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Abstract. In Politis and Romano (1994) a general subsampling methodol-
ogy was put forth for the construction of large-sample con…dence regions for
a general unknown parameter µ = µ(P ) under very minimal conditions. Nev-
ertheless, in some speci…c cases –e.g. in the case of the sample mean of i.i.d.
data– it has been noted that the subsampling distribution estimators under-
perform as compared to alternative estimators such as the bootstrap and/or
the asymptotic normal distribution (with estimated variance). In the present
report we investigate the extent to which the performance of subsampling dis-
tribution estimators can be improved by an extrapolation technique, while at
the same time retaining the robustness property of consistent distribution es-
timation even in nonregular cases; both i.i.d. and weakly dependent (mixing)
observations are considered.

Abstract. Politis et Romano (1994) ont introduit une méthode de sous-
échantillonnage générale permettant de construire des régions de con…ance
asymptotiques pour un paramètre µ(P ); sous des hypothèses minimales sur
les statistiques et les données en jeu. Néanmoins, il a été montré que les
distributions de sous-échantillonnage sont ine¢caces par rapport à d’autres
méthodes d’approximations tels le Bootstrap ou la distribution asymptotique
gaussienne, dans les cas spéci…ques où ces dernières sont utilisables (par exem-
ple la moyenne dans le cas i.i.d.). Dans cet article, nous étudions dans quelle
mesure les méthodes d’interpolation et extrapolation permettent d’améliorer
les méthodes de sous-échantillonange tout en conservant leur aspect robuste
dans les cas non-réguliers. Les cas i.i.d. et dépendants sous des hypothèses de
mélange sont étudiés et donnent lieu à des résultats di¤érents.
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1. Introduction

Let Xn = (X1; :::;Xn) be an observed stretch of a (strictly) stationary, strong
mixing sequence of real-valued random variables fXt; t 2 Zg; the probability mea-
sure generating the observations is denoted by P . The strong mixing condition
means that the sequence ®X(k) = supA;B jP (A \ B) ¡ P (A)P (B)j tends to zero
as k tends to in…nity, where A and B are events in the ¾-algebras generated by
fXt; t < 0g and fXt; t ¸ kg respectively; the case where X1; :::;Xn are indepen-
dent, identically distributed (i.i.d.) is an important special case where ®X(k) = 0
for all k > 0.

In Politis & Romano (1994) a general subsampling methodology has been put
forth for the construction of large-sample con…dence regions based on a statistics
Tn = Tn(Xn) estimating a general unknown parameter µ = µ(P ) ; under very
minimal conditions. In the case of stationary data (time series or random …elds),
subsampling is closely related to the blocking methods introduced by Hall (1985),
Carlstein (1986), Künsch (1989), and Liu & Singh (1992) (see chapter 9 of Shao and
Tu (1995)); see also Wu (1990), Sherman (1992) and Sherman & Carlstein (1994)
for related ideas.

Let us now make the simplifying assumption that Tn and µ are real-valued. To
obtain asymptotically pivotal (or at least, scale-free) statistics, a standardization
(also known as ‘studentization’ when the norming is data-based and random) is
often required. Since we will later discuss the in‡uence of the studentization, we
introduce a statistic Sn = Sn(Xn) > 0 converging in probability to some constant
¾ > 0; heuristically, ¾2 may stand for the asymptotic variance of ¿n(Tn ¡ µ), but
this is not necessarily always the case. Without loss of generality, the unstudentized
case corresponds to Sn = 1:

Although i.i.d. data can be seen as a special case of stationary strong mixing
data, the construction of the subsampling distribution can take advantage of the
i.i.d. structure when such a structure exists:

² General case (strong mixing data). De…ne Yi to be the subsequence
(Xi;Xi+1; ...,Xi+b¡1), for i = 1; :::; q, and q = n¡ b+1; note that Yi consists
of b consecutive observations from the X1; : : : ;Xn sequence, and the order of
the observations is preserved.

² Special case (i.i.d. data). Let Y1; : : : ; Yq be equal to the q = n!
b!(n¡b)!

subsets of size b chosen from fX1; : : : ;Xng, and then ordered in any fashion;
here the subsets Yi consist of unordered observations.

In either case, let Tb;i and Sb;i be the values of statistics Tb and Sb as calculated
from just subsample Yi. The subsampling distribution of the root ¿nS¡1

n (Tn ¡ µ);
based on a subsample size b, is de…ned by

Kb(x) ´ q¡1

qX

i=1

1f¿ bS
¡1
b;i (Tb;i ¡ Tn) � xg:(1)

If there is a non-degenerate distribution K(x; P ), continuous in x, such that

Kn(x; P ) ´ Pr P f¿nS¡1
n (Tn ¡ µ) � xg ! K(x; P )(2)

as n ! 1, for any real number x, the subsampling methodology was shown to
‘work’ asymptotically provided that the integer ”subsample size” b satis…es b ! 1
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and, as n ! 1,

max(
b

n
;
¿b

¿n
) ! 0

The subsampling distribution turns out to be a relatively low-accuracy approxi-
mation to the true sampling distribution Kn(x; P ), and is actually worse than the
asymptotic normal distribution (with estimated variance). Indeed in Bertail (1997)
it was proved that the subsampling distribution admits, for suitable b, the same
Edgeworth expansion as Kn(x; P ) –when such an expansion exists– but in powers
of b instead of n. This result has a straighforward consequence when there exists
a standardization Sn such that the asymptotic distribution is pivotal and known,
i.e. if K(x; P ) = K(x) not depending on P . If the rate of the …rst term in the
Edgeworth expansion f1(n) is known (typically f1(n) = n1=2 in the regular case)
then it is possible to improve the subsampling distribution by considering a linear
combination of that distribution with the asymptotic distribution:

Kint
n (x) =

µ
1 ¡ f1(bn)

f1(n)

¶
K(x) +

f1(bn)

f1(n)
Kb(x)

This type of linear (convex) combination with positive coe¢cients may be seen as an
interpolation in that Kint

n (x) is an intermediate point on the straight line segment
joining Kb(x) to the asymptotic K(x), in the same way that sample size n is an
intermediate point between sample sizes b and 1; note the ordering b < n < 1
and recall that we are interested in obtaining an estimate of the ordinate (sampling
distribution) at sample size n (based on the ordinates at sample sizes b and 1).
This interpolation idea was …rst considered in Bickel & Yahav(1988) and generalized
in Bertail (1997).

Nevertheless the generality of the subsampling methodology lies in the fact that
K(x; P ) does not have to be known in order for subsampling to work. Therefore,
it is of interest to seek improvements upon the subsampling distribution estima-
tors that do not explicitly involve K(x; P ). In the present paper, we explore the
asymptotic performance of extrapolation similar to the notion of Richardson ex-
trapolation considered by Bickel & Yahav (1988), Bertail(1997) and Bickel & al.
(1997) to seek the desired improvement. In the present paper we show that the
extrapolation of two undersampling distribution Kb1(x) and Kb2(x) can be used to
provide us with the linear combination e¤ecting the aforementioned extrapolation
of subsampling distribution estimators, and we quantify the improvement achieved
by the extrapolation.

In Section 2 we focus on the i.i.d. case and show that since in this case subsam-
pling amounts to sampling without replacement from a …nite population, the …nite
population correction 1 ¡ f; with f = b

n , should necessarily be taken into account
to build an accurate approximation of the true distribution. Then extrapolation of
subsampling distributions for the sample mean or non degenerate U-V statistics of
i.i.d. data achieves second order accuracy.

The strong mixing case studied in section 3 is more complicated because of inac-
curate variance estimation. Thus, we include an Appendix where a simple variance
estimator is proposed based on the ideas of Politis & Romano (1995) with the
property of being almost

p
n consistent; this accurate variance estimator can then

be used in the construction of con…dence intervals for the mean using the nor-
mal approximation, the subsampling approximation, or other studentized methods
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(e.g. the block-bootstrap). Then interpolation of subsampling distributions for the
sample mean of strong mixing observations achieves second order accuracy; this
…nding extends the i.i.d. result of Booth & Hall (1993). In particular this results
apply to many econometric models with stationary data. Section 4 presents some
…nite-sample simulations in the context of an ARMA model.

2. Independent identically distributed (i.i.d.) data

2.1. Finite population correction. Bertail (1997) noticed that subsampling may
be seen as a particular case of the weighted bootstrap considered in Barbe & Bertail
(1995) with some exchangeable weights Wn = (wi;n)1� i�n .The proper normalizing
factor for these weights is none other than the …nite population correction factor
1 ¡ f with f = b

n ;a result foreshadowed by Shao & Wu (1989) in the case of
variance estimation (see also Booth & Hall(1993)). This suggests that the adequate
renormalization factor in the subsampling distribution is ¿r (instead of ¿ b) where
r is de…ned by

r = b(1 ¡ f)¡1

and to de…ne more generally the corrected subsampling distribution as

eKb(x) = q¡1

qX

i=1

1f¿rS
¡1
b;i (Tb;i ¡ Tn) � xg

Clearly, the factor (1 ¡ f) has no …rst-order asymptotic e¤ect on the subsampling
distribution which remains consistent under very weak assumptions provided that
f ¡! 0. However, the (1 ¡ f) factor is of great importance for second order
properties as shown in the following paragraphs.

2.2. The studentized sample mean. Consider the problem of estimating the
mean µ(P ) = EP X1. In the following we assume that EP X4

1 < 1; and we take Tn =
¹Xn = n¡1

Pn
i=1 Xi, and S2

n = n¡1
Pn

i=1(Xi¡Xn)2 as usual. From Bhattacharya &
Ghosh (1978), under the usual Cramér condition, we have the Edgeworth expansion
:

Kn(x; P ) = P
n

n1=2S¡1
n (Xn ¡ µ(P )) � x

o
= ©(x) + n¡1=2p1(x; P )Á(x) + O(n¡1)

(3)

p1(x; P ) =
k3

6
(2x2 + 1)

where k3 is the skewness.
Following Booth & Hall (1993), under the Cramér condition and assuming that

EjXij8+´ < 1, for some ´ > 0 we have from Babu & Singh (1985) an Edgeworth
expansion for sampling without replacement from a …nite population, with b=n ¡!

n!1
0; so for any ² > 0;

eKb(x) = © (x) + b¡1=2p1(x; P )Á(x) + b¡1p2(x; P )Á(x)(4)

¡b1=2n¡1 1

4
k3Á(x) + OP (b¡1=2n¡1=2+² + b3=2n¡2) + o(b¡1);

where

p2(x; P ) = 12¡1k4(x
3 ¡ x) ¡ 18¡1k2

3(x
5 + 2x3 ¡ 3x) ¡ 4¡1(x3 + 3x)
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and k4 is the kurtosis. Notice …rst that for b such that b=n ! 0 the right hand side of
(4) can not be made smaller than OP (n¡1=2): Thus even with the …nite population
correction the subsampling distribution will not be second order correct.

The extrapolation of two subsampling distributions (one with subsample size b1
and the other with b2) is given by

eK(2)
n (x) = ¸1

eKb1(x) + ¸2
eKb2(x)(5)

where ¸1 and ¸2 are chosen to solve

¸1 + ¸2 = 1

¸1b
¡1=2
1 + ¸2b

¡1=2
2 = n¡1=2:

in order to match the second order term in (3) and get a second order valid ap-
proximation. We then get

Proposition 1: Let b1 and b2 such that bi

n ¡!
n!1

0 (for i = 1; 2), and b2
b1

¡!
n!1

C 2 [0; 1), then the extrapolation of the two …nite-population-corrected subsampling
distributions of the studentized mean is actually second order correct with the best
choice given by b1 = C1n

2=3 and b2 = C2n
2=3 with C2 < C1. And we have

sup
x

j eK(2)
n (x) ¡ Kn(x; P )j = OP (n¡2=3);(6)

Proof :
From 4 and the de…nition of the b0

is, we get

eK(2)
n (x) ¡ Kn(x; P ) = ¡b

¡1=2
1 b

¡1=2
2 p2(x; P )Á(x)(7)

+b
1=2
1 (1 + C1=2) n¡1 1

4
k3Á(x) + OP (b

¡1=2
1 n¡1=2+² + b

3=2
1 n¡2) + o(b

1=2
1 n¡1):

Minimizing the order of the right hand side of (7) leads to choose b1 and b2 such
that b1b

1=2
2 is proportional to and yields the result.

Remark 1 : Notice that the order of the whole approximation is worse than the
one that we obtain by considering the interpolation of one subsampling distribution
with its asymptotic distribution when the latter is known; see Booth & Hall (1993),
Bertail (1997) who obtain an error of size n¡5=6.

Remark 2 : It is important to point out that if we do not take into account the
…nite population correction factor then the second order validity of the extrapolated
version of the two distributions fails; in the case of interpolation, the second order
property still holds but with a loss in term of coverage probability; see for instance
Bertail (1997) and Bickel & al. (1997, p. 17) in which the importance of this
correction factor was recognized but not really exploited. Indeed in the absence of
the …nite population correction, if we let K

(2)
n (x) be the extrapolation of Kb1(x)

and Kb2(x), then we have

K(2)
n (x) = ©(x) + n¡1=2p1(x; P )Á(x) + OP (

b1
n

)

+OP (b
¡1=2
1 n¡1=2+² + b

3=2
1 n¡2 + b

¡1=2
1 b

¡1=2
2 + b

1=2
1 n¡1);

once again to obtain the second order correctness we would have to choose n1=2 =
o(b1) and the loss induced by the sampling-without-replacement scheme (typically
of order b1=n) implies that second order correctness can not be attained.
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2.3. General extrapolation result in the i.i.d. case. Of course, in the case of
the mean, interpolation and/or extrapolation can be thought to give no advantage
since we already know that the usual bootstrap (Efron(1979)) gives an approxima-
tion up to OP (n¡1) (see Hall (1992)). It is quite obvious that the same holds for
smooth functions of means. Even though the usual bootstrap works in these mean-
like cases, subsampling may still be useful for computational reasons, since con-
structing two subsampling distributions requires less simulations than constructing
the usual bootstrap distribution. Moreover, in contrast to the interpolation schemes
studied in Booth & Hall (1993) and Bertail (1997), the extrapolation does not de-
pend on the asymptotic approximation and is thus more robust. Indeed, if the
original assumptions break down, e.g. the assumptions leading to the Edgeworth
expansion, or even if the statistic Tn is not asymptotically Gaussian in which case
interpolation is not applicable and the bootstrap fails, the extrapolation of the (cor-
rected or uncorrected) subsampling distributions remains a consistent distribution
estimator.

We conjecture however that in a great number of situations, extrapolation to-
gether with a …nite population correction will yield second order accuracy, pro-
vided that one takes ¿r instead of ¿ b in the de…nition of eKb, for b such that
f¡1
2 (b) = o(f1(n)¡1) by analogy to our Sections 2.1 and 2.2. Using recent Edge-

worth expansions results in …nite population by Bloznelis & Götze(2000), it is easy
to see that this conjecture holds for U statistics of degree 2 with non degenerate
…rst gradient (in‡uence function) and as a consequence for any smooth statistical
functional, di¤erentiable according to some nice metric (see Barbe & Bertail(1995)).
In that case, ¿n = n1=2 and ¿r = b1=2(1 ¡ f)¡1=2 is the adequate normalization
which makes the extrapolation second order correct. In any case, even if second
order accuracy is not achieved, the extrapolated distribution will always improve
over each individual subsampling distribution, i.e., an extrapolated distribution will
always improve over a single distribution.

2.4. When the convergence rate to the asymptotic approximation is un-
known. A case of interest in some practical applications occurs when the order of
the di¤erence between the asymptotic and the true distribution is unknown. In-
deed the knowledge of the rate f1 of the asymptotic approximation is implicit in
the construction of both the interpolation and extrapolation. Consider for instance
the simple case of estimating the mean. If EP (Xi ¡ EP Xi)3 6= 0 then (5) yields
a second order correct approximation and improves over the asymptotic. But if
EP (Xi ¡ EP Xi)3 = 0, then the asymptotic distribution is already second order
correct and (5) is less accurate; this follows from the fact that when the skewness
is zero, the correct extrapolation (which will indeed improve upon the asymptotic
distribution) should be built with f1(n) = n and not n1=2. Other problematic sit-
uations occur when the distribution of the Xis is lattice. These examples suggest
that we either have to make a preliminary test on some parameter appearing in the
Edgeworth expansion (depending on the statistic and the underlying distribution),
or we have to directly construct and employ an accurate estimator of f1 which
may then be used in forming the extrapolation. Nevertheless, the …rst suggestion
is not very satisfactory because it is highly problem-dependent, and the Edgeworth
expansion may be quite complicated.

Under very general conditions on the statistic and under some conditions on b;
the order of the subsampling distribution is f1(b): Thus if we study a collection
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of subsampling distributions, when b varies in its domain, we should be able to
observe their convergence to the asymptotic distribution in connection to f1: When
f1(n) = n¡®, where ® is unknown, the following proposition shows that it is possible
to estimate the accuracy rate f1 by a simple regression.

Proposition 2
Let b

(i)
1 ; b

(i)
2 , for i = 1; :::I, (for simplicity b

(i)
2 = b2 may be chosen to be the same

for all i) be several pairs of di¤erent subsampling sizes, satisfying the assumptions
of Bertail (1997) A1-A5, with b

(i)
1 = n¯i ; 1=2 > ¯1 > ::: > ¯I , such that

b
(i)
1

b
(i)
2

¡!
n!1

0. Assume in addition that f1(n) = n¡®, where ® is unknown. Then we

have uniformly in x

log
³
jK

b
(i)
1

(x) ¡ K
b
(i)
2

(x)j
´

= ¡® log(b
(i)
1 ) + log(jp(x; P )j) + oP (1); i = 1; :::I:(8)

Let b® be the least square estimator obtained by regressing log
³
jK

b
(i)
1

(x) ¡ K
b
(i)
2

(x)j
´

on -log b
(i)
1 . Then we have

b® = ® + oP (log(n)¡1);(9)

As a consequence, interpolation and extrapolation of the …nite-population-corrected
subsampling distributions with estimated rate bf1(n) = n¡b® are second order correct.

Proof : Under our assumptions, Kb(x) has the same Edgeworth expansion as
Kn(x; P ) but on functions of b instead of n. If we choose b1 and b2 such that
b1
b2

¡!
n!1

0 then it is easy to see that

jKb1(x) ¡ Kb2(x)j = f1(b1)
¡1(1 + o(1))jp(x; P )j;(10)

and (8) follows by taking the log. Now, since
PI

i=1

³
log(b

(i)
1 ) ¡ I¡1

PI
i=1 log(b

(i)
1 )

´2

=

C0(log n)2 for some constant C0; we thus have (9). Finally, it is easy to see that if
we now use bf1(n) = n¡b® = f1(n)(1+oP (1)) in place of f1(n) then the extrapolation
and the interpolation remain second order correct.

Remark : Notice that this idea is di¤erent but in the same spirit as Bertail &
al(1999) who were trying to estimate the rate of the statistics Tn itself. In the more
general case, when the functional form of f1 is unknown, we may consider (10), or
rather, its logarithm, as a nonparametric regression for f1(¢). Under a monotonicity
constraint, and assuming that f1(b) ! 1 as b ! 1, consistent estimation of f1(¢)
may still be possible albeit more complicated and slower. We will not pursue this
approach here.

3. Strong mixing data

The case of strong mixing data is complicated by the fact that an adequate
standardization is needed (see Götze & Künsch (1996)). In Hall & Jing (1996),
interpolation was used in the context of stationary data, however their results are
weakened by the fact that their hypothesis on the Edgeworth expansion with a
remainder of size O(n¡1) only hold in very particular circumstances (typically i.i.d.
data with an adequate standardization). Indeed, for dependant data, the bias of
the variance estimator may be so important that the second order validity of the
interpolation may not even hold, a fact which explains the bad results of their sim-
ulation. Thus an accurate simple variance estimator is proposed in our appendix.
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Even with this estimator, a close study of the improvements of interpolations and
extrapolations is needed.

3.1. The studentized sample mean. Let Tn = ¹Xn = n¡1
Pn

t=1 Xt be the sam-
ple mean, and µ = EX0 be the mean. Also let R(s) = E(Xt ¡ µ)(Xt+jsj ¡ µ), for
s = 0;§1;§2; : : : be the autocovariance sequence. Both µ and R(¢) are generally
unknown, and the objective is to obtain interval estimates for µ based on the data
in a nonparametric fashion. Following Götze & Künsch (1996) we assume that

®X(k) � d¡1e¡dk(11)

for some d > 0, and that

EjX0js < 1(12)

for some s ¸ 5. Also assume the Cramér-type regularity conditions A3, A5, and
A6 of Götze & Künsch (1996).

Let s2
n be an estimator of ¾2

1 based on X1; : : : ;Xn, and accurate enough so
that s2

n=¾2
1 + OP (

p
log n=n) under conditions (11) and (12); e.g. we can let

s2
n = ~¾2

0:5M;M;n with M = A log n, where the estimator ~¾2
m;M;n is de…ned in the

Appendix.
Consider now the subsampling distribution of the studentized sample mean which

is de…ned by

Lb(x) ´ q¡1

qX

i=1

1f
p

b
Tb;i ¡ Tn

sb;i
� xg;(13)

where Tb;i = b¡1
Pi+b¡1

k=1 Xk and sb;i is the statistic sb computed on block fX1; :::;Xi+b¡1g.
The following proposition states that interpolation of an undersampling distri-

bution with the adequate standardization is second order correct. We give some
rate of convergence. Interpolation is not second order correct but improves over
only one subsampling distribution.

Proposition 3 Under the preceding assumptions, we have :
If b = (n

s
3s¡4 log n¡1), then the interpolation of Lb with © is second order

correct with an error rate OP ( log n
n(2s¡4)=(3s¡4) ) close to OP (n¡2=3) when s is large.

Let bi = c2
i b; i = 1; 2 with b = ((n log2 n)s=(3s¡4)) then the extrapolation of two

undersampling distributions satisfy ~L2(x) = ©(x)+OP (n(2¡s)=(3s¡4)(log n)s=(3s¡4)),
which for large s becomes close to n¡1=3 thus improving upon the n¡1=4 rate of
Lb(x), but not achieving second order correctness.

Proof :
In the following we use the notation b = (m) to mean that b=m ! const. 6= 0.

De…ne the Edgeworth expansion

Q(x) = ©(x) + n¡1=2k1¾¡3=2
1 [

1

6
Á(2)(x) ¡ 1

2
Á(x)];

where k1 =
P

i;j E[(X0 ¡ µ)(Xi ¡ µ)(Xj ¡ µ)] is …nite because of (11) and (12);

here ©(x); Á(x); Á(k)(x) denote the standard normal distribution, density, and kth
derivative of its density respectively. Now under the assumed conditions, we can
employ the results of Götze & Künsch (1996) to infer that

sup
x

jP (
p

n
Xn ¡ µ

sn
� x) ¡ Q(x)j = O(

M

n1¡2=s
) + O(¯n) = O(

log n

n1¡2=s
)(14)
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where

¯n = Es2
n ¡ ¾2

n;

and where M is the equivalent width of the autocovariance window; see our Appen-
dix for more details. Using the choice M = A log n for a su¢ciently large constant
A implies that ¯n = O(n¡1) and yields the rate in (14).

Now, similarly to the proof of Theorem 3.1 in Politis & Romano (1994), it can
be shown that V ar(Lb(x)) = O(b=n) due to the geometric mixing rate (11). Now
we have using (14)

q¡1
qX

i=1

1f
p

b
Tb;i ¡ µ

sb;i
� xg = E(1f

p
b
Tb;1 ¡ µ

sb;1
� xg) + OP (

p
b=n)

= ©(x) +
k1p(x)

b1=2¾
3=2
1

+ OP (
log b

b1¡2=s
) + OP (

r
b

n
):

The above coupled with the fact that
p

b(µ ¡ Tn)=sb;i = OP (
q

b
n) yields that

Lb(x) = ©(x) +
k1p(x)

b1=2¾
3=2
1

+ OP (
p

b=n) + OP (log n=b1¡2=s):(15)

It follows that taking b = (
p

n); we minimize the Mean Squared Error (MSE)
of Lb(x), thus having Lb(x) = ©(x) + OP (n¡1=4). The remainder of the proof is
straighforward by using (15) and minimizing the remainders respectively in the
interpolation and the extrapolation.

Remark 1: The choice of b is nearly optimal up to a log factor. However the
rate of the interpolation is still worse than the best rate of the block-bootstrap
obtained by Götze & Künsch (1996) which can be made close to OP (n¡3s¡4

4s ) that
gives OP (n¡3=4) when s is in…nite. Nonetheless, note that for the interpolation to
be correct we need only s ¸ 5 whereas at least s ¸ 24 is needed for the block
bootstrap to be second order correct; see Götze & Künsch (1996).

Remark 2 The fact that the second order correctness is not attain may be
explained by the need of some …nite population correction factor as in the i.i.d. case.
Recall that the …nite population correction factor in the i.i.d. case was in particular
due to the fact that

V ar(b1=2(Xb;i ¡ Xn)) = (1 ¡ b

n
)¾2;

where Xb;i is the sample mean of subsample Yi. In the strong mixing case it is
quite interesting to see that a similar relation holds thus indicating that the same
…nite population correction factor (surprisingly of same form as in the i.i.d. case)
may be appropriate. A straightforward calculation shows that we have

V ar(b1=2(Xb;i ¡ Xn)) = (1 ¡ b

n
)¾2

1 + O(
b

n2
+

1

b
+

b2

n3
):(16)

So it is obvious that taking into account the …nite population correction factor is
generally advisable as it will reduce the error of the subsampling distribution in
the mixing case as well. However it is not clear that the correction will improve the
order of the extrapolation.

Remark 3 The preceding discussion has made apparent that perhaps second
order accuracy may be too much to hope for from extrapolated distributions in
the case of strong mixing data, because of the ”bad” e¤ect of the standardization.
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Thus it may be interesting in that case to use unstandardized distributions. Using
the conditions (2.3), (2.5) and(2.6) of Götze & Hipp (1983) as well as our condi-
tions (11) and (12) –with s > 3 it is easy to see that regular statistics (functions
of moments) admits an Edgeworth expansion uniformly in x. Using the results in
Bertail (1997) (conditions A2[I], ®3[I], and ®4[I]), the extrapolation of I under-
sampling distribution is clearly …rst order correct and improves over one under-
sample distribution. Moreover in regular cases (function of means) if one choose
b = n1=I= log n then as I grows we come close to the …rst order rate O(n¡1=2)
(without achieving it). See Bertail & Politis (1996) for further details. Obviously,
extrapolated subsampling will de…nitely not be second order correct in the unstu-
dentized case, therefore it will be inferior to the studentized block-bootstrap when
the block-bootstrap applies as well ; see Künsch (1989), Liu & Singh (1992), Götze
& Künsch (1996). However the fact that extrapolated subsampling distributions
can be a robust and more accurate asymptotic approximation under very weak
assumptions is rather remarkable.

4. Some simulation results for ARMA processes.

A straighforward application of our result concerns con…dence intervals for pa-
rameters of ARMA processes using pseudo-maximum likelihood or robust methods
(see for instance Künsch(1984)). In this section, we give some simulations results
on ARMA processes estimated by pseudo-maximum likelihood assuming that the
underlying likelihood is normal. The model considered here is an ARMA(2,1) model

Xt ¡ Á1Xt¡1 ¡ Á2Xt¡2 = ²t ¡ µ1²t¡1

We are interested in con…dence intervals for Á1. In the following tables we
compare the asymptotic distribution with the interpolated distribution and our
extrapolation technique, taking into account the ”…nite population correction”.
The exact quantiles of the distribution of the maximum likelihood are computed by
Monte-Carlo replications by generating 100000 processes. The mean, the median of
the bounds and estimated coverage probability of the interpolated and extrapolated
distributions are calculated over 10000 iterations of the procedure.

In Table 1 and 2, the true parameters are Á1 = 0:5; Á2 = 0:3 and µ1 = 0:6 and
the residuals are N(0; 1). Table 1 and 2 give respectively the results for an observed
stretch of size 50 and 100.

;

Distribution ® % 2:5 5:0 95:0 97:5

True K¡1
n (®) -7.127 -4.603 1.564 2.511

Asymptotic
©¡1(®)
(¯%)

¡1:960
12:5

¡1:645
15:4

1:645
94:9

1:960
96:3

Interpolation
bn = 7

Moy
Med
(¯%)

¡5:174
¡3:636
10:8

¡2:332
¡2:270
14:6

1:907
1:672
94:6

4:929
2:436
96:8

Extrapolation
b1 = 7; b2 = 13

Moy
Med
(¯%)

¡7:393
¡4:132
11:4

¡3:776
¡2:632
13:7

3:244
1:672
94:7

9:425
2:813
97:1

Table1 : Con…dence intervals for Á1; :normal residuals, n = 50.
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;

Distribution ® % 2:5 5:0 95:0 97:5

True K¡1
n (®) ¡3:853 ¡2:312 1:754 2:306

Asymptotic
©¡1(®)
(¯%)

¡1:960
7:8

¡1:645
10:2

1:645
95:0

1:960
96:9

Interpolation
bn = 10

Moy
Med
(¯%)

¡2:753
¡2:848

5:2

¡1:994
¡2:008

8:4

1:669
1:618
95:5

2:211
2:135
97:9

Extrapolation
b1 = 10; b2 = 21

Moy
Med
(¯%)

¡3:424
¡3:300

5:9

¡2:279
¡2:422

8:3

1:704
1:549
93:5

2:646
2:106
97:1

Table 2 : Con…dence intervals for Á2; :normal residuals, n = 100:

The …rst striking feature of these simulation results is how far the asymptotic
quantiles are from the true quantile. Both the extrapolation and the interpola-
tion succeed in catching the asymmetry of the true distribution. Curiously the
extrapolation gives better results in terms of average estimation of the quantile
than the interpolation. However in term of coverage probability, the interpolation
gives a better result as predicted by the theoretical results. Both in terms of quan-
tile estimation and coverage probability, the extrapolation and the interpolation
outperform the asymptotic distribution.

In Table 3 and 4 , the model is actually AR(1), thus corresponding to Á1 = 0:9;
Á2 = 0 and µ1 = 0: Moreover the true residuals have a log normal distribution
recentered at 0. These simulations are used to test the e¤ect of the asymmetry of the
distribution of the residuals on the pseudo-likelihood estimator and the robustness
of the extrapolations.

Distribution ® % 2:5 5:0 95:0 97:5

True K¡1
n (®) ¡1:802 ¡1:521 2:978 4:404

Asymptotic
©¡1(®)
(¯%)

¡1:960
1:7

¡1:645
4:3

1:645
89:5

1:960
92:0

Interpolation
b = 7

Moy
Med
(¯%)

¡1:851
¡1:751

2:7

¡1:499
¡1:406

6:5

2:238
2:259
94:2

3:332
3:301
96:6

Extrapolation
b1 = 7; b2 = 13

Moy
Med
(¯%)

¡1:836
¡1:635

3:2

¡1:503
¡1:270

6:7

2:448
2:464
92:9

3:561
3:372
94:7

Table 3 : Con…dence intervals for Á1; log-normal residuals,n = 50.
Distribution ® % 2:5 5:0 95:0 97:5

True K¡1
n (®) ¡1:820 ¡1:538 2:177 3:046

Asymptotic
©¡1(®)
(¯%)

¡1:960
1:6

¡1:645
4:4

1:645
92:4

1:960
94:0

Interpolation
b = 10

Moy
Med
(¯%)

¡1:843
¡1:792

2:6

¡1:506
1:452
6:2

2:095
2:114
94:6

2:881
2:951
97:4

Extrapolation
b1 = 10; b2 = 21

Moy
Med
(¯%)

¡1:821
¡1:683

2:8

¡1:510
¡1:379

6:4

2:336
2:254
96:0

3:205
3:015
97:7

Table 4 : Con…dence intervals for Á1; log-normal residuals, n = 100.
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In comparison to the previous simulations, the true distribution exhibits an
opposite asymmetric behavior. Once again the interpolation and the extrapolation
catches this asymmetry. For n = 100, the coverage probability are very close to the
nominal level but the interpolation which is known to be second order correct in
that case clearly exhibits a better behavior in terms of coverage probability.
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Appendix: Accurate variance estimation in the strong mixing case

Many estimators of ¾2
1 = limn!1 V ar(

p
n ¹Xn) =

P1
s=¡1 jR(s)j < 1 (under

our mixing condition (11)) have been proposed in the literature; probably the most
popular one (under many di¤erent names and variations, see Politis & Romano
(1995)) is

¾̂2
M;n =

M

Q

QX

i=1

( ¹Xi;M;L ¡ ¹Xn)2;(17)

where ¹Xi;M;L = M¡1
PL(i¡1)+M

t=L(i¡1)+1 Xt is the mean of the block fXL(i¡1)+1; : : : ;XL(i¡1)+Mg
of the data, the numbers L;M are integers depending on the sample size n, and
Q = [n¡M

L ] + 1, with [¢] being the integer part; M is the block’s size here, L is the
amount of ‘lag’ between the starting points of block i and block i + 1, and Q is the
total number of such blocks that can be extracted from the data. If L = M , there
is no overlap between block i and block i + 1. The full-overlap case corresponding
to L = 1 is recommended (see, e.g. Künsch (1989)); thus we set L = 1 in what
follows.

Under regularity conditions, ¾̂2
M;n is a consistent and asymptotically normal esti-

mator. The regularity conditions are moment and mixing conditions, and conditions
on the design parameters; typically M ! 1, but with M=n ! 0. Consistency is
immediate considering the …rst two moments of ¾̂2

M;n that can be asymptotically
calculated to be

Bias(¾̂2
M;n) = E¾̂2

M;n ¡ ¾2
1 = O(1=M) + O(M=n);(18)

V ar(¾̂2
M;n) = 2c

M

n
¾4

1 + o(M=n):

Realizing that the poor rate of convergence of ¾̂2
M;n is due to its bias, Politis &

Romano (1995) in the more general case of estimation of the spectral density g(w)
proposed a bias-corrected version which in our setting is given by

~¾2
m;M;n ´ (h + 1)¾̂2

M;n ¡ h¾̂2
m;n;(19)

here h is some chosen positive constant, and m is chosen as m = hM=(1 + h).
The choice h = 1, leading to m = M=2 is proposed as a simple solution, and
an empirical data-driven method for choosing M is presented in Politis & Romano
(1995). Equation (19) can be interpreted as an extrapolation of the two subsampling
variance estimators ¾̂2

M;n and ¾̂2
m;n that has an improved asymptotic performance.

The di¤erence between the set-up of variance estimation considered here and the
set-up of spectral density estimation considered in Politis and Romano (1995) is
that in the usual spectral density estimation practice, the true mean µ is assumed
known, and used (in place of ¹Xn) in constructing Bartlett’s estimator; the impli-
cation is that improper centering leads to some -usually negligible- ”edge e¤ects”.
For example, the added O(M=n) bias term in equation (18) above is due to this im-
proper centering in the construction of ¾̂2

M;n, i.e., centering the data at ¹Xn instead
of µ.

Similarly to what shown by Politis & Romano (1995), for the bias-corrected
Bartlett estimator, it may be shown that not only the bias of ~¾2

m;M;n becomes
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o(1=M), but a more spectacular bias correction is achieved: namely, under the
exponential strong mixing assumption (11) we have that in the case of the mean

Bias(~¾2
m;M;n) = O(1=n)(20)

if M = A log n, for some su¢ciently large constant A. In other words, we have (for
h = 1, say) that

~¾2
0:5A log n;A log n;n = ¾2

1 + OP (
p

log n=n);(21)

thus ~¾2
0:5A log n;A log n;n may be used whenever an accurate variance estimator is

needed. For example, it may be used for studentization in the context of sub-
sampling distributions discussed here, or block-bootstrap distributions in Götze &
Künsch (1996).

Notice that if ®X(k) = 0 for all jkj bigger than some K > 0, i.e., if the data
are K-dependent, then it can be shown additionally that Bias(~¾2

m;M;n) = O(1=n),
even when m and M are constants, satisfying M ¸ m ¸ K. Consequently, taking
K = m = M=2 we have that ~¾2

K;2K;n = ¾2
1 + OP (1=

p
n); in other words, ~¾2

K;2K;n

achieves the parametric
p

n rate in this case!
As a …nal practical comment, note that ~¾2

m;M;n is not almost surely nonnegative;
this is not a problem with ~¾2

m;M;n in particular, but rather of all higher-order ac-
curate variance (or spectral) estimators (see Politis & Romano (1995)). Although
this problem disappears asymptotically, in …nite samples it might pose a real prob-
lem, especially if we want to studentize using ~¾2

m;M;n. If we happen to compute a
~¾2

m;M;n < 0 and the obvious solution to take zero as our estimate is not acceptable
(e.g. in the studentization set-up) there are two practical ways out:
(a) try out di¤erent choices for M (or for A, if we take M = A log n), and use the
corresponding ~¾2

m;M;n if it turns out to be positive, or
(b) use a fraction of ¾̂2

M;n (e.g. l¾̂2
M;n for some l 2 (0; 1]) as our variance estimator,

i.e., ‘shrink’ the estimator ¾̂2
M;n towards zero.

Regarding (b) note that ~¾2
m;M;n can be interpreted as ¾̂2

M;n ¡ [Bias(¾̂2
M;n); a

negative ~¾2
m;M;n indicates that our estimate of the bias of ¾̂2

M;n is positive and
large (actually: too large). Nevertheless, we might take the hint that ¾̂2

M;n has
a positive bias and attempt to reduce it by taking l¾̂2

M;n as our estimator. The
additional di¢cult question of choosing l actually prompts us to favor method (a)
of solving the problem of a negative estimate. Simulations results (see Bertail &
Politis (1996)) further support suggestion a), that a negative ~¾2

m;M;n can occur as
a result of a poor choice of M:
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