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Abstract. The purpose of this survey is to describe several phys-
ically motivated problems in which the corresponding mathemat-
ical models lead to overdetermined elliptic boundary-value prob-
lems. Such situations appear for instance in fluid mechanics and
capillarity theory, theory of elasticity, electrostatics. Our goal here
is to give an idea of how they have been treated mathematically.

1 The physical problems

1.1 Interior overdetermined problems. Examples

In this section we describe three physical problems which were first given a
mathematical consideration and solved by Serrin in his classical paper [19].
They lead to overdetermined elliptic boundary-value problems in bounded
domains.

Fluid moving in a straight pipe. We begin with a simple example which
will help us to introduce the kind of problems we consider. Suppose we
have a viscous incompressible fluid moving in a straight pipe with a given
cross section. Fix rectangular coordinates (x,y, z) in space with the z—axis
directed along the pipe. Then the cross section of the pipe containing the
origin is a domain in the (x, y)-plane, which we denote by Q. It is a standard
result from fluid mechanics that the flow velocity does not depend on z and
therefore can be regarded as a function of x and y, defined in €2. Furthermore,
it is known (see for example [10]) that u satisfies the Poisson equation

4]
Ay =P in Q, (1)
where 7 denotes the dynamic viscosity, [ is the length of the pipe and dp is

the change of pressure between the two ends of the pipe. All these quantities
are constants in this model.



The adherence condition on the wall of the pipe is expressed by the Dirich-
let boundary condition
u=20 on Of). (2)

. . . Ou
Finally, the tangential stress on the wall is U where n denotes the

interior normal to 0€). The precise determination of the point of maximal
tangential stress is an important but mathematically very difficult problem.
Here we are interested in the following question : when s the tangential stress
the same at each point of a cross section of the wall 7 In other words, can
we have a solution of (1)—(2) which satisfies the Neumann type boundary
condition

% =const on 007 (3)

It is very standard and classical to consider the Poisson equation (1) with
either of the boundary conditions (2) or (3) and there is a huge literature
on both problems (1)-(2) and (1)-(3). However, the question we asked above
requires that both of these conditions be satisfied by the solution of (1) — this
is what we call overdetermined. Problem (1)-(2)-(3) can be viewed as a free
boundary problem, in the sense that the domain is a part of the problem.

It is intuitively clear that (2) and (3) together is too much to ask, and in
most cases the answer to our question will be no, that is, problem (1)-(2)-(3)
will not be solvable. On the other hand, if €2 is a ball with radius R then the
unique solution of (1)-(2) is

nl e 2 2
u(x) = —(R* —z° — y°),
(@) = 15 )
and hence satisfies (3). Thus a natural question to ask is whether there exists
a non-circular pipe such that a fluid moving inside it has the same tangential
stress on all points of its wall.

The torsion problem. An equation of type (1), together wtih the bound-
ary condtions (2) and (3), arises when we model the torsion of a solid cylin-
drical bar. We follow the presentation in [21]. Suppose we have a cylindrical
body of arbitrary (simply connected) cross section, one end of which is fixed,
while the other is twisted by a couple of given magnitude. We fix the coordi-
nate system as in the previous example, with the z—axis along the axis of the
cylinder, and the plane Oxy containing the fixed cross section. It is known
that, in general, after the bar is twisted its cross sections do not remain plane
but are warped. Actually, any point P(z,y, z) of the body occupies a new
position P'(z +r,y + s,z + t) after the twisting, where

r=—azy, s = azx, t=ap(r,y), (4)



Ox

where « is the twist per unit length of the bar and ¢ denotes the torsion
function. Let us note that the torsion is zero (that is cross sections of the
bar do remain plane) if and only if the cylinder is circular. This result turns
out to be a very particular case of the symmetry theorems we present in
Section 2.

We shall consider the torsion in terms of L. Prandtl’s “stress function”

W(r,y) = v(ry) ~ 5 +97)

where 9(z, y) stands for the complex conjugate of . It can be checked ([21])
that W satisfies the equation

AV = =2 in Q (5)
U = const on Of.

The function ¥ has the following important property : at each point of
a level curve of ¥ (these curves, defined by ¥ = const, are called lines of
shearing stress) the stress vector is directed along the tangent to the curve.
In particular, since all tangential derivatives of ¥ are zero on 02,

ov 1
— =|V¥|=—.7  on 09,
on 1%’
(see [21]) ; here u denotes the modulus of rigidity of the bar and 7 is the
magnitude of tangential stress (7 is called shearing stress).
Like in the previous example, the shearing stress is maximal on the lateral

boundary, so elastic failure of the material is to be expected on that boundary.
Here we address the following two questions :

e Can the shearing stress be constant on the lateral surface ?
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e If the bar is invariant under some group action, in particular, if the bar
is symmetric with respect to a hyperplane, then do lines of shearing
stress have the same property ?

The interior capillarity problem. A more complicated example is pro-
vided by the equation of equilibrium shapes of the surface of a homogeneous
and incompressible liquid contained in a straight tube, subject to a gravita-
tional field. Our presentation follows [13], Chapter 2.

We again consider a rectangular coordinate system with the z—axis di-
rected along the axis of the vessel and denote with 2 the cross section of
the tube containing the origin. For each (z,y) € 2 we define u(z,y) to be
the height, with respect to the level of €2, to which the liquid rises above or
below the point (z,y).

In this situation, the first two conditions for hydrostatic equlibrium (Eu-
ler’s condition and Laplace’s condition) reduce to the following equation

diVL —bu=¢q in Q, (6)

Vv 1+ [ Vu?
g

where b = 22 and q is some constant depending only on the height at which

o
we fix the origin. As usual, p denotes the density of the fluid, o is the surface
tension, and g is the intensity of the gravitational field.

In this setting the Dupré-Young condition for hydrostatic equilibrium

becomes 5
8_u = —cosay/1+|Vu|2  on 09, (7)
n

where n is the interior normal to the boundary of 0{2 and « is the contact
(or wetting) angle between the liquid surface and the wall of the vessel.
The question we are interested in is : when does the liquid rise to the
same height at each point of the wall 7
If u = const on 0f2 then the normal derivative of u is equal to the length
of the gradient of u on 052, so (7) transforms into

ou
p —cotgae  on 0. (8)

We shall exclude the two limiting cases « = 0 and « = Z (a = 0 is clearly

2
irrealistic, while for & = % the only solution of (6)-(7) is u = %, independently
of the form of the vessel).

Note that the maximum principle (see Section 3), applied to (6), says u

attains its maximum in €2 on the boundary 0f). By the strong maximum
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principle, if v = const on 02 then u attains its maximum only on 0f2, except
it is constant in (2. The latter is excluded by a # 7.

Finally, to answer the question we asked above, we have to study the
solvability of the following problem

( divL —bu = const in
V1+|Vul?
u = 0 on 0f)
\ g_u = const on ON
n

(we have fixed the reference level to be the surface level on the vessel wall,
and have replaced u by —u).

1.2 Exterior elliptic problems

The theory of elliptic partial differential equations is far less advanced when
these equations are considered on unbounded domains. We give below some
examples of physical problems whose mathematical representation leads to
free boundary problems in exterior domains (we recall that an exterior do-
main is the complement of a bounded domain).

An important feature of exterior problems is that they permit us to con-
sider systems of many bodies interacting with each other.

The electrostatics problem. Consider a smooth conducting body G in
RY (N =2 or 3) with a charge distribution on its boundary. We recall that
a charge distribution p € C(9G) is called an equilibrium charge distribution



if the single-layer potential induced by p

¢@»:34Gp@hﬂx—yod%, (10)

is constant in G ; here v(t) = —5-logt if N = 2 and v(t) = — % if N = 3.
Note that the potential ¢ is harmonic and smooth in G and Q := R \ G.

We are interested in constant equilibrium charge distributions. First, if
(G is a ball and p = const then 9, being rotationally invariant and harmonic,
is constant in . Hence, a natural question is : do non-circular conductors
admit constant equilibrium charge distributions ? This question was given
a negative answer by Martensen ([12]) and Reichel ([17]), respectively for
N =2and N = 3.

However, the exterior nature of the problem permits an important gen-
eralisation, namely, we can ask the same question for m conducting bodies
in the space. More precisely, suppose we have m,m > 2, simply connected
conductors, with possibly different (but constant !) charge distributions on
their boundaries. Can such a system be an equilibrium one ? The negative
answer is contained in Theorem 4.

The mathematical formulation of the problem is as follows. Suppose we
have C?%“-regular mutually disjoint bounded domains G4, ..., G,,, such that
RY \ G is connected, where

G=06: (1)

Suppose each body G; has a constant equilibrium charge distribution p; on
its boundary. This means that the single-layer potential defined by (10),
with p(y) = p; for y € 0G;, is constant in each G;.
Then
oy

on —pi
by the jump condition for single-layer potentials ; here n is the exterior
normal to 0G; (interior to 0S2). Furthermore, 9 is always above its value 1
at infinity ; indeed, we have 1o, = —00 for N = 2 and ¥, = 0 for N = 3.
Hence, if the system is in equilibrium, then the function ¢ € C%%(Q)
satisfies

on 0G;,

AYp = 0 in RV\G

¢ 2 djoo in RN \G

Y = ;>0 on 0G;,i=1,...,m (12)
% = —pi on 0G;, i=1,...,m.

on



The exterior capillarity problem. Here we consider a large (mathemat-
ically speaking : infinite) reservoir full of a homogeneous and incompressible
liquid, into which we dip a straight solid cylinder. We study the contact
surface between the liquid and the cylinder’s wall. This problem is dual to
the third problem considered in Section 1.1 and leads to the same equation
in the exterior of the cylinder.

More generally, consider m solid cylindrical bodies of arbitrary (smooth)
cross sections G;,7 = 1,...,m, dipped into a large reservoir without touching
each other. They make the liquid rise around their walls to some level higher
than the (reference) level at the walls of the reservoir. We want to know
if the points on the contact surfaces between the liquid and the walls of
the cylinders can be at the same height, allowing different heights for the
different contact lines. Another way of putting the question is : if we have a
set of cylinders dipped into a infinite reservoir, can we build another set of
cylinders which, added to the first, will make a system in equilibrium, with
each contact surface being at a constant height ?

The mathematical problem to which the above question reduces is the
following. As in the previous example, suppose we have m C*%-regular mu-
tually disjoint bounded domains G1, ..., Gy, such that RV \ G is connected.
We need to investigate the solvability of the problem

( \%
div————  _ by = const in RV\G
V1+|[Vul?
U > U in RV\G
9 U = U as |z| — o0 (13)
u = a; >0 on 0G;, i=1,...,m.
ou .
— = —cotga; on 0G; i=1,...,m.
\ on

Both (12) and (13) are particular cases of the equation considered in
Theorem 4 of Section 2. This theorem says (12) and (13) do not have a
solution, more precisely, if they do, then m =1 and G = (G is a ball.

2 The symmetry theorems

In this section we present the mathematical results which answer the ques-
tions posed in Section 1. They are all based on the famous “moving planes”
method of Alexandrov (1962) which has proved to be by far the most power-
ful tool for establishing symmetry properties of positive solutions of elliptic
partial differential equations.



We begin with the case of a bounded domain Q@ Cc R¥Y, N > 2. We
consider classical (i.e. C%?—regular) solutions of the problem

Qu+ f(u) = 0 in Q
v > 0 in Q (14)
v = 0 on 09,

where f € C'(R",R) and @ is a regular strictly elliptic operator, that is,

(@) Qu = div(g(|Vu|)Vu), where g € C%([0,00)), g(s) > 0 and (sg(s))’ > 0
for all s > 0.

This assumption is satisfied by the Laplace operator (Q = A), by the mean
curvature operator (Qu = div——-.-—). Let us note that all results in this

vV 1+ |Vul?

paper remain true for another physically important operator, the Monge-
Ampere operator (Qu = det(D?u)), and also for any linear strictly elliptic
operator. We also note the function f can be allowed to depend on |Vul.

We shall often consider (14) together with the following boundary condi-
tion (n will always denote the interior normal to 0f2)

a—z =const  on 0N. (15)

We are interested in the following two questions :

e if the domain is symmetric with respect to a hyperplane, do solutions
of (14) have the same property ?

e if problem (14)-(15) is solvable, then is Q a ball ?

These two questions were answered in the affirmative in two classical and very

well-known today papers, by Serrin (1971) and Gidas-Ni-Nirenberg (1981).
In the context of elliptic partial differential equations the moving planes

method was first used by Serrin in [19], where he proved the following theorem

Theorem 1 (Serrin, 1971) Suppose Q is a bounded C?*-domain and u €
C%(Q) is a solution of (14)-(15). Then 2 must be a ball.

The result of Gidas, Ni and Nirenberg states the following

Theorem 2 (Gidas-Ni-Nirenberg, 1981) Suppose ( is bounded and con-
vex with respect to some direction v € RV \ {0} and is symmetric with respect
to a hyperplane perpendicular to v. Then any solution of (14) is symmet-
ric with respect to this hyperplane. In addition, the solution is a strictly
decreasing function along any segment which links the hyperplane and 0S).

In particular, if Q is a ball, then any solution of (14) is radial and de-
creasing, that is, it depends only on, and decreases with, the distance to the
center of the ball.



In a paper of 1991 Berestycki and Nirenberg gave an alternative proof
of this theorem. In their paper they greatly simplified the moving planes
method and showed Theorem 2 can be extended to only Liptscitz continuous
f’s, and to a large class of non-smooth domains.

The Berestycki-Nirenberg improved moving planes method became very
popular during the last ten years and was used in many different contexts,
where symmetry of solutions of elliptic PDE’s was studied.

We next turn to unbounded domains. In 1991 C. Li adapted the moving
planes method to the case when equation (14) is defined in the whole space.
He proved the following theorem.

Theorem 3 (C. Li, 1991) Suppose we have a classical solution of

Qu+ f(u) = 0 in RN
u>0, u # 0 m RN (16)
u — 0 as |z]— oo,

and, in addition, that f is decreasing in a right neighbourhood of zero. Then
the solution is radial with respect to some point 2° € RV, that is, u is a
function of |x — z°| alone, and

Z—:f <0 for r=|r—2° € (0,00).

In a series of papers Berestycki, Caffarelli and Nirenberg studied symme-
try properties of positive solutions of elliptic equations in various types of
unbounded domains, including a half-space, a cylinder, a domain bounded
by a Lipschitz graph.

In view of the applications exterior and annuli-like domains were ex-
tensively studied too. In particular, a number of important partial results
were obtained by Alessandrini, Willms-Gladwell-Siegel, Phillipin and Reichel.
None of these results could apply to the problems of many bodies discussed
in Section 1.2.

Recently the author solved this problem in [20]. Here is the precise state-
ment of the main result in this paper. We make the following hypotheses.

(i) We are in the context of Section 1.2, that is, we have a set G which is
the union of m mutually disjoint bounded C?“-domains G, ...,G,, ;

(i) f is a Lipschitz continuous function in [0,00) and is decreasing in a
right neighbourhood of zero ;



(iii) there exists a C*-regular solution of the problem

(( Qu+ f(u) = 0 in RV\G
u > 0 in RV\G
) u — 0 as |z — 00 (17)
u = ;>0 on O0G;, 1=1,...,m.
ou .
— = b<0 on OG; i=1,...,m,
\ on
where a; and b;, 2 = 1,..., m are constants and n denotes the exterior

normal to the boundary of G (exterior to 02).

Remark The constant which appears in the right-hand side of the equation
in (13) is necessarily zero, since the solvability of (17) implies f(0) = 0.

Theorem 4 Suppose (i), (ii) and (iii) hold. Then m = 1, G = Gy is a
ball centered at some point 1° € RN | the solution of (17) u is radial, that is
u =u(lz —2°)), and

du

— <0 = |z — 2°] € (p1,0),
o for r=|z —2°| € (p1,00)

where p; denotes the radius of G.

There is a version of this theorem for multiply connected bounded do-
mains, more specifically, domains of the type Q \ G, where € is a smooth
bounded domain and G is as above. Furthermore, we have a Gidas-Ni-
Nirenberg type result in the exterior of a ball. More precisely, if G is a ball

and we have a solution of (17), with the last boundary condition relaxed to

0
a_u < 0 on 0G, then this solution depends only on and decreases with the

n
distance to the center of G.

3 Maximum principles, Serrin’s lemma and
the moving planes method in bounded do-
mains

3.1 The improved moving planes method.

In this section we describe the moving planes method of Berestycki and
Nirenberg, and give their proof of Theorem 2.

Before going to the method itself we recall two very classical results in
elliptic theory, the mazimum principle and Hopf’s lemma (known also as the
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strong maximum principle). For these, see for example [15]. Recent results
are contained in [6].

Theorem 5 (The maximum principle) Let Q be a bounded domain and

L= Zaw 51J+Zb )0; + c(x

3,j=1

be a linear uniformly elliptic operator (that is, the matriz (a;;(z)) is positive
definite uniformly in x), with bounded coefficients. Suppose c(x) < 0 in Q.
Then for any u € C%*(Q) N C°(Q)

Lu
U
implies u > 0 in Q. We say that L satisfies the mazximum principle in 2.

The same result holds if 2 is unbounded, u > 0 on 02 meaning also that
lim inf ;00 u(z) > 0.

m €

0
0 on 00

IV IA

Theorem 6 (Hopf’s lemma) Let Q) be a bounded domain and L be a linear
uniformly elliptic operator with bounded coefficients. Then

Lu < 0 in Q
u > 0 i Q

0
implies that either u = 0 in Q or u > 0 in Q and, in addition, ou > 0 on
n

any point of 02 at which 02 admits an interior tangent ball and u vanishes.

Note that in Theorem 5 we supposed that the zero-order coefficient of
the elliptic operator is non-positive. In general, the maximum principle is
false if we do not make a hypothesis on ¢(x). However, it is possible to give
conditions on the domain €2 which ensure the validity of the maximum prin-
ciple, for any bounded c¢(z). In particular, the following maximum principle
“in small domains” holds.

Theorem 7 Let Q) be a bounded domain, with diam 2 < d. Let L be a linear
uniformly elliptic operator with coefficients bounded in the uniform norm by
a constant A. Then the mazimum principle is satisfied by L in §2, provided
vol(Q2) < &, where § is a constant depending only on d, A, and the ellipticity
constant of L.

11



Proof of Theorem 2 Suppose for simplicity €2 is convex in the direction of
the vector e; = (1,0, ...,0) and is symmetric with respect to the hyperplane
To = {z |z, = 0}. We want to show that

u(—x1, %9, ..., TN) = u(T1,Tay ..., TN) for any = € .
For any A € R we define

T,\ = {LE‘.Ilz)\}, D)‘:{.I‘LE1>)\}, E,\:D)‘HQ,
) = (2\—x1,Z9,...,7,) — the reflexion of z with respect to T},
w(z) u(r?) — u(x), for any z € X,

d = inf{AeR | T,nQ=0 forall u> A}

(see Fig. 1). With this notation, our goal is to show that wy = 0 in X.

-~
e
/
[ Z)\
\X)\X
(P A
~

T o T, L

Figure 1: The moving planes method

Lemma 3.1 The function wy, A € [0,d), satisfies a linear uniformly elliptic
equation of the form (summing over repeting indices)

Lowy = a;j(x)0ijwx + bj(x)wy +c(z)wy, = 0 in X,
wy > 0 on 0%,.

The ellipticity constant and the coefficients of L are bounded independently
of \.

This lemma is obvious for () = A and requires some computations in the
case of a more general operator (see for example [18]). Note that we take

flu(z?) = flu(z) . A
c(z) = u(z) O_ u(z) if  u(z?) # u(z) (19)

if  u(z?) = u(z).

12



We say the hyperplane T\ has reached a position A < d provided w,, is
non-negative in X, for all 4 € [A,d). The plane T) “starts” at A = d and
“moves” to the left as A decreases. If we prove that T) reaches position zero
we are done, since then we can take a hyperplane coming from the other side,
that is, starting from -d and moving to the right. The situation is totally
symmetric so the second hyperplane would reach position zero too. This
means that wy > 0 and wg < 0 in Xy, hence wy = 0 in X.

Step 1 The above procedure can begin, that is, there exists X < d such that
wy, > 0in X, for all p € [\ d).

Proof By using Theorem 7 we can find a number ¢ such that the operator
Ly defined in Lemma 3.1 satisfies the maximum principle in any subdomain
Q' C Q, with vol(') < §. We fix A < d so close to d that vol(Z,) < 4, for
any A € [\, d). Hence, by Theorem 7, equation (18) implies that w, > 0 in
¥, for all € [, d). O

Note that, by the definition of w,, we have wy > 0 on 9%, N 0f2, for any
A € (0,d) (since u vanishes on 92 and is strictly positive in €2). Hence, by
Hopf’s lemma, wy > 0 in X, for A € (A, d).

Step 1 permits us to define the number

Ao = inf{\ € (0,d) | w, > 0in £, for all u > A}.

Note that, by continuity with respect to A, wy, > 0in X,,. By Hopf’s lemma,
if )\0 > (0 then W > (0 in E)\o'

9
Step 2 —% <0 in Dy,
8361

Proof Let z be an arbitrary point in X, , with z; = A. Then, by the
preceding remarks, w, > 0 in 3. Since wy, = 0 on T, Hopf’s lemma implies

owy, ou
0 8—%(36) = _28—acl(x)
(recall that wy(z) = u(z?) — u(x)). O

Step 3 /\0 = 0.

Proof Suppose for contradiction Ay > 0. We are going to “push” the moving
plane to the left of \g. Let K be a compact subset of 3, such that vol (X, \
K) < % (6 is the number from Theorem 7). Since wy, is continuous and

strictly positive in X,,, there exists a number ¢ > 0 such that wy, > ¢
in K. Fix a number A;,0 < A; < Ay, such that vol (X, \ K) < 4, for

13



Ao

Figure 2: The contradiction in Step 3

A € A1, Xo) (see figure 3.1). By continuity, if )\; is sufficiently close to Ay we
have wy > £ > 0in K, for any A € [A1, Ag). In the remaining part of X the
function wy, A € [A1, Ag), satisfies the equation

Lowy, = 0 in S\ K
> 0 on 0(X)\K).

By Theorem 7, wy > 0 in X, \ K. Hence wy > 0 in Xy, for any A € [\, Ao).
This contradicts the definition of Ag. O

3.2 Overdetermined Problems. Serrin’s lemma

In this section we give a summary of the proof of Serrin’s result (Theorem 1).
The idea is to show that for any direction v € RY \ {0} there exists A =
A(7) € R such that the domain and the solution are symmetric with respect
to the hyperplane T\ = {z € RY | <z,y>= A}; here <-,-> denotes the
scalar product in RV .

We fix for instance v = e; = (1,0,...,0). By using the moving planes
method described in the previous section we can show, in exactly the same
way, that a hyperplane starting from position d and moving to the left will
move as long as the function w) is defined in X, that is, as long as the
reflexion of ¥, with respect to 7} is contained in €2.

In any case the moving plane reaches position A, (called the critical po-
sition), where

A =1nf{A <d | (Z,)" CQ and <n(z),e;> < 0forall u> A, z € T,NON}.

14



(here, and in the sequel, an upper index means reflexion with respect to the
hyperlane with the same index). In other words, the reflexion of ¥, with
respect to T stays in {2 until at least one of the following two events occurs

(i) the reflexion of QN A%, wih respect to T becomes internally tangent
to 0€2 at some point P ;

(ii) Ty becomes orthogonal to 02 at some point Q).

(see figure 3.2).

Figure 3: Two types of domains Q2 : the critical position A, is attained at a point
of orthogonality (a), or at a point of tangency (b). For all p > )\, the part of Q to
the right of T,, has its reflection inside 2 and the outward normal to 0 at each
point of the boundary of this part makes an acute angle with the direction e;.

We are going to show that wy, = 0in Xy, . Since u > 0 in €2, this implies
that the reflexion of 0¥, N 02 with respect to T), lies on 0f2, that is, (2 is
symmetric with respect to 7}, .

In case (i) Hopf’s lemma (applied to (18) for w,,) immediately yields
wy, = 0 in X,. Indeed, the function wy, vanishes at P*+ € 9%, N9Q (since
u = 0 on 0R) and so does its normal derivative, because of condition (15).

Case (ii) is more difficult to treat, since Hopf’s lemma does not apply at
Q@ (0%, does not admit an interior tangent ball at this point). Serrin proved
the following refinement of Hopf’s lemma (see [19], p. 313-314).

Lemma 3.2 Let D* be a C*-domain and let T be a plane containing the
normal to 0D* at some point Q. Let D then denote the portion of D* lying
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on some particular side of T. Suppose w € C?(D) satisfies a linear uniformly
elliptic inequation with bounded coefficients of the form

<
w > 0 i D.
Suppose also that
|aij(2)&m;| < K(| <€,m> |+ [¢]ld(z)]), K = const.

where £ € RN n 1 T, d(x) = dist(z,T). Under these hypotheses, if w and all
its first and second order derivatives vanish at @) then w =0 in D.

Let us show that Serrin’s lemma applies to w, , for @ = A and N = 2 (for
the general case we refer the reader to [19], p. 315-316 and [18], Appendix 1).
First, w,, satisfies an equation of type (20), by Lemma 3.1 (we can always
achieve c¢(x) > 0 in (18), by making the change of functions W = exp (Sz1)w,
with g sufficiently large). Recall that

wy, () = u(2A — 21, x2) — u(x1, T2), for (z1,x9) € X,,.

This trivially yields

ow 0w 0w
Oxy ) Oxizy ) OTamy Q=0
Since 7 = —e; is tangent to 0€) at Q and n = —e, is normal to OS2 at @), we
get
ow ou ou
sl =977 = 977
L= @ = @
w u U
=2 = 2 (== .
0x1x9 (@) 0x1T9 (@) or <8n) (@)

Since both u and its normal derivative are constant on 0f2, the last two
quantities vanish. By Serrin’s lemma w), =0 in Xj,. a

4 Exterior domains. Proof of Theorem 4

In this section we give a sketch of the proof of Theorem 4. The complete
proof is rather lengthy and can be found in [20]. Our goal here is to outline
its main ideas.

The proofis based on the moving planes method. The principal difficulties
to overcome are the following.
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e The domain €2 is unbounded ;

e The domain X, can be very complex in nature (in particular, not
connected) ;

e We do not know a priori whether the solution is below its value on the
boundary 0G.

We shall suppose that @ = A,m = 1, f € C'(R") and f'(0) < 0, for
simplicity. With the notations from the preceding sections, our goal is again
to show that the domain Q = RY \ G and the solution u are symmetric with
respect to a hyperplane T}, for some A. The function w) is now defined in
the set ) = Dy \ G*, for A > \, (here \, denotes the critical position for
G ; note that G C G*, for A > \,).

We divide the proof into ten steps. The first step is again “initializing”,
in the sense that it permits us to start the moving plane process.

Step 1 There exists A € R such that wy > 0 in Ty for all A > .

Proof. This step is based on the idea of the proof of C.Li’s result (see
[11]). We shall take the opportunity to explain this idea. In order to use Li’s
argument we notice that, since u tends to zero at infinity, we can take A € R
such that A > d and

u(z) < % for |z| > X,
so that wy > % > 0 on OG> for all \ > A

Suppose the claim in Step 1 is false, that is, there exists a sequence
{Am}2_, such that

lim A\, = oo, A\, > A,

m—0o0

and w,,, takes negative values in X, . Since wy is zero on 7T and tends to
zero at infinity for a fixed A, we see that w, , attains its negative minimum
inside X, , say at a point (™. Then

Vwy, (™) =0 and Auwy, (z™) > 0.
Recall that wy satisfies a linear equation of the type
Awy + c(x)wy =0 in X, (21)
for all A € R, where ¢(z) = f'(d(\, z)) with

d(\, z) € [min{u(z?), u(z)}, max{u(z*), u(x)}].
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Since wy,, (™) < 0 we see that 0 < d(Ap,2™) < u(z™) and therefore
lim d(Am, ™) = 0. It follows that by (z(™) is strictly negative for large
m—r0o0

m. Hence we obtain

0 < Awy, (2™) = by, (2™)wy,, (™) <0,

a contradiction. O
Step 1 shows that the number

X=inf{AeR | w,>0 in X, forall > A}

is well defined. It is obvious that Ay is finite. Notice that, by continuity,
Wy 2 0 in 21\0'

Step 2 We have (;97“ < 0 in the set {z € RN | 21 > max{\,d}}.
1

The proof of this step is similar in idea to the proof of Step 2 in Section 3.2.
Step 3 Ay < d.
The ideas of the proof of this step appear in the proof of Step 7 below.

Step 4 For any z € OG and any unit vector n, for which <n,n(z)> >0, we
can find a sufficiently small ball Bs(z) such that

ou _
a—n(C) <0 forall ¢ € Bs(2) \G.
Proof. This statement says the solution is strictly decreasing in a neigh-
bourhoood of 02, along any outward direction. If a;; < 0, Step 4 is obvious,
by continuity. Hence we can assume «; = 0, or equivalently Vu = 0 on 0G.

2
0"u on 0G.

on?
Fix a point 2° € T; N 0G, so that

Ou oy Ou
0x - On

Notice that this implies |D?u| =

(z°)=0

(note that n = e; at zg). Steps 2 and 3, together with the assumption Ay < d,

imply
ou ,
— t 0
Er (Z + 61) < U,
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for positive t. We conclude that

Pu, o Ou,
— = — <0. 22
S ) = G <o (22)

On the other hand, it is easy to compute that © = const and Vu = 0 on 0G
imply

0*u
Au'BG == w o .

Hence 9

u

o2 =" (a;) = const on 0G.

By (22), f(a1) > 0. If f(a1) > 0, Step 4 follows easily, since

0*u , 0%u

6—7’]2 =<n,n> W on 0G.

If f(a1) = 0, we see that all first and second order derivatives of u vanish on
0G'. This implies that the function

(z) = u(z) for zeRV\G
m aq for ze€QG

belongs to C?(RY) and solves the equation

Au+ f(u)=0 in RN
>0, u#0 in RY (23)
u(zr) —» 0 as x — oo.

However, the shape of U contradicts C. Li’s result for equations on RY (The-
orem 3). O

Step 5 wy > 0 in Xy, for any A € [Ag,00) N (A, 00).

Step 6 We have

ou , —
8—$1<0 m D)\*\G,

where \* = max{ g, \.}.

The last two steps are a consequence from Hopf’s lemma. However, we
have to be careful about the fact that the domain 3, may have many con-
nected components (see Figure 4), so we have to exclude w) = 0 in each of
them. Suppose for contradiction that w, = 0 in a connected component Z
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Figure 4: The shaded regions are the connected components of Xy.

of 3. We observe that the boundary of each connected component of 3,
contains a point of intersection between 0G and T). We take a point y € Z
so close to such a point of intersection z € Z, that it belongs to the ball
Bs(z) defined in Step 4. Then, by Step 4, u decreases strictly from y* to
y. Hence wy(y) > 0, a contradiction. The next step is the key point in the

proof of Theorem 4.
Step 7 M\ < A,.

Proof. Suppose Ay > A,. By Step 5 we know that wy, > 0 in X,,. Proceed-

ing as in Step 1, we find two sequences { A\, }>_,, {2(™1%_  such that

m A = Ao, A < Am < Ao, 2™ €5, \ T,
m—r0o0
and w),, attains its negative minimum in X,  at 2(™).
A number of different situations may arise. We obtain a contradiction in
each of them.

Case 1 There is a subsequence of {z(™}, such that 2(™ € intX, .

As in Step 1 we see that Aw,, (™) > 0 and Vw,,, (™) = 0. If

lim |z{™| = co we obtain a contradiction as in Step 1. If a subsequence of
m—r0o0

{x(m)} converges to a point £° which belongs to the regular part of 9%,,, by
passing to the limit we obtain 20 € 3, wy, (z°) < 0 and Vw,,(z°) = 0. This
means that z° € 03y, and wy,(z°) = 0, so Hopf’s lemma implies Vu(z°) # 0,
a contradiction. If a subsequence of {z(™} converges to a point z° which
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belongs to the singular part of 03,, (which is nothing else but dG N T),),
then, as in the proof of Steps 5-6, we get wy (z™) > 0 for large m, which
is a contradiction.

Case 2 There is a subsequence of {z(™}, such that (™ € 9%, .

This is the most involved part of the proof. We shall avoid being too
rigorous here, and try to concentrate on the main ideas. The following lemma,
plays a crucial role.

Lemma 4.1 Suppose A > \,. Any 2z € 0G*N Dy, i = 1,...,k, has one of
the following properties (exclusively)

(I) If we move along direction —eq, from z to the left, we enter Xy ;

(IT)  If we move along direction —ey, from z to the left, we enter G* and,
in addition, we meet O0G* again before or on reaching Ty;

(III)  If we move along direction —ey, from z to the left, we enter G* and,
i addition, we meet 0G before or on reaching T,

(IV) A=\, and z € 0G* N OG; (the symmetry case).

The four cases of Lemma 4.1 are shown on Fig. 5. In this way we obtain
four types of points on G* N Dj.

Step 8 wy, = 0 in at least one connected component of 3, .

Step 9 Let Z be a connected component of Xy, such that wy, = 0 in Z.
Then

0Z\ T\, C 0G.
Step 10 Conclusion.
Proof. Once we have proved Step 9, the conclusion is obtained via a topo-
logical argument, due to Fraenkel and used in this setting by Reichel.
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