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Abstract. Let G be a connected, simply connected real nilpotent Lie
group with Lie algebra g, H a connected closed subgroup of G with Lie
algebra h and f a linear form on g satisfying f([h, h]) = {0}· Let χf be

the unitary character of H with differential
√
−1f at the origin. Let

τf be the unitary representation of G induced from the character χf of
H. We consider the algebra D(g, h, f) of differential operators invariant
under the action of G on the bundle with basis G/H associated to these
data. We show that D(g, h, f) is commutative if and only if τf is of finite
multiplicities. This proves a conjecture of Corwin-Greenleaf and Duflo.
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1. Introduction

Let G be a connected, simply connected real nilpotent Lie group with
Lie algebra g and H a connected closed subgroup of G with Lie algebra
h. Every linear form f on g satisfying f([h, h]) = {0} defines a unitary

character χf of H given by χf (expX) = e
√−1f(X) for all X in h. We form

the unitary representation τf of G induced from χf in a Hilbert space Hτf .
More precisely, let C∞(G,H, f) be the vector space of C∞ complex functions
φ on G satisfying the following covariance relation:

φ(gh) = χ−1
f (h)φ(g), ∀h ∈ H, ∀g ∈ G.

Consider the vector subspace of C∞(G,H, f) of elements with compact sup-
port modulo H equipped with the norm

‖φ‖2 =

∫

G/H
|φ(g)|2 dġ

where dġ denotes a left G-invariant measure on G/H. The Hilbert spaceHτf
is the completion of this space relatively to this norm. The representation
τf of G is defined as the left translations on Hτf :

τf (g)(φ)(g′) = φ(g−1g′), ∀(g, g′) ∈ G×G, ∀φ ∈ Hτf .(1.1)
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The unitary representation τf of G decomposes into a continuous sum of
unitary irreducible representations of G:

τf '
∫ ⊕

Ĝ
m(π)π dµ(π)(1.2)

where m(π) denotes the multiplicity of π and µ a Plancherel measure of

τf on the unitary dual Ĝ of G. It is well known that for µ-almost all π

in Ĝ, either the multiplicities m(π) appearing in (1.2) are finite and admit
a uniform bound or they are infinite (see [3] Section 1, and [10] Theorem
1.1). In the first (resp. second) case, we shall say that τf is of finite (resp.
infinite) multiplicities.

Also, the multiplicities of τf have a nice geometric interpretation in terms
of a certain affine subspace of the vector dual g∗ of g. Let Γg,h,f be the set
of all forms on g identical to f on h:

Γg,h,f = {` ∈ g∗ | `(Y ) = f(Y ), ∀Y ∈ h}.(1.3)

For a linear form ` on g, let us denote by Ω` = G · ` the coadjoint orbit
of G through `. The celebrated orbit method associates with ` a unitary
irreducible representation π` of G in a suitable Hilbert space H` which only
depends on Ω`, up to equivalence. Moreover, the correspondence Ω` 7→ π`
is a bijection. Corwin, Greenleaf and Grélaud proved in [3] Section 1 and
[4] Theorem 1.2, that for irreducible unitary representations π = π` of G:

(i ) m(π) is the number of coadjoint orbits of H in Ω` ∩ Γg,h,f , dµ(π)-a.e.
In particular, m(π) 6= 0 ⇐⇒ Ω` ∩ Γg,h,f 6= ∅.

(ii ) τf is of finite multiplicities ⇐⇒ dimH · ` = 1
2 dimG · ` for generic `

in Γg,h,f .

In the sequel, for generic ` in Γg,h,f means that the property holds for `
belonging to some non-empty Zariski-open subset of Γg,h,f .

Finally, let D(g, h, f) be the algebra of linear differential operators leaving
the space C∞(G,H, f) invariant and commuting with the left translation L
of G:

D ∈ D(g, h, f) ⇐⇒
D(L(g)φ) = L(g)(Dφ), ∀g ∈ G, ∀φ ∈ C∞(G,H, f).

(1.4)

The question now is: Is there any relation between the commutativity of the
algebra D(g, h, f) and the multiplicities of the unitary representation τf of
G? Corwin and Greenleaf proved (Theorem 1.1 of [5]) that if τf is of finite
multiplicities then D(g, h, f) is commutative. Also (Question 5, p. 747 of
[5]), they stated the following

Conjecture: D(g, h, f) is commutative if and only if τf is of finite multi-
plicities.

This conjecture is also related to the Question 6 asked by Duflo in [6],
when applied to the case of connected, simply connected, real nilpotent Lie
groups. Till now, it had been proved only in special cases: when dim h = 2 by
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Baklouti and Fujiwara ([1], théorème 4.8); when h is an ideal of g by Baklouti
and Ludwig ([2], Theorem 1.4); when h has an ad h-invariant supplementary
subspace in g (in particular when h is 1-dimensional) by Fujiwara, Lion and
Mehdi ([8], Corollary 1). In the present paper, we prove that it is true in
full generality as it was announced in [9].

The following important points of our proof of should be emphasized:

1) We just have to prove the implication

τf is of infinite multiplicities ⇒ D(g, h, f) is non commutative,

as the converse has already been established by Corwin and Greenleaf.

2) Assume dim g/h ≥ 1 and let g′ be an ideal of codimension one in g that
contains h. As explained at the end of Section 4 of [5], it is easily seen

that D(g′, h, f ′) ⊂ D(g, h, f) where f ′ def.
= f |g′ . Therefore, if D(g′, h, f ′)

is non-commutative so is D(g, h, f). So, we can assume D(g′, h, f ′)
commutative. By an induction argument on the dimension of g, we
have at the level of g′:

D(g′, h, f ′) commutative ⇒ τf ′
def.
= Ind

G′

↑
H
χf ′ is of finite multiplicities.

Therefore, we can now assume τf ′ of finite multiplicities.

3) Recall, from the assertion (2) above that τf is of finite multiplicities

if and only if dimH · ` = 1
2 dimG · ` for generic ` in Γg,h,f . The facts

that τf is of infinite and τf ′ of finite multiplicities then imply that
dimH · ` = dimH · `′ for generic ` in Γg,h,f .

4) We shall prove that D(g′, h, f ′) is properly contained in D(g, h, f) if and
only if dimH ·` = dimH ·`′ or equivalently that D(g′, h, f ′) = D(g, h, f)
if and only if dimH · ` = dimH · `′+ 1 for generic ` in Γg,h,f (Theorem
5.2). This is the most important and difficult result of the article.

5) Now, Theorem 1 of [8] asserts that if τf ′ (resp. τf ) is of finite (resp.
infinite) multiplicities and D(g′, h, f ′) properly contained in D(g, h, f),
then D(g, h, f) is not commutative. This proves the conjecture.

It should be stressed that our proofs are of entirely algebraic nature.

This article is organized as follows. Our main notations are introduced
in Section 2. In Section 3, we recall several important properties of the
algebra D(g, h, f) which we shall refer to later on. Section 4 is devoted to
the proof of two lemmas that will be crucial in the sequel. The proofs of our
main results are contained in Section 5. Finally, we completely work out an
example in Section 6.

Acknowledgments: Our thanks go to the Université Paris-Nord for invit-
ing H. Fujiwara in June 1999 and to the Japanese Ministry of Education for
supporting this collaboration work under grant number 11640189.
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2. Notations

We fix once for all a linear form f on the dual g∗ of g satisfying f([h, h]) =
{0}. To simplify our notations, given a subalgebra k of g, we will drop f |k
if used as an index, whenever there is no ambiguity. For instance, taking
k = g and f |k = f , we shall write C∞(G,H), D(g, h) and Γg,h instead of
C∞(G,H, f), D(g, h, f) and Γg,h,f respectively.

Suppose that g is of dimension n. We fix a flag S of ideals of g

g0 = {0} Ã g1 Ã · · · Ã gn−1 Ã gn = g.(2.1)

Denote by I the (possibly empty) ordered set of indices

I = {i1 < i2 < · · · < id}(2.2)

such that h ∩ gis−1 6= h ∩ gis . We have 1 ≤ i1 and id ≤ n. For s in
{1, 2, . . . , d}, we let hs = h ∩ gis and obtain the following flag of ideals of h:

h0 = {0} ⊂ h1 ⊂ · · · ⊂ hd = h.(2.3)

Then we define the (complementary) ordered set J of indices

J = {j1 < j2 < · · · < jp} = {1, 2, . . . , n} \ I.(2.4)

Let kr = h + gjr for all r in {1, 2, . . . , p} and put k0 = h. One obtains a
sequence of subalgebras of g

h = k0 ⊂ k1 ⊂ · · · ⊂ kp = g(2.5)

such that dim kr/kr−1 = 1.
Observe that card I = dim h = d and that cardJ = dim g/h = p.
We pick an element Ys ∈ hs such that Ys 6∈ hs−1 for s in {1, 2, . . . , d}, and

an element Xr ∈ kr such that Xr 6∈ kr−1, for r in {1, 2, . . . , p}. In this way,
we obtain a set of n elements

{Y1, Y2, . . . , Yd, X1, X2, . . . , Xp}
forming a Malcev basis of g. It is clear that this Malcev basis is strong if
we choose the order defined by the flag S. However, this basis is weak if we
choose the order defined by hs and kr.

Let l be a subalgebra of g and ` in g∗. It will be convenient to let lB`

be the subspace orthogonal of l in g relatively to the antisymmetric bilinear
form B` on g× g defined by B`(X,Y ) = `([X,Y ]), so that

lB` = {X ∈ g | `([X,Y ]) = 0, ∀Y ∈ l}.
When l is an ideal, lB` is a subalgebra of g. In particular, the Lie subalgebra
gB` will be denoted by g(`). It is the Lie algebra of the stabilizer group of `
under the coadjoint action of G, but this fact will not be used here.

Let m be another subalgebra of g. We shall also set `′ = `|g′ , f ′ = f |g′
and denote by m(`) and m(`′) the subalgebras m ∩ g(`) and m ∩ g′B` of m.

If dim g/h ≥ 1, g′ will always denote an ideal of codimension 1 of g which
contains h in the sequel. Also, we shall choose the flag S so that gn−1 = g′.
Similarly, if dim h ≥ 1, h′ will always denote a subalgebra of codimension 1
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in h. The flag (2.3) will be such that hd−1 = h′. If g′ and h′ both exists,
then dim g ≥ 2 and g ! g′ ⊇ h ! h′.

In what follows, we shall use the following wide-spread convention: if we
consider the elements {Xr ∈ kr | 1 ≤ r ≤ p} and {Ys ∈ hs | 1 ≤ s ≤ d}
defined above, then for each p-uple J = {j1, j2, . . . , jp} ∈ Np, d-uple K =

{k1, k2, . . . , kd} ∈ Nd and (d− 1)-uple L = {l1, l2, . . . , ld−1} ∈ Nd−1, we de-

note respectively by XJ , Y K and Y ′L the elements XJ = Xjp
p X

jp−1

p−1 . . . Xj1
1 ,

Y K = Y kd
d Y

kd−1

d−1 . . . Y k1
1 and Y ′L = Y

ld−1

d−1 . . . Y l1
1 of the enveloping algebra

U(g) of g. As is customary, we will denote by |I| (resp. |K|, resp. |L|) the
sum j1 + j2 + · · · + jp (resp. k1 + k2 + · · · + kd, resp. l1 + l2 + · · · + ld−1).

We shall also consider the elements {Ŷs | Ŷs def.
= Ys + if(Ys), 1 ≤ s ≤ d} of

U(g), so that Ŷ K = Ŷ kd
d Ŷ

kd−1

d−1 . . . Ŷ k1
1 and Ŷ ′L = Ŷ

ld−1

d−1 . . . Ŷ l1
1 .

In this section, we denote by O the subset of Γg,h formed by the elements
` such that dim gi(`) is minimal for 1 ≤ i ≤ n, where the gi’s are the
components of the flag S of g in (2.1). It can easily be verified (see e.g. [7],
section 3.3) that O is a Zariski-open subset of Γg,h. Now, it can also be seen
([7], proposition 3.2.2) that if gi = gi−1 + gi(`) for one element ` of O, the
same property holds for all elements of this subset. So we define the finite
subset of positive integers

T (g, h, f,S)
def.
= {1 ≤ i ≤ n | gi = gi−1 + gi(`), ∀` ∈ O}
= {m1 < · · · < mt}.

More generally, we define the subset Ti(g, h, f,S) = T (g, h, f,S)∩{0, . . . , i}
of T (g, h, f,S), for any integer 0 ≤ i ≤ n.

In a similar way, we can also consider the non-empty Zariski-open subset
OH of Γg,h formed by the elements ` such that dim hi(`) is minimal for
1 ≤ i ≤ d, where the hi’s are components of the flag (2.3) of h. As before, it
can be verified that if hi = hi−1 + hi(`) for one element ` of OH , the same
property holds for all elements of this subset. So we define the following
subsets of T (g, h, f,S):

TH(g, h, f,S) = {1 ≤ j ≤ n | j = is, hs = hs−1 + hs(`), ∀` ∈ OH},
THi (g, h, f,S) = TH(g, h, f,S) ∩ {0, . . . , i} for 0 ≤ i ≤ n.and

Finally, we let U(g, h, f,S) = T (g, h, f,S) \ TH(g, h, f,S) and for any
integer 1 ≤ i ≤ n, define the subset Ui(g, h, f,S) = U(g, h, f,S)∩{1, . . . , i}
of U(g, h, f,S).

In the sequel, we shall respectively write
T (g, h,S), Ti(g, h,S), TH(g, h,S), THi (g, h,S),
U(g, h,S) and Ui(g, h,S)

or even simply T (S), Ti(S), TH(S), THi (S), U(S) and Ui(S)

in place of T (g, h, f,S), Ti(g, h, f,S), TH(g, h, f,S), THi (g, h, f,S),
U(g, h, f,S) and Ui(g, h, f,S).
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The algebraic description of D(g, h) given in [5] by means of the enveloping
algebra U(g) of g will also be useful. More precisely, let ah be the vector

subspace of U(g) generated by the elements Ŷ = Y +
√
−1f(Y ), Y ∈ h,

and U(g)ah the left-ideal of U(g) generated by ah. Denote by U(g, h) the
subalgebra of U(g) defined by

U(g, h) = {A ∈ U(g) | [A, Y ] ∈ U(g)ah, ∀ Y ∈ h}.(2.6)

We note L and R the natural extension to the enveloping algebra U(g) of
the left and right actions of g, defined respectively by

L(Y )(φ) (g) =
d

dt
φ(e−tY g)|t=0

R(Y )(φ) (g) =
d

dt
φ(getY )|t=0,and

for all Y in g and φ in C∞(G).
It is well known (see e.g. Theorem 4.1 of [5]) that the map U(g, h) →

D(g, h), A 7→ R(A) is onto and that its kernel is U(g)ah. In particular, it
induces the isomorphism of algebras:

U(g, h)/U(g)ah ' D(g, h),

Since U(g, h) ∩ U(g′) = U(g′, h), we see that

1) D(g′, h) = D(g, h) ⇐⇒ U(g, h) ⊂ U(g′) + U(g)ah

2) D(g′, h) Ã D(g, h) ⇐⇒ U(g, h) 6⊂ U(g′) + U(g)ah,
(2.7)

so that either 1) or 2) holds.
We shall denote by CD(g, h) the center of D(g, h) and set

UC(g, h) = R−1(CD(g, h)
)

= {A ∈ U(g, h) | [A,U(g, h)] ⊂ U(g)ah}.

We shall associate to g′, kr and h′ the same objects as we did with g and
h. For instance, we shall consider the vector subspace ah′ of U(g) generated

by the elements Y +
√
−1f(Y ), where Y ∈ h′. Accordingly, as in (2.6), we

shall use the following notations:

U(g, h′) = U(g, h′, f) = {A ∈ U(g) | [A, Y ] ∈ U(g)ah′ , ∀ Y ∈ h′},
U(kr, h) = U(kr, h, f |kr) = {A ∈ U(kr) | [A, Y ] ∈ U(kr)ah, ∀ Y ∈ h}.

Let ` ∈ g∗. Recall that the H-orbit H · ` of ` in g∗ is said to be saturated
relatively to g′ if and only if H · ` + g′⊥ = H · `. The following simple
equivalences hold for any ` ∈ g∗ (see e.g. [7], proposition 6.4.1):
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(2.8)

1) h(`) 6= h(`′) ⇐⇒ dim h(`) = dim h(`′)− 1

⇐⇒ H · ` is saturated relatively to g′⊥

⇐⇒ dimH · ` 6= dimH · `′
⇐⇒ dimH · ` = dimH · `′ + 1

⇐⇒ hB` ⊂ g′.

2) h(`) = h(`′) ⇐⇒ H · ` is not saturated relatively to g′⊥

⇐⇒ dimH · ` = dimH · `′
⇐⇒ g = g′ + hB`

so that either the equivalent properties of 1) or those of 2) are true. We
shall prove in our main result Theorem 5.2, that the first (resp. the second)
properties of (2.7) are equivalent to the first (resp. the second) properties of
(2.8). However, the notion of saturation of H-orbits which is useful for the
construction of H-invariant polynomial functions and, through the operation
of symmetrization, for the construction of invariant differential operators,
will only be used here in the last section for the study of an example and
will not intervene in the proof of our main results.

3. Some properties of D(g, h)

A simple consequence of the Poincaré-Birkhoff-Witt Theorem is that the
families

{XJ Ŷ K | (J,K) ∈ Np × Nd}
{XJ Ŷ K | (J,K) ∈ Np × Nd, |K| > 0}and

respectively form a basis of U(g) and of U(g)ah (see Lemma 4.2 of [5]).

Observe that the elements {XJ | J ∈ Np} form a basis of a supplementary
subspace S of U(g)ah in U(g).

Till the end of the section, we assume n ≥ d ≥ 1 so that h′ and Yd exist.
Let Y K = Ŷ k

d Ŷ
′L. Keeping the notations of Section 2, we see that the

families

{XJ Ŷ k
d Ŷ
′L | (J, k, L) ∈ Np × N× Nd−1, |L| > 0}

{XJ Ŷ k
d | (J, k) ∈ Np × N}and

respectively form a basis of U(g)ah′ and of a supplementary subspace of
U(g)ah′ in U(g).

We now recall several properties of the algebra D(g, h) which are due to
Baklouti and Fujiwara (see [1]). For the convenience of the reader, and in
order to make this paper as self-contained as possible, we shall also give
their proofs.

Lemma 3.1. (i ) gid−1S ⊂ S ⊕ U(g)ah′ .
(ii ) [h, S] ⊂ S ⊕ U(g)ah′ .

Proof. (i ) The idea of the proof is very simple, though complicated to write
down. For every 0 ≤ q ≤ p and k ∈ N, let us denote by Sq,k the subspace
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of S generated by the XJ = Xiq
q . . . X

i1
1 , J ∈ Nq and |J | ≤ k. In particular,

S0,k = Sq,0 = C. The index q is useful in the proof to check that certain
monomials are well ordered. It is enough to prove by induction on k that

(?) Y ′XJ ∈ Sq,k+1 ⊕ U(g)ah′ , ∀Y ′ ∈ h′, ∀XJ ∈ Sq,k,
(??) XrX

J ∈ Ssup(r,q),k+1 ⊕ U(g)ah′ , ∀r such that jr ≤ id − 1, ∀XJ ∈ Sq,k.
This is clear for k = 0. Let k > 0. Suppose the result has been proved up
to rank k − 1. If we take Xr as above, with r ≥ q, we have XrX

J ∈ Sr,k+1

so that the result is obvious. Now, if we take T ∈ gid−1 such that either

T = Y ′ ∈ h′ or T = Xr with r < q, then we can write XJ as XJ = XqX
J ′

with XJ ′ = Xjq−1
q . . . Xj1

1 and use the identity:

TXJ = [T,Xq]X
J ′ +XqTX

J ′ .

We have [T,Xq] ∈ gjq−1 ∩ gid−1 and XJ ′ ∈ Sq,k−1. Hence, by induction

[T,Xq]X
J ′ ∈ Sq,k ⊕ U(g)ah′ .

Similarly, TXJ ′ ∈ Sq,k ⊕ U(g)ah′ . Thus XqTX
J ′ ∈ Sq,k+1 ⊕ U(g)ah′ .

(ii ) We show by induction on k that

[Y,XJ ] ∈ Sq,k ⊕ U(g)ah′ , ∀Y ∈ h, ∀XJ ∈ Sq,k.
This is clear for k = 0. Assume this true at rank k−1, k 6= 0. Then we have

[Y,XJ ] = [Y,Xq]X
J ′ +Xq[Y,X

J ′ ].

Since [Y,Xq] ∈ gjq−1 ∩ gid−1 and XJ ′ ∈ Sq,k−1, we know from the assertion

(i ) that [Y,Xq]X
J ′ ∈ Sq,k⊕U(g)ah′ . Finally, by induction we have [Y,XJ ′ ] ∈

Sq,k−1 ⊕ U(g)ah′ . Hence, Xq[Y,X
J ′ ] ∈ Sq,k ⊕ U(g)ah′ .

Lemma 3.2. Let W be an element of U(g) written as

W ≡
∑

k≤k′
AkŶ

k
d mod U(g)ah′ , where the Ak’s belong to S.

Let Y ∈ h and, making use of the previous lemma, let (Bk)k≤k′ be the ele-
ments of S such that [Y,Ak] ≡ Bk mod U(g)ah′. Then, we have

[Y,W ] ≡ [Y,
∑

k≤k′
AkŶ

k
d ] mod U(g)ah′

≡
∑

k≤k′
[Y,Ak]Ŷ

k
d mod U(g)ah′

≡
∑

k≤k′
BkŶ

k
d mod U(g)ah′ .

Proof. The first and third identities follow from the inclusion h ⊂ U(g, h′)
and the second one, from the relations [Y,AkŶ

k
d ] = [Y,Ak]Ŷ

k
d + Ak[Y, Ŷ

k
d ]

and [Y, Ŷd] ⊂ h′ ∩ ker f ∈ ah′ .



             

COMMUTATIVITY CRITERION 9

Proposition 3.3. (i ) We have [h,U(g, h) ∩ S] ⊂ U(g)ah′. In particular

U(g, h) ∩ S ⊂ U(g, h′).

(ii ) We have the decomposition U(g, h) =
(U(g, h) ∩ S)⊕ U(g)ah, so that

the restriction to U(g, h) ∩ S of the projection of U(g, h) on D(g, h)
is a bijection and every element of

D(g, h) ' U(g, h)/U(g)ah

admits a unique representative in S. This representative belongs to
U(g, h′).

Proof. (i ) The assertion (ii ) of Lemma 3.1 yields

[h,U(g, h) ∩ S] ⊂ (S ⊕ U(g)ah′) ∩ U(g)ah ⊂ U(g)ah′ .

(ii ) The result follows from the decomposition U(g) = S ⊕ U(g)ah and
from the inclusion U(g)ah ⊂ U(g, h).

Proposition 3.4. Let (Ak)0≤k≤k′ be a family of elements of S, we have
∑

k

AkŶ
k
d ∈ U(g, h′) ⇐⇒ Ak ∈ U(g, h′), ∀k.

Proof. let Y ′ ∈ h′. For all k, we define the element Bk of S such that
[Y ′, Ak] ≡ Bk mod U(g)ah′ and obtain from Lemma 3.2

[
Y ′,

∑

k

AkŶ
k
d

]∈ U(g)ah′ ⇐⇒ Bk = 0, ∀k.

Proposition 3.5. Suppose that dim g ≥ 3 and g, g′, h and h′ are like in
Section 2 then:

(i ) We have the equivalence

U(g, h′) 6⊂ U(g′) + U(g)ah′ ⇐⇒ U(g, h′) 6⊂ U(g′) + U(g)ah.

(ii ) Assuming moreover that U(g, h′) ⊂ U(g, h), then we have

U(g, h′) 6⊂ U(g′) + U(g)ah′ ⇐⇒ U(g, h) 6⊂ U(g′) + U(g)ah.

Proof. (i ) ⇐ is obvious. For ⇒, let W ′ be an element of U(g, h′) \ (U(g′) +

U(g)ah′
)
. We may write W ′ as W ′ ≡

∑

k≤k′
AkŶ

k
d mod U(g)ah′ , where the

Ak’s belong to S. As W ′ is not in U(g′) + U(g)ah′ , one of the Ak’s, say Ak0 ,
is not in U(g′). In other words, Xp does occur in Ak0 . Then, Proposition
3.4 implies that Ak0 ∈ U(g, h′). As

(U(g′) + U(g)ah

) ∩ S = U(g′) ∩ S and

Ak0 ∈ S \ U(g′), Ak0 does not belong to U(g′) + U(g)ah. This proves ⇒.

(ii ) The implication ⇒ is a direct consequence of (i ) and of the assump-
tion. For ⇐, the decompositions

U(g′) + U(g)ah = (U(g′) ∩ S)⊕ U(g)ah

U(g, h) = (U(g, h) ∩ S)⊕ U(g)ahand
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along with the right-hand side property imply that U(g, h)∩S 6⊂ U(g′)∩S =(U(g′) + U(g)ah

) ∩ S. So the result follows from the inclusion U(g, h) ∩ S ⊂
U(g, h′) of Proposition 3.3.

Proposition 3.6. Assume U(g, h′) ∩ S ⊂ U(g, h) ∩ S. Then

[h,U(g, h′)] ⊂ U(g)ah′ .

(In other words, h ⊂ UC(g, h′).)

Proof. Let us write an element W of U(g, h′) under the form

W ≡
∑

k≤k′
AkŶ

k
d mod U(g)ah′ ,

where the Ak’s belong to S. Now, Proposition 3.4 implies that Ak ∈
U(g, h′) ∩ S so that, using the assumption, Ak ∈ U(g, h) ∩ S. Finally, using
the first assertion of Proposition 3.3, we have

[h,W ] ⊂
∑

k≤k′

(
[h, Ak] Ŷ

k
d +Ak[h, Ŷ

k
d ]
) ⊂ U(g)ah′ .

The next result ([1], lemme 4.1) is independent of the previous ones and
of a different nature:

Proposition 3.7. Suppose that dim g ≥ 2 and g, g′ and h are like in Section
2, so that Xp exists.

(i ) Let m ≥ 1 and W =
m∑

k=0

Xk
pAk, where each Ak belongs to U(g′), be

an element of U(g, h). Then Am ∈ U(g′, h) and mXpAm + Am−1 ∈
U(g, h).

(ii ) Let W = XpU + V with U, V ∈ U(g′). If U 6∈ U(g′)ah, then W 6∈
U(g′) + U(g)ah.

(iii ) Suppose U(g, h) 6⊂ U(g′) +U(g)ah, then there exists an element W =
XpU + V of U(g, h) such that U ∈ U(g′, h) \ U(g′)ah and V ∈ U(g′).
In particular, W 6∈ U(g′) + U(g)ah.

Proof. (i ) The Poincaré-Birkhoff-Witt Theorem clearly implies that

U(g) = ⊕
j
Xj
p U(g′) and U(g)ah = ⊕

j
Xj
p U(g′)ah.(3.1)

We set im−2 =
m−2⊕
j=0

Xj
p U(g′). Then we have for all Y ∈ h:

[W,Y ] ≡ Xm
p [Am, Y ] +

m∑

j=1

Xj−1
p [Xp, Y ]Xm−j

p Am +Xm−1
p [Am−1, Y ]

mod im−2

≡ Xm
p [Am, Y ] +Xm−1

p (m[Xp, Y ]Am + [Am−1, Y ])
mod im−2 ∈ U(g)ah

so that Am ∈ U(g′, h) and mXpAm +Am−1 ∈ U(g, h).
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(ii ) Using (3.1), we see that if W ∈ U(g′) + U(g)ah then U ∈ U(g′)ah

because in this case,

W ∈ (XpU(g′)⊕ U(g′)
) ∩ (⊕

j
Xj
p U(g′)ah ⊕ U(g′)

)
= Xp U(g′)ah ⊕ U(g′).

(iii ) Let W ′ =
m∑

k=0

Xk
pAk ∈ U(g, h) \ (U(g′) + U(g)ah

)
. The assertion

(i ) implies that Am ∈ U(g′, h) and that W = mXpAm + Am−1 ∈ U(g, h).
Without loss of generality, we can assume that Am 6∈ U(g′)ah so that using
(ii ), we see that W has the required property.

The following important statement will be needed to prove our main result
Theorem 5.2, (see [1] théorème 4.4 for its original proof).

Theorem 3.8. Under the notations and the assumptions of Proposition 3.7,
suppose that

U(g, h′) 6⊂ U(g′) + U(g)ah′ and U(g′, h′) 6⊂ U(g′, h).

Then we have U(g, h) 6⊂ U(g′) + U(g)ah.

Proof. First, let us prove that there exists an element W = XpU + V ∈
U(g, h′) with U, V ∈ U(g′) such that

(a) W 6∈ U(g′) + U(g)ah or equivalently such that U 6∈ U(g′)ah.
(b) (adYd)W ∈ U(g′) + U(g)ah.

It will be used below in various situations to construct an element of U(g, h)
that does not belong to U(g′) + U(g)ah.

We know from the assertion (i ) of Proposition 3.5 that actually U(g, h′) 6⊂
U(g′) + U(g)ah. Therefore, we can find Us ∈ U(g′), 0 ≤ s ≤ r with r > 0

and Ur 6∈ U(g′)ah so that
∑

0≤s≤r
Xs
pUs ∈ U(g, h′). Now, the first assertion

of Proposition 3.7, applied at the level of g and h′, says that the element
rXpUr + Ur−1 belongs to U(g, h′) whereas the second assertion of the same
proposition says that it satisfies (a) above. Next, let m′ ∈ N be the greatest
integer such that

W = (adYd)
m′(rXpUr + Ur−1) 6∈ U(g′) + U(g)ah.

We see that W does satisfy (a) and (b).
Now we introduce a few notations that will only be useful in the present

proof. For S, T ∈ U(g), we set {S, T} = ST + TS. Also, for s ∈ N, we write
Ss = (adYd)

sS so that S = S0. Then for r ∈ N \ {0}, we define

Tr(S) = {S0, S2r} − {S1, S2r−1}+ · · ·+ (−1)r−1{Sr−1, Sr+1}+ (−1)rS2
r .

Since Yd ∈ U(g, h′), we see that Tr(S) belongs to U(g, h′) whenever S does.
Moreover, if r is large enough to satisfy S2r+1 ∈ U(g)ah then (adYd)Tr(S) ∈
U(g)ah so that Tr(S) ∈ U(g, h).

We let m be the smallest integer such that (adYd)
mW ∈ U(g)ah. We shall

now consider different cases depending on the value of m:
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- If m = 1, the result is obvious since W ∈ U(g, h) \ (U(g′) + U(g)ah

)
.

- If m = 2q + 1 with q ≥ 1, the remarks just above imply that

Tq(W ) =
{W0,W2q} − {W1,W2q−1}+ · · ·+ (−1)q−1{Wq−1,Wq+1}+ (−1)qW 2

q

belongs to U(g, h). We want to prove that Tq(W ) 6∈ U(g′) + U(g)ah. We
have Tq(W ) ≡ 2WW2q ≡ 2XpUW2q mod U(g′). So we get our result, us-
ing the facts that U and W2q do not belong to U(g′)ah and that the ring
U(g′, h)/U(g′)ah has no zero divisors.

- If m = 2q with q > 1, then we see that for any c ∈ C,

(adYd)
2q+1(W (W2q−2 + cW2q−1)

) ∈ U(g)ah

so that if we set W̃ (c)
def.
= W (W2q−2 + cW2q−1), we have Tq

(
W̃ (c)

) ∈ U(g, h)
by the remark above.

We want to prove that Tq(W̃ (c)) 6∈ U(g′) + U(g)ah for some c ∈ C \ {0}.
For some time, we consider W̃ (c) and Tq(W̃ (c)) as elements of U(g)[c], the
algebra of polynomials of c with coefficients in U(g). Noting that ah ⊂
UC(g, h′), we have modulo U(g)ah[c] for any q ≥ 1:

W̃ (c)0 = W (W2q−2 + cW2q−1)

W̃ (c)1 ≡ W1(W2q−2 + cW2q−1) + WW2q−1

W̃ (c)2 ≡ W2(W2q−2 + cW2q−1) + 2W1W2q−1 ∈ U(g′)[c]
...

W̃ (c)2q−1 ≡ W2q−1(W2q−2 + cW2q−1) + (2q − 1)W2q−2W2q−1 ∈ U(g′)[c]
W̃ (c)2q ≡ 2qW 2

2q−1 ∈ U(g′)

Now we check that

Tq(W̃ (c)) ∈ cXp U(g′)⊕Xp U(g′)⊕ U(g′)[c] mod U(g)ah[c]

and work out the component relative to cXp U(g′). Using the fact that q > 1,
we obtain

Tq(W̃ (c)) ≡ {W̃ (c)0, W̃ (c)2q} − {W̃ (c)1, W̃ (c)2q−1}
mod U(g′)[c]⊕ U(g)ah[c]

≡ 2W̃ (c)0W̃ (c)2q − 2W̃ (c)1W̃ (c)2q−1

mod U(g′)[c] + U(g)ah[c]

≡ 2c(2q − 1)WW 3
2q−1

mod Xp U(g′)⊕U(g′)[c] +U(g)ah[c]

≡ 2c(2q − 1)XpUW
3
2q−1

mod Xp U(g′)⊕U(g′)[c] +U(g)ah[c]

Considering now W̃ (c) as an element of U(g), we infer from this that there

exists Ũ ∈ U(g′) such that W̃ (c) ≡ Xp
(
2c(2q−1)UW 3

2q−1+Ũ
)

mod U(g′)+
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U(g)ah. Then, noting that

Xp U(g′) ∩ [U(g′) + U(g)ah] = Xp U(g′)ah,

that the ring U(g′, h)/U(g′)ah has no zero divisors and that UW 3
2q−1 does

not belong to U(g′)ah since U and W2q−1 do not, we see that W̃ (c) 6∈ U(g′)+
U(g)ah for any c such that

2c(2q − 1)UW 3
2q−1 + Ũ 6∈ U(g′)ah.

Note that this method yields no results for m = 2.

- If m = 2 then, for the first time in this proof, we have to use the relation
U(g′, h′) 6⊂ U(g′, h). It implies easily that there exists T ∈ U(g′, h′) \ U(g′, h)
such that (adYd)

2T ∈ U(g)ah. Then, we see that (adYd)
3(WT ) ∈ U(g)ah,

that WT ∈ U(g, h′) and that modulo U(g)ah

T1(WT ) = {(WT )0, (WT )2} − (WT )2
1

≡ {WT, 2W1T1} − (W1T +WT1)2 ∈ U(g, h).

We want to prove that T1(WT ) 6∈ U(g′) + U(g)ah. We have

T1(WT ) ≡ −W 2T 2
1 ≡ −X2

p (UT1)2 mod Xp U(g′)⊕ U(g′) + U(g)ah.

We note that X2
p U(g′) ∩ [Xp U(g′) ⊕ U(g′) + U(g)ah] = X2

pU(g′)ah. Then,

the fact that U and T1 do not belong to U(g′)ah implies the result in this
case.

4. Two fundamental lemmas

Here, we state and prove two lemmas that will be crucial for the proof of
Theorem 5.2. We are concerned with the study of certain special elements
of U(g) that we call Γg,h-central.

Let ` be a linear form on g. Recall that π` denote the unitary irreducible
representation of G in the Hilbert space H` associated, via the orbit method,
with the coadjoint orbit G · ` of `. We shall keep the same symbol π` to
denote the associate representation of U(g) in the space H∞` of C∞-vectors
of H`. An element A ∈ U(g) is then said to be Γg,h-central if π`(A) is scalar
for all ` in a non-empty Zariski-open subset O of Γg,h, namely if there exists
a complex function θA on G · O such that (Section 1.1 of [7])

π`(A) = θA(`)IdH` for ` ∈ G · O.(4.1)

It turns out that in this case, π`(A) is scalar for all ` in Γg,h and therefore
that we can assume that θA is defined on the whole of G · Γg,h. Moreover,
this function is G-invariant and its restriction to Γg,h is polynomial and
H-invariant ([7], théorème 2.1.1).

As in [7] Définition 3.4.1, we consider for every integer 1 ≤ k ≤ t, a
Γg,h-central element σk satisfying

(1) σk = ξkXmk +Rk where ξk and Rk belong to U(gmk−1).
(2) ξk is Γg,h-central.
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(3) The function ` 7→ θξk(`) does not vanish on a non-empty Zariski-open
subset of Γg,h.

Using results of Corwin and Greenleaf ([5], Theorem 3.1), it can be seen
that there exists such a σk. Indeed, they construct elements which verify
more properties than ours.

To establish our lemmas, we recall some elementary properties of Γg,h-
central elements in U(g) (see [7] Proposition 1.4.1 and also Lemma 5.1 of [5]).
Let U(g,Γg,h) be the algebra of Γg,h-central elements in U(g) and Z(g, h) =
{θA | A ∈ U(g,Γg,h)} the algebra of complex functions satisfying (4.1). With
the general notations of Section 2, one has the following maps:

t : U(g)→ U(g), A 7→ tA, the main linear antiautomorphism of U(g).

(In particular, we have tX = −X and t(XY ) = Y X for X,Y ∈ gC).

α : U(g,Γg,h)→ Z(g, h), A 7→ θA.

$ : UC(g, h)→ CD(g, h), A 7→ R(A).

The antiautomorphism t of U(g) is one-to-one and maps U(g,Γg,h) into
UC(g, h), while α and $ are onto. It can be shown that there exists a
map δ : Z(g, h) → CD(g, h) such that δ(θA) = L(A) = R(tA), which is
an injection of the commutative algebra Z(g, h) into CD(g, h), so that the
commutative diagram 1 below holds. (For these results, see [7] Proposition
1.4.1, and also Lemma 5.1 of [5]).

U(g,Γg,h) UC(g, h)

Z(g, h) CD(g, h)

-

-
? ?

t

δ

α $

Diagram 1

With respect to the flag (2.1) of g, we can also define the algebras

Zi(g, h)
def.
= {θA | A ∈ U(gi) ∩ U(g,Γg,h)}, 0 ≤ i ≤ n.

So that {0} = Z0(g, h) ⊆ Z1(g, h) ⊆ · · · ⊆ Zn(g, h) = Z(g, h).

The main results of [7] can be stated as follows:

(?) For all integer 0 ≤ i ≤ n, the family {θσj | mj ∈ Ti(S)} is a system of
rational generators of Zi(g, h) (théorème 4.1.1 of [7]).

(??) For all integer 0 ≤ i ≤ n, the family {θσj | mj ∈ Ui(S)} is a transcen-
dence basis of the algebra Zi(g, h) (théorème 4.1.2 of [7]).

We are now ready to prove our lemmas.
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Lemma 4.1. Assume that dim h ≥ 1. Let is ∈ TH(S). In particular, we
have hs = hs−1 + hs(`) for generic ` in Γg,h and there exists k (1 ≤ k ≤ t),
such that mk = is. Then the following assertions hold:

(i ) There exists a polynomial P satisfying

P (tσ1, . . . ,
tσk) ≡ 0 mod U(gmk)ahs(4.2)

such that the coefficient of the dominant power of tσk is not zero
modulo U(g)ah.

(ii ) There exists a polynomial Q satisfying

Q(tσ1, . . . ,
tσk, Ys) ≡ 0 mod U(gmk−1)ahs−1

such that the coefficient of the dominant power of Ys is not zero mod-
ulo U(g)ah.

Proof. (i ) Since mk ∈ TH(S), mk does not belong to U(S). So from
(??) above, the family {θσj | j ∈ Umk−1(S)} is a transcendence basis for
Zmk(g, h). In particular, the element θσk of Zmk(g, h) is algebraic over
the ring generated by this family and, a fortiori, by the family {θσj | j ∈
Tmk−1(S)}. In other words, there exists a polynomial P of k variables such
that

P (θσ1 , . . . , θσk) =
m∑

j=0

Pj(θσ1 , . . . , θσk−1
) θjσk = 0

with Pm(θσ1 , . . . , θσk−1
) 6= 0. We deduce, from the commutativity of Dia-

gram 1, that

$(P (tσ1, . . . ,
tσk)) = δ(P (θσ1 , . . . , θσk)) = 0,

with $(Pm(tσ1, . . . ,
tσk−1)) 6= 0. Therefore P (tσ1, . . . ,

tσk) ∈ U(g)ah ∩
U(gmk) = U(gmk)ahs . Similarly, Pm(tσ1, . . . ,

tσk−1) 6∈ U(g)ah.

(ii ) First, observe that Ŷs ∈ U(g)ah ⊂ UC(g, h). Therefore, using the

assertion (1) of this section which implies that tσk = −Ystξk + tRk, we see
that the identity (4.2) can be rewritten as follows:

P (tσ1, . . . ,
tσk + (Ys +

√
−1f(Ys))

tξk) ≡ 0 mod U(gmk−1)ahs−1 ,(4.3)

so that Ys disappears. Also, we note that in (4.3), the elements tσr (1 ≤
r ≤ k), tξk and Ys belong to UC(g, h). Developing P in Ys, we obtain

$
[
Pm(tσ1, . . . ,

tσk−1)(tξkYs)
m +

m−1∑

j=0

Q̃j(
tσ1, . . . ,

tσk,
tξk)Y

j
s

]
= 0,(4.4)

where the Q̃j ’s are some polynomials of degree less than or equal to m in
tξk. Now, from the assertion (?) above, there exist two polynomials S and
T of k − 1 variables such that

$
(
S(tσ1, . . . ,

tσk−1)tξk
)

= $
(
T (tσ1, . . . ,

tσk−1)
)

with $
(
S(tσ1, . . . ,

tσk−1)tξk
) 6= 0 and $

(
T (tσ1, . . . ,

tσk−1)
) 6= 0.
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Multiplying (4.4) by $
(
S(tσ1, . . . ,

tσk−1)m
)
, we obtain

$
[
T (tσ1, . . . ,

tσk−1)mPm(tσ1, . . . ,
tσk−1)Y m

s

+
m−1∑

j=0

Qj(
tσ1, . . . ,

tσk)Y
j
s

]
= 0,

for suitable polynomials Qj . This proves (ii ).

Lemma 4.2. Assume dim h ≥ 1 and h = h′ + h(`) for generic ` in Γg,h.
Then R(Yd) is algebraic over CD(g, h′).

In other words, if d ∈ TH(S), there exists a polynomial Q of Yd with coef-
ficients in UC(g, h′) satisfying Q(Yd) ∈ U(g)ah′ and such that the coefficient
of the leading power of Yd is not zero modulo U(g)ah′.

Proof. First, keeping the notation of the previous lemma, let us show that

Tid(g, h
′,S) = Tid(S).

In this proof, let p : g∗ → g∗id−1 be the natural projections ` 7→ `|gid−1 .
We shall use the fact that it is both open and continuous for the Zariski
topology. We note that p(Γg,h) ⊂ Γgid−1

,h′ and that p−1(p(Γg,h)) ⊂ Γg,h′ .

Let 1 ≤ r ≤ id. Since [g, gid ] ⊂ gid−1, the restriction of any ` ∈ g∗ to [g, gid ]

does not change if we replace ` by any element of p−1(p(`)) and neither
gr(`).

Suppose r ∈ Tid(S) (resp. r 6∈ Tid(S)). This amounts to saying that
gr = gr−1 + gr(`) (resp. gr(`) ⊂ gr−1) on a non-empty Zariski-open subset
O of Γg,h. The same relation holds on the non-empty Zariski-open subset

p−1(p(O)) of Γg,h′ . Therefore, r ∈ T (g, h′,S) (resp. r 6∈ T (g, h′,S)). We
have then proved that Tid(g, h

′,S) = Tid(S).
So there exists a partial sequence (σr)1≤r≤k of Corwin-Greenleaf Γg,h′-

central elements that satisfy properties (1), (2) and (3) of the present section,
where we replace h by h′. For any Γg,h′-central element σ, π`(σ) is scalar for
all ` in Γg,h′ and consequently, for all ` in Γg,h ⊂ Γg,h′ . Therefore, (σr)1≤r≤k
is also a sequence of Corwin-Greenleaf Γg,h-central elements. We can take
this sequence, choose s = d and apply (ii ) of Lemma 4.1. The result follows
from the fact that the tσr’s now belong to UC(g, h) ∩ UC(g, h′).

5. Proof of the Conjecture

In the proof of the next theorem, we will use several times the following
simple lemma:

Lemma 5.1. Let k and k′ be two subalgebras of g such that h ⊂ k′ ⊂ k. Let

g′′ be an ideal of g such that [k, h] ⊂ g′′. We set h′′ def.
= h ∩ g′′. Then, the

following properties are equivalent:

(i ) h′′∩ kB` = h′′∩ k′B` (resp. dim h′′∩ kB` = dim h′′∩ k′B`−1) for generic
` in Γg,h.
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(ii ) h′′∩ kB` = h′′∩ k′B` (resp. dim h′′∩ kB` = dim h′′∩ k′B`−1) for generic
` in Γk,h′′.

Proof. In this proof, let k′′ def.
= k ∩ g′′, p : g∗ → k′′∗ and q : k∗ → k′′∗ be

the natural projections ` 7→ `|k′′ . We shall use the fact that they are both
open and continuous for the Zariski topology. We note that p(Γg,h) ⊂ Γk′′,h′′ ,

q−1(p(Γg,h)) ⊂ Γk,h′′ and p−1(q(Γk,h′′)) ⊂ Γg,h′′ .

Let ` ∈ g∗ and λ ∈ q−1(p(`)) ⊂ k∗. Since [k, h′′] ⊂ k′′, we have `|[k,h′′] =

λ|[k,h′′]. Therefore, h′′∩kB` = h′′∩kBλ and h′′∩k′B` = h′′∩k′Bλ . So, we see that
if one of the assertions (i ) holds on a non-empty Zariski-open subset O of
Γg,h, then it is also verified on the non-empty Zariski-open subset q−1(p(O))
of Γk,h′′ . So (i ) ⇒ (ii ) holds.

Conversely, let ` ∈ k∗ and λ ∈ p−1(q(`)) ⊂ g∗. Since [k, h′′] ⊂ k′′, we have

`|[k,h′′] = λ|[k,h′′]. Therefore, h′′∩ kB` = h′′∩ kBλ and h′′∩ k′B` = h′′∩ k′Bλ . So,
we see that if one of the assertion (ii ) holds on a non-empty Zariski-open
subset O of Γk,h′′ , then it is also verified on the non-empty Zariski-open

subset p−1(q(O)) ∩ Γg,h of Γg,h. So (ii ) ⇒ (i ) also holds.

The conjecture will be a by-product of the following theorem. Note that
(2.7) and (2.8) give a number of equivalent ways to express it.

Theorem 5.2. Let G be a connected, simply connected, nilpotent real Lie
group with non-zero dimensional Lie algebra g, H a proper, closed, connected
subgroup of G with Lie algebra h. Let g′ be an ideal of codimension one of
g containing h. Let f be a linear form on g such that f([h, h]) = {0}. Then
the following properties are equivalent:

(i ) U(g, h) ⊂ U(g′) + U(g)ah.

(ii ) The H-orbits H ·` are saturated relatively to g′⊥ for generic ` in Γg,h.

Proof. Using (2.8), it will be convenient to prove the following equivalent
form of the Theorem

U(g, h) ⊂ U(g′)+U(g)ah ⇐⇒ dim h(`) = dim h(`′)−1 for generic ` in Γg,h.

We shall use an induction both on the dimension of g and on the dimension
of h. First, we consider two situations which can be settled directly. They
include all cases such that dim g ≤ 2.

When h is 0-dimensional, clearly h(`) = h(`′) = {0} for all ` ∈ g∗. More-
over, U(g, h) (resp. U(g′)+U(g)ah) is equal to U(g) (resp. U(g′)). Therefore,
the theorem is obvious in this case.

Now, we turn to the case h = g′. In this situation, U(g′) ⊂ U(g, h).
If `-generically on Γg,h, we have h(`) = h(`′) then g = h + g(`). Hence

f([g, h]) = `([g, h]) = `([h, h]) = f([h, h]) = {0}.
Therefore, [g, h] ⊂ ah and U(g, h) = U(g). Now, since Xp 6∈ U(g′) + U(g)ah,
we have U(g, h) 6⊂ U(g′) + U(g)ah, as expected.

If we have dim h(`) = dim h(`′)− 1 for generic ` in Γg,h, then there exists
an element Y in h such that f([Xp, Y ]) 6= 0. We are led to a contradiction
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if we assume U(g, h) 6⊂ U(g′) + U(g)ah. In this case, using the assertion
(iii ) of Proposition 3.7, we can choose an element W of U(g, h) such that
W = XpU+V , with U, V ∈ U(g′) ⊂ U(g, h) and U 6∈ U(g)ah. Then, we have

[W,Y ] = [Xp, Y ]U +Xp [U, Y ] + [V, Y ] ∈ U(g)ah,

which implies [Xp, Y ]U ∈ U(g)ah. Since the ring U(g, h)/U(g)ah has no
zero divisors, we see that [Xp, Y ] ∈ U(g)ah, contradicting the fact that
[Xp, Y ] ∈ h \ ker f .

We may now assume that h has dimension d ≥ 1 with h 6= g′, so that
choosing h′ as in Section 2, we have h′ Ã h Ã g′ Ã g and g is of dimension
at least 3. By induction, we shall also assume that the theorem is true for
all cases such that the dimension of g is strictly less than n and that, when
the dimension of g is n, for all cases such that the dimension of h is strictly
less than d. Several situations may occur:

either h(`) = h(`′) or dim h(`) = dim h(`′)− 1 for generic ` in Γg,h;
either h′(`) = h′(`′) or dim h′(`) = dim h′(`′)− 1 for generic ` in Γg,h′ .

Using Lemma 5.1, where we replace k by g, k′ by g′, g′′ by g′ and h by
h′, we see that saying that h′(`) = h′(`′) (resp. dim h′(`) = dim h′(`′) − 1)
for generic ` in Γg,h′ is equivalent to saying that the same property holds
`-generically on Γg,h. Moreover, if h(`) = h(`′) for generic ` in Γg,h, clearly
h′(`) = h′(`′) for generic ` in Γg,h.

These remarks lead us to consider three cases:

1) Case: dim h(`) = dim h(`′)− 1 and dim h′(`) = dim h′(`′)− 1 for gen-

eric ` in Γg,h

First, we see that U(g, h′) ⊂ U(g′) + U(g)ah′ by applying the induction
hypothesis to g and h′. Now, we claim that U(g, h) ⊂ U(g′)+U(g)ah. Indeed,
assume there exists an element W ∈ U(g, h) such that W 6∈ U(g′) + U(g)ah.
Then, the second assertion of Proposition 3.3 would imply the existence of
W ′ ∈ U(g, h′) \ (U(g′) + U(g)ah′

)
such that W ′ ≡ W mod U(g)ah. This is

absurd, since it contradicts the induction hypothesis.

2) Case: h(`) = h(`′) for generic ` in Γg,h

We observed before, that in this case, h′(`) = h′(`′) for generic ` in Γg,h′ .
Using the induction hypothesis applied to g and h′, we know that U(g, h′) 6⊂
U(g′) + U(g)ah′ . We now consider two subcases.

a) U(g′, h′) 6⊂ U(g′, h)
The previous remark and Theorem 3.8 give at once, as we expect:

U(g, h) 6⊂ U(g′) + U(g)ah

b) U(g′, h′) ⊂ U(g′, h)

Our first goal will be to prove that the hypothesis implies that h = h′+ h(`)
for generic ` in Γg,h, so that we can make use of Lemma 4.2. (In other words,

we shall prove that d ∈ TH(S).)
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First, using an induction argument, we show that for 0 ≤ r ≤ p − 1,

h = h′+ h∩ kB`r for generic ` in Γg,h. This is obvious if r = 0 since h∩ kB`0 =
h. Assuming r > 0 and the property true up to rank r − 1, we note the
inclusion U(kr, h

′) ⊂ U(kr, h). Then, replacing g by kr in the assertion (ii )
of Proposition 3.5, we have

either U(kr, h) 6⊂ U(kr−1) + U(kr)ah,
or U(kr, h

′) ⊂ U(kr−1) + U(kr)ah′

and U(kr, h) ⊂ U(kr−1) + U(kr)ah.

Therefore, by induction on the dimension of G we have

either h ∩ kB`r = h ∩ kB`r−1 for generic ` in Γkr,h,

or dim h ∩ kB`r = dim h ∩ kB`r−1 − 1 for generic ` in Γkr,h

and dim h′ ∩ kB`r = dim h′ ∩ kB`r−1 − 1 for generic ` in Γkr,h′ .

Using Lemma 5.1 where we replace k by kr, k′ by kr−1, g′′ either by g or gid−1

so that h′′ is replaced either by h or h′, this can be rewritten as follows:

either h ∩ kB`r = h ∩ kB`r−1 for generic ` in Γg,h,

or dim h∩ kB`r = dim h∩ kB`r−1− 1 and dim h′ ∩ kB`r = dim h′ ∩ kB`r−1− 1
for generic ` in Γg,h.

In the first situation, it is obvious that h = h′ + h ∩ kB`r for generic ` in Γg,h

by induction on r = dim kr/h, while in the second one, we would be led to

a contradiction if we assumed h ∩ kB`r ⊂ h′. Observing that dim h ∩ kB`r−1 =

dim h′ ∩ kB`r−1 + 1 by induction and that h∩ kB`r = h′ ∩ kB`r , we would have in
this case

dim h ∩ kB`r = dim h′ ∩ kB`r = dim h′ ∩ kB`r−1 − 1 = dim h ∩ kB`r−1 − 2,

which is impossible since kr−1 is of codimension 1 in kr. So in all cases,
we have h = h′ + h ∩ kB`r for generic ` in Γg,h. Applying this result with
r = p− 1, we have h = h′ + h(`′) for generic ` in Γg,h, so that h = h′ + h(`)
since h(`) = h(`′).

Next, we will show that U(g, h) 6⊂ U(g′) + U(g)ah. Since the second
assertion of proposition 3.5 says that U(g, h′) 6⊂ U(g′) + U(g)ah, let W =
XpU + V ∈ U(g, h′) with U ∈ U(g′, h′) \ U(g)ah and V ∈ U(g′). We want to
show that [W,Yd] ∈ U(g)ah. Actually, we will prove that [W,Yd] ∈ U(g)ah′ .

We have Yd ∈ U(g, h′). Also, replacing g by g′ in Proposition 3.6, we know
that Yd ∈ UC(g′, h′). Hence

[W,Yd] = [XpU + V, Yd] ∈ (U(g)ah′ + U(g′)) ∩ U(g, h′) = U(g)ah′ + U(g′, h′),

so that [[W,Yd], Yd] ∈ U(g)ah′ .
Now, we can apply Lemma 4.2 which says that there exist m > 0 and

Qj ∈ UC(g, h′), 0 ≤ j ≤ m, with Qm 6∈ U(g)ah′ , so that

m∑

j=0

Qj Y
j
d ≡ 0 mod U(g)ah′ .
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We choose m minimal for such an identity to hold. The adjoint action of W
reads as follows:

( m∑

j=1

j Qj Y
j−1
d

)
[W,Yd] ≡ 0 mod U(g)ah′ .

We have
( m∑

j=1

jQj Y
j−1
d

)
6≡ 0 mod U(g)ah′ . If m > 1, this is due to the

minimality condition and if m = 1, to the fact that Q1 6≡ 0 mod U(g)ah′ .
As the ring UC(g, h′)/U(g)ah′ is entire, we have [W,Yd] ∈ U(g)ah′ . The proof
is complete in this case.

3) Case: dim h(`) = dim h(`′)− 1 and h′(`) = h′(`′) for generic ` in Γg,h

Note that the condition dim h(`) = dim h(`′)− 1 for one `, implies that the
center z of g is contained in g′. The assumption h′(`) = h′(`′) will be used
only in the situation 3)c)α) below.

We shall prove the inclusion U(g, h) ⊂ U(g′)+U(g)ah. Using the assertion
(iii ) of Proposition 3.7, it is enough for this to show that if W = XpU+V ∈
U(g, h) with U ∈ U(g′, h) and V ∈ U(g′) then necessarily U ∈ U(g)ah.

We shall consider three subcases depending on z̃
def.
= z ∩ h ∩ ker f and on

z.

a) z̃ 6= {0}
This subcase can be settled easily by applying the induction hypothesis to
the quotients g/z̃ and h/z̃.

b) z̃ = {0} and dim z ≥ 2

In this subcase, either dim z ∩ h = 1 or z ∩ h = {0}. Both situations can be
dealt with using similar methods. We leave the proof in the first one to the
reader and assume hereafter that z∩h = {0}.We can then choose two linearly
independent elements Z1 and Z2 in z such that (RZ1 +RZ2) ∩ h = {0}. We

set ĥ
def.
= h⊕ RZ1 ⊕ RZ2.

We recall that the Ys’s, 1 ≤ s ≤ d, form a basis of h. We take a
supplementary basis (Tr)3≤r≤p−1 of h ⊕ RZ1 ⊕ RZ2 in g′, associated to
a supplementary basis of h in g′ given by {Z1, Z2, (Tr)3≤r≤p−1}. We con-
sider the vector subspaces S1 of U(g′) and S∗1 of U(g′)ah generated by the

families (T J Ŷ K)J∈Np−3,K∈Nd and (T J Ŷ K)J∈Np−3,K∈Nd,|K|>0. In this proof,

{Z∗1 , Z∗2 , (Y ∗s )1≤s≤d, (T
∗
r )3≤r≤p−1, X

∗
p} denotes the dual basis in g∗ of the ba-

sis {Z1, Z2, (Ys)1≤s≤d, (Tr)3≤r≤p−1, Xp} of g.

We have f̂([ĥ, ĥ]) = {0} for any f̂ ∈ Γg,h. Also, the family

{T J Ŷ K(Z1 +
√
−1f̂(Z1))j (Z2 +

√
−1f̂(Z2))k |

J ∈ Np−3, K ∈ Nd, j, k ∈ N, |K|+ j + k > 0}
form a basis for U(g′)a

ĥ,f̂
where, as one expects, a

ĥ,f̂
is the vector subspace

of U(g) generated by the elements Z1 +
√
−1f̂(Z1), Z2 +

√
−1f̂(Z2) and
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Y +
√
−1f̂(Y ), Y ∈ h. In particular, any element U∗ of U(g′)a

ĥ,f̂
can be

written in a unique way as

U∗ =
∑

j,k

U
(j,k)
∗

(
Z1 +

√
−1f̂(Z1)

)j(
Z2 +

√
−1f̂(Z2)

)k
(5.1)

with U
(j,k)
∗ ∈ S1 if j + k 6= 0 and U

(0,0)
∗ ∈ S∗1 . The sum being finite.

We note that W ∈ U(g, ĥ, f̂) and U ∈ U(g′, ĥ, f̂).
We know that there exists a non-empty Zariski-open subset O0 of Γg,h

whose elements ` are such that dim h(`) and dim h′(`′) are minimal. If we

take any f̂ in O0 and replace h by ĥ, f by f̂ and Γg,h by Γ
g,ĥ,f̂ , we see that

the conditions of 3)a) above are fulfilled. This implies that U ∈ U(g′)a
ĥ,f̂

.

We now fix f̂ in O0. We set Ẑ1 = Z1 +
√
−1f̂(Z1) and Ẑ2 = Z2 +√

−1f̂(Z2). Replacing U∗ by U in formula (5.1) gives

U =
∑

j,k

U (j,k) Ẑ1
j
Ẑ2

k
(5.2)

with U (j,k) ∈ S1 if j + k 6= 0 and U (0,0) ∈ S∗1 . The sum being finite.
It is elementary to prove that there exists a non-empty Zariski-open subset

O of R2 whose elements (u, v) are such that f̂u,v = (f̂ + uZ∗1 + vZ∗2 ) ∈ O0.

Replacing U∗ by U and f̂ by f̂u,v in (5.1), we also see that for such elements

U =
∑

j,k

U (j,k)
u,v (Ẑ1 +

√
−1u)j (Ẑ2 +

√
−1v)k(5.3)

with U (j,k)
u,v ∈ S1 if j + k 6= 0 and U (0,0)

u,v ∈ S∗1 . The sum being finite.

Using the equality U =
∑

j,k

U (j,k) (Ẑ1 +
√
−1u −

√
−1u)j (Ẑ2 +

√
−1v −

√
−1v)k, formula (5.2) and formula (5.3) yield

U (0,0)
u,v =

∑

j,k

(−
√
−1u)j(−

√
−1v)kU (j,k) ∈ S∗1 ⊂ U(g′)ah, ∀(u, v) ∈ O.

From this relation, we see that for all (j, k) ∈ N2 and all J ∈ Np−3, the

component of U (j,k) on T J vanishes. This implies that U (j,k) ∈ S∗1 ⊂ U(g′)ah.
In particular, we have U ∈ U(g′)ah as we expected. The proof of the theorem
in this subcase is complete.

Before going any further in the study of Case 3), we note that its general
assumptions imply that h = h′ + h(`′) for generic ` in Γg,h, and that h(`) =

h′(`) for generic ` in Γg,h. In other words, we have id ∈ TH(g′, h,S) and

id 6∈ TH(S). This result can be found in [7], proposition 6.4.3. For the
convenience of the reader, let us recall its proof. By subtracting, we have
for generic ` in Γg,h,

dim h(`)− dim h′(`) = dim h(`′)− dim h′(`′)− 1.
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Then dim h(`) − dim h′(`) and dim h(`′) − dim h′(`′) are both either 0 or 1.
So necessarily, dim h(`) − dim h′(`) = 0 and dim h(`′) − dim h′(`′) = 1 for
generic ` in Γg,h, as we expected.

The proposition 6.4.3 of [7] also says that TH(g′, h,S) and THn−1(S) always
differ from at most one element. Hence, in the present situation, we have

TH(g′, h,S) = THn−1(S) ∪ {id}.
These results will be used for the proof in c)α) below.

c) dim z = 1 and z̃ = {0}
We let z′ be the center of g′. Choose Z ∈ z \ {0} so that z = RZ, and
Y ∈ g2 \ g1. Denote by g̃ the centralizer of g2 (or equivalently of Y ) in g.
We shall consider four subcases:

α) g′ = g̃

This is equivalent to saying that g2 ⊂ z′. In this case, we have f([Xp, Y ]) 6=
{0} and h ⊂ g′. The assumption of α) implies that 2 ∈ T (g′, h,S) and
2 6∈ T (S). It is also easily verified (see [7], proposition 6.4.4) that T (g′, h,S)
and Tn−1(S) always differ from at most one element. So in the present
situation, we have

T (g′, h,S) = Tn−1(S) ∪ {2}.(5.4)

Our first goal will be to prove that R(Y ) is algebraic over CD(g, h). In
other words, we shall prove that there exists a polynomial P of Y satisfying

P (Y ) =
m∑

j=0

PjY
j ∈ U(g)ah, with the coefficients Pj in UC(g, h) and the

coefficient Pm of the leading power Y m of P is different from zero modulo
U(g)ah.

This result is easily proved when 2 ∈ I (or equivalently when (h∩g2/(h∩
g1) 6= {0}). Indeed, in that case, there exists a real number a such that
Y + aZ ∈ h. Obviously Y + aZ + if(Y + aZ) ∈ ah with Z ∈ UC(g, h). This
gives the expected polynomial relation.

We now assume that 2 6∈ I. In this case, id 6= 2 or equivalently id > 2.
Using the fact mentioned above, that id ∈ TH(g′, h,S) ⊂ Tn−1(g, h,S) along

with (5.4), we see that id ∈ T (S) \ TH(S) = U(S). This can also quickly
and directly be seen by observing that the equality dim h(`′)−dim h′(`′) = 1
which is verified `-generically on Γg,h, implies that there exists Y (`) ∈ h(`′)\
h′, hence Y (`) ∈ gid(`

′) \ gid−1
. Then, we have `([Xp, Y (`)]) 6= 0 since

id 6∈ TH(S). Therefore

`
([
Xp, `([Xp, Y ])Y (`)− `([Xp, Y (`)])Y

])
= 0.

Hence, we see that `([Xp, Y ])Y (`)− `([Xp, Y (`)]Y ∈ gid(`) \ gid−1
and that

id ∈ T (S).
Taking mk = id and using the results of Section 4, we can choose a

partial sequence (σr)1≤r≤k of Corwin-Greenleaf Γg,h-central elements that
satisfy the properties (1), (2) and (3) of the current Section 4.
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We have seen that the family
(
$(tσr)

)
1≤r≤k algebraically generates the

subalgebra δ(Zmk(g, h)) of CD(g, h). It can be shown that the σr’s are
also Γg′,h-central elements (see the proof of the proposition 6.2.1 in [7]).
Moreover, Y is a Γg′,h-central element. So the family {Y } ∪ (σr)1≤r≤k
forms a partial sequence of Corwin-Greenleaf Γg′,h-central elements and

$(Y ) ∪ ($(tσr)
)
1≤r≤k algebraically generates the subalgebra δ(Zmk(g′, h))

of CD(g′, h).

Since mk ∈ TH(g′, h,S), we know from the first assertion of Lemma 4.1
applied at the level of g′, that tσk algebraically depends on the family {Y }∪
(tσr)1≤r≤k−1 modulo U(g′)ah. Thus, we obtain a polynomial P such that

P (tσ1, . . . ,
tσk−1, Y,

tσk) ≡ 0 mod U(gid)ah(5.5)

where the leading power of tσk has a non-zero coefficient modulo U(g)ah.
We rewrite (5.5) as follows:

m∑

j=0

Pj(
tσ1, . . . ,

tσk)Y
j ≡ 0 mod U(gid)ah,(5.6)

for some polynomials Pj(
tσ1, . . . ,

tσk), 0 ≤ j ≤ m and m ≥ 0. Let us write

Pj
def.
= Pj(

tσ1, . . . ,
tσk). The Pj ’s are elements of UC(g, h).

Since mk ∈ T (S)\TH(S), we also know from the assertion (??) of Section
4 that tσk is algebraically independent of the family (tσr)1≤r≤k−1 modulo
U(g)ah. Since, in the formula (5.6), at least one of the Pj ’s really contains
tσk, it does not belong to U(g)ah. Without loss of generality, we can assume
that Pm has this property. In particular, m ≥ 1 and (5.6) is a non-trivial
relation. We have proved that Y depends algebraically on UC(g, h) modulo
U(g)ah. From now on, we choose P in such a way that its degree in Y is
minimal.

Next, as [W,Y ] = ZU = UZ, we apply the adjoint action of W on the
formula (5.6) to see that

( m∑

j=1

jPj Y
j−1
)
UZ ≡ 0 mod U(g)ah.

We have
( m∑

j=1

jPj Y
j−1
)
6≡ 0 mod U(g)ah. If m > 1 this is due to the

minimality condition, while if m = 1 to the fact that P1 6≡ 0 mod U(g)ah.
Also, it is clear that Z 6∈ U(g)ah. The ring U(g, h)/U(g)ah has no zero
divisors, so we see that U ∈ U(g)ah in all instances, as we expected. The
theorem is proved in this situation.

β) g′ 6= g̃, h ⊂ g̃ and dim h(`) = dim h ∩ g̃B` for generic ` in Γg,h

First, we can choose Xp in g̃ and find X in g′ so that

g′ = (g′ ∩ g̃)⊕ RX and g̃ = (g′ ∩ g̃)⊕ RXp.
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In the following diagrams, an arrow symbolizes the canonical injection
between two subalgebras of h orthogonal through B` to two ideals of g. The
second ideal being of codimension one in the first. The figures beside the
arrows give the increase of dimension between the source and the target
spaces for generic ` in Γg,h. Clearly, their possible values are 0 or 1.

Here, the only possible values of

dim h ∩ (g′ ∩ g̃
)B` − dim h ∩ gB` = dim h ∩ (g′ ∩ g̃

)B` − dim h(`)

are 0, 1 or 2 since g′ ∩ g̃ is of codimension 2 in g. We have by assumption
for generic ` in Γg,h,

dim h(`) = dim h(`′)− 1 and dim h(`) = dim h ∩ g̃B` .

We also have

dim h∩(g′ ∩ g̃)B` − dim h(`)

= (dim h ∩ (g′ ∩ g̃)B` − dim h(`′)) + (dim h(`′)− dim h(`))

= (dim h ∩ (g′ ∩ g̃)B` − dim h ∩ g̃B`) + (dim h ∩ g̃B` − dim h(`)).

Thus, we see that dim h∩ (g′∩ g̃)B` −dim h(`) = 1, so that Diagram 2 below
holds.

h(`) = h ∩ gB` h ∩ (g′ ∩ g̃)B`

h(`′) = h ∩ g′B`

h ∩ g̃B`

��
��

��
���1

PPPPPPPPPq

PPPPPPPPPq

��
��

��
���1

0 1

1 0

Diagram 2

We take W = XpU + V as above and show that we are led to a con-
tradiction if we assume that W 6∈ U(g′) + U(g)ah. Indeed, we shall prove

that this implies the existence of an element W̃ = XpŨ + Ṽ in U(g̃, h) with

Ṽ ∈ U(g′ ∩ g̃) and Ũ ∈ U(g′ ∩ g̃, h) \ U(g′ ∩ g̃)ah, leading, by induction on n,

to a contradiction since dim h ∩ (g′ ∩ g̃)B` − dim h ∩ g̃B` = 1.

For b ∈ N, we define the subspaces Sb =
b−1∑

i=0

XiU(g′ ∩ g̃) if b ≥ 1 and

S0 = {0} in U(g′). It is easy to rewrite W under the form

W =
a∑

i=0

XiXpUi +
b∑

i=0

XiVi =
a∑

i=0

XaXpUa +XbVb +Wb(5.7)

for suitable integers a and b. Here, Ui, Vi ∈ U(g′ ∩ g̃) and Wb ∈ Sb. Without
loss of generality, we can choose W so that Ui, Vi ∈ U(g′ ∩ g̃) \ U(g′ ∩ g̃)ah

and b ≤ a.
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Indeed if we assume b > a, applying the first assertion of Proposition 3.7,
where we replace g′ by g̃ and Xp by X, we know that Vb ∈ U(g′∩ g̃, h). Next,

as dim h ∩ (g′ ∩ g̃)B` = dim h(`′), we can apply the induction hypothesis to
obtain an element XA + B of U(g′, h) with A ∈ U(g′ ∩ g̃, h) \ (U(g′ ∩ g̃)ah)
and B ∈ U(g′ ∩ g̃). We see that

W ′ = WAb − (XA+B)bVb = XaXpUaA
b +Xb′Vb′ +Wb′

is an element of U(g, h) \ (U(g′) + U(g)ah) such that b′ < b, Vb′ ∈ U(g′ ∩ g̃)
and Wb′ ∈ Sb′ .

So, repeating this procedure if necessary, we may assume b ≤ a in (5.7).
If b = a (resp. b < a) then applying again Proposition 3.7, we see that

W̃ = XpUa+Va ∈ U(g̃, h) (resp. W̃ = XpUa ∈ U(g̃, h)) with Ua 6∈ U(g′∩g̃)ah.

This contradicts the fact that dim h ∩ g̃B` = dim h ∩ (g′ ∩ g̃)B` − 1 as shown
on Diagram 2 and the induction hypothesis.

γ) g′ 6= g̃, h ⊂ g̃ and dim h(`) = dim h ∩ g̃B` − 1 for generic ` in Γg,h

The assumptions imply that hB` ⊂ g′ and hB` ⊂ g̃ because of the last
equivalence of 2) in (2.8). Therefore, we have hB` ⊂ g′ ∩ g̃. For the same

reason, this implies in turn that dim h ∩ (g′ ∩ g̃)B` − dim h(`′) = 1 and

dim h ∩ (g′ ∩ g̃)B` − dim h ∩ g̃B` = 1. Hence, we obtain Diagram 3 below:

h(`) = h ∩ gB` h ∩ (g′ ∩ g̃)B`

h(`′) = h ∩ g′B`

h ∩ g̃B`

��
��

��
���1

PPPPPPPPPq

PPPPPPPPPq

��
��

��
���1

1 1

1 1

Diagram 3

We take W = XpU + V as above and show that we are led to a contra-
diction if we assume U 6∈ U(g)ah. We know that U ∈ U(g′, h). Let us write

U under the form
m∑

i=0

XiUi with Ui ∈ U(g′ ∩ g̃). Replacing g by g′ and g′ by

g′ ∩ g̃, and using the fact that dim h ∩ (g̃ ∩ g′)B` − dim h(`′) = 1 for generic
` in Γg′,h, we apply the induction hypothesis on the dimension of g to see
that U(g′, h) ⊂ U(g′ ∩ g̃) + U(g′)ah. Thus, we have Ui ∈ U(g)ah for i 6= 0.
Therefore, without loss of generality, we may assume U = U0 ∈ U(g′ ∩ g̃).

Next, without loss of generality, we may also assume that V can be written

under the form V =
m∑

i=0

XiVi with Vi ∈ U(g′ ∩ g̃) \ U(g)ah. We are led to a

contradiction if we suppose m ≥ 1. Indeed, in this case, the first assertion
of Proposition 3.7 says that

mXVm + Vm−1 ∈ U(g′, h) \ (U(g′ ∩ g̃) + U(g′)ah)
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which as just seen, is impossible.
So, we can choose W = XpU0 + V0 with U0 and V0 in U(g′ ∩ g̃) and

U0 6∈ U(g′ ∩ g̃)ah. We have XpU0 + V0 ∈ U(g̃, h) \ (U(g′ ∩ g̃) + U(g̃)ah).

Finally, we use the equality dim h ∩ (g̃ ∩ g′)B` − dim h ∩ g̃B` = 1 for generic
` in Γg,h. It implies by induction that U(g̃, h) ⊂ U(g′ ∩ g̃) + U(g̃)ah. This
gives a contradiction. The theorem is proved in this situation.

δ) h 6⊂ g̃

In this case, we set h̃ = h ∩ g̃ and choose X ∈ h so that h = h̃ ⊕ RX and
g = g̃⊕ RX. Clearly, h ⊂ XB` . So, we have

dim h(`) = dim h(`′)− 1

dim h(`) = dim h ∩ g̃B` for ` generic in Γg,h.and

Therefore, just as in β) above and for the same reasons, Diagram 2 holds.
Now it is easy to see that for any ideal g∗ of g containing Y , we have

h ∩ gB`∗ = h̃ ∩ gB`∗ for generic ` in Γg,h. Thus, we can replace h by h̃ in
Diagram 2 above so that in particular,

dim h̃ ∩ (g′ ∩ g̃)B` − dim h̃ ∩ g̃B` = 1 for generic ` in Γg,h.(5.8)

We show that the assumption W 6∈ U(g′) + U(g)ah leads to a contradiction.

Indeed, in the present situation, we can write W = Xp(
∑

i

UiX
i) +

∑

i

ViX
i

with Ui, Vi ∈ U(g′ ∩ g̃), so that we have

W ≡ Xp

∑

i

(−
√
−1 f(X)

)i
Ui +

∑

i

(−
√
−1f(X))iVi mod U(g)ah.

Hence, without loss of generality, we may assume that W = XpU + V with

U, V ∈ U(g′∩ g̃), so that W ∈ U(g̃, h̃) and W 6∈ U(g′∩ g̃)+U(g̃)a
h̃
. Replacing

g by g̃, g′ by g′ ∩ g̃ and h by h̃ in the induction hypothesis on the dimension
of g, we see that this is incompatible with (5.8).

This completes the proof of the theorem.

We can now prove the conjecture of Corwin-Greenleaf and Duflo as stated
in the introduction.

Corollary 5.3. Let G be a connected, simply connected, nilpotent real Lie
group with Lie algebra g and H be a closed connected subgroup of G with Lie
algebra h. Let f be a linear form on g such that f([h, h]) = {0}. Let χf be the

unitary character of H defined by χf (exp(X)) = e
√−1f(X) for all X in h.

Let τf = Ind
G
↑
H
χf be the unitary representation of G, induced from χf and

defined by (1.1). Let D(g, h) be the algebra of G-invariant linear differential
operators defined by (1.4). Then, the following two assertions are equivalent

(a) τf is of finite multiplicities.

(b) D(g, h) is commutative.
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Proof. (a)⇒ (b) is a fundamental result of Corwin-Greenleaf (Theorem 1.1
of [5]).

Let us prove that non-(a)⇒ non-(b) by induction on the dimension of g.
First, recall from the assertion (ii ) of Section 1 that for generic ` in Γg,h

τf is of finite multiplicities
⇐⇒ dimH · ` = 1

2 dimG · `
⇐⇒ 2(dim h− dim h(`)) = dim g− dim g(`).

Thus, it suffices to prove that 2(dim h− dim h(`)) < dim g− dim g(`) im-
plies that D(g, h) is not commutative. In this case, h 6= g. Let g′ be a subal-
gebra of codimension one in g that contains h. If already D(g′, h) ⊂ D(g, h)
is non-commutative then obviously, D(g, h) has the same property. So we
may assume that D(g′, h) is commutative or equivalently, using the induc-
tion argument, that 2(dim h − dim h(`′)) = dim g′ − dim g′(`′). Subtracting
both relations, we have

2(dim h(`′)− dim h(`)) < 1 + dim g′(`′)− dim g(`) ≤ 2

which implies h(`′) = h(`). Then, Theorem 5.2 asserts that there exists an
element W ∈ U(g, h) such that W 6∈ U(g′) +U(g)ah. Finally, using Theorem
1 of [8], we obtain an element T in U(g′, h) such that [W,T ] 6∈ U(g)ah, as
expected. This proves that D(g, h) is not commutative.

6. Example

In this section, g will denote the real nilpotent Lie algebra of dimension
7 generated by the vectors {Xi, 1 ≤ i ≤ 7} with the following non-zero
brackets:

[X1, X3] = X2, [X1, X4] = X3, [X1, X5] = X4, [X1, X7] = X6,
[X4, X5] = X6, [X5, X6] = X2, [X4, X7] = −X2.

It is clear that the center of g is z = RX2.
We choose the flag S of g defined in (2.1) as follows:

{0} = g0 ⊂ g1 ⊂ g2 ⊂ · · · ⊂ g6 ⊂ g7 = g

where
g0 = {0}, g1 = RX2 = z, g2 = RX2 ⊕ RX3,
g3 = RX2⊕RX3⊕RX6, g4 = RX2⊕RX3⊕RX6⊕RX4,
g5 = RX2 ⊕ RX3 ⊕ RX6 ⊕ RX4 ⊕ RX5,
g6 = RX2 ⊕ RX3 ⊕ RX6 ⊕ RX4 ⊕ RX5 ⊕ RX1, g7 = g.

Next, we equip g∗ with the dual basis {X∗j | 1 ≤ j ≤ 7} of the basis

{Xj | 1 ≤ j ≤ 7} of g. We take h
def.
= RX4 and fix f

def.
= λX∗4 so that the

affine space defined by (1.3) is simply

Γg,h = {
7∑

j=1

ξjX
∗
j | ξ4 = λ}.
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We now describe the generic H-orbits, namely the H-orbits of maximal
dimension in Γg,h. They are contained in the following Zariski-open subset:

O = {
7∑

j=1

ξjX
∗
j ∈ Γg,h | ξ6 6= 0}.

A simple and direct calculation shows that if ` =
7∑

j=1

ξjX
∗
j ∈ Γg,h, then for

all real number t, Ad∗
(
exp(−tX4)

)
(`) =

7∑

j=1

ξj(t)X
∗
j where

ξ1(t) = ξ1 − tξ3, ξ2(t) = ξ2, ξ3(t) = ξ3, ξ4(t) = λ,

ξ5(t) = ξ5 + tξ6, ξ6(t) = ξ6, ξ7(t) = ξ7 − tξ2.
(6.1)

The set of indices of I and J defined by (2.2) and (2.4) are respectively
{4} and {1, 2, 3, 5, 6, 7}, so that the sequence of subalgebras (2.5) becomes:

k0 = h = RX4

k1 = RX2 ⊕ RX4

k2 = RX2 ⊕ RX3 ⊕ RX4

kj = gj+1 for 3 ≤ j ≤ 6

Then, we consider the associated sequence of subalgebras:

D(k1, h) ⊆ D(k2, h) ⊆ · · · ⊆ D(k5, h) ⊆ D(k6, h) = D(g, h).(6.2)

Theorem 5.2 says exactly which of these inclusions is proper or is an equality.

Using the calculation (6.1) and setting here `j
def.
= `|kj for all ` ∈ g∗,

1 ≤ j ≤ 6, we obtain

dimH · `j = 0, ∀` ∈ O, 0 ≤ j ≤ 3,

dimH · `j = 1, ∀` ∈ O, 4 ≤ j ≤ 6.
(6.3)

Following the sequence k0 ⊂ k1 ⊂ · · · ⊂ k6, there is only one jump in the
dimensions of the generic H-orbits in Γg,h which arises when passing from
k3 to k4. Thus, Theorem 5.2 implies that D(kj , h) is properly contained in
D(kj+1, h) for 1 ≤ j ≤ 6, except for j = 3 where we have the equality
D(k3, h) = D(k4, h). So (6.2) reads as

D(k1, h) Ã D(k2, h) Ã D(k3, h) = D(k4, h) Ã D(k5, h) Ã D(g, h).(6.4)

In other words, there exists a non zero element of D(kj+1, h) that does not
belong to D(kj , h) for all j, except for j = 3. To check this, we shall con-
struct explicitly such a new element. We proceed as in [8], by applying the
symmetrization map to suitable H-invariant polynomials arising from the
Pukanszky parametrization of the generic H-orbits in Γg,h (see [11]).

More precisely, setting u
def.
= ξ5 + tξ6 in the calculations (6.1), we param-

etrize the generic H-orbits in Γg,h as follows: if ` =
7∑

j=1

ξjX
∗
j ∈ O, then we
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let Ad∗(exp(−tX4))(`) =
7∑

j=1

rj(u)X∗j for all real number t, with

r1(u) =
ξ1ξ6 + ξ3ξ5 − uξ3

ξ6

, r2(u) = ξ2, r3(u) = ξ3, r4(u) = λ,

r5(u) = u, r6(u) = ξ6, r7(u) =
ξ7ξ6 + ξ2ξ5 − uξ2

ξ6
·

This gives us the following H-invariant polynomials on g∗: ξ1ξ6 + ξ3ξ5, ξ2,
ξ3, ξ6 and ξ7ξ6 + ξ2ξ5. Applying to these polynomials the symmetrization
map S(g) → U(g), we obtain the elements X1X6 + X3X5, X2, X3, X6 and
X7X6 +X2X5 of U(g, h). So, we have the following new element of U(g, h):

X2, when passing from C = U(k0, h) to U(k1, h),
X3, when passing from U(k1, h) to U(k2, h),
X6, when passing from U(k2, h) to U(k3, h),
X1X6 +X3X5, when passing from U(k4, h) to U(k5, h),
X7X6 +X2X5, when passing from U(k5, h) to U(g, h).

Let us check that no new element ofD(g, h) arises when we pass from D(k3, h)
to D(k4, h). Assume there exists A in U(k4, h) that does not belong to U(k3)+
U(g)ah. Using the assertion (iii ) of Proposition 3.7, we may write A as A =
X5U + V with U and V in U(k3). Then, observing that k3 is commutative,
it is easy to see that [A,X4] = −X6U . Since X6 6∈ U(g)ah, this forces
U ∈ U(g)ah and then V ∈ U(k3, h). Thus, we have A ∈ U(k3, h) + U(g)ah

thereby proving that D(k3, h) = D(k4, h).
Now we turn to the question of the commutativity of D(g, h). After a

straightforward calculation, we observe that the generic G-orbits in Γg,h are
6-dimensional while the generic H-orbits are 1-dimensional by (6.3). So,

the representation Ind
G
↑
H
χf is of infinite multiplicities by the assertion (iii )

of Section 1. Therefore, we expect from Corollary 5.3 that D(g, h) is not
commutative.

Indeed, for 1 ≤ j ≤ 3, the groups Kj = exp kj are abelian. So, the

mutiplicities of the representations Ind
Kj
↑
H
χfj are finite while the algebras

D(kj , h) are commutative. This agrees with Corollary 5.3 as well as with the
fundamental result of Corwin-Greenleaf (Theorem 1.1 of [5]).

For j = 4, the dimension of the K4-orbits K4 · `4 are 2-dimensional while,
by (6.3), the H-orbits H · `4 are 1-dimensional for generic ` in Γg,h. Hence,

we deduce that Ind
K4

↑
H
χf4 is of finite multiplicities. At the same time, (6.4)

implies that D(k4, h) is commutative, as expected from Corollary 5.3.
For j = 5, the orbits K5 ·`5 are 4-dimensional while the orbits H ·`5 are 1-

dimensional by (6.3), for generic ` in Γg,h. Hence, we deduce that Ind
K5

↑
H
χf5

is of infinite multiplicities. At the same time, X3 and X1X6 + X3X5 are
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two elements of U(k5, h) satisfying [X3, X1X6 + X3X5] = −X2X6. Since
X2X6 6∈ U(g)ah, we see that

[X3, X1X6 +X3X5] 6≡ 0 mod U(g)ah.

This proves that D(k5, h) is not commutative in agreement with Corollary
5.3.

These results show that Ind
G
↑
H
χf is of infinite multiplicities and D(g, h)

not commutative.
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tations unitaires d’un groupe de Lie résoluble exponentiel. To appear in Compositio

Math..

[2] A. Baklouti and J. Ludwig. Invariant differential Operators on certain nilpotent ho-

mogeneous spaces. Monatsh. Math., 134, No 1 (2001) pp. 19-37.
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[11] L. Pukanszky. Leçons sur les représentations des groupes. Monographies de la Société
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