™), ..., (7P, ZP™, kP™)), P®P) converges to 0.
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2) On the other hand,

~T,E ~ 1 " i i Z1,&
B(K., i (@) - Kun(o)?) < 3B (| Koo () = & 3 Lpigohlr', Z)Ke, (5, 2°7)
i=1

1> o _. - 2
+‘ E Z 1{’T¢St}h‘(’rl’ Z‘EL))KEn (‘/E’ th,gn) - KgnQin (‘,I")
=1

K, QF (2) - Kun(o)?)
2/12 mn Z71,En |2 4M€2n En 2
< 3((woll + vl (22, Blsup |23 — 257 [) + 2) + [ K.y (@) — Kun(o)]?).
s_

We conclude using (4.32), Proposition 4.13 and Proposition 4.17. |

Remark 4.21 Since the laws L((7%, Z!", k"), ..., (1", Z™ k™)) are exchangeable, the
propagation of chaos is equivalent to the convergence in probability of the empirical mea-
sures to P, as probability measures on the path space (cf. [37]). As a consequence, if the
space of finite measures on © is endowed with the weak convergence topology, the random
finite measures " = L3, 1{Ti§t}h(7i,28)5zzn converge in measure to wi(x)dz for

any t € [0,T], w being the unique solution of the vortex equation.

4.4.1 Numerical Comments

We finally deduce from this study a simulation algorithm for the solution of the equation
(4.1). To approximate numerically this solution, it is necessary to discretize in time the
particle system. This can be achieved thanks to the Euler scheme for reflected diffusions
proposed by Gobet [18]. Adapting these results to our case with identity diffusion matrix
and normal reflection, and as in Bossy-Jourdain [6], one could hope to prove that if i},
denotes the weighted empirical measure of the discretized system, K., fijx, converges to
Kuwa; in L*(0) , with the rate O(At + ﬁ), where At denotes the time step.

4.5 Some Comments on the Generalization to the Navier-Stokes Case
In [10], the Neumann condition obtained by Cottet has the form

Opw = Bw(z)do(x)
00

on 00, with a specific kernel B(z,y) which is a sophisticated derivation operator with a
bad behaviour when z = y. The dependence of the Neumann condition on w makes things
more complicated, since this condition can not be interpreted as the law of some births
on the boundary. So after having cutoff the kernel B by bounded kernels B,, the particle

system we consider is a system who creates new particles on the boundary with a rate
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depending on the empirical measure of the alive particles. So the number of particles do
not stay constant, and we will consider at each time the empirical measure of the particles

alive at time ¢, which is a finite (point) measure on ©.

This work is in progress. So, let us summary describe this sytem, without proof of

convergence, to give an idea of the numerical algorithm.

Let n € IN* and (Zén’s)lgign denote independent initial random variables with law
lwol(z) 7, independent from a sequence (Bi)i>1 of two-dimensional Brownian motions. For
[lwollx
1 <4 < n we assign the weight s; = 70 ‘(Zm ®) to the i-th particle. Let also (14, Zg, Ug)k>1
be a sequence of independent random variables with law
do(2)

du,
ae ® o)
where C; is an upper-bound of the kernel B, and [00| = [,o do(z).

C |8®|1{t>0}6 Ce

We set Ty = 0. The system with Ny = n initial particles is constructed inductively for
k > 1 as follows :

o Ty =Th—1 + -

e On the time-interval [T;_1,T}], the number of particles remains equal to Ny_; and
their positions st, 1 < ¢ < Ng_1 evolve according to the following stochastic

differential equation with normal reflection :

7™ € O,V € [Ty 1,Ti);

st Z%:fl‘l‘\/Z_VBz HwOHl/ Z Zzns Z]ns)d kme.
e, — / 1 yine ooy A2 5 B = /0 n(Zime)d| ke (4.35)
o At time Ty,

Ng_1 in,e
ST siBe( 28,2500
— o] — k
either U, < N0

Zpk"™* = Zy, s, equal to the sign of 1" s;B(Zk, Zav).

and we create a new particle: N = N _1+1,

— or the converse inequality holds and no particle is created : Ny = Ni_1.

AsVk € IN, N, <n+k, limg_, T} > Zkewﬂc+1 and

n+k
. Tht1 1
E(e—llmk—>+ooTk) <E ( H en—+k> = H (1 — ) =0.
ke IN ey 1T Cl0Oln+E)

We deduce that a.s. limg_, . Ty = +oo and the particle system is defined on the time

interval [0, +00).
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