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Abstract

We present here a new proof of the theorem of Birman and Solomyak on the
metric entropy of the unit ball of a Besov space B; , on regular domain of 4 The
result is : if s — d(1/7 — 1/p)+ > 0, then the Kolmogorov metric entropy verifies
H(e) < e~/5_ This proof takes advantage of the representation of such spaces on
wavelet type bases and extends the result to more general spaces. The lower bound
is a consequence of very simple probabilistic exponential inequalities. To prove
the upper bounds, we provide a new universal coding based on a thresholding-
quantizing procedure using replication.
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1 Introduction

The evaluation of the entropy of the balls of Besov spaces is a crucial point in modern
nonparametric statistics. First, because entropy is a measure of complexity of the pa-
rameter space especially appropriate to likelihood and related methods: For instance in



many situations, the rate of convergence of the classical MLE or LSE directly follows
from entropy calculations. Entropy calculations appears also to be a pivotal point for
penalized methods. -see for example, van de Geer 2000 [26]-
On the other hand, Besov spaces among other spaces of regularity appear to be particu-
larly adapted to approximation and statistical applications : For instance, balls of Besov
spaces appear to be maximal sets for linear approximation methods ( see for instance
Nikolskii 1975 [23] ). They also appear to be maximal sets for general linear smoothing
methods under fairly large conditions (see Kerkyacharian, Picard 1993 [18], also Hardle,
Kerkyacharian, Picard, Tsybakov 1998 ch 10. [15]). These spaces also appear to be par-
ticularly suited for estimation and approximation since they can be expressed as sequence
spaces when one uses to represent a function its wavelet coefficients.
The evaluation of the entropy of Besov balls goes back to 1967. It follows using inter-
polation theory from the result of Birman and Solomyak 1967 [3]. However, the proof
presented there is rather long and difficult.
Moreover, taking advantage of the nice properties of the representation of functions of
Besov spaces in wavelet expansion, it was legitimate to hope that entropy evaluation
could be recovered using thresholding or m-term approximation methods. More than
that, these type of methods would hopefully provide, in addition, an optimal universal
compression coding.
These nice ideas are developed in Donoho 1996 [13] using a coding deriving from a plain
thresholding algorithm. However, the result is not completely optimal because of a log-
arithmic term appearing in the upper bound.
Birgé and Massart 2000 [2] suggested that the default of the method was in the plain
thresholding and provided a new coding using a level-dependent thresholding taking ad-
vantage of an idea developped in Delyon and Juditski 1996 [11] to remove additional
logarithmic terms in statistical applications.
Cohen, Dahmen, Daubechies and DeVore 2000 [5] provide a beautiful universal coding
using tree structures. In particular, they use this specific method, to encode the small-
est tree containing the m-largest wavelet coefficients. They also recover the right upper
bound without additional log-term.
In this short paper, we prove that there is no need to modify the thresholding algorithm,
nor is it necessary to use a tree algorithm. To avoid the difficulty of the logarithmic
term, we use a replicant code which allows to send the addresses as well as the coeffi-
cients without losing length. This code has also the advantage of being easily protected.
This ability is important since it is generally a weakness of wavelet codings to be very
sensitive to errors in the first bits code.
To achieve this goal, we put the problem in a setting which allow us to treat the case
of ,norms as well as Hy,-norms for 0 < p < 1. This setting also enables us, using
exponential type inequalities, to obtain the lower bounds in a very elementary way and
in less than one page. It also notably enlarge the class of spaces for which the theorem is
valid: If the classical Besov spaces are the prime example, one can also consider spaces
of 'chirps’, or multidimensional anisotropic regularity spaces.

The paper is organized in the following way: Section 2 quickly recalls the definitions
of entropy and coding. Section 3 presents the analytical setting where we settle the
problem. Section 4 contains the entropy result and the proof of the lower bound. Section



5 contains the replicant compression coding and the proof of the upper bound.

2 Metric entropy, and coding.

2.1 Metric entropy

Let us recall the following definitions.

e Let (K, d) be a metric space. For every ¢ > 0, we define N (¢, K, d) as the minimum
number of balls of radius €, covering K.

e We define the metric entropy of K as H(e, K,d) = log,(N(e, K, d))

e Let (X,d) be a metric space, and K C X. For every € > 0, we define N(e, K, X, d)
as the minimum number of balls of radius ¢, centered in X, covering K.

e We define the metric entropy relative to X as H(¢, K, X, d) = log,(N (¢, K, X, d)).
If K is considered with the induced metric, we obviously have :

H(e, K,d) > H(e, K, X,d) > H(2¢, K, d).

Because of the inequality above, in the sequel we will generally not distinguish
between the 2 entropies.

2.2 Coding

e Let (X,d) be a metric space and K be o subset of X. An ¢ coding of K of
length [ is given by two functions :

C: K — {0,1}, (the encoding” function) and
D :{0,1}' — X, (the "decoding” function), such that

d(DC(z),z) < e
e Let us define L(¢, K, X, d) as the minimum length [ of an e coding of K .

e It is obvious that :

Hie, K, X,d) < L(e, K, X,d) < H(e, K, X, d) + 1.

3 Multiscale type Besov bodies.

Let us now describe the type of function spaces that we are going to consider. As will
soon become obvious, our framework will take classical Besov spaces as a model, but
leads to a much wider setting.



3.1 Multiscale setting

Let us first describe what will be the context : Let X be a Banach, or a 7—Banach space,
with 0 < 7 < 1. ( This means that instead of the usual triangular inequality we have
Nf+all” < IIfII” + llgl]”.) Our typical examples will be X = ? for 1 < p < oo and
X = H, (the Hardy space, and then 7 = p) for 0 < p < 1.

Let £ = {4k, 7€ , k€ A;} be afamily in X with the following properties :

e Foreach j € , A; is a set of cardinality of order 2/¢. i.e. there exists ¢;, ¢y (not
depending on j) such that ¢;2/% <Card(A;) < 327, (d will be a dimension index.)

e There exist 0 < p < 0o, and a constant 0 < C' < oo, such that

e . (B < 1Y Baialx < O 18P (1)

keA, keA, kEA;

(with the usual modification for p = oc0.) The constant p will be in some cases,
determinant. So we will precise, when necessary that the setting is a p-multiscale
setting.

Remarks

e These properties obviously are verified for instance, when £ is a multiscale analysis
associated to a compactly supported wavelet basis and X = ,([0,1]%) for 1 < p <
oo (or H, for 0 < p < 1.), normalized in such a way that, for all (j,k) we have
lt;x]|x =< 1. However this condition is absolutely not necessary. Particularly, we
do NOT need that £ is an unconditional basis of X, not even a topological basis.

e For instance the following family on [0, 1]:

2j+1 k-1 &k . . . . .
Yi(z) =277 [{[Wv %]}(1’)7 je ke 1422 P (< 14297 0

can be used to describe a phenomena on the unit interval which is more and more
oscillating, like a 'chirp’. It verifies the properties above when the space X is 7
for 1 <p <ooor H, for 0 < p < 1. (I{B} is the indicator function of the set B.)

e In the multidimensional framework, we can also proceed to build families of func-
tions taking into account local anisotropy: let b be a wavelet function supported
on [0, 1] (to simplify). Let v; x(z) = 2%;/)(2% — k) be the p-normalized family at the
level j. Let us form the product v,k (21)...%j,k,(24) = U and let us index this

product by its support : [ = [21“]—11, k;xl] X ... X [2]3—(2, k;j;l]. Foreach 7 € | let usselect

A; as a choice of hyperectangles I,... , In, such that j; +...4 j; is always equal to

j (all rectangles have the same surface), ;N I; = ) unless 7 = I, and UX, I; = [0, 1]*

(the hyperectangles are forming a partition of [0,1]?). Of course, N = 2/¢ and it

is not difficult to prove that such a family {¢y, I € A;, 7 € } will again verify

the conditions above. Of course the uniform choice j; = ... = j; = % corresponds
to the isotropic case, but a choice introducing long and thin hyperectangles will be

more suitable to handle anisotropic situations.




3.2 Multiscale Besov bodies

Our nest step is to formulate the definition of Besov bodies associated to the previous
multiscale setting :

Definition 1. for 0 < s < o0, 0 < 7 < 00, 0 < r < oo, we define the following
"multiscale Besov Body” associated to the p-multiscale setting introduced above:

1/r

B, =S 0=) 3 Biwthiws | D [ZCHOPIN B YL =1 f sy, ¢ < oo

7=0 k€A, 7=0 k€A,

(With the obvious modifications for r = co, m = oo, p = 0.)
Remarks

1. The following definition exactly corresponds to the usual characterization of stan-
dard Besov spaces B, when the multiscale setting is such that X = ,([0,1]%) (
or the Hardy space ,([0,1]%)) and the family € is a multiscale analysis associated
to a compactly supported wavelet basis normalized in , (or , ). (see De Vore

[10], De Vore and al [8], Cohen and al [4].)

2. As usual, we have the standard embeddings :

< |I/lls;,-

0<s'<s, 0<m<a'<oo, s—d/m=s—d/r" = |[lps <|/lng,

’

0<s <s, 0<a' <nm<oo, 0<r <y, :>Hf||B;//T

Let us now observe that it is not at all obvious that B; . defined as above is included in
X. However, the following proposition proves that this occurs under some condition:

Proposition 1. Ifs —d(1/m —1/p)y =6 >0, then B}, C X.

Proof of the Proposition:

It is enough to prove that E]‘ I ZkeA] Bixtikllx < oo (or Zj | ZkeA] Birtiklx < o0
in the case of a T—Banach.)

By hypothesis, ||3;. ||i. = ¢;,277/(+d1/p=1/m) with e € 1,

1. 0 <7 <p<oo.

1 Bistbiellx < CIBsIL, < ClIBs I, < €279 CHP) = ¢ 930

keA,

2. 0 < p <7 < co. By Holder inequality , as card(A;) is of order 27%:

1Y Bistbisllx < ClBsL, < CNIB; N1, 2740 /PH < 273 = Ce; 279

keA,



4 Main Entropy Result

The following theorem is our main result concerning the entropy evaluations of balls of
the Besov bodies introduced above.

Theorem 1. Birman and Solomyak
For0<p<oo,0<s<o0, 0<m<o0, 0<r<oo,ifs—d(l/m—1/p)x =& >0 then
the unit ball U7 . of B} is such that there exist two constants c(s,m,r) > 0 and C(s,m,r)
such that

c(s,m,r)e —d/s < H(e,U?

m™r)

X) <Cf(s,m, r)e_d/s

4.1 LOWER BOUND

Proposition 2. There exists a constant c(s,m,r) > 0 such that :
Ye>0, H(e,U ,X)>c(s,m,r)e .

T

Proof of Proposition 2

As H(e,Uz,.,X) is a non decreasing function of ¢, it is enough to ﬁnd a non increas-

™,r)
ing sequence of non negative numbers (¢;);e , such that lime; = 0, < A < oo and

H(e;, Uy, X) > ch_d/s. Let us consider the following set:
Aj = {2790+ Z okik, Ok € {0,1}}.

keA,

so H(e,U?

™,r?

E+1

Obviously, for any 7 in , A; C U

T

X) > H(G,A]’,X).

Proposition 3. Let us consider the following set :

={0,1}", with the 1, distance: ||Jw —w'|| = Z |w; — Wi

Z' .
=1

Then : H(n/4,Q,,1;) >
en (n/7 1) 810g(2)

Proof of Proposition 3

This proposition has already been proved in [17]. We give a sketch of proof for the
reader’s convenience.

Let P be the uniform probability on €,. The coordinate functions X;(w) = w; are then
independent Bernouilli random variables. Let us consider a covering of €2,,, by N balls

B; of radius n/4. We have
1= P0,) < P(B)) = N P(B(0,n/4)).
as obviously, all the balls B; have the same probability. But,

P(B(0,n/4)) ZX <n/4) = (2(1/2 — X;) > n/4) < exp—n/8,

=1



using Hoeffding inequality (see for instance [24].) This ends the proof of proposition 3.
Proof of Proposition 2 (continuing):

Let us prove that : For every ¢ > 0, we have
H(e, A;, X) > H((Ce)ij(SP"'d),de,ll). (2)

Let us consider a covering of A; by N balls of radius € centered on A;. As

—i(s S 1 S5
12 i(s+d/p) Z Skthin — (s+d/p) Z Sl > 02 +d/p Z 15, — & )1/p
k€A, k€A, k€A,
1 S
= G2y 16— DY
keA,;

it is clear that these covering is the analogous of a covering of {0, 1}% by N balls of radius
less then (C'¢)?2/s#+4) with the [y distance.This implies (2).
Let us now choose ¢; such that (Ce;)P2/(r+d) = %. Using the previous proposition we

get :

jd 4
Ke “”?
~ Slog(2)

(Implicitly we took here 0 < p < oo. But the case p = oo is simpler and can be handle
directly.)

Hej, Ajy X) >

5 Replicant coding and upper bound

As explained in the introduction and section 2, the upper bound will follow from the
construction of a coding procedure. Moreover, as U7 = C U; _, it is enough to consider
the problem for U?

5.1 Quantization algorithm
Our coding will begin with the following quantization procedure:

Definition 2. For 0 < A < oo, 8 € , we define Qr(3) = sign(3) [%} A (where [x]

denotes the integer part of v € ).
For [ =%"720 2 ke, Biktin, we define :

=) QaBi)vin

7=0 k€A,

J
=) QaBin)vin

7=0 k€A,



The following theorem describes the rates of approximation of the procedures de-

scribed above when the object has a B  regularity:
Theorem 2. For 0 < p< oo, 0 <s<oo, 0 <7m<oo, 0<r<oo,ifs—dl/m—
1/p)y =6 >0, let us define q by : s+ % = g. There exists a constant D depending only

on p,m, and s, such that: if || f||ps . <1 then, for any A >0,
card{(j, k), Qx(Bjx) # 0} = card{(5, k), |Bjx] = A} < DA™ (3)

Moreover, we have:
DA (4)
DN 4 277%) (5)

If = @x(H)llx
1F = Q(Nlx

<
<

Proof of Theorem 2:

It is enough to give the proof in the case 0 < 7 < p < oo. Since, if 7 > p then
I fllBs.. < IIfllBs. and m = p. So the previous case gives the result. Hence, we will
assume in the sequel that 0 <7 <p < 0o, ™ < 0o (the case m = p = oo is easy to verify,
directly). So 0 < s —d(1/m —1/p) = 6.

By hypothesis (ZkeAJ |%3j,k|7r)1/7r < 9mils+d(1/p=1/m) — 9=i8 g0

1.
) 2—j57r
card{k € Aj, |84 > X} < 2774 \
) 2—j57r
hence, card{(j, k), |Bix| > A} < 22”{ A -
>0
let .Jy such that 270¢ ~ T\J—ih (i.e. 270 )\ﬁ)
. 2—j57r un
card{(j. k), 1Bl 2 A} < Y 24y S < D2~ DT
0<5<Jo Jo<j
but one verifies that di’gw =gq.

2. Let us suppose that X is a Banach space. (The 7—Banach case does not lead to
additional difficulty.) Let us also suppose p < oo. The case p = oo is let to the

reader.
1F = QaDllx < DI (@u(Bik) = Biw) ikl x
i>0  keA,
r 1/p
< O D) lBixk) — Bkl
i20 | kea,
_ 1/p
< CY | DL Bkl Neard{k € Ay, 1Bix] = A}
jZO _keA]7|ﬁ],k|<)\
r 1/p
< OY LD Bl A ONYfeard{k € Ay, 1854 2 A
720 | k€A | kI<N 120

8



As m < p, we have:
1/p 1/p

Z |ﬁj,k|p = Z |/8j7k|p_ﬂ|/8j7k|ﬂ' S /\2]d/p A /\1—?/#2—j5w/p

kEA]7|ﬁ]7k|</\ keA]v'ﬁ],k|<’\

Using (3), we get :

) ) ) 2—]’571' 1/p
_ df 1-p/mo—jér/ d s
I~ Ox(Dllx < O3 A2 pyt-sia) p+cxz[zf A M]
120 720
—j57r 1/p
= 200) [2” }
7>0
1 .
jd/ —jém/
< 20/\[ oo p+W22f p]
0<5<Jo Jo<i

. —Jgdm
where as previously, 2709 ~ QA—,? S

Lg-msniny o pASE = pAn.

I = @:()llx < DA +

I1f = QINNx < If —Qa(Hllx + 1) — QL()llx
Q) = QUNIx < DI QaBin)viellx

i>J k€A,
1/p 1/p
< O DB <O D 1Bl
i>J | k€A, i>J | kEA;

But as s —d/m =0 — d/p and © < p, we have HfHBg,m <|[flls.. <1,s0

1/p

Z Z |3 x]" < 22—1‘5 ~ 95

i>J | keA, i>J

5.2 Replicant universal coding.

We use a procedure inspired by [13] and which has been improved in [17]. Let us consider

= Z Z QA(Bjk) V) k

7=0 k€A,

with the tuning constants .J and A defined by : =275 = \?. So we ensure:

I = Qi(f)l\x <e

9



So we need to encode QJ(f) and compute the length of this e-coding.

Let us first explain why, it is needed to improve the procedure in [13]: If we use a binary
representation of ['ﬁf\—k'], this will cost for each (7, k) such that |3;x] > A, 1+ logQ([@D
bits. But for each 0 < 5 :

wM@M<§:W T < 97

kEA;

So we obtain a bound of order log,([1]) < log,([1]). By Theorem 2, we know that we have
of order A\™7 < ¢=%/% of such terms (|B; 1] > ). We have in addltlon, to encode the signs
and the addresses of such 3’s. This will have a cost of the order of Jd < log,([1]) bits. So
if we keep in advance a fixed number of bits to encode the addresses, and the Q\(5;%)’s
we will use up to constants, e=%/*log,([2]) bits. This obviously gives an undesirable extra
logarithmic term.

So instead of keeping in advance each time a fixed allocation for the addresses, and
the QA\(5;x)’s, we will encode them on line: first the sign, then the binary representa-

532

tion of and then the difference between two successive adresses. (Once for all, we

suppose that (j, k) is the number 2/ 4+ k. ). To do this, we obviously need a separator
between each of these triples (sign, ['ﬁi’kl], address). For this, we use 01 as separator, and
we replicate each bit in the binary expansion of the triple. (For instance, the expansion
0110100 becomes 00111100110000.) This obviously gives us an injective coding which

has also the advantage of being easily protected. For instance, using 0101 as separator.

Let us, now be a little more precise about the way of encoding the addresses : Let

—jém
T
Let us define the representation a((j, k1)) for ki; € A} (assuming then that A% # ).
Because, we encode the difference between 2 successive addresses, there will be a difference

between the cases [ =1 and [ > 1.
For [ = 1, let us introduce the previous (non void) level to be encoded: ;' = sup{i <

j /AL # 0}, Then,

A; = {k € Ajv |/6j,k| > /\} = {kl,ja B 7kn],j}; 0< ki,j < de; n; = C’ard(/\;) < de/\

(G k1) = 2+ by = (27 + k)
But, fOI‘ l > 1, a((j, klﬂ')) = Qj —|— ]{?17]' - (2] —|— kl—l,j) = kl,j — kl—l,j-

Let us now calculate the length of the coding. It is obviously less then :

beard{(j. k). 134 > A} 123" 3 {log, ['ﬂ”'] S} 42 3 Y logy alU k) + 1)

J=0 kEA; 7=0 I=1

J
= 10card{(j, k), 1Bl > A +23 ) logy( ['ﬁ““'] +2zzlog2 ((7, k1))

J=0 keA! j=0 I=1

10




As using theorem 2, card{(j,k),|B;x] > A} < DA™ < ¢=%% we have to prove :

. 13;.4]
> Zl%{ :

| = o) (6)

YD logya((Giky) = O (7)

7j=0 =1
Inequality (6):

13l 1Bkl 1 , 1 B k]
? < ? < — ) —_— ?
g log, [ ;) < g log, \ S WC’ard(A]) card(/\;) kegA, log, "

/ ’
kEAJ kEA]

Using Jensen inequality, and the fact that log, is concave, we can bound the last quantity

by :

1 , 1 BT 1 : o
< ;Card(/\j)logQ C’CLT(A;) Z |: T < ;Card(AJ-)logQ W

ke Al
Let us recall that
] 2—j57r
Card(A}) <277 A - (8)
K K 1 1
and sup zlog, A loe<r alog, A 4 lae>r 082 eK < %82 eK (9)
0<z<anK z - a - € €
Let us choose Jy as before,
—J057r d
2J0d ~ ) N~ 2—Jo(s+;)
So
Jos ~ J&; 2704 ~ =5,
We have :
J . 7 .
i L ja 2-0r llogye 2777
1 : < —27%] — —
> o[ BH]) < 3 ot (2] + 30 B 20
7=0 kEA; 0<5<Jo 7=J0

Then, up an universal constant we obtain the following bound (as we recall that s + % =

i+

J
Y 20— G)(Om 4 d) 42704 Yy " 27Uk

0<j<Jo j=J0
< 2t ((&r +d)y g2ty z—ﬂ'&r) = O /",
0 0

11



Inequality (7):
We will again see that it is necessary to separate the first term ([ = 1) and the other
ones. More precisely :

21% (G kr.) < O = O(log(e))

Whereas,
> logy(a((Gikiy))) = Zlogg ((7, k1))
1=2 R
1 27
< n logQ[;Z a((4, ki,;))] < njlog, e
J =9 ]

Using (8) and (9), we have: for 0 <5 <.Jy, n; logQ(an—d ) < IOgTQEde

B 2]d < 10g2 jd -0 Jod -0 —d/s
so Y mjlogy(—) < Y =it = 020 = O,
0<j<Jo I 0<j<Jo

and for Jy < 7 < J,

2]d 2 ]57[' . Aﬂ-

n; logQ(n—] ) G logQ <2jd2—j5w>
9Hody=(=Jo)5m (5 _ J\(57 + d)
¢ s9=G=T0) (5 _ J)(5m + d).

IN

VANRPVAN

274 . .
SO Z n;log,(— . ) < Z ¢~ 4s9—(i—Jo)ér (G — Jo)(6m + d) = O(ﬁ_d/s).

Jo<i<d, I Jo<j<d,
So:
! . 24 ! . ;
Z Z log,(a(y, k)) < Z n; 10%2(? ) + ZlogQ(a((],kl))) = O(c” /s)-
=0 keA’ 0<j<d I 7=0
]
References

[1] Adams, R.,A. (1975) Sobolev Spaces. Academic Press.

[2] Birgé,L. Massart,P.(2000) An Adaptative Compression Algorithm in Besov Space.,
Constructive Approximation 16. 1-36. Spriger-Verlag New York.

[3] Birman,M,S. Solomiak, M. Z.(1967) Piecewise-polynomial approximation of func-
tions of the classes W,,., Mat. Sbornik,73. 295-317. Spriger-Verlag New York.

12



[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Cohen, A., DeVore, R. and Dahmen, W.. (2000) ”Multiscale methods on bounded
domains”, Trans. AMS 352, 3651-3685.

Cohen, A., Dahmen, W., Daubechies, I. and DeVore, R. (1999) Tree Approximation

and Encoding, preprint Laboratoire d’Analyse Numérique, Université Paris VI.

DeVore, R.,Jawerth, B., and Popov, V.A. Compression of wavelet decomposi-

tion.(1992) American Journal of Math. 114 737-785

Cohen,A., DeVore, R. , Kerkyacharian, G., Picard,D.(1999) : Saturation spaces asso-
ciated with non linear Statistical methods Submitted to Applied and Computational
Harmonic Analysis

DeVore, R. Kyriazis, and Wang, P.(1998) Multiscale Characterization of Besov
Spaces on Bounded Domains.(1992) Journal of approximation theory. 93 273-292

Cohen, A., DeVore, R. and Hochmuth, R. (1997) Restricted nonlinear approxima-
tion, preprint Laboratoire d’Analyse Numérique, Université Paris VI, to appear in
Constructive Apporximation.

DeVore, R. Nonlinear approximation(1998) Acta Numerica 7, Cambridge University
Press . 51-150.

Delyon, B., Juditski, A. (1996) On minimax wavelet estimators. Applied and Com-
putational Harmonic Analysis 3, 215-228.

DeVore, R.,and Lorentz G.(1993) Constructive Approzimation Springer-Verlag.

Donoho, D.L. (1996) Unconditional bases and bit-level compression Applied and
Computational Harmonic Analysis 3, 388-392.

Kamont, A. (1992) e—entropy and moduli of smoothness in P—spaces. Studia

Matematica 102 (3) 277-302.

Hardle W., Kerkyacharian, G., Picard, D., Tsybakov, A. (1998) Wavelet, Approxi-
mation and Statistical Applications Lecture Notes in Statistics, 129 Springer Verlag,
New York.

Kerkyacharian, G. and Picard, D. (2000) Thresholding algorithms, maxisets and
well-concentrated bases, with discussion, Test, vol 9, No 2, P 283-345.

Kerkyacharian, G. and Picard, D. (2001) Entropy, Universal coding, Approximation
and bases properties. Technical report.

Kerkyacharian, G. and Picard, D. (1993) Density Fstimation by Kernel and Wavelets
methods - Optimalily of Besov spaces. . Statistics and Probability Letters 18 327-336

Kolmogorov, A.N. and Tikhomirov, V.M. (1959) e-entropy and e-capacity. Uspekhi
Mat. Nauk 14 3-86. (Engl. Trans. : Amer. Math. Soc. Transl. Ser 2 Vol 17 277-364.)

13



[20]

[21]

[22]

23]

[24]

[25]

[26]

Lorentz G.G. Metric entropy and approximation (1966) Bull. Amer. Math. soc. 72
903-937.

Lorentz G.G.,Von Golitshek ., M. and Makovoz, J. Constructive Approzimation :
Advanced Problems(1996) Springer-Verlag.

Meyer, Y. (1990) Ondelettes et Opérateurs, Hermann, Paris.

Nikolskii S.M.(1975) Approzimation of functions of several variables and imbedding
theorems (Russian). Sec. ed., Moskva, Nauka 1977 English translation of the first
ed., Berlin 1975.

Petrov, V. V. (1995) Limit Theorems of Probability Theory: Sequences of indepen-
dent Random Variables. Oxford University Press.

Temlyakov, N.V. (1999) Best term approximation and greedy algorithms. Technical
report. University Of South Carolina.

van de Geer, S.A. (2000) Empirical processes in M-estimation. Cambridge University
Press.

14



