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1 Introduction and main result.

We consider the Euler scheme with equidistant partitions where for 0 < k <n —1

(1.1) Y, <k - 1) _y, (%) + %m (Yn (%)) + %en (%) ,

with initial condition Y;, (0) = x and innovations

(52)ammonslo () v )

Here W is a d-dimensional Brownian motion. For z € IR? the d x d matrix A(z) is

positive definite. The starting point z is a value in IR?. The drift function m (z) =
(my (2),...,mq (2))" is a function from IR? to IRY.

By definition the conditional distribution of the innovations ¢, (%) given Y, (%) =
z; for 1 < ¢ < k only depends on the last value z; and it is N(0,%(zx)) where
¥ (2) = A (2) A (2)" We denote the elements of X (2) by 0 (2) (1 < 4,5 < d).

We make the following assumptions.

(A) There exist constants 0 < ¢ < C such that for all # € IR? with norm ||f]| = 1 and
T € IR¢
c < 0'%(x)8 < C.

(B) For a positve integer M > 1 the functions m;(x) and o;;(x) have partial deriva-
tives up to order 2M that are absolutely bounded and continuous.

Under these assumptions the process Y;, converges weakly to a diffusion Y (¢). This
follows for instance from Theorem 1, p.82 in Skorohod (1987). The diffusion is defined
by
(1.2) dY (t) =m{Y ()} dt + A{Y (¢)} dW (¢),Y (0) = z,t € [0,1].

Let p(t,z,y) be the transition density of Y and let p, (k/n,z,y) be the transition
density of the chain Y,,. In our main result we will give an asymptotic expansion for
the difference p,, — p.

Euler approximations for stochastic differential equations have been studied in a
series of papers. For an introduction that includes practical aspects we refer to Kloeden
and Platen (1992) and Platen (1999). Convergence of the expectations of smooth
transformations of Y,,(1) has been shown in Talay and Tubaro (1990) and Bally and
Talay (1996a,b). The rate of convergence of the error process Y, —Y has been discussed
in Jacod and Protter (1998), Protter and Talay (1997) and Jacod (2001). These papers
also discuss the case of a Lévy driven stochastic differential equation.
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For the statement of the theorem we have to introduce the following operators L, L
and 1~L*

1 O%f (¢, d af (t,
(1.3) Lftz,y) = 3 > 0ij (x)% 2_mi %
ij=1 ! =1 !
. 1 0%f (t,z,y) & 8f(txy)

(14)  L'f(tz,y) = 53;1%' (y)m z; Vo
(1.5) Lof tzy) = Lyf(t,z,y),
where for ¢ € R?

i 1 ¢ Pf(tzy) of (t,2,y)

Lef (t,z,y) = §gz:l%' € ~omdn; T ;mi (€) o ox;

As usual, the operator that is defined by m times iterative application of an oper-
ator K (K = L, L* or I~/§) is denoted by K™. By abuse of notation we denote by
(ﬂ*)m the operator that is defined by first applying m times the operator 1~L5 to the
function f(¢,z,y) and then putting & = z. Note that e.g. in our notation we have
that L, f(t,z,y) = Lf(t,z,y) but that in general (L,)"f(t,z,y)) # (Ls)™f(t, z,y) for
m > 2.

We make use of the following convolution type binary operation ®

(f®g) (t,z,y) = /du/ (u,r,2) g (t —u,z,vy)dz.

By iteration we also define the r fold convolution product for a function f and an
operator K:

fOK" =(fe K" V) @K

By time discretisation we get the following modification of ®

(f®ng)<%,x,y) 1“/1”( )( szy>dz

By Lemma 3.1 in Konakov & Mammen (2000) the following representation for the
density p (¢, z,y) holds

(1.6) p(t,z,y) = i (15 ® H(’")) (t,z,y),

r=0

where the kernel H is given by H = (L — L*)p and j is the following Gaussian density

ptzy) = @rt) Y (det S (y)) ™2
exp {_2%5 (y—x—tm (y))t by (y)_1 (y —x —tm (y))} _



Formula (1.6) can be shown by iterative comparisons of the diffusion Y and purely
Gaussian processes (”diffusions with frozen drift and diffusion coefficients”). The oper-
ator L is the infinitesimal operator of the diffusion. The operator L* is the infinitesimal
operator of a diffusion frozen at y. The density p is the transition density of the frozen
diffusion. This approach has been called parametrix method. For details see Konakov
and Mammen (2000).

We are now in the position to state our main result.

Theorem 1.1 Assume that (A) and (B) hold for some integer M > 1. Then there ez-
ists a function R(z,y) with |R(x,y)| < C1 exp|—Cq(x —1y)?| for some positive constants
C1 and Cy such that

(1.7) p(L,z,y) —pn(1,2,9)

M-1 1 ke
=% G (e (1) 8) 0w
M-1 1

T =\ b+l 1
_ 1;1 m( ¢ @, (L. — L) pn) (L2,) + 7R (@),

where -
i (tz,y) = (5@ HD) (t,2,y).
r=0
For M = 1 we make the convention that Y1, ... = 0. It holds that
&= e\ Bt g 2
9 X |(pea (=L))o < Crexpl-Calo -y
k=1

(1.9) ];_

~ ~ \k+1
(pﬁ Rn (L* - L*) i pn) (l,m,y)‘ S Cl eXp[_CQ(m - y)Q]

The terms of our expansion depend on n. It is possible to use our expansion to
arrive at an expansion with terms that do not depend on n. But the expansion will be
less transparent and we are not aware of explicite formulas for the terms. For small M
it is easy to get explicite formulas. E.g. for M = 2 we get by using bounds on ®,, — ®
(see also Theorem 2.1) and iterative application of Theorem 1.1 that

p(lax:y)_pn(laxvy)
1 ~0\2 4
1 ~ =\ 2 1
s (s en (= 1) pa) (L) + R (2,0)



where R* is a remainder term that has subgaussian tails (in x — y) as R. It is easy to
check that in this form the expansion coincides with that of Bally and Talay (1996a).
Note that the operator U in their formula is equal to ((INJ*)2 — LQ) /2.

In Konakov and Mammen (2000) a discrete representation is given in their Lemma
3.6 that is analogous to (1.6). There it was shown that

(1.10) Pn (%xy) = zkj (pen HD) (%xy)

r=0

where the kernel H,, is given by
with
Lof (S) = n{ o (hone) g (S mw) ae - r (o)}
n n n n
- 1 -1 -1
n n n n
Here
o (1 _ —p/2 ~1/2
pn — T, 2 - (271'/77,) (detz(y))
n

esxp {—g (o tmw) 2w (z-o tm (y))} .

n n

denotes the one-step transition density of Y, ”frozen” at the point y. The operators
L, and L;‘L are the infinitesimal operators of the Markov chain Y, and of a frozen
chain, respectively. Formula (1.10) for the transition density can be shown by direct
arguments (compared with the more technical derivation of (1.6)). Now a Markov chain
is compared with a chain with frozen distributions. In a frozen chain corresponding to
an Euler scheme the innovations are i.i.d. Gaussian variables. In particular, therefore
the transition densities are Gaussian densities and coincide on the time grid with the
transition densities of the frozen diffusions. This is the reason why the same density
p appears in the definition of the kernels H,, and H. For details and motivation of
formulas (1.10) and (1.6) see Konakov and Mammen (2000).

2 Auxiliary results.

Our first auxiliary result gives an expansion for the difference between the transition
density p and the density p? defined in the statement of Theorem 1.1.



Theorem 2.1 Let the assumptions of Theorem 1.1 hold for some M > 1. Then the
following expansion holds

(2.1) p(1,2,y) —pi(1,2,9)
M-l 1 AN 1
:;m(p@’n (L—L) pn) (1,$,y)+n—MR1(1,$,y)

with

(2.2) Z_

(p@n (L= 1) 52) ()| + s (1,2,3)| < Cexpl=C'a — )"

for some constants C' and C'.

In our proof of Theorem 1.1 we need bounds on partial derivatives of the transition
density p. The following result can be found in Friedman (1964) (Theorem 7 , page 260)
where it has been used for studying smoothness of fundamental solutions of uniformly
parabolic systems.

Theorem 2.2 Let the assumptions of Theorem 1.1 hold for some M > 1. Then the
partial derivatives Dj**Dhp (t,x,y) exist and are continuous for all 0 < |a| + |b] <
2M,|r| = 0,1, and for some positive constants Dy, Dy it holds that

D ly — =*
r+a b 1 _
(23) ‘Dy sz (t’ xz, y)| S t(\r\+\a|+\b\+d)/2 €xp { D2 n ’
T D, el
(24) |Dngp (ta 57 5 + m)‘ S t(m_,_d)/g €Xp {_DZT .

The next theorem states that the same bounds apply for the partial derivatives of
pl (t,z,y) for ¢ in the grid {X,2,...,1}. This result does not follow from the results in

Friedman (1964) because p? is not a fundamental solution of a parabolic equation.

Theorem 2.3 Let the assumptions of Theorem 1.1 hold for some M > 1. Then
the partial derivatives D;Jr“Dgp‘,iL (t,xz,y) exist for t in the grid %, %, ., 1} and are
continuous functions in x and y for all 0 < |a| + |b] < 2M,|r| = 0,1, and and for

some positive constants Dy, Dy it holds for t = %, %, ..., 1 that

D ly — |I”
r+a b d 1 _
(25) “Dy Dg;p'n. (t7 z, y)‘ < (Ir[+lal+ol+d)/2 exXp { D2 n )
. D, [E4l



3 Proof of Theorem 1.1.

It follows from (2.3) and (2.4) that for all s,¢t, s <t, s,t € {0,1/n,2/n,...,1}
Lot = syu,y) = = (Lo — L) 5t - 5,u,9) = F(1) - F(0)
n n Sauay _n n n p S,U,y -
where
Am® AY
L(y)’ (t— 5)S(y) + 5&) ‘

n n

F(6>:¢(y—u;<t—s>m<y>+6

¢ (z;m, ) denotes the gaussian density with the mean vector m and the covariance
matrix 3. Furthermore we write Amé(y) = m(§) — m(y) = (Am?(y), ...,Amg(y)).

The matrix with elements Aofj (y) = 0i; (€) — 04 (y) is denoted by AX¢(y). By Taylor
expansion we get

%Hn(t—s,u,y) — FO)—=F(0)
(3.1) = %%F(k)(0)+7

Note that

F0)=¢(y—u(t—s)m(y),(t—s)E(y) =p - suy).

We will make use of the following well-known relations

06 (y —wm (v),S(v)) 06 (v —u;mé(y), ()
ot (y) du; ‘fZU’

06 (y —wm"(y),="(y)) 1% (v —w;t(y), S (y))
95 (y) 2 Ou;Ou; ‘f:u’

- - - . - mé o
where m¢(y) = (mﬁ(y), s mg(y)) with mf(y) = (t —s)mi(y) + 5%@ and ij(y) are
the elements of the matrix X¢(y) = (t — s)2(y) + 5%_

With these relations we obtain the following formulas for £ F®)(0),k =1,2...:

Fe) = % (L. - L)@ (y —u; (t—s)m(y) + 5AmTu(y), (t — 5)S(y) + 57&;(?’)) ,
F(0) = %(i*_i*)ﬁ(t—sa“ay): %H(t—s,u,y),
1 1" 1d f
qF(0) = 55 [F(0)] 5=
= %(z*—ﬂ*)% lqg <y—u; (t—S)m(y)+5AmT(y)’(t_8)2(y)+5AET(y)

)|



By iterative application of similar arguments we get

1 1 ~ ~\k
— (k) - - _T*
a0 = g (L= 1)

o (y it = s)mly) + 62T (4w + 5AL(W> .

n n

In particular, we get

1 ~ Ak
(3.2) EF(’“)(O) Tk (L* - L ) p(t—s,u,y).

By putting (3.2) into (3.1) we get

(3. ) Hn(t s,u,y)— H(t—s,u,y)

~ ~ \k+L 1 1 M
- (L,-L* t—s,u, —/ 1—

X (f/* — f)*)MH 10) <y —u; (t—s)m(y) + TAm:(y)’ (t—s)3(y) + TiAZ;(y)) dr.

It follows from (3.3) with M = 1 that

k k
(3.4) DiD)H, (E,u,y> = DiD)H <ﬁ, u, y)
1 . L. B
+—/ (1—7)" Dap? [(L*)2 _ofi 4 (L*)Q] ddr.

2In

Note that under our assumptions for some positive constants C' and b; and for
f(s,u,y)=¢ (y —u; (t—s)m(y) + rAmi) (t—s)X(y) + T%ﬂ) with some fixed £

—(d+1+|a[+[b])/2
k k —
n n k/n

[(z*)z — oL 1" + (pﬂ £ (s,u,1)

lkz: ) (0gr (u) = 0gr () — 0gr () (ow (1) — 0w (y)) %
i mg (w) —mq (y)) —mq (y) (9w (1) — ou (y)) %
+ %:m my (u) = my (y) = mu (y) (my (u) —m (y)) %



By the last two equations (with & = u and by using Lipschitz conditions on the drift
function and diffusion coefficient) and (3.4) we get

—(d+1+|a|+|b])/2 2
a k k y—u
pintin (05)| < (5) o)

We now argue that the following two bounds hold with some positive constants D,

and Ds.
: i\ (rl+al bl +d)/2 |
‘D;+aDg:pn <£,xay>‘ S Dl (1) {_D2M}
n n i/n
: -\ —(rl+d)/2 2
n n i/n

. For the proof of these claims one can proceed as in the proof of Theorem 2.3. Note

that -
k k — 1 ' k1
Dn <_a$’y>:ﬁ<_away>+z_/ﬁ(iax’z)@n <__lazay>dz
n n i—o n n n

o (L) = 50 (310)
We now use the following identity for r > 1
(3.5) (5@ HD) (t,2,9) — (®u HY) (t,2,9)
= ((p&n H™V) @, (H — H,)) (t,,y)
+((pen H D =@, HI V) @, Hy) (t,2,y).

with

Remind that

pgz (t,ll?,y) — Dn (t,x,y) = i [(ﬁ ®n H(T)) (t,x,y) - (ﬁ ®n Hv(zr)) (t,x,y)] .

Hence, by summing from r = 0 to 7 = oo in (3.5) and by taking into account the
linearity of the operation ®, we get

By iterative application of the last identity we obtain

(36) B =3 b, (7 - H)] o, Y.
We get from (3.3)
(3.7) (vl @ (H = Hy)) (t,2,9)
=- 1‘:2_:11 m [pg ®n (f/* - fz*)kﬂ ﬁ] (t,z,y)
o |, 0= 0" e (L—1)"" 5] G ar
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where py = p and for 7 > 0

Am:(y)’tz(yHTAE“(y))_

Pr (t,u,y)=¢<y—u;tm(y)+7 -

From (3.6) and (3.7)

pi—ps) (t,z,y)
(P~ n)

1 AR 1
=—2an®n(L ~L) )+ B (6 3,0)

with

1 1 v
Ry (t,z,y) = m/ (1—T)M[PZ®n(L*—L) PTA] (t, z,y)dr,

po (tz,y) = pr®n " (t,2,y),
Py = Dn

From the last identity and Theorem 2.1 we obtain the first statement (1.7) of The-
orem 1.1 with R(z,y) = Ri(1,z,y) + Ra(1,2z,y). It remains to show that R has
subgaussian tails and that (1.8)-(1.9) hold. We only show that the first summand of
the left hand side of (1.8) has subgaussian tails. Subgaussianity for the other terms
can be shown by similar arguments. For this term we get

{p@n(L—E*) ](13:3/ n:i/( )L ) (1—%,z,y)dz.

We split the last sum into two sums

|
—

n

L= et Y =T +I1

{izi/n>1/2} {izi/n<1/2}

Il
)

i

For the first sum I the density p ( x z) is non-singular and by (2.3) and (2.4) we get

£ () 6o )

{i: Z/n>1/2}
* t 2 U d U
Z /(L - ) p<—,$,2>p (1——,Z,y)d2
{i: z/n>1/2} n n
< Cexp (-C'lly - «|*)

for some positive constants C, C’. Again, here the adjoint of an operator K is denoted
by K*.
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For the second sum I7 the density pg (1 - %, z, y) is non-singular and by (2.5) and
(2.6) we get

£, A ns) e - o)

{2:4/m<1/2}

< Cexp (—C'lly — =)

for some positive constants C, C".

4 Proof of Theorem 2.1.

We start from the recurrence relation for r = 1,2, 3, ...
POHY 5o, HY = [(eH" V) eoH - (joH" V) e, H]
(e #0) - (8. )] 0, 1

By summing up these terms from r = 1 to oo and by using the linearity of the operations
® and ®, we get

p-p'=p®H-p®, H+ (p—1) ®, H.
By iterative application of the last identity we obtain
(4.1) p—p'=> [p@H-p®, H ®, H".
r=0
Clearly we have

n=1 ,(i+1)/n
(P H-p&, H)(,z,y) = Z// du/[p(u,x,Z)H(t—u,z,y)
i=0 VU™

(4.2) p(i/n,z,2)H(t —i/n,z,y)|dz

By Taylor expansion of the function A (u) = p(u,z,2z)H(t — u,z,y) in the interval

[i ﬂ] we get

n’ n

/ [p(u,z,2)H(t —u,z,y) —p(i/n,z,2)H(t —i/n, z,y)]dz

M-1 ¢ N
(4.3) =% 5 (5= 2) [ 55206 lim 2
tim (u- %)M /01 (1— gy %A () [s—sstus) ddo,
where s;(u,0) =i/n+ 6 (u—1i/n). We now use the following properties of p and p
ap (t—s,z,y)
ot

_8p(t_ s,ac,y)

= Ltp (t - S,.T,y) aLp = Ltpa
0s

:Lp(t—S,l',y),

11



where L! is the adjoint operator of L. By application of these equalities we get
0
—A
/88 (5)
1 0 I d
[ p(Cw2) 5 [H(E = 5,2,9)] -y d2
1 ~ 1
4.4 :/Lt (—,,)L—L*Nt——,, d
(14) p(maa) (L= L7) e = =, 2 p)ds
—/p i,x,z) (L—f/*)f/*ﬁ (t—l,z,y> dz
n
1
= L L - — dz.
/p( ) ) bt ——. 2 y)dz

By iterative application of similar arguments we get

0 i
— OH(t— Z
s:i/ndz / Os [p(s, Z, Z)]s:z/n (t n’ 2 y)d'z

oF i =Nk i
(4.5) 95k (8) [s=i/n dz = /10 (ﬁ;$72> (L - L ) plt =z y)de.
By plugging (4.4) and (4.3) into (4.2) we get
=1 \ 1
(P®H —p®, H) (1, ,y) ];1 Wp@’n (L L ) (taﬂfay)'i‘n—MRM(tax,y);
(4.6)
where
k 1 k=l rl+1)/n AR Mol
— = — — = 1-9§
Bu (3, 2,9) Mlg/i/n [" (“ n)] /0 (1=9)
(4.7) ﬁ (s, Z)H(E —8,2,Y) dzdédu
: OsM ps, x, n 1% Y i) .
By plugging (4.6) and (4.7) into (4.1) we get
M—1 N 0
p(1,2,y) — pi (1,2,y) k21 /-c—i—l' k2p®n (L-L7)" p@. HV (1,2,y)
(4.8) +n—MR1 (L,z,9),
with -
Ry (vay) = Z (RM ®n H(T)> (any) :
r=0

Now we apply that for an operator S and its adjoint operator S* we have p ®, Sp =
S'p ®,, p. This gives

S pe, (1- 1) pe, HO (12,y) = [(L - E*)Hl]tp ©u 3 (5 HY) (1,2,9)
r=0 r=0

= PRy, (L—E*) e Z

By putting this into (4.8) we get the expansion (2.1). The bound (2.2) follows by
application of the estimates for the partial derivatives of p and p? given in Theorems
2.2 and 2.3.

12



5 Proof of Theorem 2.3.

By definition of pd

k k k=11 i ki
) dfz =p(- ~Ipl= (- ——
(5.1) Py, (nxy> p<n,x,y> + .E_ﬁn/p (nx2> <n n,z,y> dz

1=0
with
o (o) = 20 (e
r=1
HO (twy) = H(tzy) = (L-L)ptzy),
a0 (*2) = B0 g (F 4,
n7 ’ n? I
k—1 1 - k .
(5.2) = /H(1 (— x z) H=Y (— - i,z,y) dz.
= On n non

From our assumptions (A) and (B) we get for a constant b;

~(d+1+[al+}b))/ -
(5.3) ‘D;DS;H(I) (&m,y)‘ < C (E> exp{ ||y 33|| },
n

n

o\ ~(@+D/2 o
o) emf)

We now treat the kernel H(?),

k ) k1
@ — (N HO[Z 2
H (n,x,y> E /H ( , T z) (n n,z,y) dz

{n Zn}

+{.'§2n} /H <—asz)H(1)<fL %,z,y)dz

k k
= Hy <—,x,y> + Hy, <—,$ay> .
n n

(5.4) ‘DZH(U (ﬁ,x, x + v)
n

For the summands in Hy;, we have % — % > % > (. Hence
. 2 )
Dy Hy (E,x,y> = > /H (Lx,z) D;H(l) (— — i,z,y) dz.
n (iick n n o on

Substituting z = x + v we get

ko
Dy Hy, (E,x,y> Z /H ( x :v—l—v) D“H(l) (E - %,x—l—v,y) dv
n
{ n= Qn}

13



Applying D? to both sides of the last equality we obtain because of (5.3) and (5.4)
with some positive constants ¢ and C

k
‘DZD;I;HQl (ﬁaxay)‘

Y LI O Pl (e
{i'l<i n n n
n—=2n
i Z /H ( $$+1})D;DZH(1) (E—l,x—i-v,y)dv
{ } n n
o\ —(d+1+|al B2 - —(d41)/2 ~
<C %/(%_%> (%) exp{ bl%}
{ir<si}
ly — z|?
—bi o ——— ¢ d
eXp{ lk/’]’),— Z/n A
-\ —(L+lal+HeD /2, - —1/2
1(k 4 ;
<C i A i ~
- {ii<k} " (” n) n e, //m (y — )
-\ —(Hlal+He /2, - —1/2
1(k 4 ;
e £ iG-0)"TT 0 um
< {Z;L}n<n n) n ¢c,\/k/—n(y T)

11
(2 2) qsc,\/k/n( )
where @, s (u) = s% exp(—c||u||?/s®) and B(u,v) is the Beta function.

Since Hys can be treated similarly to Hy;, we obtain

(5.5) Dept H® k <C k e (1 1)¢ (y—=x).
’ v oY) = n 27 9) P/l Y

This bound will be used for the proof of claim (2.5). We now derive a similar bound
that will be used for the proof of (2.6). If we substitute z = x + 2’ into (5.2) for r = 2
we get

@ (K 1yl w(k_: / /
H —,T,x+v| = /H (—:E:v—l-z)H ———x+z,x+v|dz.
n n n o n
By applying D? to both sides and by using (5.4), we get
k=11 —12 () —-1/2
R
- % n <n n) qbc=\/’“/_" (v)

< OB (515) %oy )
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(5.6) ‘DgH(Z) (E, z, T+ v)
n




The inequalities (5.5), (5.6) are analogous to (5.3) and (5.4). By iterative application
of similar arguments we get the following bound for partial derivatives of H™ for all
1<r<oo

—(2—7+|a|+[b])/2
k r—11 11 k
anbry(r) (™ T - i _ _
‘DyDzH (n,x,y>‘ <(C"B ( 5 ,2)><...><B (2, 2) (n) qbc, feTm (y —x),

—(2—r)/2
r—11 1 1\ [k
<C" — —, = — .
—CB( 2 ’2> 8 XB<2’2> <n> Pe/fi7m (V)

By summing up we get the bounds

k
‘DgH(” (—, T, T+ v)
n

. 1o\ ~(1Hal+[eD)/2

(5.7) ‘D;Dﬁ@ (;,x,y)‘ < C (5) e, Jigm U = T)
k k —1/2

(5.8) ‘DZCD (E,x,x + v) < C (ﬁ) . Jim (V)

We now make use of the bounds (5.7), (5.8) and the estimate

R k k —|r|/2

for 0 < |r| and 0 < |s| < 2M and a constant C,depending on r. Using these bounds
we can treat the integral in the identity (5.1) in the same manner that we have treated
H, above and we get the conclusion of the Theorem.
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