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ABSTRACT. Let G be a connected, simply connected real nilpotent Lie
group with Lie algebra g, H a connected closed subgroup of G with Lie
algebra h and f a linear form on g satisfying f([h,5]) = {0} Let xs be
the unitary character of H with differential /—1f at the origin. Let
7y be the unitary representation of G induced from the character x s of
H. We consider the algebra D(g, b, f) of differential operators invariant
under the action of G on the bundle with basis G/H associated to these
data. We show that D(g, b, f) is commutative if and only if 7y is of finite
multiplicities. This proves a conjecture of Corwin-Greenleaf and Duflo.
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1. INTRODUCTION

Let G be a connected, simply connected real nilpotent Lie group with
Lie algebra g and H a connected closed subgroup of G with Lie algebra
h. Every linear form f on g satisfying f([h,h]) = {0} defines a unitary
character x ¢ of H given by xs(exp X) = eV for all X in h. We form
the unitary representation 7y of G induced from xy in a Hilbert space H,.
More precisely, let C°°(G, H, f) be the vector space of C* complex functions
¢ on G satisfying the following covariance relation:

¢(gh) = x;'(h) ¢(g), Vh e H, Vg €G.

Consider the vector subspace of C*°(G, H, f) of elements with compact sup-
port modulo H equipped with the norm

Jol* = [ 190 ds

where dg denotes a left G-invariant measure on G/H. The Hilbert space H,
is the completion of this space relatively to this norm. The representation
7¢ of G is defined as the left translations on H,:

(1Y) 79 (e)d) =olg7'd), VY(g,9)€GXG, VpeH,,.
1
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The unitary representation 7y of G' decomposes into a continuous sum of
unitary irreducible representations of G:

(1.2) Tf o /@@ m(m)m du(m)

where m(m) denotes the multiplicity of 7 and p a Plancherel measure of
77 on the unitary dual G of G. Tt is well known that for p-almost all 7
in G, either the multiplicities m(7) appearing in (1.2) are finite and admit
a uniform bound or they are infinite (see [3] Section 1, and [10] Theorem
1.1). In the first (resp. second) case, we shall say that 7¢ is of finite (resp.
infinite) multiplicities.

Also, the multiplicities of 74 have a nice geometric interpretation in terms
of a certain affine subspace of the vector dual g* of g. Let I'yy ¢ be the set
of all forms on g identical to f on b:

(1.3) Loy ={leg [LY)=f(Y), VY €b}.

For a linear form ¢ on g, let us denote by €, = G - £ the coadjoint orbit
of G through ¢. The celebrated orbit method associates with ¢ a unitary
irreducible representation 7y of GG in a suitable Hilbert space H, which only
depends on §2y, up to equivalence. Moreover, the correspondence €y — 7y
is a bijection. Corwin, Greenleaf and Grélaud proved in [3] Section 1 and
[4] Theorem 1.2, that for irreducible unitary representations m = m; of G:

(i) m(m) is the number of coadjoint orbits of H in Qy NIy ¢, du(n)-a.e.
In particular, m(m) #0 <= QuNTyy s # 0.
(i) ¢ is of finite multiplicities <= dim H - £ = 1 dim G - £ for generic ¢
in Fg,b,f'
In the sequel, for generic £ in I'yy r means that the property holds for ¢
belonging to some non-empty Zariski-open subset of I'gp ¢.
Finally, let D(g, b, f) be the algebra of linear differential operators leaving
the space C°°(G, H, f) invariant and commuting with the left translation L
of G:

(1.4) D eD(gb, f)
' D(L(g)¢) = L(9)(D¢), Vge G, Yo € CF(G, H, f).

The question now is: Is there any relation between the commutativity of the
algebra D(g, b, f) and the multiplicities of the unitary representation 7 of
G? Corwin and Greenleaf proved (Theorem 1.1 of [5]) that if 77 is of finite
multiplicities then D(g, b, f) is commutative. Also (Question 5, p. 747 of
[5]), they stated the following

Conjecture: D(g,b, f) is commutative if and only if T is of finite multi-
plicities.
This conjecture is also related to the Question 6 asked by Duflo in [6],

when applied to the case of connected, simply connected, real nilpotent Lie
groups. Till now, it had been proved only in special cases: when dim h = 2 by
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Baklouti and Fujiwara ([1], théoreme 4.8); when b is an ideal of g by Baklouti
and Ludwig ([2], Theorem 1.4); when h has an ad h-invariant supplementary
subspace in g (in particular when b is 1-dimensional) by Fujiwara, Lion and
Mehdi ([8], Corollary 1). In the present paper, we prove that it is true in
full generality as it was announced in [9)].

The following important points of our proof of should be emphasized:

1) We just have to prove the implication
7¢ is of infinite multiplicities = D(g, b, f) is non commutative,

as the converse has already been established by Corwin and Greenleaf.

2) Assume dim g/h > 1 and let g’ be an ideal of codimension one in g that
contains h. As explained at the end of Section 4 of [5], it is easily seen

that D(g’, b, f') € D(g, b, f) where f’ def. flg- Therefore, if D(g', b, f')
is non-commutative so is D(g, b, f). So, we can assume D(g’, b, f’)
commutative. By an induction argument on the dimension of g, we
have at the level of g':

D(g',h, f') commutative = 7 4 Tnd T Xy is of finite multiplicities.
H

Therefore, we can now assume 7y of finite multiplicities.

3) Recall, from the assertion (2) above that 7 is of finite multiplicities
if and only if dim H - ¢ = %dimG - £ for generic £ in I'gp r. The facts
that 7; is of infinite and 74 of finite multiplicities then imply that
dim H - ¢ = dim H - ¢’ for generic £ in Iy ;.

4) We shall prove that D(g', b, f') is properly contained in D(g, b, f) if and
only if dim H-¢ = dim H-¢' or equivalently that D(g’, b, f') = D(g, b, f)
if and only if dim H - £ = dim H - ¢’ + 1 for generic £ in I'gy s (Theorem
5.2). This is the most important and difficult result of the article.

5) Now, Theorem 1 of [8] asserts that if 74 (resp. 7f) is of finite (resp.
infinite) multiplicities and D(g’, b, f') properly contained in D(g, b, f),
then D(g, b, f) is not commutative. This proves the conjecture.

It should be stressed that our proofs are of entirely algebraic nature.

This article is organized as follows. Our main notations are introduced
in Section 2. In Section 3, we recall several important properties of the
algebra D(g, b, f) which we shall refer to later on. Section 4 is devoted to
the proof of two lemmas that will be crucial in the sequel. The proofs of our
main results are contained in Section 5. Finally, we completely work out an
example in Section 6.

Acknowledgments: Our thanks go to the Université Paris-Nord for invit-
ing H. Fujiwara in June 1999 and to the Japanese Ministry of Education for
supporting this collaboration work under grant number 11640189.
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2. NOTATIONS

We fix once for all a linear form f on the dual g* of g satistfying f([h, h]) =
{0}. To simplify our notations, given a subalgebra £ of g, we will drop fle
if used as an index, whenever there is no ambiguity. For instance, taking
t = g and f|¢ = f, we shall write C*°(G, H), D(g,h) and I'yy instead of
C*™(G,H, f), D(g,h, f) and Ty  respectively.

Suppose that g is of dimension n. We fix a flag S of ideals of g

(2.1) g00={0}Com& - Con1%0 =0
Denote by Z the (possibly empty) ordered set of indices
(2.2) I:{i1<i2<"'<id}

such that h Ng;,—1 # hNg;,,. We have 1 < 4 and iy < n. For s in
{1,2,...,d}, we let hs = h N g;, and obtain the following flag of ideals of b:

(2.3) bo={0}ChiC---Cha=h.
Then we define the (complementary) ordered set J of indices
(2.4) T={h<jo<-<jpb={L2... .n}\T.

Let €, = b+ gj, for all  in {1,2,... ,p} and put & = h. One obtains a
sequence of subalgebras of g

(2.5) h=tCtiC---Ct, =g

such that dim#¢,/¢._; = 1.

Observe that cardZ = dim h = d and that card 7 = dimg/h = p.

We pick an element Y; € b, such that Yy & hs—; for sin {1,2,... ,d}, and
an element X, € ¢, such that X, & ¢._1, for r in {1,2,... ,p}. In this way,
we obtain a set of n elements

{Y17Y27" . 7Yd7X17X27' . 7Xp}

forming a Malcev basis of g. It is clear that this Malcev basis is strong if
we choose the order defined by the flag S. However, this basis is weak if we
choose the order defined by hs and &,.

Let [ be a subalgebra of g and £ in g*. It will be convenient to let [P
be the subspace orthogonal of [ in g relatively to the antisymmetric bilinear
form By on g x g defined by By(X,Y) = ¢([X,Y]), so that

Br = {X eg|HX,Y]) =0, VY €}

When [ is an ideal, [?* is a subalgebra of g. In particular, the Lie subalgebra
gP¢ will be denoted by g(¢). It is the Lie algebra of the stabilizer group of ¢
under the coadjoint action of G, but this fact will not be used here.

Let m be another subalgebra of g. We shall also set ¢/ = ¢|y, f' = f|g
and denote by m(£) and m(¢') the subalgebras m N g(¢) and m N g’?¢ of m.

If dimg/h > 1, g’ will always denote an ideal of codimension 1 of g which
contains b in the sequel. Also, we shall choose the flag S so that g, 1 = g¢’.
Similarly, if dim b > 1, b’ will always denote a subalgebra of codimension 1
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in h. The flag (2.3) will be such that hy_; = b’. If g’ and b’ both exists,
then dimg >2and g2 ¢ 2 h2h.

In what follows, we shall use the following wide-spread convention: if we
consider the elements {X, € ¢ | 1 <r <p}and {Y; € hs |1 < s < d}
defined above, then for each p-uple J = {j1,j2,...,jp} € NP, d-uple K =
{k1, ko, ... kq} € NTand (d — 1)-uple L = {l1,1y,... ,lg_1} € N1 we de-
note respectively by X7, Y and Y'? the elements X7 = XgPX;’:]1 ¢

Yk kaka LY and YT = Ydl”’ 1. Y]" of the enveloping algebra
U(g) of g. AS is customary, we will denote by |I| (resp. |K]|, resp. |L|) the
sum ji + jo + -+ jp (vesp. ki +ka+ -+ kg, resp. L +1lo+ -+ lg_1).
We shall also consider the elements {V; | Y, = oy, + if(Ys), 1 <s<d}of
U(g), so that VX = PRapran gk ang v/0 = vl VD,

In this section, we denote by O the subset of I'y j formed by the elements
¢ such that dimg;(¢) is minimal for 1 < ¢ < n, where the g;’s are the
components of the flag S of g in (2.1). It can easily be verified (see e.g. [7],
section 3.3) that O is a Zariski-open subset of I'y . Now, it can also be seen
([7], proposition 3.2.2) that if g; = g;—1 + gi(£) for one element £ of O, the
same property holds for all elements of this subset. So we define the finite
subset of positive integers

T(g.h,£,8) L {1<i<n|g=gi1+a0), ¥eO}

= {m < - <myu}

More generally, we define the subset T;(g, b, f,S) =T(g, b, f,S)N{0,... ,i}
of T(g, b, f,S), for any integer 0 < i < n.

In a similar way, we can also consider the non-empty Zariski-open subset
Op of I'yy formed by the elements ¢ such that dim bh;(¢) is minimal for
1 <4 < d, where the h;’s are components of the flag (2.3) of h. As before, it
can be verified that if h; = h;—1 + b;(¢) for one element ¢ of O, the same
property holds for all elements of this subset. So we define the following
subsets of T'(g, b, f,S):

TH(Gabaf?‘S) :{1 <J S?’L|j:ZS, bs = bsfl_’_bs(g)a Vi e OH}a
and  TH(g, b, f,S)=T"(g,b, f,S)N{0,... i for 0 <i <n.

}

Finally, we let U(g,b, f,S) = T(g,b, f,S)\ T (g,b, f,S) and for any
integer 1 < i < n, define the subset U;(g,b, f,S) =U(g,b, f,S)N{1,... i}
of U(g, b, f,S).

In the sequel, we shall respectively write

T(g,h,S), Ti(g.h,S), T"(9,5,5),T{(g,h,S),
U(g,h,S) and U(g,b S)
or even simply T(S) ( ), TH(S), TH(S), U(S) and Uy(S)
inplace of  T(9.0, f,8), Ti(a,b, /.3), T (5.5, £,8), T/ (8.5, £,5),
(9, ,f,8) and Ui(g, b, f,S).

)
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The algebraic description of D(g, h) given in [5] by means of the enveloping
algebra U(g) of g will also be useful. More precisely, let ay be the vector
subspace of U(g) generated by the elements Y =Y+ V-1f(Y), Y € b,
and U(g)ay the left-ideal of U(g) generated by ay. Denote by U(g,b) the
subalgebra of U(g) defined by

(2.6) U(g,h) ={AcU(g) | [A,Y] €U(g)ay, VY € b}.

We note L and R the natural extension to the enveloping algebra U(g) of
the left and right actions of g, defined respectively by

d

L(Y)(®) (9) = Eqﬁ(@_tyg)’t:o

and ROV)(9) (9) = 5 (9e™ o,

for all Y in g and ¢ in C*°(G).

It is well known (see e.g. Theorem 4.1 of [5]) that the map U(g,h) —
D(g,h), A — R(A) is onto and that its kernel is U(g)ay. In particular, it
induces the isomorphism of algebras:

U(g,h)U(g)ay ~ D(g.,h),

Since U(g,b) NU(g") =U(g', h), we see that
(2.7)

so that either 1) or 2) holds.
We shall denote by CD(g, h) the center of D(g,h) and set

Uc(g,h) = R~ (CD(g. b)) = {A € U(g,h) | [A,U(g,h)] C U(g)ay}.

We shall associate to g, €, and b’ the same objects as we did with g and
h. For instance, we shall consider the vector subspace ay of U(g) generated
by the elements Y + v/ —1f(Y), where Y € b’. Accordingly, as in (2.6), we
shall use the following notations:

b')

bh) Ulg, ', f) ={AcU(g)|[AY]eUlgay, VY €b'},

U(g €
U(e,, Uk, b, fle,) ={AcU®) | [A Y] Ut )ay, VY € b}

Let £ € g*. Recall that the H-orbit H - £ of £ in g* is said to be saturated
relatively to g’ if and only if H - ¢ + gt = H - ¢. The following simple

equivalences hold for any ¢ € g* (see e.g. [7], proposition 6.4.1):
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1) b(6) #b(¢) dimb(¢) = dim b(¢') — 1

H - ¢ is saturated relatively to g'L
dimH - ¢ # dim H - ¢

dmH -{=dimH - ' + 1

(2.8) BB c g

H - ¢ is not saturated relatively to g’ +
dimH - ¢ =dimH -/

g=g +p"

so that either the equivalent properties of 1) or those of 2) are true. We
shall prove in our main result Theorem 5.2, that the first (resp. the second)
properties of (2.7) are equivalent to the first (resp. the second) properties of
(2.8). However, the notion of saturation of H-orbits which is useful for the
construction of H-invariant polynomial functions and, through the operation
of symmetrization, for the construction of invariant differential operators,
will only be used here in the last section for the study of an example and
will not intervene in the proof of our main results.

2) b(£) = ()

1T 1eeey

3. SOME PROPERTIES OF D(g,h)

A simple consequence of the Poincaré-Birkhoff-Witt Theorem is that the
families

{(X'YE | (J,K) e N’ x N}
and {(X'YE | (J,K) e N? x N, |K|> 0}

respectively form a basis of U(g) and of U(g)ay (see Lemma 4.2 of [5]).
Observe that the elements {X” | J € NP} form a basis of a supplementary
subspace S of U(g)ay in U(g).

Till the end of the section, we assume n > d > 1 so that b’ and Y exist.
Let Y& = f’dkf/’L . Keeping the notations of Section 2, we see that the
families

{XIYFY'" | (J,k,L) e NP x N x N*=1 || > 0}
and {X7YF|(J,k) e N’ x N}
respectively form a basis of U(g)ay and of a supplementary subspace of
U(g)ay in U(g).
We now recall several properties of the algebra D(g, h) which are due to
Baklouti and Fujiwara (see [1]). For the convenience of the reader, and in

order to make this paper as self-contained as possible, we shall also give
their proofs.

Lemma 3.1. (i) gi,—15 C S ®U(g)ay .
(%) [b,S] € S @U(g)ay-

Proof. (i) The idea of the proof is very simple, though complicated to write
down. For every 0 < ¢ < p and k € N, let us denote by S, the subspace
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of S generated by the X7 = Xéq ...X', J €N and |J| < k. In particular,
Sor = Sq0 = C. The index ¢ is useful in the proof to check that certain
monomials are well ordered. It is enough to prove by induction on k that

(*) Y'X’ e Sq7k+1 @L{(g)ah/, VY’ e h/, VX’ e Sng,
(k%) X, X7 € Ssup(r,q),k+1 © U(g)ay, Vr such that j. <ig—1, VX7 € S,
This is clear for Kk = 0. Let k > 0. Suppose the result has been proved up
to rank k — 1. If we take X, as above, with > ¢, we have X, X’ € Sy k+1
so that the result is obvious. Now, if we take T" € g;,—1 such that either
T=Y e€b or T = X, with 7 < g, then we can write X’ as X’/ = XqXJ,
with X7" = X7s=1 ... X{" and use the identity:

TX7 = [T, X)X + X, TX”7"
We have [T, X,] € 9j,—1 N giy—1 and x7 e S¢,k—1. Hence, by induction
[T, X,) X7 € Sy @ U(g)ay.
Similarly, TX” € S, ® U(g)ay. Thus X, TX”7 € Sy 1 ®U(g)ay.
(7 ) We show by induction on k that
Y, X7] € Syr ®U(g)ay, VY € b, ¥X7 € Sy
This is clear for K = 0. Assume this true at rank &k — 1, k # 0. Then we have
Y. XJ] =Y, Xq]XJ, + X [Y, XJI]-

Since [Y, X,] € 9j,—1 M @iy—1 and x7 e Sq.k—1, we know from the assertion
(i) that [Y, X, ] X7 e Sq.k®U(g)ay . Finally, by induction we have [Y, X7 e
Sek-1 ®U(g)ay. Hence, X, [V, X”'] € S, ®U(g)ay . O

Lemma 3.2. Let W be an element of U(g) written as

W = Z AYF mod U(g)ay, where the Ay’s belong to S.
k<K'
Let Y € b and, making use of the previous lemma, let (By)r<i be the ele-
ments of S such that [Y, Ay] = By, mod U(g)ay . Then, we have

Y, W] = [V, > AYS]  mod U(g)ay
E<k’

YV AJYS  mod Ug)ay

K<k’
= Z B,YF mod U(g)ay .
k<k!

Proof. The first and third identities follow from the inclusion h C U(g, )
and the second one, from the relations [V, ALYF] = [V, ALY + Ai[Y, Y]
and [Y,Yy] C b’ Nker f € ay. O
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Proposition 3.3. (i) We have [h,U(g,h) NS] CU(g)ay . In particular

U(g,h) NS CU(g,b).

(it) We have the decomposition U(g,h) = (U(g,h) N.S) & U(g)ay, so that
the restriction to U(g,h) NS of the projection of U(g,h) on D(g,h)
s a bijection and every element of

D(g,b) ~U(g, b)/U(g)ay
admits a unique representative in S. This representative belongs to
U(g,b').
Proof. (i) The assertion (i) of Lemma 3.1 yields
[b,U(g,h) N S| C (S@U(g)ay) NU(g)ay C U(g)ay.
(71) The result follows from the decomposition U(g) = S & U(g)a, and
from the inclusion U(g)ay C U(g,h). O
Proposition 3.4. Let (Ay)o<i<k be a family of elements of S, we have

ZAki}dk S U(g, []/) — Ak € u(ga h/)a Vk.
k

Proof. let Y’ € b'. For all k, we define the element B of S such that
[Y', Ax] = By, mod U(g)ay and obtain from Lemma 3.2

Y3 AYfleU(g)ay < B,=0, Vk.
k

O

Proposition 3.5. Suppose that dimg > 3 and g, ¢, b and b’ are like in
Section 2 then:

(i) We have the equivalence

Ug, ') 2 U(G) +U(g)ay <= Ulg,b') ¢ U(g) +U(g)ap.
(1) Assuming moreover that U(g,h') C U(g,h), then we have
Ul ') ¢ U(g) +Ulg)ay = U(g,h) 7 U(8") +U(g)ay.
Proof. (i) < is obvious. For =, let W’ be an element of U(g,h") \ (U(g") +
U(g)ay). We may write W’ as W' = Z AYF mod U(g)ay, where the
k<K'
Ajp’s belong to S. As W' is not in U(g') +U(g)ay, one of the Ay’s, say Ay,
is not in U(g’). In other words, X,, does occur in Ay,. Then, Proposition
3.4 implies that Ay, € U(g,h'). As (U(g) +U(g)ay) NS = U(g') N S and
Ay, € S\U(g'), Ak, does not belong to U(g') + U(g)ay. This proves =.
(i) The implication = is a direct consequence of (i) and of the assump-
tion. For <, the decompositions
U(g') +U(g)ay = Ug) N S) &U(g)ay
and U(g,h) = U(g,b) N S) & U(g)ay
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along with the right-hand side property imply that U (g, h) NS ¢ U(g')NS =
(U(g') +U(g)ay) NS. So the result follows from the inclusion U(g, h) NS C
U(g,H’) of Proposition 3.3. O
Proposition 3.6. Assume U(g,h') NS CU(g,h)NS. Then

[b,U(g,b")] € U(g)ay -
(In other words, h C Uc(g,b').)

Proof. Let us write an element W of U(g, ") under the form
W = Z AL YF  mod U(g)ay,
k<k!
where the Ag’s belong to S. Now, Proposition 3.4 implies that A €

U(g,b') NS so that, using the assumption, Ay € U(g,h) NS. Finally, using
the first assertion of Proposition 3.3, we have

(6, W] C > ([h, ARl Y5+ Aglh, YJ]) C U(g)ay.
k<K’
]

The next result ([1], lemme 4.1) is independent of the previous ones and
of a different nature:

Proposition 3.7. Suppose that dimg > 2 and g, g’ and b are like in Section
2, so that X, exists.

(i) Let m > 1 and W = ZX;Ak, where each Ay, belongs to U(g'), be
k=0
an element of U(g,h). Then A, € U(g',h) and mXpAm + Am—1 €

U(g,h).

(ii) Let W = X,U +V with UV € U(g'). If U & U(g )ay, then W ¢
U(g") +U(g)ay.

(iii) Suppose U(g,b) ¢ U(g') +U(g)ay, then there exists an element W =
X,U+V ofU(g,b) such that U € U(g',h) \U(g')ay and V € U(g').
In particular, W ¢ U(g') + U(g)ay.

Proof. (i) The Poincaré-Birkhoff-Witt Theorem clearly implies that
(3.1) Ulg) =X U(g) and Ulg)ay = & X]U(g)ay.
j j

m—2 .
We set 1,9 = ‘EBO X)U(g'). Then we have for all Y € b:
]:

W, Y] = X" [Am, Y] + Z X)Xy, YIX] T Apy + X A1, Y
=1 mod im_Q
= X' [Am, Y] + XN m[Xp, Y]Am + [An-1,Y])

mod i,,—2 € U(g)ay

so that A, € U(g',h) and mX, A, + Am—1 € U(g, b).
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(ii) Using (3.1), we see that if W € U(g') + U(g)ay then U € U(g')ay
because in this case,

W e (X,U(g)@U(g))n (6]3 XpU(gay @U(g")) = XpU(g")ay @ U(g').

m
(iii) Let W' = ZX;;A;C € U(g,h) \ U(g') + U(g)ag). The assertion
k=0
(1) implies that A, € U(g',h) and that W = mX,A,, + An_1 € U(g, h).
Without loss of generality, we can assume that A, & U(g')ay so that using
(ii), we see that W has the required property. O

The following important statement will be needed to prove our main result
Theorem 5.2, (see [1] théoreme 4.4 for its original proof).

Theorem 3.8. Under the notations and the assumptions of Proposition 3.7,
suppose that

U(g,b') ¢ U(g') +U(g)ay and U(g',b") Z U(g',b).
Then we have U(g,h) ¢ U(g') + U(g)ay.

Proof. First, let us prove that there exists an element W = X,U +V ¢
U(g, ) with U,V € U(g') such that

(a) W ¢ U(g') + U(g)ay or equivalently such that U & U(g')ay.

(b) (ad Yo)W € U(g) +U(g)a.

It will be used below in various situations to construct an element of U(g, b)
that does not belong to U(g’) + U(g)ay.

We know from the assertion (i) of Proposition 3.5 that actually U(g, ') ¢
U(g') + U(g)ay. Therefore, we can find Uy € U(g'), 0 < s <r with r > 0
and U, & U(g')ay so that Z X,Us € U(g,b'). Now, the first assertion

0<s<r
of Proposition 3.7, applied at the level of g and b’, says that the element
rX,U, + U,_1 belongs to U(g, h’) whereas the second assertion of the same
proposition says that it satisfies (a) above. Next, let m’ € N be the greatest
integer such that

W = (ad Yo)™ (rX,Us + Up—1) € U(8) + U(g)ay.

We see that W does satisfy (a) and (b).

Now we introduce a few notations that will only be useful in the present
proof. For S, T € U(g), we set {S,T} = ST +TS. Also, for s € N, we write
Ss = (ad Yy)®S so that S = Sy. Then for r € N\ {0}, we define

T:(S) = {So, Sor} — {S1, Sor_1} + -+ (=1)""HS, 1, S, 1} + (—1)"S2.

Since Yy € U(g, h'), we see that 7,.(S) belongs to U(g, h’) whenever S does.
Moreover, if 7 is large enough to satisfy Sa, 41 € U(g)ay then (ad Yy)7,.(S) €
U(g)ay so that 7.(S) € U(g, b).

We let m be the smallest integer such that (ad Yy)™W € U(g)ay. We shall
now consider different cases depending on the value of m:
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- If m = 1, the result is obvious since W € U(g, h) \ (U(g') + U(g)ay).
- If m =2q+ 1 with ¢ > 1, the remarks just above imply that

T,(0) = 1 2
{Wo, Wag} = {W1, Wag1} + -+ + (=1)7 {Wo1, Won } + (-1)7W
belongs to U(g,h). We want to prove that T,(W) & U(g') + U(g)ay. We
have T,(W) = 2WWs, = 2X,UW5, mod U(g'). So we get our result, us-

ing the facts that U and W, do not belong to U(g')ay and that the ring
U(g'.h)/U(g")ap has no zero divisors.

- If m = 2q with ¢ > 1, then we see that for any ¢ € C,
(ad Yo)* 7 (W (Wag—2 + cWag-1)) € U(g)ay

so that if we set W(c) = def. W (Wag—2 4+ cWaq—1), we have 7;(17[7(0)) €U(g,bh)
by the remark above. .
We want to prove that 7,(W(c)) & U(g') + U(g)ay for some ¢ € C\ {0}.

For some time, we consider W (c) and Tq(f/lv/(c)) as elements of U(g)[c], the
algebra of polynomials of ¢ with coeflicients in ¢/(g). Noting that ay C

Uc(g,b'), we have modulo U(g)ap[c] for any ¢ > 1:
W(e)o =W (Wags+cWag 1)
(0)1 =Wi(Wag—2 +cWaq1) + WWaq-1
(0)2 = Wo(Wago + cWog—1) + 2W1Waq—1 e U(g')|c]

(€)2g—1 = Wag—1(Wag—o + cWag—1) + (2¢ — 1)Waq—2Wag—1 € U(g')[c]
(c)2g = 2qW22(1*1 € L{(g’)
Now we check that
T(W(0) € eX,U(g') & X,U(g") & U(g)]c] mod U(g)an|c]
and work out the component relative to cXpZ/l(g'). Using the fact that ¢ > 1,
we obtain
To(W(e)) = {W(e)o, W(€e)2q} — {W (€)1, W(c)2g_1}
- mod U(g')[c] @ U(g)ay|c]
= 2W(c)oW(c)2q — 2W( )1 W( )2g—
mod U(g')[c] + ( )ag|c]
= 2¢(2¢ — 1) WWQq_l
mod X, U(g") &U(g)[c] +U(g)ay[c]
= 2¢(2¢ —1) XpUW23q_1
mod X, U(g") &U(g)[c] +U(g)ay[c]

Considering now W (c) as an element of U(g), we infer from this that there
exists U € U(g') such that W (c) = X, (2¢(2¢—1) UWs,_ 14+U) mod U(g)+
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U(g)ay. Then, noting that
XpU(g') N [U(g") + U(g)ay] = XpU(g")ay,
that the ring U(g’, h)/U(g')ay has no zero divisors and that UWZ?’q_l does

not belong to U(g')ay since U and W,_1 do not, we see that W(c) €U(g)+
U(g)ay for any c such that

2c(2¢ — V) UW3,_ + U ¢ U(g)ay.
Note that this method yields no results for m = 2.

- If m = 2 then, for the first time in this proof, we have to use the relation
U(g'. ') ¢ U(g',h). Tt implies easily that there exists T € U(g',§’") \U(g’, )
such that (ad Yy)*T € U(g)ay. Then, we see that (ad Yy)*(WT) € U(g)ay,
that WT € U(g,b’) and that modulo U(g)ay

TL(WT) = {(WT)o, (WT)2} — (WT)3
= (WT,2W Ty} — (Wi T+ WTy)2 € U(g, b).
We want to prove that 71 (WT) & U(g') +U(g)as. We have
TIWT) = -W?T} = =X (UT1)* mod X,U(g") @ U(g') + U(g)ay.

We note that X U(g") N [X,U(g") @ U(g') + U(g)ay] = X2U(g")ay. Then,
the fact that U and 77 do not belong to U(g’)ay implies the result in this
case. U

4. TWO FUNDAMENTAL LEMMAS

Here, we state and prove two lemmas that will be crucial for the proof of
Theorem 5.2. We are concerned with the study of certain special elements
of U(g) that we call I'y -central.

Let ¢ be a linear form on g. Recall that 7, denote the unitary irreducible
representation of G in the Hilbert space Hy associated, via the orbit method,
with the coadjoint orbit G - £ of ¢. We shall keep the same symbol m, to
denote the associate representation of U(g) in the space H;° of C*°-vectors
of Hy. An element A € U(g) is then said to be I'y y-central if m;(A) is scalar
for all £ in a non-empty Zariski-open subset O of Iy j, namely if there exists
a complex function 04 on G - O such that (Section 1.1 of [7])

(4.1) m(A) = 04(0)Idy, forleG-O.

It turns out that in this case, m;(A) is scalar for all £ in I'yy and therefore
that we can assume that 6,4 is defined on the whole of G - I'gy. Moreover,
this function is G-invariant and its restriction to I'yy is polynomial and
H-invariant ([7], théoreme 2.1.1).

As in [7] Définition 3.4.1, we consider for every integer 1 < k < ¢, a
I'y y-central element oy, satisfying

(1) o = & Xm,, + Ry, where &, and Ry, belong to U(gm,—1)-

(2) & is I'g p-central.
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(3) The function ¢ +— 0, (¢) does not vanish on a non-empty Zariski-open
subset of I'g .

Using results of Corwin and Greenleaf ([5], Theorem 3.1), it can be seen
that there exists such a 0. Indeed, they construct elements which verify
more properties than ours.

To establish our lemmas, we recall some elementary properties of I'gp-
central elements in U(g) (see [7] Proposition 1.4.1 and also Lemma 5.1 of [5]).
Let U(g,T'y) be the algebra of I'y y-central elements in (g) and Z(g,h) =
{04 AclU(g,Tyy)} the algebra of complex functions satisfying (4.1). With
the general notations of Section 2, one has the following maps:

L:U(g) —» U(g), Ars'A, the main linear antiautomorphism of U(g).
(In particular, we have ‘X = —X and {(XY) =YX for X,Y e g°).

a:U(g,Tygp) = Z(g,h), A ba.

The antiautomorphism * of U(g) is one-to-one and maps U(g,I'y) into
Uc(g,h), while o and w are onto. It can be shown that there exists a
map ¢ : Z(g,h) — CD(g,h) such that §(04) = L(A) = R(*A), which is
an injection of the commutative algebra Z(g,b) into C'D(g, h), so that the
commutative diagram 1 below holds. (For these results, see [7] Proposition
1.4.1, and also Lemma 5.1 of [5]).

U(g,Typ) Uc (g, b)
Z(g,h) CD(g,h)

Diagram 1

With respect to the flag (2.1) of g, we can also define the algebras
def. .
Zi(g,h) = {0a| AcU(g) NU(G Tgp)}, 0<i<n.

So that {0} = Zo(g,h) € Z1(g. ) € -+~ C Zn(g,h) = Z(g,h).
The main results of [7] can be stated as follows:
(x) For all integer 0 <4 < n, the family {6, | m; € T;(S)} is a system of
rational generators of Z;(g,h) (théoreme 4.1.1 of [7]).

(#x) For all integer 0 < i < n, the family {0, | m; € U;(S)} is a transcen-
dence basis of the algebra Z;(g, h) (théoreme 4.1.2 of [7]).

We are now ready to prove our lemmas.
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Lemma 4.1. Assume that dimb > 1. Let i, € TH(S). In particular, we
have by = bhs—1 + bs(£) for generic £ in I'yy and there exists k (1 < k < t),
such that my = is. Then the following assertions hold:

(i) There exists a polynomial P satisfying
(4.2) P(oy,....'05) =0 mod U(gm, ),

such that the coefficient of the dominant power of ‘o is not zero
modulo U(g)ay.
(ii) There exists a polynomial Q satisfying

Q(tah cee atgk7 sz) =0 mod u(gmkfl)ahsfl

such that the coefficient of the dominant power of Yy is not zero mod-
ulo U(g)ay.

Proof. (i) Since my € TH(S), my, does not belong to U(S). So from
(%x) above, the family {6, | j € Uy,—1(S)} is a transcendence basis for
Zm,(g,b). In particular, the element 6, of Z,, (g,b) is algebraic over
the ring generated by this family and, a fortiori, by the family {0,, | j €
Tiny—1(S)}. In other words, there exists a polynomial P of k variables such
that

P(ls,,... 7‘9%) = ZPJ(9017"' 790k—1)0gk =0
§=0

with Py, (65,,... ,600,_,) # 0. We deduce, from the commutativity of Dia-
gram 1, that
w(P(toy,... toy)) = 6(P(by,,- .. ,05,)) =0,
with @ (Pp(‘o1,... ,"0k_1)) # 0. Therefore P('oy,... ,"'01) € U(g)ay N
U(gm,,) = U(gm,,)an,. Similarly, P, (o1, ..., 'or—_1) & U(g)ay.
(ii) First, observe that Y, U(g)ay C Uc(g,b). Therefore, using the

assertion (1) of this section which implies that ‘o = —Y;'&, + 'Ry, we see
that the identity (4.2) can be rewritten as follows:

(4.3)  P(lor,..., o+ (Ys + V=1F(Y5)&) =0 mod U(gm,—1)an,

so that Yy disappears. Also, we note that in (4.3), the elements Lo, (1<
r < k), '&, and Y; belong to Uc (g, h). Developing P in Yy, we obtain

m—1
(44) w[Pm(tala cee 7t0k—1)(t§ky:9)m + Z @j(tUb cee 7tak7t£k) ng] = 01
=0

where the @j’s are some polynomials of degree less than or equal to m in
t¢,. Now, from the assertion (%) above, there exist two polynomials S and
T of k — 1 variables such that

w(S(tor, ... log1)) = (T (tor,... ,lok_1))

with @(S('o1,... ,'or_1)"¢) # 0 and w(T(*oy,... ,'op_1)) #0.



16 H. FUJIWARA, G. LION, B. MAGNERON, AND S. MEHDI

Multiplying (4.4) by @(S(‘o1,. .. ,'or_1)™), we obtain

w[T(or,. .., o 1) Pr(tor, ... log_1) Y™
m—1
+ Z Qj(tor, ..., lop)YI] =0,
§=0
for suitable polynomials @;. This proves (4 ). O

Lemma 4.2. Assume dimb > 1 and b = b’ + §(¢) for generic £ in Dgy.
Then R(Yy) is algebraic over CD(g, ).

In other words, if d € TH(S), there exists a polynomial Q of Yyq with coef-
ficients in Uc (g, b') satisfying Q(Yq) € U(g)ay and such that the coefficient
of the leading power of Yq is not zero modulo U(g)ay .

Proof. First, keeping the notation of the previous lemma, let us show that
Tiu (9,0, 8) = T;,(S).

In this proof, let p : g* — g;,_; be the natural projections £ > £|9id71‘
We shall use the fact that it is both open and continuous for the Zariski
topology. We note that p(I'y) C Iy, and that p ' (p(Tgp)) C Dy
Let 1 <r < q4. Since [g, gi,] C gi,—1, the restriction of any ¢ € g* to [g, gi,]
does not change if we replace ¢ by any element of p~'(p(¢)) and neither
gr(0).

Suppose r € T;,(S) (resp. r ¢ T;,(S)). This amounts to saying that
9 = gr—1 + g-(¢) (vesp. g-(¢) C g,—1) on a non-empty Zariski-open subset
O of I'yp. The same relation holds on the non-empty Zariski-open subset
p H(p(0)) of Iyy. Therefore, r € T(g,,S) (resp. r & T(g,h’,S)). We
have then proved that T;,(g,b’,S) = T;,(S).

So there exists a partial sequence (0,)i<,<; of Corwin-Greenleaf Iy /-
central elements that satisfy properties (1), (2) and (3) of the present section,
where we replace h by b'. For any Iy y-central element o, 7¢(c) is scalar for
all £in I'g pr and consequently, for all £in I'yy C I'g . Therefore, (0,)1<r<k
is also a sequence of Corwin-Greenleaf I'g y-central elements. We can take
this sequence, choose s = d and apply (i) of Lemma 4.1. The result follows
from the fact that the ‘o,’s now belong to Uc (g, b) NUc(g, b'). O

5. PROOF OF THE CONJECTURE

In the proof of the next theorem, we will use several times the following
simple lemma:

Lemma 5.1. Let £ and ¥ be two subalgebras of g such that h C ¥ C €. Let

g be an ideal of g such that [&,h] C g’. We set b’ def. hNg”. Then, the

following properties are equivalent:
(i) b NePe = p" NE'Be (resp. dim b’ NeBe = dim b NE'Pe —1) for generic
£inTgy.
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(ii) b NeBe = " NE'Pe (resp. dimbh” NP = dim b” NE'Pe —1) for generic
{in FE,h”'

Proof. In this proof, let ¢” e en ¢, p:g" — ¢ and q: & — € be
the natural projections ¢ — £|gr. We shall use the fact that they are both
open and continuous for the Zariski topology. We note that p(I'gy) C Ier g,
q " (p(Tgp)) C Teyr and p~(q(Tepr)) C Tgpr.

Let £ € g* and A\ € q '(p(¢)) C €. Since [¢,h"] C €', we have ey =
)\|[g7h//]. Therefore, h”"NEP = §”"NEP> and H”"NE'Be = H”"NE'BA. So, we see that
if one of the assertions (i) holds on a non-empty Zariski-open subset O of
Iy, then it is also verified on the non-empty Zariski-open subset a ' (p(0))
of I'gy. So (i) = (ii) holds.

Conversely, let £ € £* and A € p~*(q(£)) C g*. Since [¢,h"] C €, we have
ey) = Mg Therefore, B NeBe =" NePr and h NE B = " NE'Pr. So,
we see that if one of the assertion (4 ) holds on a non-empty Zariski-open
subset O of I'gpr, then it is also verified on the non-empty Zariski-open
subset p~(q(0)) N Ty of Tgp. So (ii) = (i) also holds. O

The conjecture will be a by-product of the following theorem. Note that
(2.7) and (2.8) give a number of equivalent ways to express it.

Theorem 5.2. Let G be a connected, simply connected, nilpotent real Lie
group with non-zero dimensional Lie algebra g, H a proper, closed, connected
subgroup of G with Lie algebra h. Let g’ be an ideal of codimension one of
g containing b. Let f be a linear form on g such that f([h,h]) = {0}. Then
the following properties are equivalent:

(i) U(g, h) CU(g) +U(g)ay.

(it) The H-orbits H -0 are saturated relatively to g'* for generic € in Lgp-

Proof. Using (2.8), it will be convenient to prove the following equivalent
form of the Theorem

U(g,h) CU(g)+U(g)ay < dimb(¢) = dimh(¢')—1 for generic £ in Igp.

We shall use an induction both on the dimension of g and on the dimension
of h. First, we consider two situations which can be settled directly. They
include all cases such that dimg < 2.

When b is O-dimensional, clearly h(¢) = h(¢') = {0} for all £ € g*. More-
over, U(g,h) (resp. U(g')+U(g)ay) is equal to U(g) (resp. U(g')). Therefore,
the theorem is obvious in this case.

Now, we turn to the case h = g’. In this situation, U(g') C U(g, h).

If ¢-generically on 'y, we have h(¢) = h(¢') then g = b + g(¢). Hence

f(lg, b]) = €([g, b]) = (b, b]) = F([b, b]) = {0}

Therefore, [g,h] C ay and U(g, h) = U(g). Now, since X, € U(g') + U(g)ay,
we have U(g,h) ¢ U(g') + U(g)ay, as expected.

If we have dim h(¢) = dim h(¢') — 1 for generic £ in 'y, then there exists
an element Y in b such that f([X,,Y]) # 0. We are led to a contradiction



18 H. FUJIWARA, G. LION, B. MAGNERON, AND S. MEHDI

if we assume U(g,h) ¢ U(g') + U(g)ag. In this case, using the assertion
(#i) of Proposition 3.7, we can choose an element W of U(g, h) such that
W =X, U+V,with U,V € U(g") CU(g,bh) and U & U(g)ay. Then, we have

W.Y] = [X,.Y]U + X, [U.Y] + [V.Y] € U(g)ay,

which implies [X,,Y]U € U(g)ay. Since the ring U(g,b)/U(g)a, has no
zero divisors, we see that [X,,Y] € U(g)ay, contradicting the fact that
[Xp, Y] € b\ ker f.

We may now assume that h has dimension d > 1 with h # g, so that
choosing b’ as in Section 2, we have ' & h C g’ C g and g is of dimension
at least 3. By induction, we shall also assume that the theorem is true for
all cases such that the dimension of g is strictly less than n and that, when
the dimension of g is n, for all cases such that the dimension of b is strictly
less than d. Several situations may occur:

either h(¢) = h(¢') or dim h(¢) = dim h(¢') — 1 for generic £ in g p;

either h'(¢) = b'(¢') or dimb’(¢) = dim b'(¢") — 1 for generic £ in Tyy.
Using Lemma 5.1, where we replace £ by g, ¥ by g, ¢’ by ¢ and b by
b, we see that saying that b'(¢) = b'(¢') (resp. dimb'(¢) = dimp’'(¢') — 1)
for generic £ in I'gyr is equivalent to saying that the same property holds
C-generically on T'y. Moreover, if h(¢) = h(¢') for generic £ in Ty, clearly
b'(¢) = b'(¢) for generic £ in Iyy.

These remarks lead us to consider three cases:

1) Case: dimh(f) = dimh(¢') — 1 and dimb'(¢) = dimb’(¢') — 1 for gen-
eric £ in I'gy
First, we see that U(g,b") C U(g') + U(g)ay by applying the induction
hypothesis to g and h’. Now, we claim that U(g, h) C U(g')+U(g)ay. Indeed,
assume there exists an element W € U(g, h) such that W & U(g’) + U(g)as.
Then, the second assertion of Proposition 3.3 would imply the existence of
W' e U(g,h')\ (U(g) + U(g)ay) such that W' = W mod U(g)ay. This is
absurd, since it contradicts the induction hypothesis.

2) Case: h(¢) = h(¢') for generic £ in Iy
We observed before, that in this case, h'(¢) = h'(¢') for generic £ in Ty

Using the induction hypothesis applied to g and §’, we know that U(g,b’) ¢
U(g") + U(g)ay. We now consider two subcases.

a) U(g',h') ¢ U(g'.h)

The previous remark and Theorem 3.8 give at once, as we expect:
U(g,h) ¢ U(g) +U(g)a

b) U(g', ") C U(g',b)
Our first goal will be to prove that the hypothesis implies that b = §" + b(¢)
for generic £ in 'y, so that we can make use of Lemma 4.2. (In other words,
we shall prove that d € TH(S).)
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First, using an induction argument, we show that for 0 < r < p — 1,
bh =8 +bhNeP for generic £ in I'gp. This is obvious if r» = 0 since h N EOB" =
h. Assuming r > 0 and the property true up to rank r — 1, we note the
inclusion U(€., ') C U(E.,h). Then, replacing g by €, in the assertion (ii)
of Proposition 3.5, we have

either U(&.,h) ¢ U(t,—1) + Ut )ay,
or Ut b') CUl_1)+UE)ay
and Ut h) CUC—1) + UL )ay.
Therefore, by induction on the dimension of G we have
either HhN Efé =bHN Bffl for generic £ in 'y, p,
or dimhnN Eff =dimbhN Effl — 1 for generic £ in Iy, j
and dimb’ N Ef‘v’ =dimb' N Effl — 1 for generic £ in Iy, .
Using Lemma 5.1 where we replace € by &, ¢ by &._1, g” either by g or g;,—1
so that h” is replaced either by b or b, this can be rewritten as follows:

either hNePe=pn %ffl for generic £ in I'gy,
or dimhneB =dimpne?, —1 and dimp Neds = dimp’ ned, —1
for generic £ in I'g .

In the first situation, it is obvious that h = b’ +hnN Efze for generic £ in I'y p
by induction on r = dim ¢, /h, while in the second one, we would be led to
a contradiction if we assumed h N €24 C §’. Observing that dim b N Eff L=
dim b’ N ’Effl + 1 by induction and that hN Ef" =pHn EE‘Z, we would have in
this case

dim b N €5 = dim b’ N e5 = dimb' Ne?, — 1 =dimpne?, —2,

which is impossible since €._1 is of codimension 1 in &.. So in all cases,
we have h = b +h N Ef‘ for generic £ in I'yy. Applying this result with
r=p—1, we have h = b’ + h(¢') for generic £ in I'yp, so that h = b’ + h(¢)
since h(¢) = h(¢').

Next, we will show that U(g,h) ¢ U(g') + U(g)ay. Since the second
assertion of proposition 3.5 says that U(g,h') ¢ U(g') + U(g)ay, let W =
X,U+V el(g,b) with U e U(g',y") \U(g)ay and V € U(g'). We want to
show that [W,Y,] € U(g)ay. Actually, we will prove that [W,Yy] € U(g)ay .

We have Yy € U(g, b’). Also, replacing g by g’ in Proposition 3.6, we know
that Yy € Uc(g',b'). Hence

(WYl = [XpU + V. Yq] € U(g)ay +U(g") NU(g,b') = U(g)ay +U(g',b),

so that [[W, Y], Yy] € U(g)ay .
Now, we can apply Lemma 4.2 which says that there exist m > 0 and
Qj € Uc(g,b'), 0 < j < m, with Qn, & U(g)ay, so that

ZQJ' Yj =0 mod U(g)ay .
=0
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We choose m minimal for such an identity to hold. The adjoint action of W
reads as follows:

j=1
We have (Zij Ydjfl) # 0 mod U(g)ay. If m > 1, this is due to the
j=1

minimality condition and if m = 1, to the fact that @1 # 0 mod U(g)ay .
As the ring Uc (g, b') /U (g)ay is entire, we have [W,Y,] € U(g)ay . The proof
is complete in this case.

3) Case: dimb(¢) =dimh(¢) — 1 and b'(¢) = b'(¢) for generic £ in Ty
Note that the condition dim h(¢) = dim h(¢') — 1 for one £, implies that the
center 3 of g is contained in g’. The assumption b'(¢) = b'(¢') will be used
only in the situation 3)c)a) below.

We shall prove the inclusion U(g, h) C U(g')+U(g)ay. Using the assertion
(i ) of Proposition 3.7, it is enough for this to show that if W = XpU +V e
U(g,h) with U € U(g',h) and V € U(g’) then necessarily U ecU(g)ay

We shall consider three subcases depending on 3 3 NhNker f and on

a) 3 # {0}
This subcase can be settled easily by applying the induction hypothesis to
the quotients g/3 and /3.

b) 3=1{0} and dim3 > 2
In this subcase, either dimzNh =1 or 3N h = {0}. Both situations can be
dealt with using similar methods. We leave the proof in the first one to the

reader and assume hereafter that 30 = {0}. We can then choose two linearly
independent elements Z; and Z in j such that (RZ; +RZ3) Nk = {0}. We

set h < h B RZ, & RZ,.

We recall that the Yy’s, 1 < s < d, form a basis of h. We take a
supplementary basis (1})s<r<p—1 of h & RZ; & RZ, in ¢/, associated to
a supplementary basis of b in g’ given by {Z1, Za, (T))3<r<p—1}. We con-
sider the vector subspaces S; of U(g') and S} of U(g')ay generated by the

families (77 V) ;-3 Kend and (T7Y5) ;s ,KeNd,|K|>0- 1n this proof,

{Z7,Z5, (Y ) 1<s<as (T, )3<T<p 1, X, } denotes the dual basis in g* of the ba-
sis {Z1, Zo, (Yo §s§d7( r)3<r<p-1, Xp} of g.
We have f([b,b]) = {0} for any f € ['gp. Also, the family

{T7Y™(Zy +V=1F(21)) (Za + V=1](22))" |
JeNP3 KeN,  jkeN |K|+j+Fk>0}

form a basis for U(g )aa fAWhere as one expects, az ¢ is the vector subspace

of U(g) generated by the elements Z; + v/ — f(Zl)7 Zy + \/—1f(Z2) and
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Y +V=1f(Y), Y € b. In particular, any element U, of U(g )aﬁf can be

written in a unique way as

(5.1 U= 02+ VIR (2) (2 + VL (22)
.k
with UYY € Sy if j + k # 0 and U € S7. The sum being finite.
We note that W € U(g, b, f) and U € U(g', b, f).
We know that there exists a non-empty Zariski-open subset O of I'y
whose elements ¢ are such that dim h(¢) and dim b '(¢') are minimal. If we
take any f in Oy and replace h by f) f by f and I'yp by T 5> We see that

the conditions of 3)a) above are fulfilled. This implies that Ueu (g )ag 7

We now fix f in Og. We set 2\1 = 71+ \/—1f(Zl) and 2\2 = Zs +
V—=1f(Z3). Replacing U, by U in formula (5.1) gives

(5.2) U= U0h 7z 72"
.k
with UV € 5, if j+k+#0 and U©0 ¢ S7. The sum being finite.
It is elementary to prove that there exists a non-empty Zariski-open subset
O of R? whose elements (u,v) are such that J?u,v = (f+uZf +vZ3) € Oy.
Replacing U, by U and fby fA'u,U in (5.1), we also see that for such elements

(5.3) U=S"UUP(Z + V=Tu) (Zy + V—Tv)*
7,k
with U(j’k) €Sy if j+k #0 and U(O ) ¢ S7. The sum being finite.
Using the equality U = Z U ) Z1 +v—-1lu — v—1u)’ (Zg +v-1v —
7.k
V—=1v)*, formula (5.2) and formula (5.3) yield

UL =3 (—v=1uy (—V=10) UM € 8§ cU(g)ay, V(u,v) € O.
j.k
From this relation, we see that for all (j,k) € N? and all J € NP3, the
component of UY*) on T vanishes. This implies that UY*) e §F c U (¢')ay

In particular, we have U € U (g/)ah as we expected. The proof of the theorem
in this subcase is complete.

Before going any further in the study of Case 3), we note that its general
assumptions imply that h = b’ + h(¢’) for generic £ in Typ, and that h(¢) =
b'(¢) for generic £ in T'yp. In other words, we have iy € T (g5, S) and
ig & TH(S). This result can be found in [7], proposition 6.4.3. For the
convenience of the reader, let us recall its proof. By subtracting, we have
for generic £ in Iy,

dim h(¢) — dim b/'(¢) = dimb(¢') — dim b’ (¢') — 1
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Then dim h(¢) — dim h’(¢) and dim h(¢') — dim b’(¢') are both either 0 or 1.
So necessarily, dim§(¢) — dimb’'(¢) = 0 and dimh(¢') — dim h’'(¢') = 1 for
generic £ in 'y, as we expected.

The proposition 6.4.3 of [7] also says that T2 (g, §,S) and T2 | (S) always
differ from at most one element. Hence, in the present situation, we have

TH(gla h78) - T7£;I_1<S) U {Zd}
These results will be used for the proof in ¢)a) below.
¢) dimz =1 and 3 = {0}
We let 3’ be the center of g’. Choose Z € 3\ {0} so that 3 = RZ, and
Y € g2\ g1. Denote by g the centralizer of go (or equivalently of Y) in g.
We shall consider four subcases:
a)g' =g

This is equivalent to saying that go C 3. In this case, we have f([X,,Y]) #
{0} and h C g’. The assumption of «) implies that 2 € T(g’,h,S) and
2 ¢ T(S). It is also easily verified (see [7], proposition 6.4.4) that T'(g’, b, S)

and T,_1(S) always differ from at most one element. So in the present
situation, we have

(54) T(g,, h"g) = Tnfl(‘g) U {2}

Our first goal will be to prove that R(Y) is algebraic over CD(g,h). In
other words, we shall prove that there exists a polynomial P of Y satisfying

m
PY) = ZPij € U(g)ay, with the coeflicients P; in Uc(g,h) and the
3=0
coefficient P, of the leading power Y of P is different from zero modulo
U(g)ay.

This result is easily proved when 2 € Z (or equivalently when (hNge/(hN
g1) # {0}). Indeed, in that case, there exists a real number a such that
Y +aZ €b. Obviously Y +aZ +if(Y +aZ) € ay with Z € Uc(g, ). This
gives the expected polynomial relation.

We now assume that 2 € Z. In this case, iy # 2 or equivalently iy > 2.
Using the fact mentioned above, that iq € TH(g/,5,S) € T;,_1(g, b, S) along
with (5.4), we see that ig € T(S) \ T (S) = U(S). This can also quickly
and directly be seen by observing that the equality dim b(¢") —dim b'(¢') = 1
which is verified ¢-generically on I'y y, implies that there exists Y (¢) € h(¢) \
h', hence Y(¢) € g;,(¢') \ gi,_,- Then, we have ¢([X,,Y (¢)]) # 0 since
iqg & TH(S). Therefore

0 X 61X, Y Y (0) — 61X, Y (£))) Y1) = 0.

Hence, we see that £([X,,Y]) Y (¢) — ¢([X,, Y (0)]Y € gi,(£) \ 9, , and that
iq € T(S).

Taking mjy = iq and using the results of Section 4, we can choose a
partial sequence (0,)i1<y<i of Corwin-Greenleaf I'g y-central elements that
satisfy the properties (1), (2) and (3) of the current Section 4.
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We have seen that the family (w(tar))l <<, dlgebraically generates the
subalgebra §(Zy,, (g,h)) of CD(g,h). It can be shown that the o,’s are
also I'y y-central elements (see the proof of the proposition 6.2.1 in [7]).
Moreover, Y is a I'y y-central element. So the family {Y'} U (0,)1<r<k
forms a partial sequence of Corwin-Greenleaf I'y y-central elements and
@w(Y)U (w(‘or)), ., -, algebraically generates the subalgebra 6(Zm, (¢',h))
of CD(g’,h).

Since my, € TH(g’, h,S), we know from the first assertion of Lemma 4.1
applied at the level of g’, that ‘o), algebraically depends on the family {Y}U
(*o1)1<r<k—1 modulo U(g')ay. Thus, we obtain a polynomial P such that

(5.5) P(oy,...'o5_1,Y,'0,) =0 mod U(gs,)ay

where the leading power of ‘o, has a non-zero coefficient modulo U (g)ap.
We rewrite (5.5) as follows:

m
(5.6) > Pi(toy,... ') Y? =0 mod U(g;,)ay,
§=0
for some polynomials Pj(tol, ..., top), 0 < j <mand m > 0. Let us write

P; def Pj(*o1,... ,'ox). The P;’s are elements of Uc(g, h).

Since my, € T(S)\TH(S), we also know from the assertion (xx) of Section
4 that oy, is algebraically independent of the family (tO'r)lgrSk_l modulo
U(g)ay. Since, in the formula (5.6), at least one of the P;’s really contains
to, it does not belong to U (g)ay. Without loss of generality, we can assume
that P,, has this property. In particular, m > 1 and (5.6) is a non-trivial
relation. We have proved that Y depends algebraically on Uc(g, h) modulo
U(g)ay. From now on, we choose P in such a way that its degree in Y is
minimal.
Next, as [W,Y] = ZU = UZ, we apply the adjoint action of W on the
formula (5.6) to see that
m .
(3P Y UZ=0 mod U(g)ay,
j=1

m
We have (Z]PJ Yj_l) # 0 mod U(g)ay. If m > 1 this is due to the
j=1
minimality condition, while if m = 1 to the fact that Py # 0 mod U(g)a.
Also, it is clear that Z ¢ U(g)ay. The ring U(g,b)/U(g)ay has no zero
divisors, so we see that U € U(g)ay in all instances, as we expected. The
theorem is proved in this situation.

B) ¢ #8, hCgand dimh(¢) = dimbh N g?* for generic £ in Ty
First, we can choose X, in g and find X in g’ so that

g=(@nNge&RX and g=(g'Ng) SRX,.
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In the following diagrams, an arrow symbolizes the canonical injection
between two subalgebras of  orthogonal through By to two ideals of g. The
second ideal being of codimension one in the first. The figures beside the
arrows give the increase of dimension between the source and the target
spaces for generic £ in I'g . Clearly, their possible values are 0 or 1.

Here, the only possible values of

dimb N (¢ Ng)” — dimb N gP = dimbn (g Ng)" — dimh(e)
are 0, 1 or 2 since g’ N g is of codimension 2 in g. We have by assumption
for generic £ in I'yy,
dimbh(¢) = dimph(¢) —1 and dimb(¢) = dim b N g?-.
We also have
dim hN (g’ N g)P — dim h(¢)
— (dimb N (g N§)" — dimb(¢')) + (dim b(¢') — dim b(¢))
= (dimb N (g’ N g)P* — dimh N gP) + (dim h N gP — dim ph(¢)).

Thus, we see that dim hN (g’ Ng)5 —dim h(£) = 1, so that Diagram 2 below
holds.

gl —h ﬂg,BZ

b(¢) = b N g™ / \ S a)
\ /

Diagram 2

We take W = X,U + V as above and show that we are led to a con-
tradiction if we assume that W & U(g') + U (g)ay. Indeed, we shall prove
that this implies the existence of an element W= X, U+Vinld (g,bh) with
Vel(gng) and U eU(g' NG, b) \Ug "Ng)ay, leading, by induction on n,
to a contradiction since dim b N (g’ N )5 — dimphNgP = 1.

b—

For b € N, we define the subspaces S, = ZX’U(g' Ng)if b > 1 and
=0
So = {0} in U(g'). Tt is easy to rewrite W under the form

a b a
(5.7) W= > X'X,U;+> XV, =Y XX, U, + X"V, + W,
i=0 i=0 i=0
for suitable integers a and b. Here, U;, V; € U(g' Ng) and W, € S,. Without
loss of generality, we can choose W so that U;,V; € U(g' Ng) \ U(g' Ng)ay
and b < a.
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Indeed if we assume b > a, applying the first assertion of Proposition 3.7,
where we replace g’ by g and X, by X, we know that Vj, € U(g'Ng, ). Next,
as dimbh N (g’ N §)P* = dim h(¢'), we can apply the induction hypothesis to
obtain an element XA + B of U(g',h) with A € U(g' Ng,h) \ (U(g' NgG)ay)
and B € U(g' Ng). We see that

W' =WA> — (XA + B)"V, = XX, U, A + XY Viy + Wy
is an element of U(g, h) \ (U(g') + U(g)ay) such that ' < b, Viy € U(g' Ng)
and Wy € Sy

So, repeating this procedure if necessary, we may assume b < a in (5.7).
If b = a (resp. b < a) then applying again Proposition 3.7, we see that
W = X,Ua+ Vs € UG, h) (resp. W = X,U, € U(g, b)) with U, & U(g'NG)a.
This contradicts the fact that dimbNg?* = dimbhn (g Ng)P* — 1 as shown
on Diagram 2 and the induction hypothesis.

v) ¢ #9, h C g and dimh(¢) = dim h N g?* — 1 for generic £ in Ty
The assumptions imply that hB < g’ and hP¢ C § because of the last
equivalence of 2) in (2.8). Therefore, we have h%¢ c g’ Ng. For the same
reason, this implies in turn that dimbh N (g’ N §)% — dimph(¢') = 1 and
dimbh N (g’ N )P — dimh N gP = 1. Hence, we obtain Diagram 3 below:

//;L////M
\\\T\\\\\

¢)y=hng"

h(¢) = b g

\

h (g’ Ny~
h . ﬁBg /1
Diagram 3

We take W = X,,U + V as above and show that we are led to a contra-
diction if we assume U ¢ U(g)ay. We know that U € U(g’,h). Let us write

m
U under the form Z X'U; with U; € U(g' Ng). Replacing g by ¢’ and g’ by
i=0
g’ N g, and using the fact that dimb N (g N g") P — dimh(¢') = 1 for generic
¢ in I'yp, we apply the induction hypothesis on the dimension of g to see
that U(g',h) C U(g' N g) + U(g')ay. Thus, we have U; € U(g)ay for i # 0.
Therefore, without loss of generality, we may assume U = Uy € U(g' N g).
Next, without loss of generality, we may also assume that V' can be written

m
under the form V = ZX’V; with V; € U(g' Ng) \ U(g)as. We are led to a
i=0
contradiction if we suppose m > 1. Indeed, in this case, the first assertion
of Proposition 3.7 says that

mX Vi + Vi1 €U, 0) \ U(g' N @) + U(g)ay)
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which as just seen, is impossible.

So, we can choose W = X, Uy + Vy with Uy and Vj in U(g' N'g) and
Uo & U(g' Ng)ag. We have XUy + Vo € U(g,h) \ U(g' N ) + U@)ay).
Finally, we use the equality dim b N (g N g")?¢ — dim b NgB¢ =1 for generic
¢ in Tgy. It implies by induction that U(g,h) C U(g' Ng) + U(g)ay. This
gives a contradiction. The theorem is proved in this situation.

5 b3 i i
In this case, we set h = h N g and choose X € h so that h = h & RX and
g=g®RX. Clearly, h ¢ X5 So, we have

dimb(¢) = dimh(¢') — 1
and dim h(¢) = dimh N gB¢ for ¢ generic in Lyp.
Therefore, just as in 3) above and for the same reasons, Diagram 2 holds.

Now it is easy to see that for any ideal g, of g containing Y, we have

hN gfé = h N g*B‘f for generic £ in I'yy. Thus, we can replace b by h in
Diagram 2 above so that in particular,

(5.8) dimbhn (g Ng)P —dimphng® =1 for generic £ in gy

We show that the assumption W & U(g') +U(g)ay leads to a contradiction.

Indeed, in the present situation, we can write W = Xp(z UZ-Xi) + Z VX!
i i

with U;, V; € U(g' Ng), so that we have

W= XPZ(—\/—_lf(X))i U; + Z(—\/—Tf(X))ivi mod U(g)ay

Hence, without loss of generality, we may assume that W = X,U + V with
U,V e U(g'Ng), so that W € U(g, h) and W & U(g ﬁﬁ)—l—bl(fj)afg. Replacing
gby g, g by g Ngand b by b in the induction hypothesis on the dimension

of g, we see that this is incompatible with (5.8).
This completes the proof of the theorem. O

We can now prove the conjecture of Corwin-Greenleaf and Duflo as stated
in the introduction.

Corollary 5.3. Let G be a connected, simply connected, nilpotent real Lie
group with Lie algebra g and H be a closed connected subgroup of G with Lie
algebra . Let f be a linear form on g such that f([b,]) = {0}. Let x5 be the

unitary character of H defined by xf(exp(X)) = eV —LI(X) for all X in b.
G

Let 7y = Ind 1 xs be the unitary representation of G, induced from xy and
H

defined by (1.1). Let D(g,h) be the algebra of G-invariant linear differential
operators defined by (1.4). Then, the following two assertions are equivalent

(a) 7¢ is of finite multiplicities.
(b) D(g,b) is commutative.
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Proof. (a) = (b) is a fundamental result of Corwin-Greenleaf (Theorem 1.1
of [5]).

Let us prove that non-(a) = non-(b) by induction on the dimension of g.
First, recall from the assertion (#i) of Section 1 that for generic £ in I'yj

7f is of finite multiplicities
<~ dimH (= 1dimG -/
<= 2(dimbh — dim h(¢)) = dim g — dim g(¢).

Thus, it suffices to prove that 2(dim b — dim h(¢)) < dim g — dim g(¢) im-
plies that D(g, h) is not commutative. In this case, h # g. Let g’ be a subal-
gebra of codimension one in g that contains b. If already D(g’, ) C D(g,b)
is non-commutative then obviously, D(g, h) has the same property. So we
may assume that D(g’,h) is commutative or equivalently, using the induc-
tion argument, that 2(dimbh — dim h(¢')) = dim g’ — dim g’(¢'). Subtracting
both relations, we have

2(dimh(¢") — dimbh(¢)) < 1 +dimg'(¢') — dimg(¢) < 2

which implies h(¢') = h(¢). Then, Theorem 5.2 asserts that there exists an
element W € U(g, b) such that W & U(g') +U(g)ay. Finally, using Theorem
1 of [8], we obtain an element T in U(g', h) such that [W,T] ¢ U(g)ay, as
expected. This proves that D(g, b) is not commutative. O

6. EXAMPLE

In this section, g will denote the real nilpotent Lie algebra of dimension
7 generated by the vectors {X;, 1 < ¢ < 7} with the following non-zero
brackets:
(X1, X3] = Xo, [Xa,X4] = X35, [X1, X5] = Xy, [X1, X7] = X,
(X4, X5] = X, [X5, Xg] = Xo, [X4, X7] =—Xo.
It is clear that the center of g is 3 = RX5.
We choose the flag S of g defined in (2.1) as follows:

{0}=g0Cg1Cg2C---CgsCgr=29g

where
go = {0}, g1 = RXs =3, g2 = RX> @& RX3,
g3 = RXs ®RX35 D RXg, g1 =RXoBRX3PRXg B RXY,

g5 = RXy 8 RX3 @ RX ® RX, & RX5,
g6 = RXo ®RX3 ® RXp ® RXy ®RX5 ®RXq, g7 = g.

Next, we equip g* with the dual basis {X; | 1 < j < 7} of the basis

{X; | 1<j<7}of g. Wetake h © RX, and fix f el AX] so that the

affine space defined by (1.3) is simply

7
Tan ={D_&X7 [&a=A}

=1
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We now describe the generic H-orbits, namely the H-orbits of maximal
dimension in I'gp. They are contained in the following Zariski-open subset:

7
O ={> &Xj €Tyy|& #0}
j=1

7
A simple and direct calculation shows that if £ = ijX 5 € Dyp, then for
j=1

7
all real number ¢, Ad*(exp(—tX4))(¢) = > &;(t)X; where
j=1

§1(t) =& — 13, &2(t) = &2, &(t) =E&3, &a(t) = A,
§5(t) = &5 + 1, &o(t) = &6, &r(t) = &7 — t&o.

The set of indices of Z and J defined by (2.2) and (2.4) are respectively
{4} and {1,2,3,5,6, 7}, so that the sequence of subalgebras (2.5) becomes:
b =bh=RXy
b =RX, dRX,y
o =RXo PRX3PRXy
Ej:ng for3§j§6

Then, we consider the associated sequence of subalgebras:
(6.2)  D(t:1,h) CD(ka,h) C--- CD(t5,h) € D(s, h) = D(g,h).

Theorem 5.2 says exactly which of these inclusions is proper or is an equality.

Using the calculation (6.1) and setting here ¢; def. g, for all £ € g7,

1 < j <6, we obtain
dimH -¢; =0, Vie O, 0<35<3,
dim H - 4; =1, Ve, 4<j5<6.

Following the sequence £y C £ C --- C &g, there is only one jump in the
dimensions of the generic H-orbits in I'yy which arises when passing from
€3 to £4. Thus, Theorem 5.2 implies that D(€;,h) is properly contained in
D(tj41,h) for 1 < j < 6, except for j = 3 where we have the equality
D(ts,h) = D(t4,h). So (6.2) reads as

(6.4)  D(b,h) & D(E2,h) & D(E3,h) =D(Es,h) & D(ks,h) & D(g, b).

In other words, there exists a non zero element of D(€;11, ) that does not
belong to D(¢;, h) for all j, except for j = 3. To check this, we shall con-
struct explicitly such a new element. We proceed as in [8], by applying the
symmetrization map to suitable H-invariant polynomials arising from the
Pukanszky parametrization of the generic H-orbits in I'gy (see [11]).

(6.1)

(6.3)

More precisely, setting u def. &5 + t& in the calculations (6.1), we param-
7

etrize the generic H-orbits in I'gy as follows: if £ = Z@X; € O, then we
j=1
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let Ad*(exp(—tX4)) u)X; for all real number ¢, with

HM\]

166+ 638 —us
ri(u) = o )

r5(w) = u, re(u) =8, r7(u)=

ro(u) = &2, r3(u) =&, 7ra(u) = A,
€786 + 285 — ula
&6

This gives us the following H-invariant polynomials on g*: & & + £3&5, &9,
&3, &6 and 7€ + £2&5. Applying to these polynomials the symmetrization
map S(g) — U(g), we obtain the elements XX + X3X5, X2, X3, X¢ and
X7X¢ 4+ X2X5 of U(g, h). So, we have the following new element of U(g, b):

X9, when passing from C = U(€y, h) to U(¢1,h),

X3, when passing from U(¢1,h) to U(€2, h),

X¢, when passing from U(€2,h) to U(€s3,h),

X1X¢ + X3X5, when passing from U(t4, h) to U(Es, h),

X7X¢ + X2X5, when passing from U(5, h) to U(g, b).

Let us check that no new element of D(g, ) arises when we pass from D(¥3, b))
to D(84,h). Assume there exists A in U (€4, ) that does not belong to U(3)+
U(g)ay. Using the assertion (i) of Proposition 3.7, we may write A as A =
XsU +V with U and V in U(3). Then, observing that €3 is commutative,
it is easy to see that [A, X4] = —XsU. Since X¢ ¢ U(g)ay, this forces
U € U(g)ay and then V' € U(ts3,h). Thus, we have A € U(€3,h) + U(g)ay
thereby proving that D(t3,h) = D(€4,h).

Now we turn to the question of the commutativity of D(g,h). After a
straightforward calculation, we observe that the generic G-orbits in I'gy are
6-dimensional while the generic H-orbits are 1-dimensional by (6.3). So,

G
the representation Ind 1 x is of infinite multiplicities by the assertion (i)
H

of Section 1. Therefore, we expect from Corollary 5.3 that D(g,h) is not
commutative.
Indeed, for 1 < j < 3, the groups K; = expt; are abelian. So, the
K,
mutiplicities of the representations Ind Tj Xy, are finite while the algebras
H
D(t;,h) are commutative. This agrees with Corollary 5.3 as well as with the
fundamental result of Corwin-Greenleaf (Theorem 1.1 of [5]).
For j = 4, the dimension of the K4-orbits K4 - ¢4 are 2-dimensional while,
by (6.3), the H-orbits H - {4 are 1-dimensional for generic £ in I'y . Hence,

Ky
we deduce that Ind 1 xy, is of finite multiplicities. At the same time, (6.4)
H

implies that D(#4, h) is commutative, as expected from Corollary 5.3.
For j = 5, the orbits K5 - /5 are 4-dimensional while the orbits H - {5 are 1-

K
dimensional by (6.3), for generic £ in I'y y. Hence, we deduce that Ind T5 Xfs
H
is of infinite multiplicities. At the same time, X3 and X;Xg + X3X5 are
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two elements of U(t5,h) satisfying [X3, X1 X¢ + X3X5] = —X2Xg. Since
X2 X6 & U(g)ay, we see that

[X37X1X6 + X3X5] §é 0 mod L{(g)ah.

This proves that D(&s,h) is not commutative in agreement with Corollary
9.3.

G
These results show that Ind 1 x is of infinite multiplicities and D(g, b)
H

not commutative.
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